1
|
Bishop E, Miazzi F, Bozhilova S, East N, Evans R, Smart D, Gaca M, Breheny D, Thorne D. An in vitro toxicological assessment of two electronic cigarettes: E-liquid to aerosolisation. Curr Res Toxicol 2024; 6:100150. [PMID: 38298371 PMCID: PMC10827682 DOI: 10.1016/j.crtox.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Interest in the toxicological assessment of iterations of e-cigarette devices, e-liquid formulations and flavour use is increasing. Here, we describe a multiple test matrix and in vitro approach to assess the biological impact of differing e-cigarette activation mechanism (button vs. puff-activated) and heating technology (cotton vs. ceramic wick). The e-liquids selected for each device contained the same nicotine concentration and flavourings. We tested both e-liquid and aqueous extract of e-liquid aerosol using a high throughput cytotoxicity and genotoxicity screen. We also conducted whole aerosol assessment both in a reconstituted human airway lung tissue (MucilAir) with associated endpoint assessment (cytotoxicity, TEER, cilia beat frequency and active area) and an Ames whole aerosol assay with up to 900 consecutive undiluted puffs. Following this testing it is shown that the biological impact of these devices is similar, taking into consideration the limitations and capturing efficiencies of the different testing matrices. We have contextualised these responses against previous published reference cigarette data to establish the comparative reduction in response consistent with reduced risk potential of the e-cigarette products tested in this study as compared to conventional cigarettes.
Collapse
Affiliation(s)
- E. Bishop
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - F. Miazzi
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - S. Bozhilova
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - N. East
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - R. Evans
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Smart
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - M. Gaca
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Thorne
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| |
Collapse
|
2
|
Miller-Holt J, Behrsing H, Crooks I, Curren R, Demir K, Gafner J, Gillman G, Hollings M, Leverette R, Oldham M, Simms L, Stankowski LF, Thorne D, Wieczorek R, Moore MM. Key challenges for in vitro testing of tobacco products for regulatory applications: Recommendations for dosimetry. Drug Test Anal 2023; 15:1175-1188. [PMID: 35830202 PMCID: PMC9897201 DOI: 10.1002/dta.3344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to develop recommendations for optimal scientific and technical approaches for conducting in vitro assays to assess potential toxicity within and across tobacco and various next-generation products (NGPs) including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDSs). This publication was developed by a working group of the workshop members in conjunction with the sixth workshop in that series entitled "Dosimetry for conducting in vitro evaluations" and focuses on aerosol dosimetry for aerosol exposure to combustible cigarettes, HTP, and ENDS aerosolized tobacco products and summarizes the key challenges as well as documenting areas for future research.
Collapse
Affiliation(s)
| | - Holger Behrsing
- Institute for In Vitro Sciences, Gaithersburg, Maryland, USA
| | - Ian Crooks
- Consumer Product Safety, British American Tobacco, Southampton, UK
| | - Rodger Curren
- Institute for In Vitro Sciences, Gaithersburg, Maryland, USA
| | - Kubilay Demir
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Jeremie Gafner
- Scientific & Regulatory Affairs, JT International SA, Geneva, Switzerland
| | - Gene Gillman
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Michael Hollings
- Genetic Toxicology, Labcorp Early Development Laboratories Ltd., Harrogate, UK
| | - Robert Leverette
- Scientific & Regulatory Affairs, RAI Services Company, Winston-Salem, North Carolina, USA
| | - Michael Oldham
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands, Bristol, UK
| | - Leon F. Stankowski
- Genetic and In Vitro Toxicology, Charles River Laboratories–Skokie, Skokie, Illinois, USA
| | - David Thorne
- Consumer Product Safety, British American Tobacco, Southampton, UK
| | - Roman Wieczorek
- Group Science and Regulatory Affairs, Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Hamburg, Germany
| | | |
Collapse
|
3
|
Keyser BM, Leverette R, Hollings M, Seymour A, Weidman RA, Bequette CJ, Jordan K. Characterization of smoke and aerosol deliveries from combustible cigarettes, heated tobacco products and electronic nicotine delivery systems in the Vitrocell® Mammalian 6/48 exposure module. Toxicol Rep 2022; 9:1985-1992. [PMID: 36518380 PMCID: PMC9742965 DOI: 10.1016/j.toxrep.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
The rapid development associated with Next Generation Tobacco Products (NGTP) has necessitated the development of high throughput methodologies to test their genotoxic potential in vitro when compared to conventional cigarette smoke (CS). An assessment of two Vitrocell® Mammalian 6/48 exposure modules in three independent experiments was made by comparing results from multiple dosimetric techniques applied to aerosol generated from 3R4F Kentucky Reference cigarettes, commercially available electronically heated tobacco product (eHTP) and Electronic Nicotine Delivery System (ENDS) using the Vitrocell® VC10®. Real-time aerosol particle concentration was assessed by means of light scattering photometers and expressed as area under the curve (∑AUC). Nicotine concentrations were determined analytically by LC/MS. Humectant amount and distribution was assessed for eHTP and ENDS by the quantification of free glycerol in a phosphate buffered saline (PBS) trap, whereas total particulate matter (TPM) was assessed in the 3R4F cigarettes by the fluorescence of the particulate at 485 nm in anhydrous dimethyl sulfoxide (DMSO) trap within the exposure. Dose was adjusted by means of the addition of ambient air to dilute the whole smoke/aerosol in L/min and sampled into the system at a rate of 5 mL/min. Dilution of CS ranged from 8.0 to 0.5 L/min and for the eHTP and ENDS ranged from 4 to 0 L/min (undiluted). Dosimetric analysis of the system showed good concordance within replicates (p-values ranged from p = 0.3762 to p = 0.8926) and showed that the Vitrocell® Mammalian 6/48 is a viable means for genotoxic assessment of aerosol generated from both conventional cigarettes and NGTP. Results demonstrate the need to tailor dosimetry approaches to different aerosols due to variations in the physio-chemical composition, with a multi-dosimetry approach recommended.
Collapse
Affiliation(s)
- Brian M. Keyser
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - Robert Leverette
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - Michael Hollings
- Labcorp Early Development Laboratories Ltd., Harrogate, North Yorkshire, UK
| | - Adam Seymour
- Labcorp Early Development Laboratories Ltd., Harrogate, North Yorkshire, UK
| | - Randy A. Weidman
- RJ Reynolds Tobacco Company, 950 Reynolds Blvd., Winston-Salem, NC 27106, USA
| | - Carlton J. Bequette
- RJ Reynolds Tobacco Company, 950 Reynolds Blvd., Winston-Salem, NC 27106, USA
| | - Kristen Jordan
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
4
|
Das M, Saha A. Probe on Various Experimental Cigarette Smoke Subjection Structure. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Different methods of subjection to smoke from experimental cigarettes are essential for understanding tobacco smoke. The major toxicants found in tobacco are acetaldehyde, acetone, acrolein, acrylonitrile, ammonia, benzene, cadmium, catechol, chromium, cyanide hydrogen, arsenic, nickel, nitric oxide, nicotine last but not least, mono-oxide gases. While experts say, cigarette smoke contains more than 4000 different compounds. These are substantially toxic and can destroy cells, and many of them are carcinogenic. Various smoke-exposure devices are used for in-vitro tobacco smoke generation, dilution, and distribution.
Such devices are used widely by well-known manufacturers or can be tailor-made setups. We can set up different in-vitro models to better treat smoke-related diseases using these subjection structures. The fundamental goal will be to build a tobacco-free society of available subjection systems. Some have been identified and established as biological endpoints in some published scientific literature. In the scientific field, many new technologies are coming out and showing their presence. There are many systems of exposure to cigarette smoke in vitro which offer a more flexible approach to the challenges of exposure to tobacco smoke. This review covers some topics such as the description of available new subjection structures and reviews their work, setting up and application for Scenarios of in-vitro treatment. The benefits and disadvantages of both subjection mechanisms and the similarities between the setups and the data extracted from these structures. Measuring the smoke dose is also discussed here as an important field of research, particularly in the preclinical phase.
Keywords: Cigarette smoke; Cigarette Subjection Structures; Cigarette Subjection Mechanisms; Cigarette Subjection Advantages; Cigarette Subjection Use; Cigarette Subjection Modern advancements.
