1
|
Jankowski MM, Ignatowska-Jankowska BM, Glac W, Wiergowski M, Kazmierska-Grebowska P, Swiergiel AH. Intravenous haloperidol and cocaine alter the distribution of T CD3 + CD4 + , non-T/NK and NKT cells in rats. Clin Exp Pharmacol Physiol 2023; 50:453-462. [PMID: 36802086 DOI: 10.1111/1440-1681.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/20/2023]
Abstract
The modulation of dopamine transmission evokes strong behavioural effects that can be achieved by commonly used psychoactive drugs such as haloperidol or cocaine. Cocaine non-specifically increases dopamine transmission by blocking dopamine active transporter (DAT) and evokes behavioural arousal, whereas haloperidol is a non-specific D2-like dopamine receptor antagonist with sedative effects. Interestingly, dopamine has been found to affect immune cells in addition to its action in the central nervous system. Here, we address the possible interactions between haloperidol and cocaine and their effects on both immune cells and behaviour in freely moving rats. We use an intravenous model of haloperidol and binge cocaine administration to evaluate the drugs' impact on the distribution of lymphocyte subsets in both the peripheral blood and the spleen. We assess the drugs' behavioural effects by measuring locomotor activity. Cocaine evoked a pronounced locomotor response and stereotypic behaviours, both of which were completely blocked after pretreatment with haloperidol. The results suggest that blood lymphopenia, which was induced by haloperidol and cocaine (except for natural killer T cells), is independent of D2-like dopaminergic activity and most likely results from the massive secretion of corticosterone. Haloperidol pretreatment prevented the cocaine-induced decrease in NKT cell numbers. Moreover, the increased systemic D2-like dopaminergic activity after cocaine administration is a significant factor in retaining T CD3+ CD4+ lymphocytes and non-T/NK CD45RA+ cells in the spleen.
Collapse
Affiliation(s)
- Maciej M Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Bogna M Ignatowska-Jankowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland.,Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Marek Wiergowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | - Artur H Swiergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Haloperidol Reduces the Activity of Complement and Induces the Anti-Inflammatory Transformation of Peritoneal Macrophages in Rats. J Neuroimmune Pharmacol 2019; 14:369-374. [DOI: 10.1007/s11481-019-09860-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
3
|
Mackie P, Lebowitz J, Saadatpour L, Nickoloff E, Gaskill P, Khoshbouei H. The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson's Disease. Brain Behav Immun 2018; 70:21-35. [PMID: 29551693 PMCID: PMC5953824 DOI: 10.1016/j.bbi.2018.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
Abstract
The second-most common neurodegenerative disease, Parkinson's Disease (PD) has three hallmarks: dysfunctional dopamine transmission due, at least in part, to dopamine neuron degeneration; intracellular inclusions of α-synuclein aggregates; and neuroinflammation. The origin and interplay of these features remains a puzzle, as does the underlying mechanism of PD pathogenesis and progression. When viewed in the context of neuroimmunology, dopamine also plays a role in regulating peripheral immune cells. Intriguingly, plasma dopamine levels are altered in PD, suggesting collateral dysregulation of peripheral dopamine transmission. The dopamine transporter (DAT), the main regulator of dopaminergic tone in the CNS, is known to exist in lymphocytes and monocytes/macrophages, but little is known about peripheral DAT biology or how DAT regulates the dopaminergic tone, much less how peripheral DAT alters immune function. Our review is guided by the hypothesis that dysfunctional peripheral dopamine signaling might be linked to the dysfunctional immune responses in PD and thereby suggests a potential bidirectional communication between central and peripheral dopamine systems. This review seeks to foster new perspectives concerning PD pathogenesis and progression.
