1
|
Xue Y, Zhao W, Meng Q, Yang L, Zhi D, Guo Y, Yue D, Tian Y, Dong K. Combined Toxic Effects of Lead and Glyphosate on Apis cerana cerana. INSECTS 2024; 15:644. [PMID: 39336612 PMCID: PMC11432057 DOI: 10.3390/insects15090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Glyphosate (GY) is the most widely used herbicide in agriculture worldwide. Lead is a common heavy metal in the natural environment. Honeybees, as pollinators, are exposed to these pollutants. So far, few reports have evaluated the toxic effects of GY mixed with heavy metals on honeybees (Apis cerana cerana). This study found that the acute toxicity of lead (LC50 = 1083 mg/L) is much greater than that of GY (LC50 = 4764 mg/L) at 96 h. The acute toxicities of the mixed substances were as follows: LC50 = 621 mg/L of lead and LC50 = 946 mg/L of GY. The combination of lead and GY was more toxic than either of the individual substances alone. Compared to the individual toxicity, combined treatment significantly affected the bees' learning and cognitive abilities and changed the relative expression of genes related to immune defense and detoxification metabolism in A. c. cerana. The combination of lead and GY seriously affected the behavior and physiology of the studied honeybees. This study provides basic data for further research on the combined effects of GY and heavy metals on bee health. It also serves as a reference for effective colony protection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yakai Tian
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.X.); (W.Z.); (Q.M.); (L.Y.); (D.Z.); (Y.G.); (D.Y.)
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.X.); (W.Z.); (Q.M.); (L.Y.); (D.Z.); (Y.G.); (D.Y.)
| |
Collapse
|
2
|
Gao X, Zang H, Liu X, Guo S, Ye D, Liu Z, Jing X, Niu Q, Wu Y, Lü Y, Chen D, Guo R. Unraveling the modulatory manner and function of circRNAs in the Asian honey bee larval guts. Front Cell Dev Biol 2024; 12:1391717. [PMID: 39045457 PMCID: PMC11263028 DOI: 10.3389/fcell.2024.1391717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) that can participate in biological processes such as gene expression, growth, and development. However, little has been explored about the function of circRNAs in the development of Apis cerana larval guts. By using our previously gained deep sequencing data from the guts of A. cerana worker larvae at 4-, 5-, and 6-day-old (Ac4, Ac5, and Ac6 groups), the expression pattern and regulatory role of circular RNAs (circRNAs) during the development process was comprehensively investigated, with a focus on differentially expressed circRNAs (DEcircRNAs) relevant to immunity pathways and developmental signaling pathways, followed by validation of the binding relationships among a key competing endogenous RNA (ceRNA) axis. Here, 224 (158) DEcircRNAs were detected in the Ac4 vs. Ac5 (Ac5 vs. Ac6) comparison group. It's suggested that 172 (123) parental genes of DEcircRNAs were involved in 26 (20) GO terms such as developmental process and metabolic process and 138 (136) KEGG pathways like Hippo and Wnt signaling pathways. Additionally, ceRNA network analysis indicated that 21 (11) DEcircRNAs could target seven (three) DEmiRNAs, further targeting 324 (198) DEmRNAs. These DEmRNAs can be annotated to 33 (26) GO terms and 168 (200) KEGG pathways, including 12 (16) cellular and humoral immune pathways (endocytosis, lysosome, Jak-STAT, etc.) and 10 (nine) developmental signaling pathways (Hippo, mTOR, Hedgehog, etc.). Interestingly, DEcircRNAs in these two comparison groups could target the same ace-miR-6001-y, forming complex sub-networks. The results of PCR and Sanger sequencing confirmed the back-splicing sites within four randomly selected DEcircRNAs. RT-qPCR detection of these four DEcircRNAs verified the reliability of the used transcriptome data. The results of dual-luciferase reporter assay verified the binding relationships between novel_circ_001627 and ace-miR-6001-y and between ace-miR-6001-y and apterous-like. Our data demonstrated that DEcircRNAs were likely to modulate the developmental process of the A. cerana worker larval guts via regulation of parental gene transcription and ceRNA network, and novel_circ_001627/ace-miR-6001-y/apterous-like was a potential regulatory axis in the larval gut development. Findings from this work offer a basis and a candidate ceRNA axis for illustrating the circRNA-modulated mechanisms underlying the A. cerana larval guts.
Collapse
Affiliation(s)
- Xuze Gao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daoyou Ye
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin, China
| | - Yang Lü
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
3
|
Foster LJ, Tsvetkov N, McAfee A. Mechanisms of Pathogen and Pesticide Resistance in Honey Bees. Physiology (Bethesda) 2024; 39:0. [PMID: 38411571 PMCID: PMC11368521 DOI: 10.1152/physiol.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.
