1
|
Zhang X, Chen R, Shu H, Liang P, Qin T, Wang K, Guo A, Craik DJ, Liao B, Zhang J. Gene-guided identifications of a structure-chimeric cyclotide viphi I from Viola philippica: Potential functions against cadmium and nematodes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112185. [PMID: 38986912 DOI: 10.1016/j.plantsci.2024.112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The cyclic peptides, cyclotides, are identified mostly with 29-31-aa (amino acid residues) but rarely with ≥ 34-aa in plants. Viola philippica is a well-known medicinal plant but a rare metallophyte with cyclotides. A hypothesis was hence raised that the potential novel 34-aa cyclotide of Viola philippica would clearly broaden the structural and functional diversities of plant cyclotides. After homology-cloning the cyclotide precursor gene of VpCP5, a 34-aa cyclotide (viphi I) was identified to be larger than 22 other known cyclotides in V. philippica. It had a chimeric primary structure, due to its unusual loop structures (8 residues in loop 2 and 6 residues in loop 5) and aa composition (3 E and 5 R), by using phylogenetic analyses and an in-house cyclotide analysis tool, CyExcel_V1. A plasmid pCYC-viphi_I and a lab-used recombinant process were specially constructed for preparing viphi I. Typically, 0.12 or 0.25 mg ml-1 co-exposed viphi I could significantly remain cell activities with elevating Cd2+-exposed doses from 10-8 to 10-6 mol l-1 in MCF7 cells. In the model nematode Caenorhabditis elegans, IC50 values of viphi I to inhibit adult ratios and to induce death ratios, were 184.7 and 585.9 µg ml-1, respectively; the median lifespan of adult worms decreased from 14 to 2 d at viphi I doses ranging from 0.05 to 2 mg ml-1. Taken together, the newly identified viphi I exhibits functional potentials against cadmium and nematodes, providing new insights into structural and functional diversity of chimeric cyclotides in plants.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Ruohong Chen
- Sun Yat-sen University, School of Life Sciences, Guangzhou 510275, China.
| | - Haoyue Shu
- Sun Yat-sen University, School of Life Sciences, Guangzhou 510275, China.
| | - Peihui Liang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Ting Qin
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Kemei Wang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - Aimin Guo
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| | - David J Craik
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia.
| | - Bin Liao
- Sun Yat-sen University, School of Life Sciences, Guangzhou 510275, China.
| | - Jun Zhang
- Guangdong Pharmaceutical University, School of Life Sciences and Biopharmaceutics, Guangzhou 510006, China.
| |
Collapse
|
2
|
Al-Thani RF, Yasseen BT. Methods Using Marine Aquatic Photoautotrophs along the Qatari Coastline to Remediate Oil and Gas Industrial Water. TOXICS 2024; 12:625. [PMID: 39330553 PMCID: PMC11435476 DOI: 10.3390/toxics12090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Qatar and other Gulf States have a diverse range of marine vegetation that is adapted to the stressful environmental conditions of seawater. The industrial wastewater produced by oil and gas activities adds further detrimental conditions for marine aquatic photosynthetic organisms on the Qatari coastlines. Thus, these organisms experience severe stress from both seawater and industrial wastewater. This review discusses the biodiversity in seawater around Qatar, as well as remediation methods and metabolic pathways to reduce the negative impacts of heavy metals and petroleum hydrocarbons produced during these activities. The role of microorganisms that are adjacent to or associated with these aquatic marine organisms is discussed. Exudates that are released by plant roots enhance the role of microorganisms to degrade organic pollutants and immobilize heavy metals. Seaweeds may have other roles such as biosorption and nutrient uptake of extra essential elements to avoid or reduce eutrophication in marine environments. Special attention is paid to mangrove forests and their roles in remediating shores polluted by industrial wastewater. Seagrasses (Halodule uninervis, Halophila ovalis, and Thalassia hemprichii) can be used as promising candidates for phytoremediation or bioindicators for pollution status. Some genera among seaweeds that have proven efficient in accumulating the most common heavy metals found in gas activities and biodegradation of petroleum hydrocarbons are discussed.