Collapse
Affiliation(s)
- Phillip Mackie
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Joe Lebowitz
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Leila Saadatpour
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Emily Nickoloff
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Peter Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Habibeh Khoshbouei
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States.
| |
Collapse
|
4
|
Barreto TR, Costola-de-Souza C, Margatho RO, Queiroz-Hazarbassanov N, Rodrigues SC, Felício LF, Palermo-Neto J, Zager A. Repeated Domperidone treatment modulates pulmonary cytokines in LPS-induced acute lung injury in mice. Int Immunopharmacol 2018; 56:43-50. [DOI: 10.1016/j.intimp.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/27/2022]
|
5
|
Tasset I, Quero I, García-Mayórgaz ÁD, del Río MC, Túnez I, Montilla P. Changes caused by haloperidol are blocked by music in Wistar rat. J Physiol Biochem 2012; 68:175-9. [PMID: 22371013 DOI: 10.1007/s13105-011-0129-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/07/2011] [Indexed: 11/30/2022]
Abstract
This study sought to evaluate the effect of classical music, using Mozart's sonata for two pianos (K. 448), on changes in dopamine (DA) levels in the striatal nucleus (SN), prefrontal cortex (PFC) and mesencephalon, and on prolactin (PRL) and corticosterone secretion in adult male Wistar rats. Rats were divided into four groups: (1) control, (2) haloperidol treatment (single dose of 2 mg/kg s.c.), (3) music (two 2-h sessions per day) and (4) haloperidol plus music. Rats were sacrificed 2 h after haloperidol injection. Music prompted a fall in plasma PRL and corticosterone levels in healthy rats (P < 0.05) and prevented the increase in levels triggered by haloperidol (P < 0.001). Moreover, exposure to music was associated with a significant increase in DA levels in all groups, with the increase being particularly marked in PFC and SN (P < 0.001). Haloperidol is a recognised D2 receptor antagonist, and these findings suggest that music, by contrast, enhances DA activity and turnover in the brain. The results obtained here bear out reports that music triggers a reduction in systolic pressure and an increase in mesencephalon dopamine levels in human and rats treated with ecstasy, through a calmodulin-dependent system.
Collapse
Affiliation(s)
- Inmaculada Tasset
- Departamento de Bioquímica y Biología Molecular, Instituto Maimónides de Investigación Biomédica de Córdoba, Universidad de Córdoba, Avda. Menendez Pidal s/n, 14004, Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.
Collapse
Affiliation(s)
- Ines Armando
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Van Anthony M. Villar
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Pedro A. Jose
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| |
Collapse
|
7
|
Ley S, Weigert A, Brüne B. Neuromediators in inflammation—a macrophage/nerve connection. Immunobiology 2010; 215:674-84. [DOI: 10.1016/j.imbio.2010.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/20/2010] [Indexed: 02/06/2023]
|
8
|
Prenatal lipopolysaccharide reduces motor activity after an immune challenge in adult male offspring. Behav Brain Res 2010; 211:77-82. [PMID: 20226214 DOI: 10.1016/j.bbr.2010.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/05/2010] [Accepted: 03/04/2010] [Indexed: 11/23/2022]
Abstract
Prenatal lipopolysaccharide (LPS) exposure causes reproductive, behavioral and neurochemical injuries in both the mother and pups. Previous investigations by our group showed that prenatal LPS administration (100 microg/kg, i.p.) on gestational day 9.5 impaired the male offspring's social behavior in infancy and adulthood. In the present study, we investigated whether these social behavioral changes were associated with motor activity impairment. Male rat pups treated prenatally with LPS or not were tested for reflexological development and open field general activity during infancy. In adulthood, animals were tested for open field general activity, haloperidol-induced catalepsy and apomorphine-induced stereotypy; striatal dopamine levels and turnover were also measured. Moreover, LPS-treated or untreated control pups were challenged with LPS in adulthood and observed for general activity in the open field. In relation to the control group, the motor behavior of prenatally treated male pups was unaffected at basal levels, both in infancy and in adulthood, but decreased general activity was observed in adulthood after an immune challenge. Also, striatal dopamine and metabolite levels were decreased in adulthood. In conclusion, prenatal LPS exposure disrupted the dopaminergic system involved with motor function, but this neurochemical effect was not accompanied by behavioral impairment, probably due to adaptive plasticity processes. Notwithstanding, behavioral impairment was revealed when animals were challenged with LPS, resulting in enhanced sickness behavior.
