1
|
Pan Y, Gu Z, Lyu Y, Yang Y, Chung M, Pan X, Cai S. Link between senescence and cell fate: Senescence-associated secretory phenotype (SASP) and its effects on stem cell fate transition. Rejuvenation Res 2022; 25:160-172. [PMID: 35658548 DOI: 10.1089/rej.2022.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Senescence is a form of durable cell cycle arrest elicited in response to a wide range of stimuli. Senescent cells remain metabolically active and secrete a variety of factors collectively termed senescence-associated secretory phenotype (SASP). SASP is highly pleiotropic and can impact numerous biological processes in which it has both beneficial and deleterious roles. The underlying mechanisms by which SASP exerts its pleiotropic influence remain largely unknown. SASP serves as an environmental factor, which regulates stem cell differentiation and alters its routine. The latter can potentially be accomplished through dedifferentiation, transdifferentiation, or reprogramming. Behavioral changes that cells undergo when exposed to SASP are involved in several senescence-associated physiological and pathological phenomena. These findings provide clues for identifying possible interventions to reduce the deleterious effects without interfering in the beneficial outcomes. Here, we discuss the multifaced effects of SASP and the changes occurring in cellular states upon exposure to SASP factors.
Collapse
Affiliation(s)
- Yu Pan
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Zhenzhen Gu
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Yansi Lyu
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Yi Yang
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Manhon Chung
- Shanghai Jiao Tong University School of Medicine, 56694, Shanghai, China;
| | - Xiaohua Pan
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Sa Cai
- Shenzhen University, 47890, 3688 Nanhai Avenue, Nanshan District, Shenzhen, Shenzhen, China, 518060;
| |
Collapse
|
2
|
Chen L, Tan KML, Gong M, Chong MFF, Tan KH, Chong YS, Meaney MJ, Gluckman PD, Eriksson JG, Karnani N. Variability in newborn telomere length is explained by inheritance and intrauterine environment. BMC Med 2022; 20:20. [PMID: 35073935 PMCID: PMC8787951 DOI: 10.1186/s12916-021-02217-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Telomere length (TL) and its attrition are important indicators of physiological stress and biological aging and hence may vary among individuals of the same age. This variation is apparent even in newborns, suggesting potential effects of parental factors and the intrauterine environment on TL of the growing fetus. METHODS Average relative TLs of newborns (cord tissue, N = 950) and mothers (buffy coat collected at 26-28 weeks of gestation, N = 892) were measured in a birth cohort. This study provides a comprehensive analysis of the effects of heritable factors, socioeconomic status, and in utero exposures linked with maternal nutrition, cardiometabolic health, and mental well-being on the newborn TL. The association between maternal TL and antenatal maternal health was also studied. RESULTS Longer maternal TL (β = 0.14, P = 1.99E-05) and higher paternal age (β = 0.10, P = 3.73E-03) were positively associated with newborn TL. Genome-wide association studies on newborn and maternal TLs identified 6 genetic variants in a strong linkage disequilibrium on chromosome 3q26.2 (Tag SNP-LRRC34-rs10936600: Pmeta = 5.95E-08). Mothers with higher anxiety scores, elevated fasting blood glucose, lower plasma insulin-like growth factor-binding protein 3 and vitamin B12 levels, and active smoking status during pregnancy showed a higher risk of giving birth to offspring with shorter TL. There were sex-related differences in the factors explaining newborn TL variation. Variation in female newborn TL was best explained by maternal TL, mental health, and plasma vitamin B12 levels, while that in male newborn TL was best explained by paternal age, maternal education, and metabolic health. Mother's TL was associated with her own metabolic health and nutrient status, which may have transgenerational effects on offspring TL. CONCLUSIONS Our findings provide a comprehensive understanding of the heritable and environmental factors and their relative contributions to the initial setting of TL and programing of longevity in early life. This study provides valuable insights for preventing in utero telomere attrition by improving the antenatal health of mothers via targeting the modifiable factors. TRIAL REGISTRATION ClinicalTrials.gov , NCT01174875. Registered on 1 July 2010.
