1
|
Lin S, Shu Y, Shen R, Zhou Y, Pan H, He L, Fang F, Zhu X, Wang X, Wang Y, Xu W, Ding J. The regulation of NFKB1 on CD200R1 expression and their potential roles in Parkinson's disease. J Neuroinflammation 2024; 21:229. [PMID: 39294682 PMCID: PMC11409543 DOI: 10.1186/s12974-024-03231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Overactivated microglia are a key contributor to Parkinson's disease (PD) by inducing neuroinflammation. CD200R1, a membrane glycoprotein mainly found on microglia, is crucial for maintaining quiescence with its dysregulation linked to microglia's abnormal activation. We and other groups have reported a decline in CD200R1 levels in several neurological disorders including PD. However, the mechanism regulating CD200R1 expression and the specific reasons for its reduction in PD remain largely unexplored. Given the pivotal role of transcription factors in gene expression, this study aimed to elucidate the transcriptional regulation of CD200R1 and its implications in PD. METHODS The CD200R1 promoter core region was identified via luciferase assays. Potential transcription factors were predicted using the UCSC ChIP-seq database and JASPAR. NFKB1 binding to the CD200R1 core promoter was substantiated through electrophoretic mobility shift and chromatin immunoprecipitation assays. Knocking-down or overexpressing NFKB1 validated its regulatory effect on CD200R1. Correlation between decreased CD200R1 and deficient NFKB1 was studied using Genotype-Tissue Expression database. The clinical samples of the peripheral blood mononuclear cells were acquired from 44 PD patients (mean age 64.13 ± 9.78, 43.2% male, median Hoehn-Yahr stage 1.77) and 45 controls (mean age 64.70 ± 9.41, 52.1% male). NFKB1 knockout mice were utilized to study the impact of NFKB1 on CD200R1 expression and to assess their roles in PD pathophysiology. RESULTS The study identified the CD200R1 core promoter region, located 482 to 146 bp upstream of its translation initiation site, was directly regulated by NFKB1. Significant correlation between NFKB1 and CD200R1 expression was observed in human PMBCs. Both NFKB1 and CD200R1 were significantly decreased in PD patient samples. Furthermore, NFKB1-/- mice exhibited exacerbated microglia activation and dopaminergic neuron loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. CONCLUSION Our study identified that NFKB1 served as a direct regulator of CD200R1. Reduced NFKB1 played a critical role in CD200R1 dysregulation and subsequent microglia overactivation in PD. These findings provide evidence that targeting the NFKB1-CD200R1 axis would be a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruinan Shen
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifan Zhou
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Pan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu He
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Aging, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinrui Wang
- Maternity and child care centers, Fuzhou, Fujian, China
| | - Ying Wang
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200135, China.
| |
Collapse
|
2
|
Pathophysiological Mechanisms of Antipsychotic-Induced Parkinsonism. Biomedicines 2022; 10:biomedicines10082010. [PMID: 36009557 PMCID: PMC9405702 DOI: 10.3390/biomedicines10082010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 01/02/2023] Open
Abstract
Among neurological adverse reactions in patients with schizophrenia treated with antipsychotics (APs), drug-induced parkinsonism (DIP) is the most common motility disorder caused by drugs affecting dopamine receptors. One of the causes of DIP is the disruption of neurotransmitter interactions that regulate the signaling pathways of the dopaminergic, cholinergic, GABAergic, adenosinergic, endocannabinoid, and other neurotransmitter systems. Presently, the development mechanisms remain poorly understood despite the presence of the considered theories of DIP pathogenesis.
Collapse
|
3
|
N-3 polyunsaturated fatty acids and clozapine abrogates poly I: C-induced immune alterations in primary hippocampal neurons. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:186-196. [PMID: 30508574 DOI: 10.1016/j.pnpbp.2018.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
The viral mimetic polyinosinic:polycytidylic acid (poly I:C) is an important tool to study the consequences of viral infection to the development of neuropsychiatric disorders. Here, based on the premise of omega-3 polyunsaturated fatty acids (n3 PUFAs) as supplemental treatment to antipsychotics in schizophrenia, we investigated the involvement of NFkB pathway in the effects of n3 PUFAs or of the atypical antipsychotic clozapine in hippocampal poly I:C-challenged neurons. Primary hippocampal neuronal cultures were exposed to n3 PUFAs (DHA4.35 μM/EPA7.10 μM, DHA 8.7 μM/EPA14.21 μM or DHA17.4 μM/EPA28.42 μM) or clozapine (1.5 or 3 μM) in the presence or absence of poly I:C. MTT assay revealed that poly I:C-induced reduction in cell viability was prevented by n3 PUFAs or clozapine. N3 PUFAs (DHA 8.7 μM/EPA14.21 μM) or clozapine (3 μM) significantly reduced poly I:C-induced increase in iNOS, NFkB (p50/p65), IL-6 and nitrite when compared to non-treated cells. Only n3 PUFAs prevented poly I:C-induced deficits in BDNF. On the other hand, poly I:C caused a marked reduction in DCX immunoexpression, which was prevented only by clozapine. Thus, n3 PUFAs and clozapine exert in vitro neuroprotective effects against poly I:C immune challenge in hippocampal neurons, by mechanisms possibly involving the inhibition of canonical NFkB pathway. The present study adds further evidences to the mechanisms underlying n3 PUFAs and clozapine neuroprotective effects against viral immune challenges. Since n3 PUFAs is a safe strategy for use during pregnancy, our results also add further evidence for the use of this supplement in order to prevent alterations induced by viral hits during this developmental period.
