1
|
Baghdadi G, Shidfar F, Mokhtare M, Sarbakhsh P, Agah S. Effect of Pomegranate Peel Consumption on Liver Enzymes, Lipid Profile, Liver Steatosis, and Hs-CRP in Patients With Non-alcoholic Fatty Liver Disease: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Phytother Res 2024. [PMID: 39608758 DOI: 10.1002/ptr.8404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/20/2024] [Accepted: 06/23/2024] [Indexed: 11/30/2024]
Abstract
The most prevalent chronic liver disease for which there is currently no proven treatment is non-alcoholic fatty liver disease (NAFLD). An incomplete understanding of the underlying mechanisms of NAFLD may be the cause. The onset and development of this illness appear to be influenced by problems with lipid metabolism, insulin resistance, oxidative stress, and inflammation. Considering the antioxidant properties of pomegranate peel extract, this study was conducted to determine the effects of pomegranate peel consumption on some metabolic features in patients with NAFLD. Our hypothesis is that pomegranate peel can improve the grade of fatty liver, liver enzymes, lipid profile, serum high-sensitivity C-reactive protein (hs-CRP), and anthropometric indices. The aim of this study was to investigate the efficacy of pomegranate peel extract in NAFLD patients. This double-blind randomized clinical trial was conducted on 46 patients with NAFLD. Patients were randomly assigned to intervention group (n = 23) and placebo group (n = 23). Patients in the pomegranate peel group consumed two capsules, each containing 500 mg pomegranate peel extract daily as a part of low-calorie diet (i.e., 500-deficit calorie diet) for 10 weeks. While patients in the control group followed the low calorie diet and two capsules containing 500 mg maltodextrin. At the beginning and end of the study, demographic information, anthropometric indices, food intake, physical activity level, grade of fatty liver, liver enzymes, lipid profile, and serum high-sensitivity C-reactive protein (hs-CRP) were measured. Food intake was measured by 24-h food recall questionnaires and physical activity was measured by the International Physical Activity Questionnaire (IPAQ). Analysis of food recall questionnaire was done using Nutritionist IV program. Statistical analysis was performed using SPSS software (version 22), and a p value < 0.05 was defined as statistically significant. Of 46 patients, 42 of them completed the trial. At the end of the trial, pomegranate peel group had significantly higher reduction in TG (triglycerides), ALT(alanine aminotransferase), AST(aspartate transferase), hs-CRP and also had higher significant increase in HDL-C(high-density lipoprotein cholesterol) compared to the control group (p = 0/02, p = 0/02, p = 0/01, p = 0/01, and p = 0/04, respectively). However, changes in LDL-C, TC, ALP, GGT, and fatty liver grade were not significantly different between the two groups at the end of the study. The current study indicates that pomegranate peel extract has a favorable effect on liver enzymes, lipid profile, and serum high-sensitivity C-reactive protein (hs-CRP) in patients with NAFLD. To support these results, trials examining various dosages over longer time periods are necessary.
Collapse
Affiliation(s)
- Ghazal Baghdadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Mokhtare
- Colo Rectal Research Center, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Agah
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Moradnia M, Mohammadkhani N, Azizi B, Mohammadi M, Ebrahimpour S, Tabatabaei-Malazy O, Mirsadeghi S, Ale-Ebrahim M. The power of Punica granatum: A natural remedy for oxidative stress and inflammation; a narrative review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118243. [PMID: 38677577 DOI: 10.1016/j.jep.2024.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pomegranate 'Punica granatum' offers multiple health benefits, including managing hypertension, dyslipidemia, hyperglycemia, insulin resistance, and enhancing wound healing and infection resistance, thanks to its potent antioxidant and anti-inflammatory properties. It has been symbolized by life, health, femininity, fecundity, and spirituality. AIM OF THE STUDY Although laboratory and animal studies have been conducted on the healing effects of pomegranate, there needs to be a comprehensive review on its anti-oxidative and anti-inflammatory effects in chronic disorders. We aim to provide a comprehensive review of these effects based on in-vitro, in-vivo, and clinical studies conducted in managing various disorders. MATERIALS AND METHODS A comprehensive search of in-vitro, in-vivo, and clinical findings of pomegranate and its derivatives focusing on the highly qualified original studies and systematic reviews are carried out in valid international web databases, including Web of Science, PubMed, Scopus, and Cochrane Library. RESULTS Relevant studies have demonstrated that pomegranate and its derivatives can modulate the expression and activity of several genes, enzymes, and receptors through influencing oxidative stress and inflammation pathways. Different parts of pomegranate; roots, bark, blossoms, fruits, and leaves contain various bioactive compounds, such as polyphenols, flavonoids, anthocyanins, and ellagitannins, that have preventive and therapeutic effects against many disorders such as cardiovascular diseases, diabetes, neurological diseases, and cancers without any serious adverse effects. CONCLUSIONS Most recent scientific evidence indicates that all parts of the pomegranate can be helpful in treating a wide range of chronic disorders due to its anti-oxidative and anti-inflammatory activities. Since the safety of pomegranate fruit, juice, and extracts is established, further investigations can be designed by targeting its active antioxidant and anti-inflammatory constituents to discover new drugs.
