1
|
Lüchmann KH, Righetto BPH, Lima D, Luz HC, Ferreira CP, Schallenberger BH, Gomes CHAM, Bainy ACD. Characterization of acetylcholinesterase and carboxylesterases in the mangrove oyster Crassostrea gasar as biomarkers of exposure to environmental pollutants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107225. [PMID: 39756169 DOI: 10.1016/j.aquatox.2024.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Brazil is one of the world's leading consumers of agricultural pesticides, highlighting the urgent need to identify responsive biomarkers as diagnostic and prognostic tools for monitoring aquatic pollution. Acetylcholinesterase (AChE) and carboxylesterases (CbE) are B-esterases enzymes expressed in several organisms. AChE plays an essential role in neural transmission at cholinergic synapses, while CbE are directly involved in the detoxification of organic pollutants, including organophosphorus pesticides. The activities of AChE and CbE in bivalves have not been extensively investigated, despite their suitability as sentinel organisms for environmental monitoring. In this study, we characterized the activities of AChE and CbE in the mangrove oyster Crassostrea gasar, collected from an estuarine system in southern Brazil. We compared enzymatic activities between the gills and the digestive gland, revealing that CbE activity was significantly higher in the digestive gland, while AChE activity did not differ between the two tissues. These results indicate that the digestive gland functions as the primary metabolic organ in C. gasar. Additionally, we observed notable differences in CbE activity depending on the substrate used: ρ-nitrophenyl acetate (ρNPA), ρ-nitrophenyl butyrate (ρNPB), α-naphtyl acetate (αNA), and α-naphtyl butyrate (αNB). Our findings suggest that more lipophilic substrates are metabolized more rapidly in both the digestive gland and gills. These results enhance our understanding of the biotransformation processes and neurotoxicity potential of pesticides in oysters. However, further in vitro validation is needed to confirm the utility of these biomarkers for monitoring environmental pollution in coastal waters.
Collapse
Affiliation(s)
- Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil.
| | - Bárbara P H Righetto
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Hortência C Luz
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil
| | - Clarissa P Ferreira
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil
| | - Bárbara H Schallenberger
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks - LMM, Federal University of Santa Catarina, Florianópolis 88034-257 Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| |
Collapse
|
2
|
Giannessi J, De Marchi L, Meucci V, Intorre L, Monni G, Baratti M, Pretti C. Veterinary fluoroquinolones as emerging contaminants in marine environments: In vitro study of biochemical responses in subcellular fractions of the Mediterranean mussel ( Mytilus galloprovincialis). Heliyon 2024; 10:e40467. [PMID: 39641031 PMCID: PMC11617211 DOI: 10.1016/j.heliyon.2024.e40467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Fluoroquinolone antibiotics (FQs) are emerging pollutants frequently detected in aquatic environments. However, their impact on marine invertebrates remains underexplored. This study investigated the responses at subcellular level in the Mediterranean mussel (Mytilus galloprovincialis) exposed to three veterinary FQs, marbofloxacin (MARB), sarafloxacin (SARA), and difloxacin (DI), at concentrations considered relevant to environmental conditions. The assessment focused on the digestive gland and gills, employing in vitro assays to evaluate antioxidant defenses, biotransformation, and neurotransmission enzyme activities, as well as their effects on membrane lipids, proteins, and DNA integrity. Results revealed a general decline in antioxidant defenses and compromised DNA integrity in both tissues. Additionally, exposure to MARB and DI led to an alteration in detoxification capacity in the gills, along with an increased content of carbonylated proteins. Conversely, the digestive gland exhibited a significant inhibition of acetylcholinesterase activity. These findings suggest potential neurotoxic and genotoxic impacts of these antibiotics on non-target species, as well as an associated oxidative effect.