Collapse
|
4
|
Haloperidol Abrogates Matrix Metalloproteinase-9 Expression by Inhibition of NF- κB Activation in Stimulated Human Monocytic Cells. Mediators Inflamm 2018; 2018:9541459. [PMID: 29849502 PMCID: PMC5925083 DOI: 10.1155/2018/9541459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Much evidence has indicated that matrix metalloproteinases (MMPs) participate in the progression of neuroinflammatory disorders. The present study was undertaken to investigate the inhibitory effect and mechanism of the antipsychotic haloperidol on MMP activation in the stimulated THP-1 monocytic cells. Haloperidol exerted a strong inhibition on tumor necrosis factor- (TNF-) α-induced MMP-9 gelatinolysis of THP-1 cells. A concentration-dependent inhibitory effect of haloperidol was observed in TNF-α-induced protein and mRNA expression of MMP-9. On the other hand, haloperidol slightly affected cell viability and tissue inhibition of metalloproteinase-1 levels. It significantly inhibited the degradation of inhibitor-κB-α (IκBα) in activated cells. Moreover, it suppressed activated nuclear factor-κB (NF-κB) detected by a mobility shift assay, NF-κB reporter gene, and chromatin immunoprecipitation analyses. Consistent with NF-κB inhibition, haloperidol exerted a strong inhibition of lipopolysaccharide- (LPS-) induced MMP-9 gelatinolysis but not of transforming growth factor-β1-induced MMP-2. In in vivo studies, administration of haloperidol significantly attenuated LPS-induced intracerebral MMP-9 activation of the brain homogenate and the in situ in C57BL/6 mice. In conclusion, the selective anti-MMP-9 activation of haloperidol could possibly involve the inhibition of the NF-κB signal pathway. Hence, it was found that haloperidol treatment may represent a bystander of anti-MMP actions for its conventional psychotherapy.
Collapse
|
5
|
Moe AAK, Scott JG, Burne TH, Eyles DW. Neural changes induced by antipsychotic administration in adolescence: A review of studies in laboratory rodents. J Psychopharmacol 2016; 30:771-94. [PMID: 27413140 DOI: 10.1177/0269881116654776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adolescence is characterized by major remodelling processes in the brain. Use of antipsychotic drugs (APDs) in adolescents has increased dramatically in the last 20 years; however, our understanding of the neurobiological consequences of APD treatment on the adolescent brain has not kept the same pace and significant concerns have been raised. In this review, we examined currently available preclinical studies of the effects of APDs on the adolescent brain. In animal models of neuropsychiatric disorders, adolescent APD treatment appears to be protective against selected structural, behavioural and neurochemical phenotypes. In "neurodevelopmentally normal" adolescent animals, a range of short- and long-term alterations in behaviour and neurochemistry have been reported. In particular, the adolescent brain appears to be sensitive to long-term locomotor/reward effects of chronic atypical APDs in contrast with the outcomes in adults. Long-lasting changes in dopaminergic, glutamatergic and gamma-amino butyric acid-ergic systems induced by adolescent APD administration have been observed in the nucleus accumbens. A detailed examination of other potential target regions such as striatum, prefrontal cortex and ventral tegmental area is still required. Through identification of specific neural pathways targeted by adolescent APD treatment, future studies will expand the current knowledge on long-term neural outcomes which are of translational value.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - James G Scott
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia Discipline of Psychiatry, School of Medicine, The University of Queensland Centre for Clinical Research, Herston, QLD, Australia Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - Darryl W Eyles
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| |
Collapse
|
6
|
Alteration of Cytokines Levels in the Striatum of Rats: Possible Participation in Vacuous Chewing Movements Induced by Antipsycotics. Neurochem Res 2016; 41:2481-9. [DOI: 10.1007/s11064-016-1961-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 01/31/2023]
|
7
|
Mas S, Gassó P, Parellada E, Bernardo M, Lafuente A. Network analysis of gene expression in peripheral blood identifies mTOR and NF-κB pathways involved in antipsychotic-induced extrapyramidal symptoms. THE PHARMACOGENOMICS JOURNAL 2015; 15:452-60. [PMID: 25623440 DOI: 10.1038/tpj.2014.84] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/22/2014] [Accepted: 11/05/2014] [Indexed: 02/06/2023]
Abstract
To identify the candidate genes for pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we propose a systems biology analytical approach, based on protein-protein interaction network construction and functional annotation analysis, of changes in gene expression (Human Genome U219 Array Plate) induced by treatment with risperidone or paliperidone in peripheral blood. 12 AP-naïve patients with first-episode psychosis participated in the present study. Our analysis revealed that, in response to AP treatment, constructed networks were enriched for different biological processes in patients without EPS (ubiquitination, protein folding and adenosine triphosphate (ATP) metabolism) compared with those presenting EPS (insulin receptor signaling, lipid modification, regulation of autophagy and immune response). Moreover, the observed differences also involved specific pathways, such as anaphase promoting complex /cdc20, prefoldin/CCT/triC and ATP synthesis in no-EPS patients, and mammalian target of rapamycin and NF-κB kinases in patients with EPS. Our results showing different patterns of gene expression in EPS patients, offer new and valuable markers for pharmacogenetic studies.