Collapse
Affiliation(s)
- Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.
| | | | - Min Gong
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore
| | - Mary F F Chong
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore (NUS), Singapore, Singapore
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Sackler Program for Epigenetics & Psychobiology at McGill University, Montréal, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montréal, Canada.,Folkhalsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore. .,Bioinformatics Institute, A*STAR, Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Transcriptomic profiling and pathway analysis of cultured human lung microvascular endothelial cells following ionizing radiation exposure. Sci Rep 2021; 11:24214. [PMID: 34930946 PMCID: PMC8688546 DOI: 10.1038/s41598-021-03636-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
The vascular system is sensitive to radiation injury, and vascular damage is believed to play a key role in delayed tissue injury such as pulmonary fibrosis. However, the response of endothelial cells to radiation is not completely understood. We examined the response of primary human lung microvascular endothelial cells (HLMVEC) to 10 Gy (1.15 Gy/min) X-irradiation. HLMVEC underwent senescence (80-85%) with no significant necrosis or apoptosis. Targeted RT-qPCR showed increased expression of genes CDKN1A and MDM2 (10-120 min). Western blotting showed upregulation of p2/waf1, MDM2, ATM, and Akt phosphorylation (15 min-72 h). Low levels of apoptosis at 24-72 h were identified using nuclear morphology. To identify novel pathway regulation, RNA-seq was performed on mRNA using time points from 2 to 24 h post-irradiation. Gene ontology and pathway analysis revealed increased cell cycle inhibition, DNA damage response, pro- and anti- apoptosis, and pro-senescence gene expression. Based on published literature on inflammation and endothelial-to-mesenchymal transition (EndMT) pathway genes, we identified increased expression of pro-inflammatory genes and EndMT-associated genes by 24 h. Together our data reveal a time course of integrated gene expression and protein activation leading from early DNA damage response and cell cycle arrest to senescence, pro-inflammatory gene expression, and endothelial-to-mesenchymal transition.
Collapse
|
4
|
Berezina TN, Rybtsov S. Acceleration of Biological Aging and Underestimation of Subjective Age Are Risk Factors for Severe COVID-19. Biomedicines 2021; 9:913. [PMID: 34440116 PMCID: PMC8389586 DOI: 10.3390/biomedicines9080913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
In an epidemic, it is important to have methods for reliable and rapid assessment of risk groups for severe forms of the disease for their priority vaccination and for the application of preventive lockdown measures. The aim of this study was to investigate risk factors for severe forms of COVID-19 in adults using indicators of biological and subjective aging. Longitudinal studies evaluated the severity of the disease and the number of cases. Respondents (447) were divided into "working group" and "risk group" (retirees with chronic diseases). During the lockdown period (in mid-2020), accelerated aging was observed in the group of workers (by 3.9-8 years for men and an increase at the tendency level for women). However, the respondents began to feel subjectively younger (by 3.3-7.2 years). In the risk group, there were no deviations from the expected biopsychological aging. The number of cases at the end of 2020 was 31% in workers and 0% in the risk group. Reasonably, the risk group followed the quarantine rules more strictly by 1.5 times. In working men, indicators of relative biological and relative subjective aging (measured in both 2019 and mid-2020) significantly influenced the incidence at the end of 2020. In women, only the indicators obtained in mid-2020 had a significant impact. The relative biological aging of an individual tested in the middle of 2020 had a direct impact on the risk of infection (p < 0.05) and on the probability of death (p < 0.0001). On the contrary, an increase in the relative subjective (psychological) aging index reduced the risk of infection (at the tendency level, p = 0.06) and the risk of death (p < 0.0001). Both the risk of infection and the risk of death increased with calendar age at the tendency level. Conclusions: Indicators of individual relative biological and subjective aging affect the probability of getting COVID-19 and its severity. The combination of high indicators of biological aging and underestimated indicators of subjective aging is associated with increased chances of developing severe forms of the disease.