Collapse
Affiliation(s)
- J. Giannessi
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - L. De Marchi
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - V. Meucci
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - L. Intorre
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - G. Monni
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - M. Baratti
- Research Institute on Terrestrial Ecosystems, IRET-CNR, Via Madonna del Piano 10, Firenze, Sesto Fiorentino, 50019, Italy
| | - C. Pretti
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci” (CIBM), Viale N. Sauro 4, Livorno, 57128, Italy
| |
Collapse
|
3
|
Takahashi M, Takahashi K, Yamaguchi T, Kohama T, Hosokawa M. Functional roles and localization of hydrolases in the Japanese mitten crab Eriocheir japonica. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110932. [PMID: 38097062 DOI: 10.1016/j.cbpb.2023.110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
The Japanese mitten crab Eriocheir japonica inhabits rivers throughout Japan and is being cultivated for food. To conduct aquaculture efficiently, it is crucial to comprehend the physiological functions of the target organisms. However, there is a lack of fundamental information on Japanese mitten crabs. In this study, hydrolases were extracted from the midgut glands of Japanese mitten crabs and their metabolic activities were analyzed. An enzyme with hydrolytic activity was discovered within the cytosol of the midgut gland. Western blot analysis also revealed that the Japanese mitten crab contains a hydrolase with cross-reactivity to human carboxylesterase 1 (hCES1) antibodies. The substrate specificity of the S9 fraction of the midgut gland was investigated and, interestingly, it was revealed that it reacts well with indomethacin phenyl ester and fluorescein diacetate, which are substrates of hCES2, not substrates of hCES1. Furthermore, this enzyme was observed to metabolize the ester derivative of astaxanthin, which is a red pigment inherent to the Japanese mitten crab. These findings underscore the significance the midgut gland in the Japanese mitten crab as an important organ for metabolizing both endogenous and exogenous ester-type compounds.
Collapse
Affiliation(s)
| | | | - Taichi Yamaguchi
- Education and Research Center for Organisms Production, Okayama University of Science, Japan
| | - Takeshi Kohama
- Faculty of Risk and Crisis Management, Chiba Institute of Science, Japan
| | | |
Collapse
|
4
|
Omedes S, Crespo-Picazo JL, Robinson NJ, García-Párraga D, Sole M. Identifying biomarkers of pollutant exposure in ocean sentinels: Characterisation and optimisation of B-esterases in plasma from loggerhead turtles undergoing rehabilitation. CHEMOSPHERE 2024; 348:140770. [PMID: 37992900 DOI: 10.1016/j.chemosphere.2023.140770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/09/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Sea turtles are frequently proposed as indicator species for assessing ocean health. To faciliate the use of these species as bioindicators requires the development of tools for rapidly and effectively assessing individual health. Here, we collected 104 blood samples from 69 loggerhead sea turtles, Caretta caretta, undergoing rehabilitation to determine the connection between health status, the activity of B-esterases, and other biochemical parameters. To determine the optimal assay protocol for B-esterases, we measured the activity and kinetics of cholinesterases-(ChEs) and carboxylesterases (CEs) using 3 and 5 commercial substrates, respectively, at different assay conditions. IC50 values for the activity of B-esterases were calculated within a concentration range for model pesticide inhibitors. Turtles' health status was determined via routine veterinary procedures. During rehabilitation (which was associated with improving health status), we observed a decrease in the activity of most enzymes (especially in acetylcholinesterase) alongside an increase in CE when using p-nitrophenyl acetate as a substrate. As such, it is possible that the activity rates of plasmatic B-esterases could serve as an indicator of health status. There is also high potential that B-esterases could be specifically sensitive to marine pollutants although to further validate this would require future studies to specifically correlate B-esterarse activities to pollutant concentrations in blood or excreta.