Collapse
Affiliation(s)
- Mahdis Moradnia
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niyoosha Mohammadkhani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Sholeh Ebrahimpour
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Mirsadeghi
- KonadHerbs Co., Sharif Innovation Area, Sharif University of Technology, Tehran, Iran.
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Rafraf M, Haghighian MK, Molani-Gol R, Hemmati S, Asghari Jafarabadi M. Effects of Pomegranate (Punica granatum L.) Peel Extract Supplementation on Markers of Inflammation and Serum Matrix Metalloproteinase 1 in Women With Knee Osteoarthritis: A Randomized Double-Blind Placebo-Controlled Study. Nutr Metab Insights 2024; 17:11786388241243266. [PMID: 38827464 PMCID: PMC11143876 DOI: 10.1177/11786388241243266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 06/04/2024] Open
Abstract
Objective Osteoarthritis (OA) as a common musculoskeletal disorder is the main cause of disability in the world. The present study aimed to evaluate the effects of pomegranate peel extract (PPE) on some inflammatory markers and matrix maloproteinase1 (MMP1) in women with knee OA. Methods Sixty obese women with knee OA aged 38 to 60 years were included in this clinical trial. The women were allocated into intervention (n = 30) and placebo (n = 30) groups along with standard drug therapy receiving 500 mg PPE or placebo twice daily for 8 weeks, respectively. Three-day food records, anthropometric measurements, fasting blood samples, and physical activity questionnaires were gathered at the baseline and the end of the study. Results The supplementation of PPE significantly reduced the serum high-sensitivity C-reactive protein (hs-CRP), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), MMP1, and monocyte chemoattractant protein-1 (MCP-1) levels of the patients within the intervened group (all, P < .05) and compared with the placebo (P = .002, .045, .040, and .003, respectively) at the end of the study. The serum NF-ĸB levels significantly increased within the placebo group at the end of the trial (P = .002). Changes in other variables in the placebo group were not significant (P > .05). Conclusions The findings of this clinical trial indicated that PPE supplementation decreased serum inflammatory markers including hs-CRP, NF-ĸB, and MCP-1 and MMP1 levels in women with knee OA. PPE supplementation may be useful as a part of an integrated approach to modulating inflammatory complications in women with knee OA.
Collapse
Affiliation(s)
- Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdiyeh Khadem Haghighian
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Molani-Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari Jafarabadi
- Cabrini Research, Cabrini Health, Malvern, VIC, Australia
- School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Bahari H, Omidian K, Goudarzi K, Rafiei H, Asbaghi O, Hosseini Kolbadi KS, Naderian M, Hosseini A. The effects of pomegranate consumption on blood pressure in adults: A systematic review and meta-analysis. Phytother Res 2024; 38:2234-2248. [PMID: 38410857 DOI: 10.1002/ptr.8170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/14/2024] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
Considering the main component of cardiovascular disease and due to the high prevalence of hypertension, controlling blood pressure is required in individuals with various health conditions. Randomized clinical trials (RCTs) which studied the effects of pomegranate consumption on blood pressure have shown inconsistent findings. As a result, we intended to assess the effects of pomegranate consumption on systolic (SBP) and diastolic (DBP) blood pressure in adults. Systematic literature searches up to January 2024 were carried out using electronic databases, including PubMed, Web of Science, and Scopus, to identify eligible RCTs assessing the effects of pomegranate on blood pressure as an outcome. All the individuals who took part in our research were adults who consumed pomegranate in different forms as part of the study intervention. Heterogeneity tests of the selected trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as the weighted mean difference (WMD) with a 95% confidence interval (CI). Of 2315 records, 22 eligible RCTs were included in the current study. Our meta-analysis of the pooled findings showed that pomegranate consumption significantly reduced SBP (WMD: -7.87 mmHg; 95% CI: -10.34 to -5.39; p < 0.001) and DBP (WMD: -3.23 mmHg; 95% CI: -5.37 to -1.09; p = 0.003). Individuals with baseline SBP > 130 mmHg had a significantly greater reduction in SBP compared to individuals with baseline SBP < 130 mmHg. Also, there was a high level of heterogeneity among studies (SBP: I2 = 90.0% and DBP: I2 = 91.8%). Overall, the results demonstrated that pomegranate consumption lowered SBP and DBP in adults. Although our results suggest that pomegranate juice may be effective in reducing blood pressure in the pooled data, further high-quality studies are needed to demonstrate the clinical efficacy of pomegranate consumption.