Collapse
Affiliation(s)
- Tatiana N. Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, Shelepikhinskaya Naberezhnaya, 2A/1, Office 207, 123290 Moscow, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
5
|
Rabajdova M, Spakova I, Zelko A, Rosenberger J, Kolarcik P, Sobolova V, Pella D, Marekova M, Madarasova Geckova A. The role of physical activity and miRNAs in the vascular aging and cardiac health of dialysis patients. Physiol Rep 2021; 9:e14879. [PMID: 34042291 PMCID: PMC8157788 DOI: 10.14814/phy2.14879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular comorbidities are independent risk factors for mortality in dialysis patients. MicroRNA signaling has an important role in vascular aging and cardiac health, while physical activity is a primary nonpharmacologic treatment for cardiovascular comorbidities in dialysis patients. To identify the relationships between muscle function, miRNA signaling pathways, the presence of vascular calcifications and the severity of cardiovascular comorbidities, we initially enrolled 90 subjects on hemodialysis therapy and collected complete data from 46 subjects. A group of 26 subjects inactiv group (INC) was monitored during 12 weeks of physical inactivity and another group of 20 patients exercise group (EXC) was followed during 12 weeks of intradialytic, moderate intensity, resistance training intervention applied three times per week. In both groups, we assessed the expression levels of myo‐miRNAs, proteins, and muscle function (MF) before and after the 12‐week period. Data on the presence of vascular calcifications and the severity of cardiac comorbidities were collected from the patients’ EuCliD® records. Using a full structural equitation modelling of the total study sample, we found that the higher the increase in MF was observed in patients, the higher the probability of a decrease in the expression of miR‐206 and TRIM63 and the lower severity of cardiac comorbidities. A reduced structural model in INC patients showed that the higher the decrease in MF, the higher the probability of the presence of calcifications and the higher severity of cardiac comorbidities. In EXC patients, we found that the higher the increase in MF, the lower the probability of higher severity of cardiovascular comorbidities.
Collapse
Affiliation(s)
- Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Ivana Spakova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Aurel Zelko
- Department of Health Psychology and Research Methodology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.,Graduate School Kosice Institute for Society and Health, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Jaroslav Rosenberger
- Department of Health Psychology and Research Methodology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.,Graduate School Kosice Institute for Society and Health, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.,2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.,Fresenius Medical Care - Dialysis Services Kosice, Kosice, Slovakia.,Olomouc University Social Health Institute, Palacky University, Olomouc, Czech Republic
| | - Peter Kolarcik
- Department of Health Psychology and Research Methodology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Vladimira Sobolova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Daniel Pella
- 2nd Department of Cardiology, Faculty of Medicine, Pavol Jozef Safarik University and East Slovak Institute of Cardiovascular Diseases, Kosice, Slovakia
| | - Maria Marekova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Andrea Madarasova Geckova
- Department of Health Psychology and Research Methodology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.,Olomouc University Social Health Institute, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
6
|
The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases. Adv Ther 2021; 38:885-903. [PMID: 33331986 DOI: 10.1007/s12325-020-01581-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factor (IGF) system comprises ligands of IGF-I/II, IGF receptors (IGFR), IGF binding proteins (IGFBPs), and IGFBP hydrolases. The IGF system plays multiple roles during various disease development as IGFs are widely involved in cell proliferation and differentiation through regulating DNA transcription. Meanwhile, IGFBPs, which are mainly synthesized in the liver, can bind to IGFs and perform two different functions: either inhibition of IGFs by forming inactive compounds with IGF or enhancement of the function of IGFs by strengthening the IGF-IGFR interaction. Interestingly, IGFBPs may have wider functions through IGF-independent mechanisms. Studies have shown that IGFBPs play important roles in cardiovascular disease, tumor progression, fetal growth, and neuro-nutrition. In this review, we emphasize that different IGFBP family members have common or unique functions in numerous diseases; moreover, IGFBPs may serve as biomarkers for disease diagnosis and prediction.
Collapse
|
7
|
Uechi L, Jalali M, Wilbur JD, French JL, Jumbe NL, Meaney MJ, Gluckman PD, Karnani N, Sakhanenko NA, Galas DJ. Complex genetic dependencies among growth and neurological phenotypes in healthy children: Towards deciphering developmental mechanisms. PLoS One 2020; 15:e0242684. [PMID: 33270668 PMCID: PMC7714163 DOI: 10.1371/journal.pone.0242684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/09/2020] [Indexed: 11/18/2022] Open
Abstract
The genetic mechanisms of childhood development in its many facets remain largely undeciphered. In the population of healthy infants studied in the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) program, we have identified a range of dependencies among the observed phenotypes of fetal and early childhood growth, neurological development, and a number of genetic variants. We have quantified these dependencies using our information theory-based methods. The genetic variants show dependencies with single phenotypes as well as pleiotropic effects on more than one phenotype and thereby point to a large number of brain-specific and brain-expressed gene candidates. These dependencies provide a basis for connecting a range of variants with a spectrum of phenotypes (pleiotropy) as well as with each other. A broad survey of known regulatory expression characteristics, and other function-related information from the literature for these sets of candidate genes allowed us to assemble an integrated body of evidence, including a partial regulatory network, that points towards the biological basis of these general dependencies. Notable among the implicated loci are RAB11FIP4 (next to NF1), MTMR7 and PLD5, all highly expressed in the brain; DNMT1 (DNA methyl transferase), highly expressed in the placenta; and PPP1R12B and DMD (dystrophin), known to be important growth and development genes. While we cannot specify and decipher the mechanisms responsible for the phenotypes in this study, a number of connections for further investigation of fetal and early childhood growth and neurological development are indicated. These results and this approach open the door to new explorations of early human development.