Collapse
Affiliation(s)
- Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Nadejda Tsvetkov
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Mutunga T, Sinanovic S, Harrison CS. Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. SENSORS (BASEL, SWITZERLAND) 2024; 24:3191. [PMID: 38794044 PMCID: PMC11125874 DOI: 10.3390/s24103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Water constitutes an indispensable resource crucial for the sustenance of humanity, as it plays an integral role in various sectors such as agriculture, industrial processes, and domestic consumption. Even though water covers 71% of the global land surface, governments have been grappling with the challenge of ensuring the provision of safe water for domestic use. A contributing factor to this situation is the persistent contamination of available water sources rendering them unfit for human consumption. A common contaminant, pesticides are not frequently tested for despite their serious effects on biodiversity. Pesticide determination in water quality assessment is a challenging task because the procedures involved in the extraction and detection are complex. This reduces their popularity in many monitoring campaigns despite their harmful effects. If the existing methods of pesticide analysis are adapted by leveraging new technologies, then information concerning their presence in water ecosystems can be exposed. Furthermore, beyond the advantages conferred by the integration of wireless sensor networks (WSNs), the Internet of Things (IoT), Machine Learning (ML), and big data analytics, a notable outcome is the attainment of a heightened degree of granularity in the information of water ecosystems. This paper discusses methods of pesticide detection in water, emphasizing the possible use of electrochemical sensors, biosensors, and paper-based sensors in wireless sensing. It also explores the application of WSNs in water, the IoT, computing models, ML, and big data analytics, and their potential for integration as technologies useful for pesticide monitoring in water.
Collapse
Affiliation(s)
- Titus Mutunga
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK; (S.S.); (C.S.H.)
| | | | | |
Collapse
|
5
|
Guo R, Zhang K, Zang H, Guo S, Liu X, Jing X, Song Y, Li K, Wu Y, Jiang H, Fu Z, Chen D. Dynamics and regulatory role of circRNAs in Asian honey bee larvae following fungal infection. Appl Microbiol Biotechnol 2024; 108:261. [PMID: 38472661 DOI: 10.1007/s00253-024-13102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Non-coding RNA (ncRNA) plays a vital part in the regulation of immune responses, growth, and development in plants and animals. Here, the identification, characteristic analysis, and molecular verification of circRNAs in Apis cerana cerana worker larval guts were conducted, followed by in-depth investigation of the expression pattern of larval circRNAs during Ascosphaera apis infection and exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 3178 circRNAs in the larval guts of A. c. cerana were identified, with a length distribution ranging from 15 to 96,007 nt. Additionally, 155, 95, and 86 DEcircRNAs were identified in the in the 4-, 5-, and 6-day-old larval guts following A. apis infection. These DEcircRNAs were predicted to target 29, 25, and 18 parental genes relevant to 12, 20, and 17 GO terms as well as 144, 114, and 61 KEGG pathways, including 5 cellular and 4 humoral immune pathways. Complex competing endogenous RNA (ceRNA) regulatory networks were detected as being formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The target DEmRNAs were engaged in 36, 47, and 47 GO terms as well as 331, 332, and 331 pathways, including 6 cellular and 6 humoral immune pathways. Further, 19 DEcircRNAs, 5 DEmiRNAs, and 3 mRNAs were included in the sub-networks relative to 3 antioxidant enzymes. Finally, back-splicing sites within 15 circRNAs and the difference in the 15 DEcircRNAs' expression between uninoculated and A. apis-inoculated larval guts were confirmed based on molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. c. cerana larvae against A. apis invasion. KEY POINTS: • The expression pattern of circRNAs was altered in the A. cerana worker larval guts following A. apis infection. • Back-splicing sites within 15 A. cerana circRNAs were verified using molecular approaches. DEcircRNAs potentially modulated immune responses and antioxidant enzymes in A. apis-challenged host guts.
Collapse
Affiliation(s)
- Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, 350002, China.
- Apitherapy Research Institute of Fujian Province, Fuzhou, 350002, China.