Collapse
Affiliation(s)
- Moulima Das
- M.Pharm Grad., Pharmacology, NSHM College Of Pharmaceutical Technology, NSHM Knowledge Campus, B.L. Rd., Kolkata - 700053, WB
| | - Anupam Saha
- M.Pharm Grad., Pharmacology, NSHM College Of Pharmaceutical Technology, NSHM Knowledge Campus, B.L. Rd., Kolkata - 700053, WB
| |
Collapse
|
5
|
Willemse D, Moodley C, Mehra S, Kaushal D. Transcriptional Response of Mycobacterium tuberculosis to Cigarette Smoke Condensate. Front Microbiol 2021; 12:744800. [PMID: 34721344 PMCID: PMC8554204 DOI: 10.3389/fmicb.2021.744800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Smoking is known to be an added risk factor for tuberculosis (TB), with nearly a quarter of the TB cases attributed to cigarette smokers in the 22 countries with the highest TB burden. Many studies have indicated a link between risk of active TB and cigarette smoke. Smoking is also known to significantly decrease TB cure and treatment completion rate and increase mortality rates. Cigarette smoke contains thousands of volatile compounds including carcinogens, toxins, reactive solids, and oxidants in both particulate and gaseous phase. Yet, to date, limited studies have analyzed the impact of cigarette smoke components on Mycobacterium tuberculosis (Mtb), the causative agent of TB. Here we report the impact of cigarette smoke condensate (CSC) on survival, mutation frequency, and gene expression of Mtb in vitro. We show that exposure of virulent Mtb to cigarette smoke increases the mutation frequency of the pathogen and strongly induces the expression of the regulon controlled by SigH—a global transcriptional regulator of oxidative stress. SigH has previously been shown to be required for Mtb to respond to oxidative stress, survival, and granuloma formation in vivo. A high-SigH expression phenotype is known to be associated with greater virulence of Mtb. In patients with pulmonary TB who smoke, these changes may therefore play an important, yet unexplored, role in the treatment efficacy by potentially enhancing the virulence of tubercle bacilli.
Collapse
Affiliation(s)
- Danicke Willemse
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.,Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.,Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
6
|
Cao X, Coyle JP, Xiong R, Wang Y, Heflich RH, Ren B, Gwinn WM, Hayden P, Rojanasakul L. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell Dev Biol Anim 2020; 57:104-132. [PMID: 33175307 PMCID: PMC7657088 DOI: 10.1007/s11626-020-00517-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
The lung is an organ that is directly exposed to the external environment. Given the large surface area and extensive ventilation of the lung, it is prone to exposure to airborne substances, such as pathogens, allergens, chemicals, and particulate matter. Highly elaborate and effective mechanisms have evolved to protect and maintain homeostasis in the lung. Despite these sophisticated defense mechanisms, the respiratory system remains highly susceptible to environmental challenges. Because of the impact of respiratory exposure on human health and disease, there has been considerable interest in developing reliable and predictive in vitro model systems for respiratory toxicology and basic research. Human air-liquid-interface (ALI) organotypic airway tissue models derived from primary tracheobronchial epithelial cells have in vivo–like structure and functions when they are fully differentiated. The presence of the air-facing surface allows conducting in vitro exposures that mimic human respiratory exposures. Exposures can be conducted using particulates, aerosols, gases, vapors generated from volatile and semi-volatile substances, and respiratory pathogens. Toxicity data have been generated using nanomaterials, cigarette smoke, e-cigarette vapors, environmental airborne chemicals, drugs given by inhalation, and respiratory viruses and bacteria. Although toxicity evaluations using human airway ALI models require further standardization and validation, this approach shows promise in supplementing or replacing in vivo animal models for conducting research on respiratory toxicants and pathogens.
Collapse
Affiliation(s)
- Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA.
| | - Jayme P Coyle
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - William M Gwinn
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | | - Liying Rojanasakul
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
7
|
An experimental aerosol air-agar interface mouse lymphoma assay methodology. Mutat Res 2020; 856-857:503230. [PMID: 32928375 DOI: 10.1016/j.mrgentox.2020.503230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/24/2022]
Abstract
This work investigates a completely novel and experimental concept of exposing L5178Y cells at the air-agar-interface to mainstream cigarette smoke aerosol (Kentucky reference 3R4F). This study highlights the associated challenges of combining a suspension cell line alongside an in vitro aerosol exposure system. To achieve a monolayer, cells were 'seeded' in a concentrated cell super-mix suspension onto an RPMI/agar-matrix -base. The resulting cell suspension media was adsorbed into the agar base leaving the L5178Y cells lightly suspended on the agar surface, approximating a monolayer. Cells were deemed supportable on the agar-matrix, viable and recoverable. Using Vitrocell VC 10 exposure system and the Ames 4 exposure module, L5178Y cells were successfully exposed to a dynamic cigarette smoke aerosol, recovered and assessed for mutant frequencies, using standard assay procedures. Method development included assessment of flowing air conditions, plating efficiency and recovery of L5178Y cells from the agar-matrix surface. Positive controls MMS and B[a]P were successfully incorporated into the agar-matrix and metabolic activation was achieved by S-9 incorporation into the same agar-base-matrix. B[a]P demonstrated metabolic activation and positive response, suggesting a clear cellular interaction with the agar-matrix. Whole smoke exposed cells in the presence of metabolic activation showed a clear dose response and increasing mutant frequencies, well in excess of the controls (air and incubator) and the global evaluation factor following a 2 or 3 day expression period. This experimental concept demonstrates that L5178Y cells can be exposed to cigarette smoke aerosol, using a completely novel and a previously untested approach. Although this work successfully demonstrates the approach is viable and cells can be plated and maintained on an agar-matrix, more optimisation and robustness assessment is required before it can be considered fully adapted and used alongside other whole aerosol methodologies for the assessment of cigarette smoke and other inhaled aerosols.
Collapse
|
8
|
In vitro mutagenicity of gas-vapour phase extracts from flavoured and unflavoured heated tobacco products. Toxicol Rep 2019; 6:1155-1163. [PMID: 31737489 PMCID: PMC6849343 DOI: 10.1016/j.toxrep.2019.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 11/23/2022] Open
Abstract
The in vitro mutagenic and genotoxic potential of Heated Tobacco Products (HTPs) has already been studied with the particulate phase and reported previously. This study has been designed to complement the in vitro assessment of the HTP and to determine whether the inclusion of potential flavourings would alter the in vitro response by testing the other phase of the aerosol, the gas-vapour phase (GVP). Both flavoured and unflavoured Neostik GVP samples did not show any sign of mutagenic activity in the Ames test but induced a mutagenic response in the mouse lymphoma assay (MLA), however, these responses were significantly less than those of the reference cigarette, 3R4F. The results demonstrated that GVP emissions of this HTP did not induce either new qualitative or quantitative mutagenic hazards compared to 3R4F, as assessed by the Ames test (no new responsive strains) and MLA (a lower mutagenic response), respectively. A statistical comparative analysis of the responses showed that the addition of flavourings that may thermally decompose under the conditions of use did not add to the in vitro baseline responses of the unflavoured Neostik.
Collapse
|
9
|
Chandrala LD, Afshar-Mohajer N, Nishida K, Ronzhes Y, Sidhaye VK, Koehler K, Katz J. A Device for measuring the in-situ response of Human Bronchial Epithelial Cells to airborne environmental agents. Sci Rep 2019; 9:7263. [PMID: 31086226 PMCID: PMC6513995 DOI: 10.1038/s41598-019-43784-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/01/2019] [Indexed: 02/03/2023] Open
Abstract
Measuring the time evolution of response of Normal Human Bronchial Epithelial (NHBE) cells to aerosols is essential for understanding the pathogenesis of airway disease. This study introduces a novel Real-Time Examination of Cell Exposure (RTECE) system, which enables direct in situ assessment of functional responses of the cell culture during and following exposure to environmental agents. Included are cell morphology, migration, and specialised responses, such as ciliary beat frequency (CBF). Utilising annular nozzles for aerosol injection and installing windows above and below the culture, the cells can be illuminated and examined during exposure. The performance of RTECE is compared to that of the commercial Vitrocell by exposing NHBE cells to cigarette smoke. Both systems show the same mass deposition and similar trends in smoke-induced changes to monolayer permeability, CBF and transepithelial resistance. In situ measurements performed during and after two exposures to smoke show that the CBF decreases gradually during both exposures, recovering after the first, but decreasing sharply after the second. Using Particle image velocimetry, the cell motions are monitored for twelve hours. Exposure to smoke increases the spatially-averaged cell velocity by an order of magnitude. The relative motion between cells peaks shortly after each exposure, but remains elevated and even increases further several hours later.