Collapse
Affiliation(s)
- Lisa Uechi
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Mahjoubeh Jalali
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Jayson D. Wilbur
- Metrum Research Group, Tariffville, CT, United States of America
| | | | - N. L. Jumbe
- Pharmactuarials LLC, Mountain View, CA, United States of America
| | - Michael J. Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, Canada
| | - Peter D. Gluckman
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Neerja Karnani
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Brenner Centre for Molecular Medicine, National University of Singapore, Singapore, Singapore
| | - Nikita A. Sakhanenko
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- * E-mail: (DJG); (NAS)
| | - David J. Galas
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- * E-mail: (DJG); (NAS)
| | | |
Collapse
|
8
|
Wang X, Ren Y, Du X, Song L, Chen F, Su F. Effects of late-onset dietary intake of salidroside on insulin/insulin-like growth factor-1 (IGF-1) signaling pathway of the annual fish Nothobranchius guentheri. Arch Gerontol Geriatr 2020; 91:104233. [PMID: 32858432 DOI: 10.1016/j.archger.2020.104233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 08/13/2020] [Indexed: 11/25/2022]
Abstract
Salidroside (SDS) is the main active ingredient of Rhodiola which has many biological functions including anti-fatigue, anti-tumor, and immune regulation activities. Our last paper demonstrated that SDS prolonged longevity of the annual fish Nothobranchius guentheri, a promising vertebrate model for anti-aging research. However, little is known about its effect on insulin/insulin-like growth factor-1 (IGF-1) signaling pathway (IIS pathway). In this study, we show that SDS is able to decrease accumulation of SA-β-Gal. We also show that SDS administraton could reduce the expression levels of Igf-1 and Igf-1R, downregulate the expressions of p-PI3K and p-Akt and upregulate the expression levels of Sirt1 and Foxo3a, both of which are the downstream regulators of the IIS pathway. We also find that SDS could alleviate DNA damage, which could result in increased expression of transcription factor Foxo3a. Collectively, these data indicate that SDS may take part in the IIS pathway.
Collapse
Affiliation(s)
- Xia Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yiqing Ren
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaoyuan Du
- North China Sea Environmental Monitoring Centre, State Oceanic Administration, 22 Fushun Road, Qingdao, 266033, China
| | - Lili Song
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Fushan Chen
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng Su
- Institute of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
9
|
Yee ML, Hau R, Taylor A, Guerra M, Guerra P, Darzins P, Gilfillan C. Sarcopenia in women with hip fracture: A comparison of hormonal biomarkers and their relationship to skeletal muscle mass and function. Osteoporos Sarcopenia 2020; 6:139-145. [PMID: 33102808 PMCID: PMC7573494 DOI: 10.1016/j.afos.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives Sarcopenia is a decline in skeletal muscle mass and function. It is associated with adverse outcomes and increased mortality. Sarcopenia is also reported to be prevalent in the hip fracture population. Our aims in this study are to compare the hormonal profile in women with hip fracture to controls, and to assess the relationship between hormonal biomarkers to skeletal muscle mass and function in these women. Methods A cross sectional study was performed enrolling women above age 60 years old with hip fracture as a study group. For comparison healthy women from the community were recruited. Peripheral blood samples were obtained for analysis of hormonal profiles. Measures of skeletal muscle mass and function by muscle area on computed tomography, dual energy X-ray absorptiometry, bioelectrical impedance analysis, and grip strength was performed. Results A high proportion of sarcopenic individuals were detected in the hip fracture group (60%). Women with hip fracture compared to controls were older (P = 0.073), had lower serum albumin levels (P < 0.001), serum insulin-like growth factor-1 (IGF-1) (P < 0.001), insulin-like growth factor binding protein -3 (IGFBP-3) (P < 0.001), free testosterone levels (P = 0.001), and impaired beta cell function by homeostasis model assessment (HOMA beta) (P = 0.038). Conclusions There is a high proportion of sarcopenic individuals in the hip fracture group. Lowered serum levels of IGF-1 and IGFBP-3, HOMA beta cell function, and free testosterone levels were detected in this group and may serve as potential biomarkers of sarcopenia.