Collapse
|
9
|
Reyes-García MG, García-Tamayo F. A neurotransmitter system that regulates macrophage pro-inflammatory functions. J Neuroimmunol 2009; 216:20-31. [PMID: 19732963 DOI: 10.1016/j.jneuroim.2009.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/16/2009] [Accepted: 06/29/2009] [Indexed: 02/08/2023]
Abstract
Neurotransmitters released through peripheral and autonomic nerves play an important role in the signaling from the cells of the nervous system to lymphocytes, macrophages and other cells of the immune system. Macrophages are related to numerous physiological and pathological inflammatory processes since their cytokines play an important role in the defensive responses against invasive microorganisms, atherosclerosis progress, insulin resistance, behavior deviation, hematopoiesis feedback, degenerative chronic diseases and the stimulation of the hypothalamus-hypophysis-adrenal axis. Production of pro-inflammatory cytokines by macrophages is the main target for the modulatory activity of diverse neurotransmitters. In this brief review, we show how some neurotransmitters released by the central or the autonomic nervous systems down-regulate peripheral macrophages' inflammatory functions to balance immune protective mechanisms, although they can also promote the collateral progress of diverse diseases. The possible therapeutic uses of some neurotransmitters and the agonists or antagonist of their respective receptors are included as well.
Collapse
Affiliation(s)
- María Guadalupe Reyes-García
- Laboratorio de Inmunobiología, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), México DF, Mexico.
| | | |
Collapse
|
10
|
Souza BR, Motta BS, Rosa DVF, Torres KCL, Castro AA, Comim CM, Sampaio AM, Lima FF, Jeromin A, Quevedo J, Romano-Silva MA. DARPP-32 and NCS-1 expression is not altered in brains of rats treated with typical or atypical antipsychotics. Neurochem Res 2007; 33:533-8. [PMID: 17763944 DOI: 10.1007/s11064-007-9470-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/24/2007] [Indexed: 11/24/2022]
Abstract
Dopamine-mediated neurotransmission imbalances are associated with several psychiatry illnesses, such as schizophrenia. Recently it was demonstrated that two proteins involved in dopamine signaling are altered in prefrontal cortex (PFC) of schizophrenic patients. DARPP-32 is a key downstream effector of intracellular signaling pathway and is downregulated in PFC of schizophrenic subjects. NCS-1 is a neuronal calcium sensor that can inhibit dopamine receptor D2 internalization and is upregulated in PFC of schizophrenic subjects. It is well known that dopamine D2 receptor is the main target of antipsychotic. Therefore, our purpose was to study if chronic treatment with typical or atypical antipsychotics induced alterations in DARPP-32 and NCS-1 expression in five brain regions: prefrontal cortex, hippocampus, striatum, cortex and cerebellum. We did not find any changes in DARPP-32 and NCS-1 protein expression in any brain region investigated.