Collapse
Affiliation(s)
- Lakshmana D. Chandrala
- 0000 0001 2171 9311grid.21107.35Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218 USA
| | - Nima Afshar-Mohajer
- 0000 0001 2171 9311grid.21107.35Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205 USA
| | - Kristine Nishida
- 0000 0001 2171 9311grid.21107.35Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, 21205 USA
| | - Yury Ronzhes
- 0000 0001 2171 9311grid.21107.35Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218 USA
| | - Venkataramana K. Sidhaye
- 0000 0001 2171 9311grid.21107.35Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205 USA ,0000 0001 2171 9311grid.21107.35Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, 21205 USA
| | - Kirsten Koehler
- 0000 0001 2171 9311grid.21107.35Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205 USA
| | - Joseph Katz
- 0000 0001 2171 9311grid.21107.35Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218 USA
| |
Collapse
|
10
|
Fowler K, Fields W, Hargreaves V, Reeve L, Bombick B. Development, qualification, validation and application of the Ames test using a VITROCELL ® VC10 ® smoke exposure system. Toxicol Rep 2018; 5:542-551. [PMID: 29854624 PMCID: PMC5977537 DOI: 10.1016/j.toxrep.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/09/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Smoke-induced mutagenicity at air agar interface was developed and validated. The VITROCELL® VC10® system was validated by equipment qualification protocols. Differentiation of mutagenicity by 3R4F and Eclipse cigarettes was demonstrated.
The Ames test has established use in the assessment of potential mutagenicity of tobacco products but has generally been performed using partitioned exposures (e.g. total particulate matter [TPM], gas vapor phase [GVP]) rather than whole smoke (WS). The VITROCELL®VC10® smoke exposure system offers multiple platforms for air liquid interface (ALI), or air agar interface (AAI) in the case of the Ames test exposure to mimic in vivo-like conditions for assessing the toxicological impact of fresh WS in in vitro assays. The goals of this study were to 1) qualify the VITROCELL®VC10® to demonstrate functionality of the system, 2) develop and validate the Ames test following WS exposure with the VITROCELL®VC10® and 3) assess the ability of the Ames test to differentiate between a reference combustible product (3R4F Kentucky reference cigarette) and a primarily tobacco heating product (Eclipse). Based on critical function assessments, the VITROCELL®VC10® was demonstrated to be fit for the purpose of consistent generation of WS. Assay validation was conducted for 5 bacterial strains (TA97, TA98, TA100, TA1535 and TA102) and reproducible exposure–related changes in revertants were observed for TA98 and TA100 in the presence of rat liver S-9 following exposure to 3R4F WS. In the comparative studies, exposure-related changes in in vitro mutagenicity following exposure of TA98 and TA100 in the presence of S9 to both 3R4F and Eclipse WS were observed, with the response for Eclipse being significantly less than that for 3R4F (p < 0.001) which is consistent with the fewer chemical constituents liberated by primarily-heating the product.
Collapse
Affiliation(s)
- Kathy Fowler
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - Wanda Fields
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | | | | | - Betsy Bombick
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
11
|
Zavala J, Krug JD, Warren SH, Krantz QT, King C, McKee J, Gavett SH, Lewandowski M, Lonneman WA, Kleindienst TE, Meier MJ, Higuchi M, Gilmour MI, DeMarini DM. Evaluation of an Air Quality Health Index for Predicting the Mutagenicity of Simulated Atmospheres. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3045-3053. [PMID: 29406743 PMCID: PMC5858694 DOI: 10.1021/acs.est.8b00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
No study has evaluated the mutagenicity of atmospheres with a calculated air quality health index (AQHI). Thus, we generated in a UV-light-containing reaction chamber two simulated atmospheres (SAs) with similar AQHIs but different proportions of criteria pollutants and evaluated them for mutagenicity in three Salmonella strains at the air-agar interface. We continuously injected into the chamber gasoline, nitric oxide, and ammonium sulfate, as well as either α-pinene to produce SA-PM, which had a high concentration of particulate matter (PM): 119 ppb ozone (O3), 321 ppb NO2, and 1007 μg/m3 PM2.5; or isoprene to produce SA-O3, which had a high ozone (O3) concentration: 415 ppb O3, 633 ppb NO2, and 55 μg/m3 PM2.5. Neither PM2.5 extracts, NO2, or O3 alone, nor nonphoto-oxidized mixtures were mutagenic or cytotoxic. Both photo-oxidized atmospheres were largely direct-acting base-substitution mutagens with similar mutagenic potencies in TA100 and TA104. The mutagenic potencies [(revertants/h)/(mgC/m3)] of SA-PM (4.3 ± 0.4) and SA-O3 (9.5 ± 1.3) in TA100 were significantly different ( P < 0.0001), but the mutation spectra were not ( P = 0.16), being ∼54% C → T and ∼46% C → A. Thus, the AQHI may have some predictive value for the mutagenicity of the gas phase of air.
Collapse
Affiliation(s)
- Jose Zavala
- ORISE Research Fellow, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Jonathan D. Krug
- National Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Sarah H. Warren
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Q. Todd Krantz
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Charly King
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - John McKee
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Stephen H. Gavett
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Michael Lewandowski
- National Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - William A. Lonneman
- National Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Tadeusz E. Kleindienst
- National Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Matthew J. Meier
- Biology Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Mark Higuchi
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - M. Ian Gilmour
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David M. DeMarini
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
12
|
Abstract
AbstractAn analysis of biological effects induced by environmental toxins and exposure-related evaluation of potential risks for health and environment represent central tasks in classical biomonitoring. While epidemiological data and population surveys are clearly the methodological frontline of this scientific field, cellbased in vitro assays provide information on toxin-affected cellular pathways and mechanisms, and are important sources for the identification of relevant biomarkers. This review provides an overview on currently available in vitro methods based on cultured cells, as well as some limitations and considerations that are of specific interest in the context of environmental toxicology. Today, a large number of different endpoints can be determined to pinpoint basal and specific toxicological cellular effects. Technological progress and increasingly refined protocols are extending the possibilities of cell-based in vitro assays in environmental toxicology and promoting their increasingly important role in biomonitoring.
Collapse
|
13
|
Akyil D, Konuk M, Eren Y, Liman R, Sağlam E. Mutagenic and genotoxic effects of Anilofos with micronucleus, chromosome aberrations, sister chromatid exchanges and Ames test. Cytotechnology 2017; 69:865-874. [PMID: 28608257 DOI: 10.1007/s10616-017-0099-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/10/2017] [Indexed: 02/05/2023] Open
Abstract
We aimed to evaluate the mutagenic effect of Anilofos, organophosphate pesticide, by using Ames/Salmonella/microsome test. Its cytotoxic and genotoxic effects were also determined by chromosome aberration (CA), sister chromatid exchange (SCE) and micronucleus (MN) test in human peripheral blood lymphocytes. In the Ames test, five different concentrations of Anilofos were examined on TA97, TA98, TA100 and TA102 strains in the absence and presence of S9 fraction. According to the results all concentrations of this pesticide have not shown any mutagenic activity on TA97, TA100 and TA102 strains in the absence and presence of S9 fraction. But, 10, 100 and 1000 µg/plate concentrations of Anilofos were determined to be mutagenic on TA98 strain without S9 fraction. Lymphocytes were treated with various concentrations (25, 50, 100 and 200 µg/ml) of Anilofos for 24 and 48 h. The results of the assays showed that Anilofos did not induce SCE frequency, replication index and MN formation at all concentrations for both treatment periods. Anilofos significantly increased CA frequency at 100 and 200 µg/ml concentrations at 24 h treatment periods and at 50, 100 and 200 µg/ml concentrations in 48 h treatment periods. Additionally, it was determined that this pesticide decreased mitotic index and nuclear division index significantly. It was concluded that Anilofos has genotoxic and cytotoxic effects in human peripheral lymphocytes.