Collapse
|
3
|
Yu M, Qian Y, Ni M, Wang Z, Zhang P. Algae removal and algal organic matter chemistry modulated by KMnO 4-PAC in simulated karst water. CHEMOSPHERE 2024; 354:141733. [PMID: 38513953 DOI: 10.1016/j.chemosphere.2024.141733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
In this study, we examined the modulation of algae removal and algal organic matter (AOM) chemistry by potassium permanganate and poly-aluminum chloride (KMnO4-PAC) in simulated karst water. Specifically, we verified the compositional changes of AOM sourcing from Chlorella sp. and Pseudanabaena sp. in response to the presence of divalent ions (Ca2+ and Mg2+). Aromatic protein and soluble microbial products were identified as the primary AOM components. Divalent ions accelerated dissolved organic carbon (DOC) and UV254 removal, particularly with Pseudanabaena sp. greater than Chlorella sp. (P < 0.05). Surface morphology analysis manifested that the removal of filamentous Pseudanabaena sp. was more feasible in comparison to globular Chlorella sp.. Our results highlight the significance of divalent ions in governing chemical behaviors and subsequent removal of both algae and AOM. This study upscales the understanding of the interactions among divalent ions, algae and AOM during preoxidation and coagulation process in algae-laden karst water.
Collapse
Affiliation(s)
- Mengxin Yu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Yu Qian
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Zhikang Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China; Guiyang Institute of Information Science and Technology, Guiyang, 550025, China.
| | - Ping Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| |
Collapse
|
4
|
Zhou K, Zhou Y, Zhou H, Cheng H, Xu G. Kinetic process of the biosorption of Cu(II), Ni(II) and Cr(VI) by waste Pichia pastoris cells. ENVIRONMENTAL TECHNOLOGY 2023; 44:1730-1750. [PMID: 34842065 DOI: 10.1080/09593330.2021.2012266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Waste biomass of Pichia pastoris (P.pastoris) cells from the fermentation industry is an environmentally friendly biosorption material. The present study aimed to explore the biosorption behaviour of waste P.pastoris cells for Cu(II), Ni(II) and Cr(VI) in aqueous solution conditions. The results showed that the adsorption kinetics of three kinds of metals were well-fitted with lineared Elovich, pseudo-second-order kinetics models, non-linear kinetics and adsorption isotherms. The effective biosorption rates for Cu(II), Ni(II) and Cr(VI) removal were 71.3%, 59.7% and 16.25% respectively. The maximum Cu(II) adsorption capacity of waste P.pastoris was 40 mg/g at pH = 4 and 225 mg/L of solute concentration for 0.4 g biomass, better than that of the living yeasts. The pattern of Fourier transform infrared (FTIR) indicated that functional groups such as -NH, -OH, Si-O, P-O-C were involved in Cu(II) adsorption process. The analysis of SEM-EDS, XRD and TEM-EDS can be concluded that Cu(II) occupied Ca(II) binding sites by ion exchange mechanism to remove flocculation, and Cu(II) adsorbed onto the diatomite containing in the industrial waste P.pastoris. Thus the adsorption mechanism of the industrial waste P.pastoris was proposed taking Cu(II) as the example. And consecutive biosorption/desorption cycles were used for the evaluation of the regeneration efficiency, suggesting the good regeneration and reusability of waste P.pastoris.
Collapse
Affiliation(s)
- Kaiyan Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, People's Republic of China
| | - Yulu Zhou
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Hongbo Zhou
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Haina Cheng
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Gang Xu
- Hunan Flag Bio-Tech Co., Ltd., Changsha, People's Republic of China
| |
Collapse
|
5
|
Cavalcante EHM, de Oliveira HP. Magnetite‐doped electrospun fibers for
DNA
adsorption. J Appl Polym Sci 2022. [DOI: 10.1002/app.53198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Helinando Pequeno de Oliveira
- Institute of Materials Science Federal University of São Francisco Valley, Avenida Antônio Carlos Magalhães Juazeiro Brazil
| |
Collapse
|
6
|
Seda Şen, Kılıç NK, Dönmez G. The Usage of Thermophile Cyanobacterium aponinum in Ni(II) Bioremediation. J WATER CHEM TECHNO+ 2022. [DOI: 10.3103/s1063455x22050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Experimental Modeling Investigations on the Biosorption of Methyl Violet 2B Dye by the Brown Seaweed Cystoseira tamariscifolia. SUSTAINABILITY 2022. [DOI: 10.3390/su14095285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methyl violet 2B dye is a major contaminant that is detrimental to both humans and aquatic microorganisms, thus it should be eliminated from water. In the current investigation, the biosorption of methyl violet 2B dye onto the brown seaweed Cystoseira tamariscifolia biomass as a sustainable low-cost biosorbent was examined by varying biosorption parameters. Biomass dosage of 7 g/L, pH 6, a temperature of 45 °C, a 60 min contact time, and a 30 mg/L initial dye concentration were determined to be the optimum biosorption conditions. Data obtained were interpreted by thermodynamic, isothermal, and kinetic models. The thermodynamic studies demonstrated that the process of dye biosorption was random and endothermic. The data were best described by Langmuir, Dubinin–Radushkevich, and Temkin models. According to the Langmuir equation, the maximal biosorption capacity (qmax) was 10.0 mg/g. Moreover, the pseudo-second-order mechanism is dominant, and chemical biosorption might represent the rate-controlling stage in the biosorption process. However, intraparticle diffusion revealed a boundary layer effect. A scanning electron microscope, energy-dispersive X-ray spectroscopy, the point of zero charge, and Fourier Transform Infra-Red were applied to characterize the algal biomass, exhibiting its remarkable structural properties and the availability of several functional groups. Additionally, ion exchange, electrostatic force, and hydrogen bonding formation are all proposed as biosorption mechanisms. As a result, C. tamariscifolia was evaluated to be a sustainable biosorbent for dye biosorption from aqueous solutions.