Collapse
Affiliation(s)
- Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kosar Omidian
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hossein Rafiei
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Moslem Naderian
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Hosseini
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Bahari H, Rafiei H, Goudarzi K, Omidian K, Asbaghi O, Kolbadi KSH, Naderian M, Hosseini A. The effects of pomegranate consumption on inflammatory and oxidative stress biomarkers in adults: a systematic review and meta-analysis. Inflammopharmacology 2023; 31:2283-2301. [PMID: 37507609 DOI: 10.1007/s10787-023-01294-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Several studies have shown the effects of pomegranate on oxidative stress and inflammation biomarkers, while some studies showed no effects of pomegranate on these biomarkers. Therefore, we aimed to evaluate the effects of pomegranate consumption on C-reactive protein (CRP), interlukin-6 (IL-6), tumor necrosis factor α (TNF-α), total antioxidant capacity (TAC), and malondialdehyde (MDA) in adults. METHODS A systematic literature search was performed using databases, including PubMed, Web of Science, and Scopus, up to May 2023 to identify eligible randomized controlled trials (RCTs). Heterogeneity tests of the included trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as the weighted mean difference with a 95% confidence interval. RESULTS Of 3811 records, 33 eligible RCTs were included in the current study. Our meta-analysis of the pooled findings showed that pomegranate consumption significantly reduced CRP (WMD: -0.50 mg/l; 95% CI -0.79 to -0.20; p = 0.001), IL-6 (WMD: -1.24 ng/L 95% CI -1.95 to -0.54; p = 0.001), TNF-α (WMD: -1.96 pg/ml 95%CI -2.75 to -1.18; p < 0.001), and MDA (WMD: -0.34 nmol/ml 95%CI -0.42 to -0.25; p < 0.001). Pooled analysis of 13 trials revealed that pomegranate consumption led to a significant increase in TAC (WMD: 0.26 mmol/L 95%CI 0.03 to 0.49; p = 0.025). CONCLUSION Overall, the results demonstrated that pomegranate consumption has beneficial effects on oxidative stress and inflammatory biomarkers in adults. Therefore, pomegranate can be consumed as an effective dietary approach to attenuate oxidative stress and inflammation in patients with cardiovascular diseases. PROSPERO REGISTRATION CODE CRD42023406684.
Collapse
Affiliation(s)
- Hossein Bahari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Rafiei
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Kosar Omidian
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Moslem Naderian
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Ali Hosseini
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Benedetti G, Zabini F, Tagliavento L, Meneguzzo F, Calderone V, Testai L. An Overview of the Health Benefits, Extraction Methods and Improving the Properties of Pomegranate. Antioxidants (Basel) 2023; 12:1351. [PMID: 37507891 PMCID: PMC10376364 DOI: 10.3390/antiox12071351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a polyphenol-rich edible food and medicinal plant of ancient origin, containing flavonols, anthocyanins, and tannins, with ellagitannins as the most abundant polyphenols. In the last decades, its consumption and scientific interest increased, due to its multiple beneficial effects. Pomegranate is a balausta fruit, a large berry surrounded by a thick colored peel composed of exocarp and mesocarp with edible arils inside, from which the pomegranate juice can be produced by pressing. Seeds are used to obtain the seed oil, rich in fatty acids. The non-edible part of the fruit, the peel, although generally disposed as a waste or transformed into compost or biogas, is also used to extract bioactive products. This review summarizes some recent preclinical and clinical studies on pomegranate, which highlight promising beneficial effects in several fields. Although further insight is needed on key aspects, including the limited oral bioavailability and the role of possible active metabolites, the ongoing development of suitable encapsulation and green extraction techniques enabling the valorization of waste pomegranate products point to the great potential of pomegranate and its bioactive constituents as dietary supplements or adjuvants in therapies of cardiovascular and non-cardiovascular diseases.