Collapse
Affiliation(s)
- Ming Li Yee
- Eastern Health Clinical School, Monash University, Victoria, Australia.,Department of Endocrinology, Eastern Health, Victoria, Australia
| | - Raphael Hau
- Eastern Health Clinical School, Monash University, Victoria, Australia.,Department of Orthopaedic Surgery, Eastern Health, Victoria, Australia
| | - Alison Taylor
- Department of Orthopaedic Surgery, Eastern Health, Victoria, Australia
| | - Mark Guerra
- Department of Physiotherapy, Eastern Health, Victoria, Australia
| | - Peter Guerra
- Department of Physiotherapy, Eastern Health, Victoria, Australia
| | - Peteris Darzins
- Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Christopher Gilfillan
- Eastern Health Clinical School, Monash University, Victoria, Australia.,Department of Endocrinology, Eastern Health, Victoria, Australia
| |
Collapse
|
10
|
Cho WK, Kim HI, Kim SY, Seo HH, Song J, Kim J, Shin DS, Jo Y, Choi H, Lee JH, Moh SH. Anti-Aging Effects of Leontopodium alpinum (Edelweiss) Callus Culture Extract Through Transcriptome Profiling. Genes (Basel) 2020; 11:E230. [PMID: 32098197 PMCID: PMC7074254 DOI: 10.3390/genes11020230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Edelweiss (Leontopodium Alpinum) in the family Asteraceae is a wildflower that grows in rocky limestone places. Here, we investigated the efficacy of edelweiss callus culture extract (Leontopodium Alpinum callus culture extract; LACCE) using multiple assays from in vitro to in vivo as well as transcriptome profiling. Several in vitro assay results showed the strong antioxidant activity of LACCE in response to UVB treatment. Moreover, LACCE suppressed inflammation and wrinkling; however, moisturizing activity was increased by LACCE. The clinical test in vivo demonstrated that constant application of LACCE on the face and skin tissues improved anti-periorbital wrinkles, skin elasticity, dermal density, and skin thickness compared with the placebo. The RNA-Sequencing results showed at least 16.56% of human genes were expressed in keratinocyte cells. LACCE up-regulated genes encoding several KRT proteins; DDIT4, BNIP3, and IGFBP3 were involved in the positive regulation of the developmental process, programmed cell death, keratinization, and cornification forming skin barriers, which provide many advantages in the human skin. By contrast, down-regulated genes were stress-responsive genes, including metal, oxidation, wounding, hypoxia, and virus infection, suggesting LACCE did not cause any harmful stress on the skin. Our comprehensive study demonstrated LACCE is a promising agent for anti-aging cosmetics.
Collapse
Affiliation(s)
- Won Kyong Cho
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea (Y.J.)
| | - Hye-In Kim
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Korea; (H.-I.K.); (S.-Y.K.); (H.H.S.); (J.S.); (J.K.); (D.S.S.); (J.H.L.)
| | - Soo-Yun Kim
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Korea; (H.-I.K.); (S.-Y.K.); (H.H.S.); (J.S.); (J.K.); (D.S.S.); (J.H.L.)
| | - Hyo Hyun Seo
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Korea; (H.-I.K.); (S.-Y.K.); (H.H.S.); (J.S.); (J.K.); (D.S.S.); (J.H.L.)
| | - Jihyeok Song
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Korea; (H.-I.K.); (S.-Y.K.); (H.H.S.); (J.S.); (J.K.); (D.S.S.); (J.H.L.)
| | - Jiyeon Kim
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Korea; (H.-I.K.); (S.-Y.K.); (H.H.S.); (J.S.); (J.K.); (D.S.S.); (J.H.L.)
| | - Dong Sun Shin
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Korea; (H.-I.K.); (S.-Y.K.); (H.H.S.); (J.S.); (J.K.); (D.S.S.); (J.H.L.)
| | - Yeonhwa Jo
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea (Y.J.)