Collapse
|
8
|
Alharbi NK, Al-Zaban MI, Albarakaty FM, Abdelwahab SF, Hassan SHA, Fawzy MA. Kinetic, Isotherm and Thermodynamic Aspects of Zn 2+ Biosorption by Spirulina platensis: Optimization of Process Variables by Response Surface Methodology. Life (Basel) 2022; 12:life12040585. [PMID: 35455076 PMCID: PMC9027641 DOI: 10.3390/life12040585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to assess the efficiency of Spirulina platensis for removing Zn2+ ions from the aqueous solutions. The optimized conditions of 4.48 g/L algal dose, pH of 6.62 and initial zinc concentration of 29.72 mg/L obtained by response surface methodology were employed for Zn2+ biosorption by S. platensis and up to 97.90% Zn2+ was removed, showing that there is a favorable harmony between the experimental data and model predictions. Different kinetic and equilibrium models were used to characterize the biosorption manner of Spirulina as a biosorbent. The kinetic manner of Zn2+ biosorption was well characterized by the pseudo-second-order, implying that the adsorption process is chemical in nature. The Langmuir and Dubinin-Radushkevich isotherm models were best fit to the equilibrium data. The maximum adsorption capacity of the Langmuir monolayer was 50.7 mg/g. Furthermore, the thermodynamic analysis revealed that Zn2+ biosorption was endothermic, spontaneous and feasible. As a result of biosorption process, FTIR, SEM, and EDX investigations indicated noticeable alterations in the algal biomass's properties. Therefore, the dried Spirulina biomass has been shown to be cost-effective and efficient for removing the heavy metals, particularly zinc ions from wastewater, and the method is practicable, and environmentally acceptable.
Collapse
Affiliation(s)
- Nada K. Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.K.A.); (M.I.A.-Z.)
| | - Mayasar I. Al-Zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.K.A.); (M.I.A.-Z.)