Collapse
Affiliation(s)
- S Omedes
- Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - J L Crespo-Picazo
- Fundació Oceanogràfic de la Comunitat Valenciana, Gran Vía Marques del Turia 19, 46005, Valencia, Spain
| | - N J Robinson
- Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain; Fundació Oceanogràfic de la Comunitat Valenciana, Gran Vía Marques del Turia 19, 46005, Valencia, Spain
| | - D García-Párraga
- Fundació Oceanogràfic de la Comunitat Valenciana, Gran Vía Marques del Turia 19, 46005, Valencia, Spain
| | - M Sole
- Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
5
|
Vieira Sanches M, Oliva M, Mezzetta A, Guazzelli L, De Marchi L, Freitas R, Pretti C. In vitro screening of imidazolium and pyrrolidinium based ionic liquids toxicity on subcellular fractions of the Mediterranean mussel Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104305. [PMID: 37898323 DOI: 10.1016/j.etap.2023.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Ionic liquids (ILs) have been considered eco-friendly alternatives to conventional organic solvents. However, several studies have reported that ILs exert toxicity towards aquatic invertebrates. Applying in vitro methodology, the aim of the present study was to evaluate the potential effect of three ILs on the biochemical performance of exposed Mytilus galloprovincialis digestive gland and gills cellular fractions. Carboxylesterase might be involved in the derived toxicity mechanism of ILs as activity levels increased significantly in digestive gland exposed fractions. This group of ILs did not seem to induce genotoxicity, except in gills cellular fractions exposed to 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In the literature, in vitro methodology has been suggested as an important complement to animal testing and in silico studies. The present research underlines its efficacy as a quick pre-screening before in vivo testing, particularly with heterogenic groups of substances with high variability in composition, such as ILs and deep eutectic solvents.
Collapse
Affiliation(s)
- Matilde Vieira Sanches
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128 Livorno, Italy.
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| |
Collapse
|
6
|
Giannessi J, De Marchi L, Meucci V, Intorre L, Monni G, Baratti M, Pretti C. Subcellular tissues-specific responses of Mytilus galloprovincialis to fluoroquinolone antibiotics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104306. [PMID: 39491228 DOI: 10.1016/j.etap.2023.104306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
The study aimed to investigate the in vitro effects of the fluoroquinolone antibiotics (FQs) Ciprofloxacin (CIP), Enrofloxacin (ENR) and Danofloxacin (DAN) on the mussel Mytilus galloprovincialis exposed to environmentally relevant concentrations. In vitro exposure was performed on subcellular fractions of the digestive gland and gills through a multi-biomarker approach, which included the assessment of cellular damage, antioxidant and biotransformation enzyme activities, neurotoxicity, and DNA single-strand breaks (DNAssb). Results showed a decrease in protein carbonyl content in the gills when exposed to all concentrations of ENR. A significant overall decrease in the enzymatic activity of antioxidant defences was observed in the digestive gland exposed to the highest concentration of DAN and CIP, with a similar trend observed in the gills. Neurotoxicity was observed in the digestive gland at all tested concentrations of all FQs, but no effects were detected in the gills. DNAssb was evident in both tissues at all higher FQ concentrations.
Collapse
Affiliation(s)
- Joanna Giannessi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Luigi Intorre
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Mariella Baratti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, Livorno, 57128, Italy
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy; Institute of Biosciences and Bioresources, IBBR-CNR, Via Madonna del Piano 10, Firenze, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
7
|
Omedes S, Crespo-Picazo JL, García-Párraga D, Sole M. B-esterase measurements and other blood related biomarkers in loggerhead sea turtles (Caretta caretta) as indicators of health status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163040. [PMID: 36965720 DOI: 10.1016/j.scitotenv.2023.163040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The loggerhead sea turtle (Caretta caretta) has been selected as sentinel species by the Marine Strategy Framework Directive (MSFD) descriptor 10 in relation to marine litter. In this, and other protected species, there is a need to develop conservative pollution biomarkers equally informative of chemical exposures to those traditionally carried out in metabolic organs, such as the liver. With this aim, plasma from turtles undergoing rehabilitation at the Fundació Oceanogràfic rescue centre (Arca del Mar) were selected and tested for B-esterase measurements. Hydrolysis rates of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterases (CEs) using four commercial substrates were undertaken on 191 plasma samples. Results indicated that acetylthiocholine was the most adequate substrate of cholinesterases and butyrate esters for CE measures. The correlation of these parameters with well-established blood biochemistry measurements was analysed. B-esterase measures in wild specimens were discussed in relation to age group, pathology on admission to the rescue centre and season; moreover, contrasts with long-term resident turtles were also made. Although this study provides baseline data on B-esterase measures in a large sample size for this species, more complementary information is still needed in terms of population genetics, chemical exposures, and in relation to other biochemical parameters before they can be confidently applied in wild specimens within the regulatory MSFD.