| | - Kaiyao Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxuan Song
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kunze Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin, Jilin, 132000, China
| | - Haibing Jiang
- Apiculture Science Institute of Jilin Province, Jilin, Jilin, 132000, China
| | - Zhongmin Fu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, 350002, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, 350002, China
| |
Collapse
|
6
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
7
|
Zhi-Xiang D, Wan-Li L, Xi-Jie LI, Jia-Li L, Jun Z, Chong-Hui Z, Qi H, Zhe C, Yuan C, Hong-Mu Z, Jun G, Wen-Li T. Glyphosate exposure affected longevity-related pathways and reduced survival in asian honey bees (Apis cerana). CHEMOSPHERE 2024; 351:141199. [PMID: 38237785 DOI: 10.1016/j.chemosphere.2024.141199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (N-(phosphonomethyl)glycine, GLY) ranks among the most extensively used and effective herbicides globally. However, excessive GLY utilization poses a substantial threat to the survival of honey bees (Apis cerana). Here we monitored the survival status of A. cerana treated with GLY, and conducted transcriptome sequencing of the bee gut and head to further explore potential GLY influences at the molecular level. We observed that the mortality rate of bees increased as GLY concentration escalated. Pivotal pathways emerged in response to the GLY treatment, with a substantial number of differentially expressed genes enriched in the longevity regulating pathway - multiple species. This strongly suggested that GLY may influence the physiological behavior of bees by impacting this particular pathway. Moreover, our analysis revealed a notable reduction in the enzymatic activities of CYP450 and AChE in both the bee head and intestines of when exposed to GLY. Conversely, the enzymatic activity of superoxide dismutase (SOD) in the head remained unaffected, whereas in the intestines, it exhibited a significant increase. Additionally, prophenol oxidase (PPO) and glutathione-S-transferases (GSTs) displayed contrasting trends in enzymatic activity in both organs. This study offers valuable insights into how GLY impacted the survival of A. cerana.
Collapse
Affiliation(s)
- Dong Zhi-Xiang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Li Wan-Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - L I Xi-Jie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Li Jia-Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zhang Jun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zhao Chong-Hui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Huang Qi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Cao Zhe
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chen Yuan
- Pujia Life Technology (Fuzhou) Co., LTD, Fuzhou, 350018, China
| | - Zhao Hong-Mu
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agriculutral Sciences, Mengzi, 661101, China.
| | - Guo Jun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Tian Wen-Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
8
|
Romualdo GR, Valente LC, Dos Santos ACS, Grandini NA, Camacho CRC, Vinken M, Cogliati B, Hou DX, Barbisan LF. Effects of glyphosate exposure on western diet-induced non-alcoholic fatty liver disease in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104286. [PMID: 37805155 DOI: 10.1016/j.etap.2023.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
We evaluated whether glyphosate promotes western diet (WD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed WD and received intragastrical glyphosate (0.05, 5 or 50 mg/kg) for 6 months. Glyphosate did not promote WD-induced obesity, hypercholesterolemia, glucose intolerance, hepatic steatosis, and fibrosis. Nonetheless, the higher dose (50 mg) enhanced hepatic CD68+ macrophage density, p65, TNF-α, and IL-6 protein levels. Furthermore, this dose decreased hepatic Nrf2 levels, while enhancing lipid peroxidation in the liver and adipose tissue. Hepatic transcriptome revealed that glyphosate at 50 mg upregulated 212 genes and downregulated 731 genes. Genes associated with oxidative stress and inflammation were upregulated, while key cell cycle-related genes were downregulated. Our results indicate that glyphosate exposure - in a dose within the toxicological limits - impairs hepatic inflammation/redox dynamics in a NAFLD microenvironment.
Collapse
Affiliation(s)
- Guilherme R Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil.
| | - Letícia Cardoso Valente
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil; Federal University of Grande Dourados (UFGD), Faculty of Health Sciences, Dourados, MS, Brazil
| | | | - Núbia Alves Grandini
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Botucatu, SP, Brazil
| | - Camila Renata Correa Camacho
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Botucatu, SP, Brazil
| | - Mathieu Vinken
- Vrije Universiteit Brussel. Brussels, Department of In Vitro Toxicology and Dermato-Cosmetology, Belgium
| | - Bruno Cogliati
- University of São Paulo (USP), School of Veterinary Medicine and Animal Science, Department of Pathology, São Paulo, SP, Brazil
| | - De-Xing Hou
- Kagoshima University, Faculty of Agriculture, Department of Food Science and Biotechnology, Japan
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil.
| |
Collapse
|
9
|
Motta EVS, Moran NA. The effects of glyphosate, pure or in herbicide formulation, on bumble bees and their gut microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162102. [PMID: 36764553 PMCID: PMC11050743 DOI: 10.1016/j.scitotenv.2023.162102] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of glyphosate-based formulations to eliminate unwanted vegetation has increased concerns regarding their effects on non-target organisms, such as honey bees and their gut microbial communities. These effects have been associated with both glyphosate and co-formulants, but it is still unknown whether they translate to other bee species. In this study, we tested whether glyphosate, pure or in herbicide formulation, can affect the gut microbiota and survival rates of the eastern bumble bee, Bombus impatiens. We performed mark-recapture experiments with bumble bee workers from four different commercial colonies, which were exposed to field relevant concentrations of glyphosate or a glyphosate-based formulation (0.01 mM to 1 mM). After a 5-day period of exposure, we returned the bees to their original colonies, and they were sampled at days 0, 3 and 7 post-exposure to investigate changes in microbial community and microbiota resilience by 16S rRNA amplicon sequencing and quantitative PCR. We found that exposure to glyphosate, pure or in herbicide formulation, reduced the relative abundance of a beneficial bee gut bacterium, Snodgrassella, in bees from two of four colonies when compared to control bees at day 0 post-exposure, but this reduction became non-significant at days 3 and 7 post-exposure, suggesting microbiota resilience. We did not find significant changes in total bacteria between control and exposed bees. Moreover, we observed an overall trend in decreased survival rates in bumble bees exposed to 1 mM herbicide formulation during the 7-day post-exposure period, suggesting a potential negative effect of this formulation on bumble bees.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, TX, USA.