Collapse
Affiliation(s)
- S Mas
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - P Gassó
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Parellada
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.,Clinic Schizophrenia program, Psychiatry service, Hospital Clínic de Barcelona, Barcelona, Spain
| | - M Bernardo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.,Clinic Schizophrenia program, Psychiatry service, Hospital Clínic de Barcelona, Barcelona, Spain.,Department Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | - A Lafuente
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| |
Collapse
|
8
|
Cao JP, Niu HY, Wang HJ, Huang XG, Gao DS. NF-κB p65/p52 plays a role in GDNF up-regulating Bcl-2 and Bcl-w expression in 6-OHDA-induced apoptosis of MN9D cell. Int J Neurosci 2013; 123:705-10. [PMID: 23590664 DOI: 10.3109/00207454.2013.795149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) has been shown to protect dopaminergic (DA) neurons against 6-hydroxydopamine (6-OHDA) toxicity. The mechanism underlying the antiapoptosis role of GDNF still needs further studies. We previously observed that nuclear factor-kappaB (NF-κB) signaling pathway, i.e. p65/p52, mediated the antiapoptosis role of GDNF in MN9D cells. Here, the DA cell line MN9D was used to explore the mechanisms underlying NF-κB p65/p52-mediated protection role of GDNF in DA neurons. The results showed that GDNF pretreatment blocked the apoptotic effects induced by 6-OHDA, with the upregulation of the antiapoptotic protein, Bcl-2 and Bcl-w, as well as the downregulation of the proapoptotic proteins, Bax and Bad. Furthermore, when sip100 plasmids were transfected into MN9D cells to inhibit the expression of p100, which was the precursor of p52, the effects of GDNF on upregulating Bcl-2 and Bcl-w were attenuated. These results indicated that GDNF could protect MN9D cells from apoptosis induced by 6-OHDA via upregulating Bcl-2 and Bcl-w expressions and downregulating Bax and Bad expressions. Moreover, NF-κB p65/p52 signaling mediated the effects of GDNF on Bcl-2 and Bcl-w expressions.
Collapse
|
9
|
Abstract
INTRODUCTION Drug-induced parkinsonism (DIP) is the second most common cause of parkinsonism after idiopathic Parkinson's disease (iPD). Initially reported as a complication of antipsychotics, it was later recognized as a common complication of antidepressants, calcium channel antagonists, gastrointestinal prokinetics, antiepileptic drugs and many other compounds. Despite being a major health problem in certain populations, it seems to be frequently overlooked by the medical community. AREAS COVERED This paper approaches the concept of DIP, reviews its epidemiology, clinical features and ancillary tests recommended for a correct diagnosis. The authors discuss the different drugs and its pathogenic mechanisms. The relevance of an early recognition and recommendations for a correct management are commented. EXPERT OPINION Prescribers need to remain vigilant for DIP, particularly in the elderly, patients taking multiple drugs and those with genetic risk factors involved in iPD. Cessation of the causing agent is the main treatment and there is no evidence of benefit for the use of anticholinergics or levodopa. If the medication cannot be withdrawn, it should be switched to agents with a lower risk of DIP.