| | - Fawziah M. Albarakaty
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, P.O. Box 715, Makkah Al Mukarramah 21955, Saudi Arabia;
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Sedky H. A. Hassan
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman;
- Department of Botany and Microbiology, Faculty of Science, New Valley University, El-Kharga 72511, Egypt
| | - Mustafa A. Fawzy
- Biology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: ; Tel.: +966-669594732248
| |
Collapse
|
9
|
Fawzy MA, Darwish H, Alharthi S, Al-Zaban MI, Noureldeen A, Hassan SHA. Process optimization and modeling of Cd 2+ biosorption onto the free and immobilized Turbinaria ornata using Box-Behnken experimental design. Sci Rep 2022; 12:3256. [PMID: 35228594 PMCID: PMC8885682 DOI: 10.1038/s41598-022-07288-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 12/07/2022] Open
Abstract
The release of effluents containing cadmium ions into aquatic ecosystems is hazardous to humans and marine organisms. In the current investigation, biosorption of Cd2+ ions from aqueous solutions by freely suspended and immobilized Turbinaria ornata biomasses was studied. Compared to free cells (94.34%), the maximum Cd2+ removal efficiency reached 98.65% for immobilized cells obtained via Box-Behnken design under optimized conditions comprising algal doses of 5.04 g L-1 and 4.96 g L-1, pH values of 5.06 and 6.84, and initial cadmium concentrations of 25.2 mg L-1 and 26.19 mg L-1, respectively. Langmuir, Freundlich, and Temkin isotherm models were suitably applied, providing the best suit of data for free and immobilized cells, but the Dubinin-Radushkevich model only matched the immobilized algal biomass. The maximum biosorption capacity of Cd2+ ions increased with the immobilized cells (29.6 mg g-1) compared to free cells (23.9 mg g-1). The Cd2+ biosorption data obtained for both biomasses followed pseudo-second-order and Elovich kinetic models. In addition, the biosorption process is controlled by film diffusion followed by intra-particle diffusion. Cd2+ biosorption onto the free and immobilized biomasses was spontaneous, feasible, and endothermic in nature, according to the determined thermodynamic parameters. The algal biomass was further examined via SEM/EDX and FTIR before and after Cd2+ biosorption. SEM/EDX analysis revealed Cd2+ ion binding onto the algal surface. Additionally, FTIR analysis confirmed the presence of numerous functional groups (hydroxyl, carboxyl, amine, phosphate, etc.) participating in Cd2+ biosorption. This study verified that immobilized algal biomasses constitute a cost-effective and favorable biosorbent material for heavy metal removal from ecosystems.
Collapse
Affiliation(s)
- Mustafa A Fawzy
- Biology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Hadeer Darwish
- Biotechnology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Sarah Alharthi
- Chemistry Department, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mayasar I Al-Zaban
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Ahmed Noureldeen
- Biology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Sedky H A Hassan
- Department of Biology, College of Science, Sultan Qaboos University, 123, Muscat, Oman
- Department of Botany and Microbiology, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt
| |
Collapse
|
10
|
You X, Li H, Pan B, You M, Sun W. Interactions between antibiotics and heavy metals determine their combined toxicity to Synechocystis sp. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127707. [PMID: 34798547 DOI: 10.1016/j.jhazmat.2021.127707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Co-pollution of antibiotics and metals is prevailing in aquatic environments. However, risks of coexisted antibiotics and metals on aquatic organisms is unclear. This study investigated the combined toxicity of antibiotics and metals towards Synechocystis sp. PCC 6803, a cyanobacterium. We found that the joint toxicity of antibiotics and metals is dependent on their interplays. The complexation between chlortetracycline (CTC) and copper/cadmium (Cu(II)/Cd(II)) resulted in their antagonistic toxicity. Contrarily, an additive toxicity was found between florfenicol (FLO) and Cu(II)/Cd(II) due to lack of interactions between them. CTC facilitated the intracellular uptake of Cu(II) and Cd(II) by increasing the membrane permeability. However, FLO had no obvious effects on the internalization of metals in Synechocystis sp. Proteomic analysis revealed that the photosynthetic proteins was down-regulated by CTC and FLO, and ribosome was the primary target of FLO. These results were verified by parallel reaction monitoring (PRM). Cu(II) induced the up-regulation of iron-sulfur assembly, while Cd(II) disturbed the cyclic electron transport in Synechocystis sp. The co-exposure of CTC and metals markedly alleviated the dysregulation of proteins, while the co-exposure of FLO and metals down-regulated biological functions such as ATP synthesis, photosynthesis, and carbon fixation of Synechocystis sp., compared with their individuals. This supports their joint toxicity effects. Our findings provide better understanding of combined toxicity between multiple pollutants in aquatic environments.
Collapse
Affiliation(s)
- Xiuqi You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Haibo Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Mingtao You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
11
|
Wu G, Cheng J, Wei J, Huang J, Sun Y, Zhang L, Huang Y, Yang Z. Growth and photosynthetic responses of Ochromonas gloeopara to cadmium stress and its capacity to remove cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116496. [PMID: 33484999 DOI: 10.1016/j.envpol.2021.116496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is one of the predominant anthropogenic pollutants in aquatic systems. As Cd has negative effects on species at all trophic levels, the community composition in aquatic habitats can be changed as a result of Cd stress. The response of mixotrophic protists to environmental stressors is particularly important as they act as both producers and consumers in complex planktonic communities. In this study, we used mixotrophic Ochromonas gloeopara to study its growth and photosynthetic responses to Cd, and specially focused on the effects of initial Cd concentrations and nutrient levels on its capacity to remove Cd. Results showed that when Cd concentration reached 0.5 mg L-1, the growth rate and carrying capacity were significantly inhibited, whereas the photosynthesis was markedly decreased when Cd concentration reached 0.15 mg L-1. Moreover, under Cd concentration 0.15, 0.5, 0.9, 1.6, and 2.0 mg L-1, the removal efficiencies of Cd by O. gloeopara were 83.2%, 77.7%, 74.6%, 70.1%, and 68.8%, respectively. The increase of nitrogen did not cause significant effect on the removal capacity of Cd by O. gloeopara, but increased concentration of phosphorus significantly enhanced the removal capacity of Cd. Our findings indicated that the mixotrophic O. gloeopara has strong tolerance and capacity to remove Cd, and increasing concentration of phosphorus can increase its removal capacity, suggesting that O. gloeopara has great potential application value in mitigating Cd pollution in waters.