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, TX, USA.
| |
Collapse
|
10
|
Bai J, Guo D, Li J, Wang H, Wang C, Liu Z, Guo X, Wang Y, Xu B. The role of AccCDK20 and AccCDKN1 from Apis cerana cerana in development and response to pesticide and heavy metal toxicity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105333. [PMID: 36740341 DOI: 10.1016/j.pestbp.2022.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Apis cerana cerana is a native bee species in China and plays a key role in agricultural production and ecological balance. However, the growth and development of Apis cerana cerana has not been smooth, and pesticide and heavy metal stress are key factors that have forced a dramatic decline in population size. This study was performed with the objective of investigating the role of AccCDK20 and AccCDKN1 in honey bee resistance to pesticide and heavy metal stress. RT-qPCR analysis revealed that AccCDK20 transcript levels were highest in brown-eyed pupae and AccCDKN1 transcript levels were highest in 1-day-old worker bees. In different tissues and body parts of adult bees, AccCDK20 transcript levels were highest in the head, and AccCDKN1 transcript levels were highest in the thorax. It was further observed that environmental stress can affect the transcript levels of the AccCDK20 and AccCDKN1 genes. Silencing of the AccCDK20 and AccCDKN1 genes resulted in altered activities of antioxidant-related genes and antioxidant-related enzymes. AccCDK20 and AccCDKN1 transcript levels were upregulated under glyphosate stress, and silencing of the genes resulted in reduced resistance to glyphosate and greatly increased mortality in Apis cerana cerana. In addition, gene function was verified by in vitro repression assays. Overexpression of the AccCDK20 and AccCDKN1 proteins in E. coli cells increased the resistance to ROS damage induced by CHP. In conclusion, AccCDK20 and AccCDKN1 play an indispensable role in honey bee resistance to pesticide and heavy metal stress.
Collapse
Affiliation(s)
- Jinhao Bai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Jing Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
11
|
Helander M, Lehtonen TK, Saikkonen K, Despains L, Nyckees D, Antinoja A, Solvi C, Loukola OJ. Field-realistic acute exposure to glyphosate-based herbicide impairs fine-color discrimination in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159298. [PMID: 36216073 DOI: 10.1016/j.scitotenv.2022.159298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Pollinator decline is a grave challenge worldwide. One of the main culprits for this decline is the widespread use of, and pollinators' chronic exposure to, agrochemicals. Here, we examined the effect of a field-realistic dose of the world's most commonly used pesticide, glyphosate-based herbicide (GBH), on bumblebee cognition. We experimentally tested bumblebee (Bombus terrestris) color and scent discrimination using acute GBH exposure, approximating a field-realistic dose from a day's foraging in a patch recently sprayed with GBH. In a 10-color discrimination experiment with five learning bouts, GBH treated bumblebees' learning rate fell to zero by third learning bout, whereas the control bees increased their performance in the last two bouts. In the memory test, the GBH treated bumblebees performed to near chance level, indicating that they had lost everything they had learned during the learning bouts, while the control bees were performing close to the level in their last learning bout. However, GBH did not affect bees' learning in a 2-color or 10-odor discrimination experiment, which suggests that the impact is limited to fine color learning and does not necessarily generalize to less specific tasks or other modalities. These results indicate that the widely used pesticide damages bumblebees' fine-color discrimination, which is essential to the pollinator's individual success and to colony fitness in complex foraging environments. Hence, our study suggests that acute sublethal exposure to GBH poses a greater threat to pollination-based ecosystem services than previously thought, and that tests for learning and memory should be integrated into pesticide risk assessment.
Collapse
Affiliation(s)
- Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Topi K Lehtonen
- Ecology and Genetics Research Unit, University of Oulu, FI-90570 Oulu, Finland; Natural Resources Institute Finland, FI-90570 Oulu, Finland
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Léo Despains
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Danae Nyckees
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, the Netherlands
| | - Anna Antinoja
- Ecology and Genetics Research Unit, University of Oulu, FI-90570 Oulu, Finland
| | - Cwyn Solvi
- Ecology and Genetics Research Unit, University of Oulu, FI-90570 Oulu, Finland
| | - Olli J Loukola
- Ecology and Genetics Research Unit, University of Oulu, FI-90570 Oulu, Finland
| |
Collapse
|