| | - Hoseong Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Jeong Hun Lee
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Korea; (H.-I.K.); (S.-Y.K.); (H.H.S.); (J.S.); (J.K.); (D.S.S.); (J.H.L.)
| | - Sang Hyun Moh
- Anti-Aging Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Korea; (H.-I.K.); (S.-Y.K.); (H.H.S.); (J.S.); (J.K.); (D.S.S.); (J.H.L.)
| |
Collapse
|
11
|
Vassilieva I, Kosheverova V, Vitte M, Kamentseva R, Shatrova A, Tsupkina N, Skvortsova E, Borodkina A, Tolkunova E, Nikolsky N, Burova E. Paracrine senescence of human endometrial mesenchymal stem cells: a role for the insulin-like growth factor binding protein 3. Aging (Albany NY) 2020; 12:1987-2004. [PMID: 31951594 PMCID: PMC7053595 DOI: 10.18632/aging.102737] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Stress-induced premature cell senescence is well recognized to be accompanied by emerging the senescence-associated secretory phenotype (SASP). Secreted SASP factors can promote the senescence of normal neighboring cells through autocrine/paracrine pathways and regulate the senescence response, as well. Regarding human endometrium-derived mesenchymal stem cells (MESCs), the SASP regulation mechanisms as well as paracrine activity of senescent cells have not been studied yet. Here, we examined the role of insulin-like growth factor binding protein 3 (IGFBP3) in the paracrine senescence induction in young MESCs. The H2O2-induced premature senescence of MESCs led to increased IGFBP3 in conditioned media (CM). The inhibitory analysis of both MAPK and PI3K signaling pathways showed that IGFBP3 releasing from senescent cells is mainly regulated by PI3K/Akt pathway activity. IGFBP3 appears to be an important senescence-mediating factor as its immunodepletion from the senescent CM weakened the pro-senescent effect of CM on young MESCs and promoted their growth. In contrast, young MESCs acquired the senescence phenotype in response to simultaneous addition of recombinant IGFBP3 (rIGFBP3). The mechanism of extracellular IGFBP3 internalization was also revealed. The present study is the first to demonstrate a significant role of extracellular IGFBP3 in paracrine senescence induction of young MESCs.
Collapse
Affiliation(s)
- Irina Vassilieva
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Vera Kosheverova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Mikhail Vitte
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Rimma Kamentseva
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alla Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natalia Tsupkina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena Skvortsova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Aleksandra Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena Tolkunova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Nikolay Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
12
|
Stuard WL, Titone R, Robertson DM. The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. Front Endocrinol (Lausanne) 2020; 11:24. [PMID: 32194500 PMCID: PMC7062709 DOI: 10.3389/fendo.2020.00024] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor (IGF) family plays key roles in growth and development. In the cornea, IGF family members have been implicated in proliferation, differentiation, and migration, critical events that maintain a smooth refracting surface that is essential for vision. The IGF family is composed of multiple ligands, receptors, and ligand binding proteins. Expression of IGF type 1 receptor (IGF-1R), IGF type 2 receptor (IGF-2R), and insulin receptor (INSR) in the cornea has been well characterized, including the presence of the IGF-1R and INSR hybrid (Hybrid-R) in the corneal epithelium. Recent data also indicates that each of these receptors display unique intracellular localization. Thus, in addition to canonical ligand binding at the plasma membrane and the initiation of downstream signaling cascades, IGF-1R, INSR, and Hybrid-R also function to regulate mitochondrial stability and nuclear gene expression. IGF-1 and IGF-2, two of three principal ligands, are polypeptide growth factors that function in all cellular layers of the cornea. Unlike IGF-1 and IGF-2, the hormone insulin plays a unique role in the cornea, different from many other tissues in the body. In the corneal epithelium, insulin is not required for glucose uptake, due to constitutive activation of the glucose transporter, GLUT1. However, insulin is needed for the regulation of metabolism, circadian rhythm, autophagy, proliferation, and migration after wounding. There is conflicting evidence regarding expression of the six IGF-binding proteins (IGFBPs), which function primarily to sequester IGF ligands. Within the cornea, IGFBP-2 and IGFBP-3 have identified roles in tissue homeostasis. While IGFBP-3 regulates growth control and intracellular receptor localization in the corneal epithelium, both IGFBP-2 and IGFBP-3 function in corneal fibroblast differentiation and myofibroblast proliferation, key events in stromal wound healing. IGFBP-2 has also been linked to cellular overgrowth in pterygium. There is a clear role for IGF family members in regulating tissue homeostasis in the cornea. This review summarizes what is known regarding the function of IGF and related proteins in corneal development, during wound healing, and in the pathophysiology of disease. Finally, we highlight key areas of research that are in need of future study.