Collapse
Affiliation(s)
- Dilek Akyil
- Molecular Biology and Genetic Department, Faculty of Sciences and Literatures, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey.
| | - Muhsin Konuk
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Üsküdar University, Altunizade, 34662, Istanbul, Turkey
| | - Yasin Eren
- Science Education Department, Education Faculty, Suleyman Demirel University, 32200, Isparta, Turkey
| | - Recep Liman
- Molecular Biology and Genetics Department, Faculty of Sciences and Literatures, Usak University, 64200, Uşak, Turkey
| | - Esra Sağlam
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Üsküdar University, Altunizade, 34662, Istanbul, Turkey
| |
Collapse
|
14
|
Thorne D, Crooks I, Hollings M, Seymour A, Meredith C, Gaca M. The mutagenic assessment of an electronic-cigarette and reference cigarette smoke using the Ames assay in strains TA98 and TA100. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 812:29-38. [PMID: 27908385 DOI: 10.1016/j.mrgentox.2016.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/28/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
Salmonella typhimurium strains TA98 and TA100 were used to assess the mutagenic potential of the aerosol from a commercially available, rechargeable, closed system electronic-cigarette. Results obtained were compared to those for the mainstream smoke from a Kentucky reference (3R4F) cigarette. Two different test matrices were assessed. Aerosol generated from the e-cigarette was trapped on a Cambridge filter pad, eluted in DMSO and compared to cigarette smoke total particulate matter (TPM), which was generated in the same manner for mutagenicity assessment in the Salmonella assay. Fresh e-cigarette and cigarette smoke aerosols were generated on the Vitrocell® VC 10 smoking robot and compared using a modified scaled-down 35mm air agar interface (AAI) methodology. E-cigarette aerosol collected matter (ACM) was found to be non-mutagenic in the 85mm plate incorporation Ames assay in strains TA98 and TA100 conducted in accordance with OECD 471, when tested up to 2400μg/plate. Freshly generated e-cigarette aerosol was also found to be negative in both strains after an AAI aerosol exposure, when tested up to a 1L/min dilution for up to 3h. Positive control responses were observed in both strains, using benzo[a]pyrene, 2-nitrofluorene, sodium azide and 2-aminoanthracene in TA98 and TA100 in the presence and absence of metabolic activation respectively. In contrast, cigarette smoke TPM and aerosol from 3R4F reference cigarettes were found to be mutagenic in both tester strains, under comparable test conditions to that of e-cigarette exposure. Limited information exists on the mutagenic activity of captured e-cigarette particulates and whole aerosol AAI approaches. With the lower toxicant burden of e-cigarette aerosols compared to cigarette smoke, it is clear that a more comprehensive Ames package of data should be generated when assessing e-cigarettes, consisting of the standard OECD-five, TA98, TA100, TA1535, TA1537 (or TA97) and E. coli (or TA102). In addition, TA104 which is more sensitive to the carbonyl based compounds found in e-cigarette aerosols under dry-wicking conditions may also prove a useful addition in a testing battery. Regulatory standard product testing approaches as used in this study will become important when determining whether e-cigarette aerosols are in fact less biologically active than cigarette smoke, as this study suggests. Future studies should be supported by in vitro dosimetry approaches to draw more accurate comparisons between cigarette smoke, e-cigarette aerosol exposure and human use.
Collapse
Affiliation(s)
- D Thorne
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, United Kingdom.
| | - I Crooks
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, United Kingdom
| | - M Hollings
- Covance Laboratories Ltd, Otley Road, Harrogate, North Yorkshire HG3 1PY, United Kingdom
| | - A Seymour
- Covance Laboratories Ltd, Otley Road, Harrogate, North Yorkshire HG3 1PY, United Kingdom
| | - C Meredith
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, United Kingdom
| | - M Gaca
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, United Kingdom
| |
Collapse
|
15
|
Li X. In vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure: A review. Toxicol In Vitro 2016; 36:105-113. [PMID: 27470133 DOI: 10.1016/j.tiv.2016.07.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 07/25/2016] [Indexed: 02/08/2023]
Abstract
Cigarette smoke is a complex aerosol comprising particulate phase and gaseous vapour phase. The air-liquid interface exposure provides a possible technical means to implement whole smoke exposure for the assessment of tobacco products. In this review, the research progress in the in vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure is summarized. The contents presented involve mainly cytotoxicity, genotoxicity, oxidative stress, inflammation, systems toxicology, 3D culture and cigarette smoke dosimetry related to cigarette smoke, as well as the assessment of electronic cigarette aerosol. Prospect of the application of the air-liquid interface exposure method in assessing the biological effects of tobacco smoke is discussed.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Assessing the mutagenic activities of smoke from different cigarettes in direct exposure experiments using the modified Ames Salmonella assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 803-804:13-21. [DOI: 10.1016/j.mrgentox.2016.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 11/20/2022]
|
17
|
Higashi T, Mai Y, Mazaki Y, Horinouchi T, Miwa S. A Standardized Method for the Preparation of a Gas Phase Extract of Cigarette Smoke. Biol Pharm Bull 2016; 39:898-902. [PMID: 27251490 DOI: 10.1248/bpb.b16-00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The gas phase of cigarette smoke is important from the viewpoint of human health, because it can pass through alveolar epithelium and enter the circulation. There is no standard method for the preparation of a gas phase extract of cigarette smoke (CSE), although CSE is widely used for research instead of whole cigarette smoke. We have established a standard method for the preparation of CSE. One cigarette per trial is continuously combusted under a reduced pressure generated by an aspiration pump with a velocity of 1.050 L/min: the main stream of the smoke is passed through a Cambridge filter to remove tar, and subsequently, bubbled through a glass ball filter (pore size, 20-30 µm) into 15 mL of phosphate-buffered saline (PBS). To express the concentration of CSE, a virtual tar concentration is introduced, which is calculated assuming that tar trapped on the Cambridge filter is dissolved in the PBS. CSEs prepared from smaller numbers of cigarettes (original virtual tar concentration≤15 mg/mL) show similar concentration-response curves for cytotoxicity versus virtual tar concentrations. CSEs prepared from various brands of cigarettes and by different smoking regimes (continuous and puff smoking) show similar cytotoxic potency if the virtual tar concentrations are the same. In conclusion, using the standardized method for CSE preparation in combination with the virtual tar concentration, it becomes possible to simply and rapidly prepare standard CSEs with defined concentrations from any brand of cigarettes, which are toxicologically equivalent to CSE prepared by puff smoking.
Collapse
Affiliation(s)
- Tsunehito Higashi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| | | | | | | | | |
Collapse
|
18
|
Kim HR, Lee JE, Jeong MH, Choi SJ, Lee K, Chung KH. Comparative evaluation of the mutagenicity and genotoxicity of smoke condensate derived from Korean cigarettes. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2015; 30:e2015014. [PMID: 26796893 PMCID: PMC4722968 DOI: 10.5620/eht.e2015014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Cigarette smoking is associated with carcinogenesis owing to the mutagenic and genotoxic effects of cigarette smoke. The aim of this study was to evaluate the mutagenic and genotoxic effects of Korean cigarettes using in vitro assays. METHODS We selected 2 types of cigarettes (TL and TW) as benchmark Korean cigarettes for this study, because they represent the greatest level of nicotine and tar contents among Korean cigarettes. Mutagenic potency was expressed as the number of revertants per μg of cigarette smoke condensate (CSC) total particulate matter whereas genotoxic potency was expressed as a concentration-dependent induction factor. The CSC was prepared by the International Organization for Standardization 3308 smoking method. CHO-K1 cells were used in vitro micronucleus (MNvit) and comet assays. Two strains of Salmonella typhimurium (Salmonella enterica subsp.enterica; TA98 and TA1537) were employed in Ames tests. RESULTS All CSCs showed mutagenicity in the TA98 and TA1537 strains. In addition, DNA damage and micronuclei formation were observed in the comet and MNvit assays owing to CSC exposure. The CSC from the 3R4F Kentucky reference (3R4F) cigarette produced the most severe mutagenic and genotoxic potencies, followed by the CSC from the TL cigarette, whereas the CSC from the TW cigarette produced the least severe mutagenic and genotoxic potencies. CONCLUSIONS The results of this study suggest that the mutagenic and genotoxic potencies of the TL and TW cigarettes were weaker than those of the 3R4F cigarette. Further study on standardized concepts of toxic equivalents for cigarettes needs to be conducted for more extensive use of in vitro tests.
Collapse
Affiliation(s)
- Ha Ryong Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jeong Eun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Mi Ho Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Seong Jin Choi
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, Jeongeup, Korea
- Human and Environment Toxicology, University of Science and Technology, Daejeon, Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, Jeongeup, Korea
- Human and Environment Toxicology, University of Science and Technology, Daejeon, Korea
| | | |
Collapse
|
19
|
Akyıl D, Konuk M. Detection of genotoxicity and mutagenicity of chlorthiophos using micronucleus, chromosome aberration, sister chromatid exchange, and Ames tests. ENVIRONMENTAL TOXICOLOGY 2015; 30:937-945. [PMID: 24515492 DOI: 10.1002/tox.21968] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 06/03/2023]
Abstract
Potential mutagenic and genotoxic effects of Chlorthiophos, an organophosphate pesticide, were evaluated using four standard assays. Five different concentrations of the pesticide were tested by an Ames test using Salmonella typhimurium strains TA97, TA98, TA100, and TA102, with and without S9 metabolic activation. No concentrations of Chlorthiophos showed mutagenic activity on the TA97, TA100, and TA102 strains, with and without S9 fraction, but were all mutagenic to the TA98 strain without S9. Sister chromatid exchange (SCE), chromosome aberration (CA), and micronucleus (MN) tests were used to investigate the genotoxic effects of Chlorthiophos in human peripheral lymphocytes treated with 25, 50, 100, and 200 µg/mL concentrations of Chlorthiophos for 24 and 48 h. The nuclear division index (NDI), replication index (RI), and mitotic index (MI) were also calculated to determine the cytotoxicity of Chlorthiophos. No increase in SCE frequency was seen for any treatment period or concentration, but Chlorthiophos at 200 µg/mL increased the frequency of CAs. Increases in MN formation were only observed at Chlorthiophos concentrations of 200 µg/mL following 24 and 48 h treatments. Chlorthiophos treatment reduced the MI and NDI significantly, but had no effect on the RI.