Collapse
Affiliation(s)
- Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
| | - Federica Zabini
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
- Interdeparmental Center of Nutrafood, University of Pisa, Via del Borghetto, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
- Interdeparmental Center of Nutrafood, University of Pisa, Via del Borghetto, 56120 Pisa, Italy
| |
Collapse
|
7
|
Yin Y, Martínez R, Zhang W, Estévez M. Crosstalk between dietary pomegranate and gut microbiota: evidence of health benefits. Crit Rev Food Sci Nutr 2023; 64:10009-10035. [PMID: 37335106 DOI: 10.1080/10408398.2023.2219763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Gut microbiota (GM) is an invisible organ that plays an important role in human health. Increasing evidence suggests that polyphenols in pomegranate (punicalagin, PU) could serve as prebiotics to modulate the composition and function of GM. In turn, GM transform PU into bioactive metabolites such as ellagic acid (EA) and urolithin (Uro). In this review, the interplay between pomegranate and GM is thoroughly described by unveiling a dialog in which both actors seem to affect each other's roles. In a first dialog, the influence of bioactive compounds from pomegranate on GM is described. The second act shows how the GM biotransform pomegranate phenolics into Uro. Finally, the health benefits of Uro and that related molecular mechanism are summarized and discussed. Intake of pomegranate promotes beneficial bacteria in GM (e.g. Lactobacillus spp., Bifidobacterium spp.) while reducing the growth of harmful bacteria (e.g. Bacteroides fragilis group, Clostridia). Akkermansia muciniphila, and Gordonibacter spp., among others, biotransform PU and EA into Uro. Uro contributes to strengthening intestinal barrier and reducing inflammatory processes. Yet, Uro production varies greatly among individuals and depend on GM composition. Uro-producing bacteria and precise metabolic pathways need to be further elucidated therefore contributing to personalized and precision nutrition.
Collapse
Affiliation(s)
- Yantao Yin
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| | - Remigio Martínez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
- Infectious Diseases Unit. Animal Health Department, University of Extremadura, Caceres, Spain
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mario Estévez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
8
|
Zare M, Goli AH, Karimifar M, Tarrahi MJ, Rezaei A, Amani R. Effect of bread fortification with pomegranate peel powder on glycemic indicators, antioxidant status, inflammation and mood in patients with type 2 diabetes: study protocol for a randomized, triple-blind, and placebo-controlled trial. J Diabetes Metab Disord 2023; 22:921-929. [PMID: 36628115 PMCID: PMC9815887 DOI: 10.1007/s40200-022-01168-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023]
Abstract
Background The oxidative stress caused by the creation and breakdown of reactive oxygen species affects glucose tolerance, B-cell function, insulin resistance, and metabolites containing free fatty acids. Functioning foods are therefore becoming increasingly popular because they provide health benefits and prevent oxidative stress. This research aims to assess strategies to alleviate oxidative stress and inflammation in patients with type 2 diabetes (T2DM). In the present study, the metabolic effect wheat bread fortified with pomegranate peel powder(PPP) will be assessed in participants with type 2 diabetes. Methods A randomized, triple-blind, placebo-controlled, and parallel arms clinical trial will be conducted on 90 patients with T2DM. Run-in courses will last for two weeks. The intervention and control groups will receive wheat bread with and without PPP, respectively. Anthropometric data, fasting plasma glucose, hemoglobin A1C, lipid profile, insulin level, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), Total antioxidant capacity(TAC), and mood state, will be measured at the baseline and three months post-intervention. Beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) will also be assessed. Discussion This trial will provide novel data on the impact of fortified bread with PPP on metabolic profile and mood state of patients with type 2 diabetes. The results will demonstrate the potential of such intervention in glycemic indices, antioxidant status, inflammation and mood in these patients. Trial Registration Trial is registered in the Iranian Registry of Clinical Trials (ID: IRCT20191209045672N1). Date of registration 21/09/2020. https://en.irct.ir/trial/48132.
Collapse
Affiliation(s)
- Maryam Zare
- Department of Clinical Nutrition, Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mozhgan Karimifar
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javad Tarrahi
- Epidemiology and Biostatistics Department, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Emami Kazemabad MJ, Asgari Toni S, Tizro N, Dadkhah PA, Amani H, Akhavan Rezayat S, Sheikh Z, Mohammadi M, Alijanzadeh D, Alimohammadi F, Shahrokhi M, Erabi G, Noroozi M, Karimi MA, Honari S, Deravi N. Pharmacotherapeutic potential of pomegranate in age-related neurological disorders. Front Aging Neurosci 2022; 14:955735. [PMID: 36118710 PMCID: PMC9476556 DOI: 10.3389/fnagi.2022.955735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Age-related neurological disorders [AND] include neurodegenerative diseases [NDDs] such as Alzheimer's disease [AD] and Parkinson's disease [PD], which are the most prevalent types of dementia in the elderly. It also includes other illnesses such as migraine and epilepsy. ANDs are multifactorial, but aging is their major risk factor. The most frequent and vital pathological features of AND are oxidative stress, inflammation, and accumulation of misfolded proteins. As AND brain damage is a significant public health burden and its incidence is increasing, much has been done to overcome it. Pomegranate (Punica granatum L.) is one of the polyphenol-rich fruits that is widely mentioned in medical folklore. Pomegranate is commonly used to treat common disorders such as diarrhea, abdominal pain, wound healing, bleeding, dysentery, acidosis, microbial infections, infectious and noninfectious respiratory diseases, and neurological disorders. In the current review article, we aimed to summarize the data on the pharmacotherapeutic potentials of pomegranate in ANDs.