Collapse
Affiliation(s)
- Guangjin Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jiahui Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Junjun Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
12
|
Fawzy MA. Biosorption of copper ions from aqueous solution by Codium vermilara: Optimization, kinetic, isotherm and thermodynamic studies. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Fawzy MA, Gomaa M. Use of algal biorefinery waste and waste office paper in the development of xerogels: A low cost and eco-friendly biosorbent for the effective removal of congo red and Fe (II) from aqueous solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110380. [PMID: 32250831 DOI: 10.1016/j.jenvman.2020.110380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the use of algae biorefinery waste and wastepaper in the preparation of cost-effective and eco-friendly xerogels for the removal of congo red (CR) and Fe2+. The xerogel properties such as density, swelling degree and porosity were modified by incorporating alginate extracted from the brown seaweed Cystoseira trinodis. The developed biosorbents exhibited a light and porous network structure and were characterized by a fast uptake of CR and Fe2+ and adsorption efficiency was increased at pH 6-8. The equilibrium adsorption capacity was found to be 6.20-7.28 mg CR g-1 biosorbent and 8.08-8.39 mg Fe2+ g-1 biosorbent using different xerogels. The adsorption of CR obeyed first-order kinetics, while, Fe2+ followed second-order kinetics. Intraparticle diffusion model suggested a boundary layer effect. The adsorption capacity was maximally obtained as 41.15 mg g-1 and 169.49 mg g-1 for CR and Fe2+ using wastepaper/Spirulina and wastepaper/alginate/Spirulina xerogel, respectively. Temkin isotherm fitted better to the equilibrium data of CR adsorption than Langmuir and Freundlich models. While, equilibrium data of Fe2+ exhibited a best fit to both Langmuir and Freundlich models. Additionally, the Dubinin-Radushkevich isotherm suggested that adsorption mechanism of CR or Fe2+ is predominately physisorption. Investigation of thermodynamic parameters such as ΔH° and ΔS° and ΔG° confirmed the feasibility, spontaneity, randomness and endothermic nature of the adsorption process. Electrostatic attraction, H-bonding and n-π interactions were mainly involved in the biosorption process of CR. The results of this study showed that the developed xerogels could be effectively applied for dye and heavy metal removal at low concentrations.
Collapse
Affiliation(s)
- Mustafa A Fawzy
- Biology Department, Faculty of Science, Taif University, 21974, Taif, Saudi Arabia; Botany & Microbiology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| | - Mohamed Gomaa
- Botany & Microbiology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| |
Collapse
|
14
|
Lin Z, Li J, Luan Y, Dai W. Application of algae for heavy metal adsorption: A 20-year meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110089. [PMID: 31896472 DOI: 10.1016/j.ecoenv.2019.110089] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The use of algae to adsorb heavy metals is an efficient and environmentally friendly treatment for contaminated water and has attracted widespread research attention. In this study, a meta-analysis of the heavy metal adsorption capacity of algae from five different phyla and the factors influencing these capacities was conducted. Phaeophyta was found to have a high heavy metal adsorption capacity, whereas Bacillariophyta had a relatively low adsorption capacity; Chlorophyta, Rhodophyta, and Cyanophyta had moderate adsorption capacities. Non-living algae were more effective in practical applications than living algae were. Algal biomass had a relatively high adsorption efficiency of 1-10 g/L, which did not increase significantly when algal concentration increased. The algal adsorption efficiency for initial heavy metal concentrations of 10-100 mg/L was higher than for concentrations of greater than 100 mg/L. The results further show that algal adsorption of heavy metals reached a maximum capacity of 80-90% within 20 min. Heavy metal adsorption by algae was not temperature-dependent, and it was more effective in moderately to weakly acidic environments (pH = 4-7.5). Considering these aspects for practical applications, algae from some phyla can effectively be used for heavy metal biosorption in contaminated water.