Collapse
Affiliation(s)
- Dilek Akyıl
- Biology Department, Faculty of Sciences and Literatures, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Muhsin Konuk
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Üsküdar University, Altunizade, 34662, Istanbul, Turkey
| |
Collapse
|
20
|
Thorne D, Kilford J, Hollings M, Dalrymple A, Ballantyne M, Meredith C, Dillon D. The mutagenic assessment of mainstream cigarette smoke using the Ames assay: a multi-strain approach. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 782:9-17. [PMID: 25868126 DOI: 10.1016/j.mrgentox.2015.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/01/2015] [Accepted: 03/03/2015] [Indexed: 11/23/2022]
Abstract
Salmonella typhimurium strains TA1535, TA1537, TA97, TA102 and TA104 were assessed for their suitability and use in conjunction with a Vitrocell(®) VC 10 Smoking Robot and 3R4F reference mainstream cigarette smoke. Little information exists on TA97, TA104, TA1535, TA1537 and TA102 using an aerosol 35mm spread-plate format. In this study, TA1535 and TA1537 were considered sub-optimal for use with a scaled-down format, due to low spontaneous revertant numbers (0-5 revertants/plate). In the context of a regulatory environment, TA97 is deemed an acceptable alternative for TA1537 and was therefore selected for whole smoke exposure in this study. However, there is no acceptable alternative for TA1535, therefore this strain was included for whole smoke exposure. TA1535, TA97, TA102 and TA104 were assessed for mutagenic responses following exposure to cigarette smoke at varying concentrations (using diluting airflow rates of 1.0, 4.0, 8.0 and 12.0L/min), and exposure times of 24 and 64min. A positive mutagenic response to cigarette smoke was observed in strain TA104 at both the 24 and 64min time points, in the presence of S-9, at the highest smoke concentration tested (1.0L/min diluting airflow). The three remaining strains were found to be unresponsive to cigarette smoke at all concentrations tested, in the presence and absence of metabolic activation. Cigarette smoke particulate deposition was quantified in situ of exposure using quartz crystal microbalance technology, enabling data to be presented against an associated gravimetric mass (μg/cm(2)). Finally, data obtained in this study were combined with previously published Ames data for TA98, TA100, YG1024, YG1042 and Escherichia coli (WP2 uvrA pKM101), generated using the same 35mm methodology. The combined data-set was used to propose an aerosol testing strategy, based on strain compatibility with the whole smoke aerosol, whilst maintaining the essence of the regulatory guidelines for the standard Ames assay.
Collapse
Affiliation(s)
- David Thorne
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK.
| | - Joanne Kilford
- Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire HG3 1PY, UK.
| | - Michael Hollings
- Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire HG3 1PY, UK.
| | - Annette Dalrymple
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK.
| | - Mark Ballantyne
- Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire HG3 1PY, UK.
| | - Clive Meredith
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK.
| | - Deborah Dillon
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK.
| |
Collapse
|
21
|
André V, Barraud C, Capron D, Preterre D, Keravec V, Vendeville C, Cazier F, Pottier D, Morin JP, Sichel F. Comparative mutagenicity and genotoxicity of particles and aerosols emitted by the combustion of standard vs. rapeseed methyl ester supplemented bio-diesel fuels: impact of after treatment devices: oxidation catalyst and particulate filter. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 777:33-42. [PMID: 25726173 DOI: 10.1016/j.mrgentox.2014.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 01/05/2023]
Abstract
Diesel exhausts are partly responsible for the deleterious effects on human health associated with urban pollution, including cardiovascular diseases, asthma, COPD, and possibly lung cancer. Particulate fraction has been incriminated and thus largely investigated for its genotoxic properties, based on exposure conditions that are, however, not relevant for human risk assessment. In this paper, original and more realistic protocols were used to investigate the hazards induced by exhausts emitted by the combustion of standard (DF0) vs. bio-diesel fuels (DF7 and DF30) and to assess the impact of exhaust treatment devices (DOC and DPF). Mutagenicity and genotoxicity were evaluated for (1) resuspended particles ("off line" exposure that takes into account the bioavailability of adsorbed chemicals) and for (2) the whole aerosols (particles+gas phase components) under continuous flow exposure ("on line" exposure). Native particles displayed mutagenic properties associated with nitroaromatic profiles (YG1041), whereas PAHs did not seem to be involved. After DOC treatment, the mutagenicity of particles was fully abolished. In contrast, the level of particle deposition was low under continuous flow exposure, and the observed mutagenicity in TA98 and TA102 was thus attributable to the gas phase. A bactericidal effect was also observed in TA102 after DOC treatment, and a weak but significant mutagenicity persisted after DPF treatment for bio-diesel fuels. No formation of bulky DNA-adducts was observed on A549 cells exposed to diesel exhaust, even in very drastic conditions (organic extracts corresponding to 500 μg equivalent particule/mL, 48 h exposure). Taken together, these data indicate that the exhausts issued from the bio-diesel fuels supplemented with rapseed methyl ester (RME), and generated by current diesel engines equipped with after treatment devices are less mutagenic than older ones. The residual mutagenicity is linked to the gas phase and could be due to pro-oxydants, mainly for RME-supplemented fuels.
Collapse
Affiliation(s)
- V André
- Normandie Univ, France; UNICAEN, ABTE EA4651, F-14032 Caen, France; Centre François Baclesse, F-14076 Caen, France.
| | - C Barraud
- Normandie Univ, France; UNICAEN, ABTE EA4651, F-14032 Caen, France; Centre François Baclesse, F-14076 Caen, France
| | - D Capron
- Normandie Univ, France; UNICAEN, ABTE EA4651, F-14032 Caen, France; Centre François Baclesse, F-14076 Caen, France
| | - D Preterre
- Normandie Univ, France; UR, ABTE EA4651, F-760183 Rouen, France; CERTAM, F-76800 St Etienne du Rouvray, France
| | - V Keravec
- Normandie Univ, France; UR, ABTE EA4651, F-760183 Rouen, France; CERTAM, F-76800 St Etienne du Rouvray, France
| | - C Vendeville
- Normandie Univ, France; UR, ABTE EA4651, F-760183 Rouen, France
| | - F Cazier
- ULCO, Centre Commun de Mesure, F-59140 Dunkerque, France
| | - D Pottier
- Normandie Univ, France; UNICAEN, ABTE EA4651, F-14032 Caen, France; Centre François Baclesse, F-14076 Caen, France
| | - J P Morin
- Normandie Univ, France; UR, ABTE EA4651, F-760183 Rouen, France
| | - F Sichel
- Normandie Univ, France; UNICAEN, ABTE EA4651, F-14032 Caen, France; Centre François Baclesse, F-14076 Caen, France
| |
Collapse
|
22
|
Misra M, Leverette RD, Cooper BT, Bennett MB, Brown SE. Comparative in vitro toxicity profile of electronic and tobacco cigarettes, smokeless tobacco and nicotine replacement therapy products: e-liquids, extracts and collected aerosols. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:11325-47. [PMID: 25361047 PMCID: PMC4245615 DOI: 10.3390/ijerph111111325] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/16/2014] [Accepted: 10/24/2014] [Indexed: 02/04/2023]
Abstract
The use of electronic cigarettes (e-cigs) continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco burning cigarettes, smokeless tobacco (SLT) products and a nicotine replacement therapy (NRT) product. The toxicity evaluation was performed on e-liquids and pad-collected aerosols of e-cigs, pad-collected smoke condensates of tobacco cigarettes and extracts of SLT and NRT products. In all assays, exposures with e-cig liquids and collected aerosols, at the doses tested, showed no significant activity when compared to tobacco burning cigarettes. Results for the e-cigs, with and without nicotine in two evaluated flavor variants, were very similar in all assays, indicating that the presence of nicotine and flavors, at the levels tested, did not induce any cytotoxic, genotoxic or inflammatory effects. The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic.