Collapse
Affiliation(s)
| | - Sara Asgari Toni
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Akhavan Rezayat
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Zahra Sheikh
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mohammadi
- Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Dorsa Alijanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnoosh Alimohammadi
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoud Noroozi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Honari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Therapeutic Potential of Pomegranate in Metabolic Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:421-440. [PMID: 34981494 DOI: 10.1007/978-3-030-73234-9_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolic syndrome and associated disorders have become one of the major challenging health problems over the last decades. Considerable attention has been paid to natural products and herbal medicines for the management of metabolic disorders in recent years. Many studies have investigated the therapeutic effects of different parts (arils, peels, seeds, and flowers) of pomegranate (Punica granatum L.) for the prevention and treatment of this syndrome. This study aims to provide an updated review on the in vitro and in vivo studies as well as clinical trials investigating the effects of pomegranate and its active compounds on different components of metabolic problems such as hyperglycemia, hyperlipidemia, hypertension, as well as obesity over the last two decades. Besides, the key mechanisms by which pomegranate affects these pathogenic conditions are also discussed. The studies show that although pomegranate has promising beneficial effects on diabetes, hypertension, hyperlipidemia, and obesity in various cellular, animal, and clinical models of studies, there are some conflicting results, particularly for hyperglycemic conditions. The main mechanisms include influencing oxidative stress and anti-inflammatory responses. Overall, pomegranate seems to have positive effects on the pathogenic conditions of metabolic syndrome according to the reviewed studies. Although pomegranate is not suggested as the first line of therapy or monotherapy, it could be only used as an adjunctive therapy. Nevertheless, further large and long-term clinical studies are still required.
Collapse
|
11
|
Jeria N, Cornejo S, Prado G, Bustamante A, Garcia-Diaz DF, Jimenez P, Valenzuela R, Poblete-Aro C, Echeverria F. Beneficial Effects of Bioactive Compounds Obtained from Agro-Industrial By-Products on Obesity and Metabolic Syndrome Components. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2013498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nicolas Jeria
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Cornejo
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gabriel Prado
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andres Bustamante
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego F Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paula Jimenez
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Nutritional Science Department, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Carlos Poblete-Aro
- Laboratorio de Ciencias de la Actividad Fisica, el Deporte y la Salud, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Investigación en Rehabilitación en Salud, Universidad de las Americas, Santiago, Chile
| | - Francisca Echeverria
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago Chile
| |
Collapse
|
12
|
Zuraini NZA, Sekar M, Wu YS, Gan SH, Bonam SR, Mat Rani NNI, Begum MY, Lum PT, Subramaniyan V, Fuloria NK, Fuloria S. Promising Nutritional Fruits Against Cardiovascular Diseases: An Overview of Experimental Evidence and Understanding Their Mechanisms of Action. Vasc Health Risk Manag 2021; 17:739-769. [PMID: 34858028 PMCID: PMC8631183 DOI: 10.2147/vhrm.s328096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality in both developed and developing countries, affecting millions of individuals each year. Despite the fact that successful therapeutic drugs for the management and treatment of CVDs are available on the market, nutritional fruits appear to offer the greatest benefits to the heart and have been proved to alleviate CVDs. Experimental studies have also demonstrated that nutritional fruits have potential protective effects against CVDs. The aim of the review was to provide a comprehensive summary of scientific evidence on the effect of 10 of the most commonly available nutritional fruits reported against CVDs and describe the associated mechanisms of action. Relevant literatures were searched and collected from several scientific databases including PubMed, ScienceDirect, Google Scholar and Scopus. In the context of CVDs, 10 commonly consumed nutritious fruits including apple, avocado, grapes, mango, orange, kiwi, pomegranate, papaya, pineapple, and watermelon were analysed and addressed. The cardioprotective mechanisms of the 10 nutritional fruits were also compiled and highlighted. Overall, the present review found that the nutritious fruits and their constituents have significant benefits for the management and treatment of CVDs such as myocardial infarction, hypertension, peripheral artery disease, coronary artery disease, cardiomyopathies, dyslipidemias, ischemic stroke, aortic aneurysm, atherosclerosis, cardiac hypertrophy and heart failure, diabetic cardiovascular complications, drug-induced cardiotoxicity and cardiomyopathy. Among the 10 nutritional fruits, pomegranate and grapes have been well explored, and the mechanisms of action are well documented against CVDs. All of the nutritional fruits mentioned are edible and readily accessible on the market. Consuming these fruits, which may contain varying amounts of active constituents depending on the food source and season, the development of nutritious fruits-based health supplements would be more realistic for consistent CVD protection.