Collapse
Affiliation(s)
- S Omedes
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - J L Crespo-Picazo
- Fundació Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005 València, Spain
| | - D García-Párraga
- Fundació Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005 València, Spain
| | - M Sole
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
8
|
Nos D, Navarro J, Solé M. The influence of ecological factors in the modulation of pollution biomarkers of two small pelagic marine fish. MARINE POLLUTION BULLETIN 2023; 188:114717. [PMID: 36860015 DOI: 10.1016/j.marpolbul.2023.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Biomarkers are useful tools for the detection of marine pollution, which is poorly monitored in the pelagic environment. In this study, we investigated the role of key biological and environmental factors on three hepatic xenobiotic biomarkers: carboxylesterases (CEs), glutathione S-transferase (GST) and catalase (CAT). Additionally, ethoxyresorufin-O-deethylase (EROD) and benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD) activities were determined for comparative purposes. The pelagic species targeted were the European anchovy (Engraulis encrasicolus) and the European sardine (Sardina pilchardus). The results revealed sex-dependent CE activities in sardine. CEs and GST activities were significantly affected by reproduction and, in anchovy, CE activities were also influenced by temperature. In vitro incubations revealed that the pesticide dichlorvos caused up to 90 % inhibition of basal CEs activity. This work highlights that the reproductive status, temperature and sex, modulate biomarker responses, and that anchovy would be more suitable pelagic bioindicator due to its higher in vitro sensitivity to dichlorvos and sex-independent biomarker responses.
Collapse
Affiliation(s)
- David Nos
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain.
| | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Montserrat Solé
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| |
Collapse
|
9
|
Solé M, Figueres E, Mañanós E, Rojo-Solís C, García-Párraga D. Characterisation of plasmatic B-esterases in bottlenose dolphins (Tursiops truncatus) and their potential as biomarkers of xenobiotic chemical exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120149. [PMID: 36115493 DOI: 10.1016/j.envpol.2022.120149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
A total of 164 blood samples from 16 clinically healthy bottlenose dolphins (Tursiops truncatus), were obtained from an aquarium in Spain between 2019 and 2020, as part of their preventive medicine protocol. In addition to conventional haematological and biochemical analyses, plasmatic B-esterase activities were characterised to determine the potential application of such analyses in wild counterparts. The hydrolysis rates for the substrates of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) activity in plasma were measured, the last using two commercial substrates, p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate (pNPB). Activity rates (mean ± SEM in nmol/min/mL plasma) were (in descending order): AChE (125.6 ± 3.8), pNPB-CE (65.0 ± 2.2), pNPA-CE (49.7 ± 1.1) and BuChE (12.8 ± 1.3). These values for dolphins are reported in here for the first time in this species. Additionally, the in vitro sensitivity of two B-esterases (AChE and pNPB-CE) to chemicals of environmental concern was determined, and the protective role of plasmatic albumin assessed. Out of the B-esterases measured in plasma of dolphin, AChE activity was more responsive in vitro to pesticides, while CEs had a low response to plastic additives, likely due to the protective presence of albumin. However, the clear in vitro interaction of these environmental chemicals with purified AChE from electric eels and recombinant human hCEs (hCE1 and hCE2) and albumin, predicts their impact in other tissues that require in vivo validation. A relationship between esterase-like activities and health parameters in terrestrial mammals has already been established. Thus, B-esterase measures could be easily included in marine mammal health assessment protocols for dolphins as well, once the relationship between these measures and the animal's fitness has been established.