Collapse
Affiliation(s)
- Manoj Misra
- Lorillard Tobacco Company, A.W. Spears Research Center, 420 North English Street, Greensboro, North Carolina 27405, USA.
| | - Robert D Leverette
- Lorillard Tobacco Company, A.W. Spears Research Center, 420 North English Street, Greensboro, North Carolina 27405, USA.
| | - Bethany T Cooper
- Lorillard Tobacco Company, A.W. Spears Research Center, 420 North English Street, Greensboro, North Carolina 27405, USA.
| | - Melanee B Bennett
- Lorillard Tobacco Company, A.W. Spears Research Center, 420 North English Street, Greensboro, North Carolina 27405, USA.
| | - Steven E Brown
- Lorillard Tobacco Company, A.W. Spears Research Center, 420 North English Street, Greensboro, North Carolina 27405, USA.
| |
Collapse
|
23
|
Breheny D, Cunningham F, Kilford J, Payne R, Dillon D, Meredith C. Application of a modified gaseous exposure system to the in vitro toxicological assessment of tobacco smoke toxicants. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:662-72. [PMID: 24889675 PMCID: PMC6710645 DOI: 10.1002/em.21876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Tobacco smoke is a complex mixture of over 6,000 individual chemical constituents. Approximately 150 of these have been identified as 'tobacco smoke toxicants' due to their known toxicological effects. A number of these toxicants are present in the gaseous phase of tobacco smoke. This presents a technical challenge when assessing the toxicological effects of these chemicals in vitro. We have adapted a commercially available tobacco smoke exposure system to enable the assessment of the contribution of individual smoke toxicants to the overall toxicological effects of whole mainstream cigarette smoke (WS). Here we present a description of the exposure system and the methodology used. We use the example of a gaseous tobacco smoke toxicant, ethylene oxide (EtO), a Group 1 IARC carcinogen and known mutagen, to illustrate how this methodology can be applied to the assessment of genotoxicity of gaseous chemicals in the context of WS. In the present study we found that EtO was positive in Salmonella typhimurium strain YG1042, a strain that is sensitive to tobacco smoke. However, EtO did not increase the mutagenicity of the WS mixture when it was added at greatly higher concentrations than those found typically in WS. The findings presented here demonstrate the suitability of this exposure system for the assessment of the mutagenic potential of gases in vitro. Whilst we have focused on tobacco smoke toxicants, this system has broad application potential in studying the biological effects of exposure to a wide range of gaseous compounds that are present within complex aerosol mixtures.
Collapse
Affiliation(s)
- Damien Breheny
- British American TobaccoGroup R&D, SouthamptonHampshireSO15 8TLUnited Kingdom
| | - Fiona Cunningham
- British American TobaccoGroup R&D, SouthamptonHampshireSO15 8TLUnited Kingdom
| | - Joanne Kilford
- Covance Laboratories LtdOtley Road, HarrogateNorth YorkshireHG3 1PYUnited Kingdom
| | - Rebecca Payne
- Covance Laboratories LtdOtley Road, HarrogateNorth YorkshireHG3 1PYUnited Kingdom
| | - Deborah Dillon
- British American TobaccoGroup R&D, SouthamptonHampshireSO15 8TLUnited Kingdom
| | - Clive Meredith
- British American TobaccoGroup R&D, SouthamptonHampshireSO15 8TLUnited Kingdom
| |
Collapse
|
24
|
Kilford J, Thorne D, Payne R, Dalrymple A, Clements J, Meredith C, Dillon D. A method for assessment of the genotoxicity of mainstream cigarette-smoke by use of the bacterial reverse-mutation assay and an aerosol-based exposure system. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 769:20-8. [DOI: 10.1016/j.mrgentox.2014.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 02/06/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
|
25
|
Thorne D, Adamson J. A review of in vitro cigarette smoke exposure systems. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:1183-93. [PMID: 23850067 DOI: 10.1016/j.etp.2013.06.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/10/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
Abstract
In vitro test methods may be vital in understanding tobacco smoke, the main toxicants responsible for adverse health effects, and elucidating disease mechanisms. There is a variety of 'whole smoke' exposure systems available for the generation, dilution and delivery of tobacco smoke in vitro; these systems can be procured commercially from well-known suppliers or can be bespoke set-ups. These exposure technologies aim to ensure that there are limited changes in the tobacco smoke aerosol from generation to exposure. As the smoke aerosol is freshly generated, interactions in the smoke fractions are captured in any subsequent in vitro analysis. Of the commercially available systems, some have been characterised more than others in terms of published scientific literature and developed biological endpoints. Others are relatively new to the scientific field and are still establishing their presence. In addition, bespoke systems are widely used and offer a more flexible approach to the challenges of tobacco smoke exposure. In this review, the authors present a summary of the major tobacco smoke exposure systems available and critically review their function, set-up and application for in vitro exposure scenarios. All whole smoke exposure systems have benefits and limitations, often making it difficult to make comparisons between set-ups and the data obtained from such diverse systems. This is where exposure and dose measurements can add value and may be able to provide a platform on which comparisons can be made. The measurement of smoke dose, as an emerging field of research, is therefore also discussed and how it may provide valuable and additional data to support existing whole smoke exposure set-ups and aid validation efforts.
Collapse
Affiliation(s)
- David Thorne
- British American Tobacco, Group R&D, Southampton SO15 8TL, UK.
| | | |
Collapse
|
26
|
Thorne D, Kilford J, Payne R, Adamson J, Scott K, Dalrymple A, Meredith C, Dillon D. Characterisation of a Vitrocell® VC 10 in vitro smoke exposure system using dose tools and biological analysis. Chem Cent J 2013; 7:146. [PMID: 24004496 PMCID: PMC3844484 DOI: 10.1186/1752-153x-7-146] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/30/2013] [Indexed: 11/13/2022] Open
Abstract
Background The development of whole smoke exposure systems have been driven by the fact that traditional smoke exposure techniques are based on the particulate phase of tobacco smoke and not the complete smoke aerosol. To overcome these challenges in this study, we used a Vitrocell® VC 10 whole smoke exposure system. For characterisation purposes, we determined smoke deposition in relationship to airflow (L/min), regional smoke deposition within the linear exposure module, vapour phase dilution using a known smoke marker (carbon monoxide) and finally assessed biological responses using two independent biological systems, the Ames and Neutral Red uptake (NRU) assay. Results Smoke dilution correlates with particulate deposition (R2 = 0.97) and CO concentration (R2 = 0.98). Regional deposition analysis within the linear exposure chamber showed no statistical difference in deposited mass across the chamber at any airflows tested. Biological analysis showed consistent responses and positive correlations with deposited mass for both the Ames (R2 = 0.76) and NRU (R2 = 0.84) assays. Conclusions We conclude that in our study, under the experimental conditions tested, the VC 10 can produce stable tobacco smoke dilutions, as demonstrated by particulate deposition, measured vapour phase smoke marker delivery and biological responses from two independent in vitro test systems.
Collapse
Affiliation(s)
- David Thorne
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Detection of the cytotoxicity of water-insoluble fraction of cigarette smoke by direct exposure to cultured cells at an air-liquid interface. ACTA ACUST UNITED AC 2012; 65:683-8. [PMID: 22999638 DOI: 10.1016/j.etp.2012.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/11/2012] [Accepted: 08/28/2012] [Indexed: 11/20/2022]
Abstract
For the biological evaluation of cigarette smoke in vitro, the particulate phase (PP) and the gas vapor phase (GVP) of mainstream smoke have usually been collected individually and exposed to biological material such as cultured cells. Using this traditional method, the GVP is collected by bubbling in an aqueous solution such as phosphate-buffered saline (PBS). In such a way the water-insoluble GVP fraction is excluded from the GVP, meaning that the toxic potential of the water-insoluble GVP fraction has hardly been investigated so far. In our experiments we used a direct exposure method to expose cells at the air-liquid interface (ALI) to the water-insoluble GVP fraction for demonstrating its toxicological/biological activity. In order to isolate the water-insoluble GVP fraction from mainstream smoke, the GVP was passed through 6 impingers connected in series with PBS. After direct exposure of Chinese hamster ovary cells (CHO-K1) with the water-insoluble GVP fraction in the CULTEX(®) system its cytotoxicity was assayed by using the neutral red uptake assay. The water-insoluble GVP fraction was proven to be less cytotoxic than the water-soluble GVP fraction, but showed a significant effect in a dose-dependent manner. The results of this study showed that the direct exposure of cultivated cells at the air-liquid interface offers the possibility to analyze the biological and toxicological activities of all fractions of cigarette smoke including the water-insoluble GVP fraction.