Collapse
|
13
|
Boichuck M, Zorea J, Elkabets M, Wolfson M, Fraifeld VE. c-Met as a new marker of cellular senescence. Aging (Albany NY) 2019; 11:2889-2897. [PMID: 31085799 PMCID: PMC6535066 DOI: 10.18632/aging.101961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/04/2019] [Indexed: 05/09/2023]
Abstract
Here, we reported for the first time an increased expression of c-Met protein in primary cultures of human dermal and pulmonary fibroblasts of late passages. This suggests that c-Met could serve as an early marker of cellular senescence (CS). The levels of c-Met-related signaling proteins phospho-Akt and Stat3 were also increased in (pre)senescent fibroblasts. Considering the anti-apoptotic activity of Akt and the involvement of Stat3 in mediating the effects of proinflammatory cytokines, the findings of this study indicate that c-Met could contribute through its downstream targets or partners to at least two major phenotypical features of CS - resistance to apoptosis and senescence-associated secretory phenotype.
Collapse
Affiliation(s)
- Maria Boichuck
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
14
|
H 2O 2 promotes the aging process of melanogenesis through modulation of MITF and Nrf2. Mol Biol Rep 2019; 46:2461-2471. [PMID: 30805890 DOI: 10.1007/s11033-019-04708-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/16/2019] [Indexed: 01/04/2023]
Abstract
The purpose of this study is to investigate the effect of H2O2 on the aging of melanogenesis in human melanocytes. The staining of SA-β-galactosidase, an aging marker, was remarkably increased in the cells aged with H2O2 at 62.5 µM or more compared with young cells. The intracellular H2O2 level and melanin synthesis were also reduced in both H2O2-treated cells and senescent cells compared with young cells in DCFH-DA assay. Both the senescent cells and the H2O2-treated cells showed higher expression level of Catalase than young cells in western blot and immunofluorescence staining. Furthermore, the expression levels of TRP-1, TRP-2 and p300 were reduced in both senescent cells and the H2O2-treated cells, but that of SIRT-1 was inverted compared with young cells. In addition, H2O2 reduced the expression level of MITF but increased that of Nrf2 in nucleus. Those results indicate that the expression levels of antioxidant enzymes in senescent cells and H2O2-treated cell are upregulated, but the expression levels of proteins involved in melanin synthesis are downregulated. Above findings suggest that H2O2 could play a key role in the aging process of melanogenesis through modulation of MITF and Nrf2.
Collapse
|
15
|
Hu J, Liu L, Gong Y, Zhang L, Gan X, Luo X, Yu T, Zhong X, Deng X, Hu L, Zhang Z, Dong X. Linc02527 promoted autophagy in Intrahepatic cholestasis of pregnancy. Cell Death Dis 2018; 9:979. [PMID: 30250023 PMCID: PMC6155230 DOI: 10.1038/s41419-018-1013-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022]
Abstract
LncRNA plays a crucial role in human disease. However, the expression and function of LncRNA in ICP(Intrahepatic cholestasis of pregnancy) is still not fully elucidated. In this study, we found Linc02527 was increased expression in placenta and serum of ICP patients. Ectopically expression of Linc02527 promoted autophagy and proliferate in HTR8 cells. Silencing Linc02527 suppressed the autophagy and proliferate in HTR8 cells. Mechanically study revealed that Linc02527 regulated the expression of ATG5 and ATG7 by sponging miR-3185. Linc02527 directly binding to YBX1 and activated P21. The growth of C57 mouse was retarded when autophagy was activated. In normal condition, inhibited autophagy using chloroquine did not affect the growth of C57 mouse. However, in the condition of autophagy was activated, inhibited autophagy using chloroquine can improve the growth of C57 mouse. Overall, the results of this study identified Linc02527 as a candidate biomarker in ICP and a potential target for ICP therapy. Chloroquine was a potential drug for ICP therapy.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yangyang Gong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoling Gan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaodong Luo
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaocui Zhong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinru Deng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhanyu Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|