Collapse
Affiliation(s)
- Bruno R Souza
- Laboratório de Neurociências, Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av Alfredo Balena 190, Belo Horizonte, MG 30130-100, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Carvalho-Freitas MIR, Anselmo-Franci JA, Teodorov E, Nasello AG, Palermo-Neto J, Felicio LF. Reproductive experience modifies dopaminergic function, serum levels of prolactin, and macrophage activity in female rats. Life Sci 2007; 81:128-36. [PMID: 17574628 DOI: 10.1016/j.lfs.2007.04.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 04/12/2007] [Accepted: 04/26/2007] [Indexed: 01/18/2023]
Abstract
Reproductive experience (RE), i.e. pregnancy and lactation, induces physiological changes in mammals. Recent data show that neuroimmune interactions are modulated by a diversity of events involving neurotransmitters and neuropeptides. These molecules, particularly dopamine (DA), were reported to mediate the relevant cross talk between immune and neuroendocrine systems. Moreover, DA-mediated regulation of leukocyte function is a reasonable approach to investigate the DA-operated regulatory switch for immune-competent cells, such as macrophages. Therefore, the goals of the present study were to determine the effects of RE on: (1) dopaminergic function through hypothalamic levels of DA, dihydroxyphenylacetic acid (DOPAC), homovanilic acid (HVA), serotonin (5-HT), and 5-hydroxyindole acetic acid (5-HIAA); (2) basal levels of circulating prolactin (PRL); and (3) activity of peritoneal macrophage (phagocytosis and oxidative burst). A total of 16 adult (200-250 g) female Wistar rats were used, divided in two groups: nulliparous and primiparous. Approximately 2-3 weeks after weaning pups from the primiparous group, both groups of rats were tested. The findings indicate that: (1) DOPAC concentrations, DOPAC/DA and HVA+DOPAC/DA ratios decreased in primiparous rats as compared to virgin rats, (2) primiparous rats showed significantly lower serum PRL levels, and (3) phorbol miristate acetate (PMA)-induced oxidative burst was decreased in peritoneal macrophage from primiparous rats as compared to virgin rats. To test the possible positive correlation between serum levels of PRL and the intensity of oxidative burst by peritoneal macrophage, an extra experiment was done with adult virgin female rats treated with domperidone, an antagonist of DA receptors. Domperidone-treated animals showed increased serum levels of PRL and simultaneous increase in peritoneal macrophage oxidative burst. Thus, suggesting an indirect participation of hyperprolactinemia, induced by this treatment in peritoneal macrophage activity of female rats. These results suggest that a previous RE can modulate the activity of dopaminergic hypothalamic systems, while decreasing PRL serum levels and the oxidative burst of peritoneal macrophage. The neurochemical and hormonal RE-induced changes correlate with the immune alterations.
Collapse
Affiliation(s)
- M I R Carvalho-Freitas
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, SP, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária 05508-900, São Paulo-SP, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Bourgeon S, Raclot T, Le Maho Y, Ricquier D, Criscuolo F. Innate immunity, assessed by plasma NO measurements, is not suppressed during the incubation fast in eiders. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:720-8. [PMID: 17197024 DOI: 10.1016/j.dci.2006.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 10/25/2006] [Accepted: 11/05/2006] [Indexed: 05/13/2023]
Abstract
Immunity is hypothesized to share limited resources with other physiological functions and may mediate life history trade-offs, for example between reproduction and survival. However, vertebrate immune defense is a complex system that consists of three components. To date, no study has assessed all of these components for the same animal model and within a given situation. Previous studies have determined that the acquired immunity of common eiders (Somateria mollissima) is suppressed during incubation. The present paper aims to assess the innate immune response in fasting eiders in relation to their initial body condition. Innate immunity was assessed by measuring plasma nitric oxide (NO) levels, prior to and after injection of lipopolysaccharides (LPS), a method which is easily applicable to many wild animals. Body condition index and corticosterone levels were subsequently determined as indicators of body condition and stress level prior to LPS injection. The innate immune response in eiders did not vary significantly throughout the incubation period. The innate immune response of eiders did not vary significantly in relation to their initial body condition but decreased significantly when corticosterone levels increased. However, NO levels after LPS injection were significantly and positively related to initial body condition, while there was a significant negative relationship with plasma corticosterone levels. Our study suggests that female eiders preserve an effective innate immune response during incubation and this response might be partially determined by the initial body condition.