Collapse
|
28
|
Garcia-Canton C, Anadón A, Meredith C. γH2AX as a novel endpoint to detect DNA damage: applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol In Vitro 2012; 26:1075-86. [PMID: 22735693 DOI: 10.1016/j.tiv.2012.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/17/2012] [Accepted: 06/14/2012] [Indexed: 01/02/2023]
Abstract
Histone H2AX is rapidly phosphorylated to become γH2AX after exposure to DNA-damaging agents that cause double-strand DNA breaks (DSBs). γH2AX can be detected and quantified by numerous methods, giving a direct correlation with the number of DSBs. This relationship has made γH2AX an increasingly utilised endpoint in multiple scientific fields since its discovery in 1998. Applications include its use in pre-clinical drug assessment, as a biomarker of DNA damage and in in vitro mechanistic studies. Here, we review current in vitro regulatory and non-regulatory genotoxicity assays proposing the γH2AX assay as a potential complement to the current test battery. Additionally, we evaluate the use of the γH2AX assay to measure DSBs in vitro in tobacco product testing.
Collapse
Affiliation(s)
- Carolina Garcia-Canton
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton, Hampshire SO15 8TL, UK.
| | | | | |
Collapse
|
29
|
Aufderheide M, Scheffler S, Möhle N, Halter B, Hochrainer D. Analytical in vitro approach for studying cyto- and genotoxic effects of particulate airborne material. Anal Bioanal Chem 2011; 401:3213-20. [PMID: 21695378 PMCID: PMC3217138 DOI: 10.1007/s00216-011-5163-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 11/15/2022]
Abstract
In the field of inhalation toxicology, progress in the development of in vitro methods and efficient exposure strategies now offers the implementation of cellular-based systems. These can be used to analyze the hazardous potency of airborne substances like gases, particles, and complex mixtures (combustion products). In addition, the regulatory authorities require the integration of such approaches to reduce or replace animal experiments. Although the animal experiment currently still has to provide the last proof of the toxicological potency and classification of a certain compound, in vitro testing is gaining more and more importance in toxicological considerations. This paper gives a brief characterization of the CULTEX® Radial Flow System exposure device, which allows the exposure of cultivated cells as well as bacteria under reproducible and stable conditions for studying cellular and genotoxic effects after the exposure at the air-liquid or air-agar interface, respectively. A commercial bronchial epithelial cell line (16HBE14o-) as well as Salmonella typhimurium tester strains were exposed to smoke of different research and commercial available cigarettes. A dose-dependent reduction of cell viability was found in the case of 16HBE14o- cells; S. typhimurium responded with a dose-dependent induction of revertants. The promising results recommend the integration of cellular studies in the field of inhalation toxicology and their regulatory acceptance by advancing appropriate validation studies.
Collapse
|
30
|
Singh RP. A method for screening of volatile antimicrobial compounds. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 86:145-148. [PMID: 21203745 DOI: 10.1007/s00128-010-0187-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 12/17/2010] [Indexed: 05/30/2023]
Abstract
Presently available methods for determining antimicrobial activity include broth dilution and disc diffusion. However, these methods can not be employed for study of vapor phase antimicrobial activity. The present study describes a new method and a new apparatus for determination of vapor phase antimicrobial activity of volatile substances against bacteria. The method can be used for assessing effect of new and existing compounds on environmental microflora.
Collapse
Affiliation(s)
- Raman Preet Singh
- Department of Pharmacology, Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, Punjab 148001, India.
| |
Collapse
|
31
|
Toxicological evaluation of diesel emissions on A549 cells. Toxicol In Vitro 2010; 24:363-9. [DOI: 10.1016/j.tiv.2009.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 10/09/2009] [Accepted: 11/04/2009] [Indexed: 11/19/2022]
|
32
|
Johnson MD, Schilz J, Djordjevic MV, Rice JR, Shields PG. Evaluation of in vitro assays for assessing the toxicity of cigarette smoke and smokeless tobacco. Cancer Epidemiol Biomarkers Prev 2009; 18:3263-304. [PMID: 19959677 PMCID: PMC2789344 DOI: 10.1158/1055-9965.epi-09-0965] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In vitro toxicology studies of tobacco and tobacco smoke have been used to understand why tobacco use causes cancer and to assess the toxicologic impact of tobacco product design changes. The need for toxicology studies has been heightened given the Food and Drug Administration's newly granted authority over tobacco products for mandating tobacco product performance standards and evaluate manufacturers' health claims about modified tobacco products. The goal of this review is to critically evaluate in vitro toxicology methods related to cancer for assessing tobacco products and to identify related research gaps. METHODS PubMed database searches were used to identify tobacco-related in vitro toxicology studies published since 1980. Articles published before 1980 with high relevance also were identified. The data were compiled to examine (a) the goals of the study, (b) the methods for collecting test substances, (c) experimental designs, (d) toxicologic end points, and (e) relevance to cancer risk. RESULTS A variety of in vitro assays are available to assess tobacco smoke that address different modes of action, mostly using non-human cell models. However, smokeless tobacco products perform poorly in these assays. Although reliable as a screening tool for qualitative assessments, the available in vitro assays have been poorly validated for quantitative comparisons of different tobacco products. Assay batteries have not been developed, although they exist for nontobacco assessments. Extrapolating data from in vitro studies to human risks remains hypothetical. CONCLUSIONS In vitro toxicology methods are useful for screening toxicity, but better methods are needed for today's context of regulation and evaluation of health claims.
Collapse
Affiliation(s)
- Michael D Johnson
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057-1465, USA
| | | | | | | | | |
Collapse
|
33
|
Jin J, Liu B, Zhang H, Tian X, Cai Y, Gao P. Mutagenicity of Chinese traditional medicine Semen Armeniacae amarum by two modified Ames tests. Altern Ther Health Med 2009; 9:43. [PMID: 19912670 PMCID: PMC2780976 DOI: 10.1186/1472-6882-9-43] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 11/15/2009] [Indexed: 11/10/2022]
Abstract
Background Semen armeniacae amarum (SAA) is a Chinese traditional medicine and has long been used to control acute lower respiratory tract infection and asthma, as a result of its expectorant and antiasthmatic activities. However, its mutagenicity in vitro and in vivo has not yet been reported. The Ames test for mutagenicity is used worldwide. The histidine contained in biological samples can induce histidine-deficient cells to replicate, which results in more his+ colonies than in negative control cells, therefore false-positive results may be obtained. So, it becomes a prerequisite to exclude the effects of any residual histidine from samples when they are assayed for their mutagenicity. Chinese traditional herbs, such as SAA, are histidine-containing biological sample, need modified Ames tests to assay their in vitro mutagenicity. Methods The mutagenicity of SAA was evaluated by the standard and two modified Ames tests. The first modification used the plate incorporation test same as standard Ames teat, but with new negative control systems, in which different amounts of histidine corresponding to different concentrations of SAA was incorporated. When the number of his+ revertants in SAA experiments was compared with that in new negative control, the effect of histidine contained in SAA could be eliminated. The second modification used a liquid suspension test similar to the standard Ames test, except with histidine-rich instead of histidine-limited medium. The aim of this change was to conceal the effect of histidine contained in SAA on the final counting of his+ revertants, and therefore to exclude false-positive results of SAA in the Ames test. Furthermore, the effect of SAA on chromosomal aberration in mammalian bone marrow cells was tested. Results The standard Ames test showed a positive result for mutagenicity of SAA. In contrast, a negative response was obtained with the modified plate incorporation and modified suspension Ames tests. Moreover, no apparent chromosomal aberrations were observed in mammalian bone marrow cells treated with SAA. Conclusion The standard Ames test was not suitable for evaluating the mutagenicity of SAA, because false-positive result could be resulted by the histidine content in SAA. However, the two modified Ames tests were suitable, because the experimental results proved that the effect of histidine in SAA and therefore the false-positive result were effectively excluded in these two modified Ames tests. This conclusion needs more experimental data to support in the future. Moreover, the experimental results illustrated that SAA had no mutagenicity in vitro and in vivo. This was in agreement with the clinical safety of SAA long-term used in China.