Collapse
Affiliation(s)
- Nur Zulaikha Azwa Zuraini
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherché des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| |
Collapse
|
13
|
Therapeutic Effects of Punica granatum (Pomegranate): An Updated Review of Clinical Trials. J Nutr Metab 2021; 2021:5297162. [PMID: 34796029 PMCID: PMC8595036 DOI: 10.1155/2021/5297162] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Punica granatum L. belongs to the Punicaceae family which is distributed around the world. Different parts of pomegranate like seed, peel, juice, and leaves are rich in potential bioactive compounds. These plants have found application in traditional medicine such as in treatment of gastrointestinal, cardiovascular, and endocrine diseases, among others. The present review aimed to summarize the current research on the traditional and scientific applications of P. granatum with regard to the phytochemical content and clinical applications that may be useful for future drug development. Information about P. granatum was obtained from local classic herbal literature and electronic databases, such as PubMed, Scopus, and ScienceDirect. Several phytochemical constituents including polyphenolics, flavonoids, anthocyanosides, alkaloids, lignans, and triterpenes have been reported from the plant. Randomized clinical trials have provided evidence as to the pharmacological activities of pomegranate in several diseases including diabetes, cardiovascular disease, oral cavity disorders, endocrine disorders, and cancer. The present review has provided an insight into the traditional applications of the plants, and some of them have been validated by scientific evidence, particularly their applications as treatment of cardiovascular and endocrine diseases.
Collapse
|
14
|
Xu J, Cao K, Zhao L, Feng Z, Dong Z, Li J, Liu J. The effects and mechanisms of pomegranate in the prevention and treatment of metabolic syndrome. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s2575900020300064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metabolic syndrome, such as obesity, diabetes and cardiovascular disease, is becoming epidemic both in developing and developed countries in recent years. Vegetable and fruit consumptions have been associated with the prevention of metabolic syndrome. Pomegranate is a widely consumed fruit in Middle East and Asia. Currently, accumulating data showed that pomegranate exhibits antioxidant, anti-inflammatory, hypolipidemic and hypoglycemic activities in experimental and clinical studies. The beneficial effects of pomegranate may come from its rich polyphenols and be mediated by increasing the activity of AMPK, upregulating GLUT4, activating PPAR[Formula: see text]- ABCA1/CYP7A1 pathways and improving mitochondrial function. This review provides a systematical presentation of findings on the beneficial effects as well as the possible mechanisms of pomegranate and its major components on prevention and treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Jie Xu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ke Cao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Lin Zhao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zhihui Feng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zhizhong Dong
- Nutrition & Health Research Institute, COFCO Corporation; Beijing Engineering, Laboratory of Geriatric Nutrition & Foods and Beijing Key Laboratory of Nutrition, Health and Food Safety, Beijing 102209, P. R. China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, P. R. China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi’an 710119, Shaanxi, P. R. China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
15
|
Das AK, Nanda PK, Chowdhury NR, Dandapat P, Gagaoua M, Chauhan P, Pateiro M, Lorenzo JM. Application of Pomegranate by-Products in Muscle Foods: Oxidative Indices, Colour Stability, Shelf Life and Health Benefits. Molecules 2021; 26:467. [PMID: 33477314 PMCID: PMC7830841 DOI: 10.3390/molecules26020467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, considerable importance is given to the use of agrifood wastes as they contain several groups of substances that are useful for development of functional foods. As muscle foods are prone to lipid and protein oxidation and perishable in nature, the industry is in constant search of synthetic free additives that help in retarding the oxidation process, leading to the development of healthier and shelf stable products. The by-products or residues of pomegranate fruit (seeds, pomace, and peel) are reported to contain bioactive compounds, including phenolic and polyphenolic compounds, dietary fibre, complex polysaccharides, minerals, vitamins, etc. Such compounds extracted from the by-products of pomegranate can be used as functional ingredients or food additives to harness the antioxidant, antimicrobial potential, or as substitutes for fat, and protein in various muscle food products. Besides, these natural additives are reported to improve the quality, safety, and extend the shelf life of different types of food products, including meat and fish. Although studies on application of pomegranate by-products on various foods are available, their effect on the physicochemical, oxidative changes, microbial, colour stabilizing, sensory acceptability, and shelf life of muscle foods are not comprehensively discussed previously. In this review, we vividly discuss these issues, and highlight the benefits of pomegranate by-products and their phenolic composition on human health.
Collapse
Affiliation(s)
- Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India; (A.K.D.); (P.D.)
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India; (A.K.D.); (P.D.)
| | - Nilabja Roy Chowdhury
- Department of Veterinary Biochemistry, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India;
| | - Premanshu Dandapat
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India; (A.K.D.); (P.D.)