Collapse
Affiliation(s)
- M Solé
- Institut de Ciències del Mar, CSIC, Psg. Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain.
| | - E Figueres
- Institut de Ciències del Mar, CSIC, Psg. Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain
| | - E Mañanós
- Institute of Aquaculture Torre La Sal (IATS),-CSIC, 12595, Cabanes, Castellón, Spain
| | - C Rojo-Solís
- Veterinary Services, Oceanogràfic, Ciudad de Las Artes y Las Ciencias, C/Eduardo Primo Yúfera (Científic) 1B, 46013, València, Spain
| | - D García-Párraga
- Veterinary Services, Oceanogràfic, Ciudad de Las Artes y Las Ciencias, C/Eduardo Primo Yúfera (Científic) 1B, 46013, València, Spain
| |
Collapse
|
10
|
Sole M, Bassols A, Labrada-Martagón V. Plasmatic B-esterases as potential biomarkers of exposure to marine plastics in loggerhead turtles. ENVIRONMENTAL RESEARCH 2022; 213:113639. [PMID: 35688215 DOI: 10.1016/j.envres.2022.113639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Sea turtles are particularly vulnerable to plastic exposures, and the associated chemical additives, due to their feeding strategies. The species Caretta caretta is a proposed sentinel of plastic pollution worldwide. Thus, there is a need to find adequate biomarkers of plastic exposure through non-invasive protocols for this IUCN protected species. Plasmatic acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) which participate in xenobiotic and endogenous metabolic reactions could all serve as biomarkers, as they are responsive to plasticizers and have already proved adequate for identifying organophosphorus esters exposures. Here we measured plasmatic B-esterases in wild specimens captured as accidental by-catch. Measurements were taken in each individual either at entry into the rehabilitation program or immediately before release after a recovery period. For CE measurements, 4 commercial substrates were used as potentially indicative of distinct enzyme isoforms. Increased activity was seen with the butyrate-derived substrates. Plasmatic CE activities were over one order of magnitude higher than AChE and BuChE substrates. Moreover, an in vitro protocol with the inclusion of plastic additives such as tetrabromobisphenol A (TBBPA), bisphenol A and some of its analogues was considered a proxy of enzymatic interactions. A clear inhibition by TBBPA was found when using commercially purified AChE and recombinant CE proteins. Overall, from in vitro and in vivo evidences, CEs in plasma are sensitive and easily measurable and have been shown to significantly increase after turtles have been rehabilitated in rescue centres. Nevertheless, the inclusion of plastic (or plasticizers) characterisation would help to confirm its association with plasmatic enzyme modifications before they can be adopted as biomarkers of plastic contamination.