Collapse
|
34
|
Liu B, Jin J, Cheng Y, Zhang H, Gao P. A modified suspension test for estimating the mutagenicity of samples containing free and (or) protein-bound histidine. Can J Microbiol 2009; 55:146-53. [DOI: 10.1139/w08-110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ames test has not been very effective in estimating the mutagenicity of histidine-containing samples because external free and (or) protein-bound histidine in these samples would allow the histidine auxotrophs in such test samples to grow more compared with the negative controls that were used as the reference. This could give rise to a false positive.n this study, a modified suspension mutagenicity assay (MS assay) was deveopled. The tester strains were incubated in Luria-Bertani (LB) broth containing different concentrations of traditional Chineses medicines (TCMs) until the declining phase, and the test samples were assayed to be mutagenic or not by observing whether statistically significant differences were demonstrated in the relative reversion frequencies (RRFs) between the negative control groups and the test groups. Collectively, using LB broth as the test medium and comparing the RRFs in the declining phase made this assay less influenced by the presence of histidine in the test samples.The mutagenicity of some TCMs was measured with the MS assay. The results in MS assay were consistent with those in the mammalian bone marrow chromosomal aberration test, which indicated that the MS assay was appropriate to estimate the mutagenicity of samples containing free and (or) protein-bound histidine.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda South Road, Jinan 250100, P.R. China
| | - Jianling Jin
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda South Road, Jinan 250100, P.R. China
| | - Yanfei Cheng
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda South Road, Jinan 250100, P.R. China
| | - Huaiqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda South Road, Jinan 250100, P.R. China
| | - Peiji Gao
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda South Road, Jinan 250100, P.R. China
| |
Collapse
|
35
|
Scian MJ, Oldham MJ, Kane DB, Edmiston JS, McKinney WJ. Characterization of a whole smoke in vitro exposure system (Burghart Mimic Smoker-01). Inhal Toxicol 2009; 21:234-43. [PMID: 19016061 DOI: 10.1080/08958370802482515] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In vitro systems are frequently used to study mechanisms of mainstream cigarette smoke (MS)-induced lung injury. Traditional methods of exposure involve the capture of MS particulate phase with filter pads or bubbling MS through phosphate buffered saline (PBS) or cell culture medium. Although useful for in vitro experiments, these exposure methods may fail to capture potential interactions between the gas and particulate phases. To better understand the effect of MS on the human airway, in vitro whole smoke exposure systems that utilize freshly generated whole smoke are needed. Here we report the characterization of a new in vitro whole smoke exposure system (Burghart Mimic Smoker-01 (MSB-01)). This system uses a smoke distribution manifold to simultaneously deliver MS to each well of a 96-well plate. Intraday and interday variations for particulate matter deposition were less than 5% and 13% respectively. Cytotoxicity measurements using lung epithelial BEAS-2B cells indicate variations in calculated EC(50) (half maximal effective concentration) values of 13% intraday and 20% interday. Smoke particulate losses and changes in particle size distribution were also analyzed. The data indicate that 45-50% of the MS generated at the smoking ports is lost within the system prior to delivery into the exposure chamber; however, no changes in particle size distribution were detected throughout the system. Overall, the MSB-01 reproducibly delivered mainstream cigarette smoke in a dose dependent manner across the multiwell plate. The MSB-01 is a high throughput system capable of exposing cells to both the MS particulate and gas/vapor phases simultaneously.
Collapse
Affiliation(s)
- Mariano J Scian
- RemX Specialty Staffing, 601 East Jackson Street, Richmond, VA 23219, USA
| | | | | | | | | |
Collapse
|
36
|
Aufderheide M, Gressmann H. Mutagenicity of native cigarette mainstream smoke and its gas/vapour phase by use of different tester strains and cigarettes in a modified Ames assay. Mutat Res 2008; 656:82-7. [PMID: 18721897 DOI: 10.1016/j.mrgentox.2008.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 07/14/2008] [Accepted: 07/22/2008] [Indexed: 11/25/2022]
Abstract
The "Bacterial Reverse Mutation Assay" is generally accepted to analyse the genotoxic capacity of single compounds or complex mixtures such as cigarette-smoke condensates. With an adapted and modified Ames assay, the mutagenicity of native cigarette mainstream whole smoke (WS) and its gas/vapour phase (GVP) was studied. The bacteria were directly exposed to the smoke in a CULTEX1 system closely connected to a smoking robot (VC10). A variety of standard tester strains (TA98, TA100, TA1535, TA1537, TA1538, TA102, WP2uvrApKM101) and descendants of TA98 (YG1021, YG1024, YG1041) and TA100 (YG1026, YG1029 and YG1042) were exposed to whole and filtered smoke of the research cigarette K2R4F to find the most sensitive strains for analysing the mutagenic activity of these test atmospheres. Mutagenicity of WS was detected by TA98, TA100 and their YG descendant strains as well as by WP2uvrApKM101 in the presence of S9 mix. The GVP induced a mutagenic signal in TA100, YG1029 and YG1042 and WP2uvrApKM101 only in the absence of S9 mix. To detect mutagenicity in WS the presence of the plasmid pKM101 is required and a frame-shift mutation is more effective than a missense mutation. To detect mutagenicity in GVP, the presence of the plasmid pKM101 and a missense mutation are required. The differentiating capacity of this modified Ames assay was demonstrated by exposing strain TA98 to WS and TA100 to the GVP of cigarettes with different tar content. The mutagenic activity of WS and the GVP increased with rising tar content of the cigarettes with two exceptions in WS. Thus, the concept of tar content alone is misleading and does not reflect the mutagenic activity of a cigarette.
Collapse
|
37
|
Stevens JP, Zahardis J, MacPherson M, Mossman BT, Petrucci GA. A new method for quantifiable and controlled dosage of particulate matter for in vitro studies: the electrostatic particulate dosage and exposure system (EPDExS). Toxicol In Vitro 2008; 22:1768-74. [PMID: 18682289 DOI: 10.1016/j.tiv.2008.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Revised: 05/12/2008] [Accepted: 05/27/2008] [Indexed: 01/29/2023]
Abstract
An exposure chamber is described for the quantifiable addition of fine and ultrafine aerosol particulate matter directly to cells and used to demonstrate the in vitro cytotoxicity of fine 1,4-naphthoquinone particles to murine lung epithelial cells. The electrostatic particulate dosage and exposure system (EPDExS) operates on the principle of electrostatic precipitation and is shown to deposit fine and ultrafine aerosol particles directly to cells with 100% efficiency for particle diameters in the range of 40-530nm. This range is not limited by the EPDExS, but rather by the aerosolization method used for this study. Numbers of particles deposited onto the cells are counted with a condensation particle counter, negating any need to calculate or estimate particle exposure. The process of particle introduction, assessed using Trypan blue dye exclusion, had no effect on cell viability. In combination with a differential mobility classifier, the EPDExS can deliver select particle diameters to cells. The ability to control the diameter and number of particles deposited permits in vitro toxicity studies of particulate matter using different particle dosage metrics, i.e., particle number and size, surface area and mass. Finally, because EPDExS introduces particles directly from the aerosol, it can be used to expose cells grown at air/liquid interfaces.
Collapse
Affiliation(s)
- J P Stevens
- Department of Chemistry, University of Vermont, Burlington VT 05405, USA
| | | | | | | | | |
Collapse
|
38
|
Aufderheide M. An efficient approach to study the toxicological effects of complex mixtures. ACTA ACUST UNITED AC 2008; 60:163-80. [DOI: 10.1016/j.etp.2008.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
|
39
|
Roller M, Aufderheide M. Statistical analysis of in vitro data for risk assessment - exemplified for a case of Ames test data. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2008; 60:213-24. [PMID: 18396021 DOI: 10.1016/j.etp.2008.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/30/2008] [Indexed: 11/22/2022]
Abstract
Ames test data of experiments with smoke of six cigarette types were used for dose-response analysis and for derivation of a measure of mutagenic potency. Each cigarette type had been tested using a smoking machine and four dilutions of the smoke of each of seven cycles (one to seven cigarettes). Three plates had been exposed per cigarette number/smoke dilution combination and three control plates had been simultaneously exposed to clean air with each set of smoke-exposed plates. It was the aim of the statistical analysis to determine the slopes of dose-response relationships of various cigarette types and to compare them using statistical tests. Basically, the following procedure is recommended: (1) calculate a dose measure on the basis of the number of smoked cigarettes per cycle and dilution air flow. (2) Use the absolute count values of the individual plates as effect variable. (3) Describe the dose-response relations of the individual cigarette types on the basis of all available data with a polynomial model by means of Poisson regression analysis accounting for overdispersion. (4) Identify the linear dose-response region using the likelihood ratio test and restrict the data set to this region. (5) Use the slope of the linear model in the restricted data set as the basis of the mutagenicity measure. (6) Compare the slope for the individual cigarette type with the slope for a reference cigarette by means of multivariate Poisson regression using the likelihood ratio test and accounting for overdispersion. It is finally recommended to express the mutagenic potency as percentages related to the reference cigarette K2R4F. This type of cigarette was set here equal to 100%; the following values are then obtained for some commercially available cigarette types: type A 25%, type B 90%, type C 119%, type D 13%, type E 59%. The differences are statistically significant.
Collapse
Affiliation(s)
- Markus Roller
- Advisory Office for Risk Assessment, Doldenweg 14, D-44229 Dortmund, Germany.
| | | |
Collapse
|