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15 D15 DY05, Ireland;
| | - Pranav Chauhan
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Mirian Pateiro
- Centro Tecnologico de la Carne de Galicia, Rua Galicia N° 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain;
| | - Jose M. Lorenzo
- Centro Tecnologico de la Carne de Galicia, Rua Galicia N° 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain;
- Area de Tecnologia de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
16
|
Tocmo R, Pena‐Fronteras J, Calumba KF, Mendoza M, Johnson JJ. Valorization of pomelo (
Citrus grandis
Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr Rev Food Sci Food Saf 2020; 19:1969-2012. [DOI: 10.1111/1541-4337.12561] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Restituto Tocmo
- Deparment of Pharmacy PracticeUniversity of Illinois‐Chicago Chicago Illinois
| | - Jennifer Pena‐Fronteras
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Kriza Faye Calumba
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Melanie Mendoza
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | | |
Collapse
|
17
|
The effects of pomegranate supplementation on biomarkers of inflammation and endothelial dysfunction: A meta-analysis and systematic review. Complement Ther Med 2020; 49:102358. [PMID: 32147056 DOI: 10.1016/j.ctim.2020.102358] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTS Cardiovascular disease (CVD) is one of the leading causes of death worldwide. CVD is associated with increased levels of reactive oxygen species which are pro-inflammatory and can damage the endothelium. The pomegranate fruit is a rich source of phytochemicals with a high antioxidant and anti-inflammatory activity, possessing thus health benefits. This systematic review and meta-analysis aims to evaluate the effect of pomegranate juice on the biomarkers of inflammation and vascular dysfunction. METHODS Studies were identified using the PubMed/Medline and SCOPUS databases. Screening of relevant articles and references was carried out from inception until May 2019. This systematic review and meta-analysis was performed using the Preferred Items for Reporting of Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Overall, 16 randomized controlled trials (RCTs) involving 572 subjects were included in this study. Combining effect sizes from 16 studies, we recorded that pomegranate supplementation significantly reduced hs-CRP, IL-6 and TNF-α (Weighted Mean Diff ;erences (WMD): -6.57 mg/L, 95 % CI: -10.04 to -3.10, P = 0.000; WMD: -1.68 pg/mL, 95 % CI: -3.52, 0.157, P = 0.000; WMD: -2.37 pg/mL, 95 % CI: -3.67, -1.07, P = 0.00, respectively) levels, when compared to placebo. No significant reduction was found in CRP (WMD: 2.19 mg/dL, 95 % CI: -3.28, 7.67, P = 0.61), E-selectin (WMD: 8.42 ng/mL, 95 % CI: -22.9, 39.8, P = 0.599), ICAM (WMD= -17.38 ng/mL, 95 % CI: -53.43, 18.66, P = 0.107), VCAM (WMD: -69.32 ng/mL, 95 % CI: -229.26, 90.61, P = 0.396) or MDA (WMD: 0.031 μmol/L, 95 % CI: -1.56, 0.218, P = 0.746) comparing pomegranate supplementation to placebo. CONCLUSION We found a significant effect of pomegranate supplementation on hs-CRP, IL-6 and TNF-α in adults. However, the effects of pomegranate supplementation on CRP, E-selectin, ICAM, VCAM or MDA were not significant in this meta-analysis.
Collapse
|
18
|
Kandylis P, Kokkinomagoulos E. Food Applications and Potential Health Benefits of Pomegranate and its Derivatives. Foods 2020; 9:E122. [PMID: 31979390 PMCID: PMC7074153 DOI: 10.3390/foods9020122] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Pomegranate (Punica granatum L.) is an ancient fruit that is particularly cultivated in west Asia, though it is also cultivated in the Mediterranean region and other parts of the world. Since ancient years, its consumption has been associated with numerous health benefits. In recent years, several in vitro and in vivo studies have revealed its beneficial physiological activities, especially its antioxidative, antimicrobial and anti-inflammatory properties. Furthermore, human-based studies have shown promising results and have indicated pomegranate potential as a protective agent of several diseases. Following that trend and the food industry's demand for antioxidants and antimicrobials from natural sources, the application of pomegranate and its extracts (mainly as antioxidants and antimicrobials), has been studied extensively in different types of food products with satisfactory results. This review aims to present all the recent studies and trends in the applications of pomegranate in the food industry and how these trends have affected product's physicochemical characteristics and shelf-life. In addition, recent in vitro and in vivo studies are presented in order to reveal pomegranate's potential in the treatment of several diseases.