Collapse
Affiliation(s)
- Sophie Bourgeon
- IPHC, Département Ecologie, Physiologie et Ethologie, UMR 7178, 23 rue Becquerel, F-67087 Strasbourg Cedex 2, France.
| | | | | | | | | |
Collapse
|
13
|
Hernandez ME, Soto-Cid A, Rojas F, Pascual LI, Aranda-Abreu GE, Toledo R, Garcia LI, Quintanar-Stephano A, Manzo J. Prostate response to prolactin in sexually active male rats. Reprod Biol Endocrinol 2006; 4:28. [PMID: 16707016 PMCID: PMC1524775 DOI: 10.1186/1477-7827-4-28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 05/17/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prostate is a key gland in the sexual physiology of male mammals. Its sensitivity to steroid hormones is widely known, but its response to prolactin is still poorly known. Previous studies have shown a correlation between sexual behaviour, prolactin release and prostate physiology. Thus, here we used the sexual behaviour of male rats as a model for studying this correlation. Hence, we developed experimental paradigms to determine the influence of prolactin on sexual behaviour and prostate organization of male rats. METHODS In addition to sexual behaviour recordings, we developed the ELISA procedure to quantify the serum level of prolactin, and the hematoxilin-eosin technique for analysis of the histological organization of the prostate. Also, different experimental manipulations were carried out; they included pituitary grafts, and haloperidol and ovine prolactin treatments. Data were analyzed with a One way ANOVA followed by post hoc Dunnet test if required. RESULTS Data showed that male prolactin has a basal level with two peaks at the light-dark-light transitions. Consecutive ejaculations increased serum prolactin after the first ejaculation, which reached the highest level after the second, and started to decrease after the third ejaculation. These normal levels of prolactin did not induce any change at the prostate tissue. However, treatments for constant elevations of serum prolactin decreased sexual potency and increased the weight of the gland, the alveoli area and the epithelial cell height. Treatments for transient elevation of serum prolactin did not affect the sexual behaviour of males, but triggered these significant effects mainly at the ventral prostate. CONCLUSION The prostate is a sexual gland that responds to prolactin. Mating-induced prolactin release is required during sexual encounters to activate the epithelial cells in the gland. Here we saw a precise mechanism controlling the release of prolactin during ejaculations that avoid the detrimental effects produced by constant levels. However, we showed that minor elevations of prolactin which do not affect the sexual behaviour of males, produced significant changes at the prostate epithelium that could account for triggering the development of hyperplasia or cancer. Thus, it is suggested that minute elevations of serum prolactin in healthy subjects are at the etiology of prostate abnormal growth.
Collapse
Affiliation(s)
- Maria Elena Hernandez
- Instituto de Neuroetologia, Universidad Veracruzana, AP 566, Xalapa, Ver., 91000, Mexico
| | - Abraham Soto-Cid
- Facultad de Quimica Farmaceutica Biologica, Universidad Veracruzana, Xalapa, Ver., 91000, Mexico
| | - Fausto Rojas
- Instituto de Neuroetologia, Universidad Veracruzana, AP 566, Xalapa, Ver., 91000, Mexico
| | - Luz I Pascual
- Instituto de Neuroetologia, Universidad Veracruzana, AP 566, Xalapa, Ver., 91000, Mexico
| | - Gonzalo E Aranda-Abreu
- Instituto de Neuroetologia, Universidad Veracruzana, AP 566, Xalapa, Ver., 91000, Mexico
| | - Rebeca Toledo
- Instituto de Neuroetologia, Universidad Veracruzana, AP 566, Xalapa, Ver., 91000, Mexico
| | - Luis I Garcia
- Instituto de Neuroetologia, Universidad Veracruzana, AP 566, Xalapa, Ver., 91000, Mexico
| | - Andres Quintanar-Stephano
- Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Aguascalientes, Ags., 20100, Mexico
| | - Jorge Manzo
- Instituto de Neuroetologia, Universidad Veracruzana, AP 566, Xalapa, Ver., 91000, Mexico
| |
Collapse
|