Collapse
Affiliation(s)
- M Sole
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - A Bassols
- Fundació per a la Conservació i Recuperació d'Animals Marins-CRAM, Psg. de la Platja 28-30, 08820, El Prat de Llobregat, Spain
| | - V Labrada-Martagón
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, UASLP, Av. Chapultepec #1570, Col. Privadas del Pedregal, CP 78295, San Luis Potosí, S.L.P., Mexico
| |
Collapse
|
11
|
Omedes S, Andrade M, Escolar O, Villanueva R, Freitas R, Solé M. B-esterases characterisation in the digestive tract of the common octopus and the European cuttlefish and their in vitro responses to contaminants of environmental concern. ENVIRONMENTAL RESEARCH 2022; 210:112961. [PMID: 35181305 DOI: 10.1016/j.envres.2022.112961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Cephalopods are a group of marine invertebrates that have received little attention as sentinel species in comparison to other molluscs, such as bivalves. Consequently, their physiological and biochemical xenobiotic metabolism responses are poorly understood. Here we undertake a comparative analysis of the enzymatic activities involved in detoxification reactions and neural transmission in the digestive tract of two commercial cephalopods: the Common octopus, Octopus vulgaris, and the European cuttlefish, Sepia officinalis. For methodological purposes, several common B-esterases (five carboxylesterase (CE) substrates and three cholinesterase (ChE) determinations) were assayed as a proxy of metabolic and neuronal activities, respectively. Four components of the digestive tract in each species were considered: salivary glands, the stomach, the digestive gland and the caecum. The in vitro responses of digestive gland homogenates to model chemicals and contaminants of environmental concern were contrasted between both cephalopod species. The baseline biochemical activities in the four digestive tract components were also determined. Moreover, in order to validate the protocol, purified proteins, recombinant human CE (CE1 and CE2) and purified eel acetylcholinesterase (AChE) were included in the analysis. Overall, carboxylesterase activities were higher in octopus than in cuttlefish, with the activity quantified in the digestive tract components in the following order: digestive gland ≈ caecum > stomach ≈ salivary glands, with higher hydrolysis rates reached with naphthyl-derived substrates. In contrast, cuttlefish hydrolysis rates with ChE substrates were higher than in octopus. This trend was also reflected in a higher sensitivity to CE inhibitors in octopus and to AChE inhibitors in cuttlefish. Given the detoxification character of CEs and its protective role preventing AChE inhibition, octopus could be regarded as more efficiently protected than cuttlefish from neurotoxic exposures. A full characterisation of B-esterases in the digestive tract of the two common cephalopods is also provided.
Collapse
Affiliation(s)
- S Omedes
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - M Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - O Escolar
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - R Villanueva
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - R Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - M Solé
- Institut de Ciències del Mar ICM-CSIC, E-08003, Barcelona, Spain.
| |
Collapse
|
12
|
Solé M, Montemurro N, Pérez S. Biomarker responses and metabolism in Lumbricus terrestris exposed to drugs of environmental concern, an in vivo and in vitro approach. CHEMOSPHERE 2021; 277:130283. [PMID: 33774234 DOI: 10.1016/j.chemosphere.2021.130283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
The earthworm Lumbricus terrestris is an anecic species living in natural soils but it is also a sentinel in pollution monitoring. Specimens of L.terrestris were exposed for 48 h though the filter paper contact test at 1 mg/mL of the chemicals: Lamotrigine (LMG), Cocaine (COC), Fipronil (FIP) and the pesticide bis-4-nitrophenyl phosphate (BNPP). After that period, the activities of Acetylcholinesterase, Glutathione S-transferase, Carboxylesterase (CE) using different substrates, and lipid peroxidation levels were evaluated in the exposed whole tissue earthworms. The results revealed differences only in CE activity, with 4-nitrophenyl butyrate (4NPB) and 1-naphthyl butyrate (1NB) the most responsive substrates to COC. The kinetic parameters of CE were characterized, for the first time, in whole tissue of this species. The chemical analysis by LC-MS/MS, confirmed the exposure to the parent compounds, identified metabolites and evidenced biotransformation pathways in earthworms. Metabolic reactions included oxidation (LMG and FIP), hydrolysis (COC and FIP) as well as glycosylation (LMG, COC and FIP). A hitherto unknown metabolite of LMG due to the conjugation with phenylalanine glutamine was formed. The in vivo results on CE activity with the specific inhibitor, BNPP, were confirmed in vitro. Moreover, in the in vitro approach, the inclusion of other contaminants of environmental concern supports the potential of CE as biomarker. This study identifies the main metabolites formed by earthworms for further in vivo exposures under more realistic conditions and the potential use of CE measures as biomarker of emerging contaminants.
Collapse
Affiliation(s)
- M Solé
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain.
| | - N Montemurro
- ENFOCHEM, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Pérez
- ENFOCHEM, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|