Collapse
Affiliation(s)
- Panagiotis Kandylis
- Laboratory of Oenology and Alcoholic Beverages, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece;
| | | |
Collapse
|
19
|
Aziz Z, Huin WK, Hisham MDB, Ng JX. Effects of pomegranate on lipid profiles: A systematic review of randomised controlled trials. Complement Ther Med 2019; 48:102236. [PMID: 31987256 DOI: 10.1016/j.ctim.2019.102236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 10/30/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To present a systematic review of randomised controlled trials examining the effects of pomegranate (Punica granatum) on lipid profiles. METHOD The Cochrane Central Register of Controlled Trials, MEDLINE, CINAHL, EMBASE, SCOPUS and conference proceedings were searched for relevant trials to June 2019. We included randomized controlled trials comparing pomegranate with placebo. The outcomes examined were effects on lipids level. Two authors screened titles for inclusion, extracted data and assessed the quality of the trials using the revised Cochrane risk of bias tool. We used a random effects model to pool data and stratified trials to examine sources of statistical heterogeneity. To assess the quality of the evidence, we used the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach. RESULTS Seventeen trials recruiting 763 subjects met the inclusion criteria. These trials varied in terms of the dosage form of pomegranate used, subjects recruited and trials duration. Meta-analyses of data did not show pomegranate produced a significant effect on the lipids level examined. The quality of evidence for all outcomes was low due to the imprecision of the pooled effect and the inconsistency within the included trials. The limited data on safety suggest only mild, transient and infrequent adverse events with the short-term use of pomegranate. CONCLUSION Current evidence does not show pomegranate has significant effects on serum lipid levels. The quality of evidence is poor to support the increasing use of pomegranate for hyperlipidaemia.
Collapse
Affiliation(s)
- Zoriah Aziz
- Department of Pharmacy, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Weng Kit Huin
- Department of Pharmacy, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Jia Xin Ng
- Department of Pharmacy, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Akhtar S, Ismail T, Layla A. Pomegranate Bioactive Molecules and Health Benefits. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Uric acid-lowering effect and intestinal permeability of Kampo medicine, Hachimijiogan, Yokuininto and Goshakusan. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Wang D, Özen C, Abu-Reidah IM, Chigurupati S, Patra JK, Horbanczuk JO, Jóźwik A, Tzvetkov NT, Uhrin P, Atanasov AG. Vasculoprotective Effects of Pomegranate ( Punica granatum L.). Front Pharmacol 2018; 9:544. [PMID: 29881352 PMCID: PMC5977444 DOI: 10.3389/fphar.2018.00544] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
Pomegranate (Punica granatum L.), one of the oldest known edible fruits, is nowadays broadly consumed throughout the world. Its fruits and seeds as well as other anatomical compartments (e.g., flowers and leaves) are rich in numerous bioactive compounds and therefore, the scientific interest in this plant has been constantly growing in recent years. It has been shown that pomegranate and its extracts exhibit potent antioxidative, antimicrobial, and anticarcinogenic properties. The present review summarizes some recent studies on pomegranate, highlighting mainly its vasculoprotective role attributed to the presence of hydrolyzable tannins ellagitannins and ellagic acid, as well as other compounds (e.g., anthocyanins and flavonoids). These in vitro and in vivo studies showed that substances derived from pomegranate reduce oxidative stress and platelet aggregation, diminish lipid uptake by macrophages, positively influence endothelial cell function, and are involved in blood pressure regulation. Clinical studies demonstrated that daily intake of pomegranate juice lessens hypertension and attenuates atherosclerosis in humans. Altogether, the reviewed studies point out the potential benefits of a broader use of pomegranate and its constituents as dietary supplements or as adjuvants in therapy of vascular diseases, such as hypertension, coronary artery disease, and peripheral artery disease.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland.,Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cigdem Özen
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Health Campus Balcova, Izmir, Turkey
| | - Ibrahim M Abu-Reidah
- Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang, South Korea
| | - Jarosław O Horbanczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Artur Jóźwik
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Department of Molecular Design and Biochemical Pharmacology, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland.,Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche. Food Chem 2017; 232:306-315. [PMID: 28490079 DOI: 10.1016/j.foodchem.2017.04.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/15/2023]
Abstract
"Mollar de Elche" is the most popular Spanish pomegranate cultivar (intense sweetness and easy-to-chew arils); however, arils have pale pink colour and flat sensory profile. "Mollar the Elche" arils first underwent an osmotic dehydration pre-treatment (OD) with concentrated juices: (i) chokeberry, (ii) apple, and/or (iii) pomegranate cultivar "Wonderful", to improve their antioxidant capacity, colour, and sensory profile complexity, and later the arils were dried by a combined method (convective pre-drying+vacuum microwave finish drying). The use of OD provided dried arils with characteristic sweetness, and improved colour and aromatic complexity. The recommended OD methods were those using (i) pomegranate, and (ii) pomegranate with chokeberry juices; they improved the total anthocyanin content (mean of 368mgkg-1), red colour (a∗ coordinate 15.6), and antioxidant capacity (e.g. ABTS mean of 5.7mmolTrolox100g-1). However, further research is still needed because freeze-dried arils had the highest anthocyanin content.
Collapse
|