Collapse
Affiliation(s)
- Zeyu Lin
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Jing Li
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Luan
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Wei Dai
- College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Yan K, Liu Y, Yang Q, Liu W, Guo R, Sui J, Yan Z, Chen J. Evaluation of the novel nanoparticle material - CdSe quantum dots on Chlorella pyrenoidosa and Scenedesmus obliquus: Concentration-time-dependent responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:728-736. [PMID: 30658309 DOI: 10.1016/j.ecoenv.2019.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Quantum dots (QDs), as a kind of novel nanomaterial, have the extensive applications in various fields, inevitably leading to increasing risks for the ecological environment. The mobilization of cadmium including metal smelting and subsequent machining for multifarious applications has caused the release of cadmium element into the environment. In this study, we evaluated the potential toxicity of a novel nanoparticle material CdSe QDs, using two green algae Chlorella pyrenoidosa and Scenedesmus obliquus. The impact of CdSe QDs and cadmium ions on algae and the sensitivity of the two algae on target compounds were also considered and compared. Our results showed the algal growth rates and chlorophyll content decreased with increasing exposure concentrations and durations. Moreover, the glutathione levels were decreased while the activities of superoxide dismutase increased, exhibiting their pivotal functions in defeating toxic stress. The increment of malondialdehyde levels revealed that the stresses of CdSe QDs and cadmium ions were contributed to the occurrence of oxidative damage. Our study also indicated that the impact of CdSe QDs was stronger than that of cadmium nitrate and the algal response was also species-specific. In addition, the TEM photographs of the algal ultrastructure showed the presence of surface attachment and uptake of QDs.
Collapse
Affiliation(s)
- Kun Yan
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China; Jiangsu Hengrui Medicine Co., Ltd., 7 Kunlunshan Road, Lianyungang Eco & Tech Development Zone, Lianyungang 222002, China
| | - Yanhua Liu
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Qiulian Yang
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Weixia Liu
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Ruixin Guo
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Jinhong Sui
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Zhengyu Yan
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China.
| | - Jianqiu Chen
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China.
| |
Collapse
|
16
|
Shi W, Fang X, Wu X, Zhang G, Que W, Li F. Alteration of bioaccumulation mechanisms of Cu by microalgae in the presence of natural fulvic acids. CHEMOSPHERE 2018; 211:717-725. [PMID: 30099156 DOI: 10.1016/j.chemosphere.2018.07.200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
The impact of natural fulvic acids (FAs) on the toxicity and bioaccumulation of Cu by Chlorella pyrenoidosa was studied. FAs extracted from Taihu Lake were separated into three fractions using dialysis bags: F1 (<500 Da), F2 (500-1000 Da) and F3 (>1000 Da). The results showed that the F3 fraction with a larger molecular weight contained less acidic groups and unsaturated aliphatic structures than F1 and F2, and it showed stronger alleviation of the toxicity of Cu to algae. In the presence of F1∼F3, the bioaccumulation curve of Cu in algae intersected with the straight line in the binary system of Cu-algae at approximately 5.3 × 10-3-6.0 × 10-3 mM of Cu equilibrium concentration, showing an inhibition of bioaccumulation of Cu in lower concentrations but an enhancement in higher Cu concentrations. The ratio of {Cu}ads/{Cu}int was used to clarify the transformation mechanism on adsorption; the transition interval occurred at a ratio of 3.5-4.4. This ratio indicated a shift from a mechanism of slow trending to equilibrium to a mechanism with rapid increase, which may be due to the bridging action of Cu to form a ternary complex of FA-Cu-algae and the occurrence of multilayer adsorption. The promotion order of F1> F3> F2 was consistent with percentages of the carboxyl group in total acidic functional groups in the FAs. This research is helpful for improving the accuracy of present models for the prediction of heavy metal risks in aqueous environments.
Collapse
Affiliation(s)
- Wen Shi
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaoman Fang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xingfei Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Gaoxiang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weiyan Que
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
17
|
Al Hamouz OCS, Estatie M, Saleh TA. Removal of cadmium ions from wastewater by dithiocarbamate functionalized pyrrole based terpolymers. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.12.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|