Collapse
Affiliation(s)
- José López-Sendón
- Hospital Ramón y Cajal, Servicio de Neurología, CIBERNED, Ctra de Colmenar Km 9,100, Madrid, 28034, Spain
| | | | | |
Collapse
|
10
|
Roussos P, Katsel P, Davis KL, Giakoumaki SG, Siever LJ, Bitsios P, Haroutunian V. Convergent findings for abnormalities of the NF-κB signaling pathway in schizophrenia. Neuropsychopharmacology 2013; 38:533-9. [PMID: 23132271 PMCID: PMC3547205 DOI: 10.1038/npp.2012.215] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 12/24/2022]
Abstract
Neurons exhibit a constitutive level of nuclear factor-κB (NF-κB) signaling and this pathway plays a significant role in neurite outgrowth, activity-dependent plasticity, and cognitive function. Transcription factor analysis was performed in a microarray data set profiled in four different brain regions (n=54 comparison group; n=53 schizophrenia (SZ)). An independent postmortem cohort was used for gene expression (n=24 comparison group; n=22 SZ), protein abundance (n=8 comparison group; n=8 SZ), and NF-κB nuclear activity (n=10 comparison group; n=10 SZ) quantification. Expression quantitative trait locus analysis was performed using publicly available data. Prepulse inhibition (PPI) of the acoustic startle reflex was tested in healthy individuals (n=690). Comparison of microarray data showed that NF-κB was among the transcription factors associated with the differential expression of genes in cases vs controls. NF-κB gene and protein levels and nuclear activation were significantly decreased in the superior temporal gyrus of patients with SZ. Upstream NF-κB genes related to translocation were significantly dysregulated in SZ. The gene expression levels of an NF-κB-associated importin (KPNA4: one of the proteins responsible for the translocation of NF-κB to the nucleus) was decreased in SZ and an SNP within the KPNA4 locus was associated with susceptibility to SZ, reduced KPNA4 expression levels and attenuated PPI of the startle reflex in healthy control subjects. These findings implicate abnormalities of the NF-κB signaling pathway in SZ and provide evidence for an additional possible mechanism affecting the translocation of NF-κB signaling to the nucleus.
Collapse
Affiliation(s)
- Panos Roussos
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
- JJ Peters VA Medical Center, Bronx, NY, USA
| | - Pavel Katsel
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
| | - Kenneth L Davis
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
| | - Stella G Giakoumaki
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Psychology, University of Crete, Rethymno, Greece
| | - Larry J Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
- JJ Peters VA Medical Center, Bronx, NY, USA
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Vahram Haroutunian
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
- JJ Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
11
|
Sun Y, Huang X, Liu M, Cao J, Chen J, Wang H, Niu H, Yu Z, Yu J, Wang T, Yuan H, Xu X, Gao DS. A new alternative NF-κB pathway mediated the neuroprotection of GDNF on 6-OHDA-induced DA neurons neurotoxicity. Brain Res 2011; 1437:38-49. [PMID: 22230667 DOI: 10.1016/j.brainres.2011.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 09/27/2011] [Accepted: 12/11/2011] [Indexed: 10/14/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent protective factor for dopaminergic (DA) neurons, but the signaling mechanisms underlying the effect of GDNF on these neurons remain obscure. Here, both our in vivo and in vitro studies demonstrate that the majority of DA neurons express the NF-κB-inducing kinase (NIK), which is the essential kinase for mediating activation of the new alternative NF-κB signaling pathway. Additionally, we also show that GDNF induced the time/dose-dependent phosphorylation of IκB kinase α (IKKα) and p100, facilitated the processing of p100 to p52 and accelerated the translocation of NF-κB dimmers into the nuclei of DA neurons. We furtherly found that the dimmer which translocate into the nucleus was RelA/p52 not RelB/p52. Meanwhile, the attenuation of 6-OHDA-induced DA neuronal apoptosis due to GDNF was reversed subsequent to the inhibition of p100 expression by RNAi while the neuroprotective effect of GDNF on injured DA neurons was strengthened by the overexpression of p100. Our data, therefore, indicate that a new alternative NF-κB signaling pathway, which was not the classic pathway but different from the non-canonical pathway, exists in DA neurons and mediates the neuroprotective effect of GDNF on these neurons.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neurobiology and Anatomy, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen ML, Tsai TC, Lin YY, Tsai YM, Wang LK, Lee MC, Tsai FM. Antipsychotic drugs suppress the AKT/NF-κB pathway and regulate the differentiation of T-cell subsets. Immunol Lett 2011; 140:81-91. [PMID: 21763349 DOI: 10.1016/j.imlet.2011.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 05/09/2011] [Accepted: 06/27/2011] [Indexed: 01/23/2023]
Abstract
Antipsychotic drugs (APDs) are commonly used to ease the symptoms of schizophrenia; however, these same drugs also have an effect on the human immune system. Our previous studies have shown that risperidone and clozapine effectively decrease the production of IFN-γ for CD4(+) T-cells in PBMC. In contrast, haloperidol causes an increase in the production of IFN-γ for CD4(+) T-cells in PBMC. In this study we show that risperidone and clozapine can reduce Th1 cell differentiation and T-bet expression. The differentiation of Th1 cells was reduced in clozapine or risperidone treated PBMC by inhibiting the phosphorylation of AKT but not STAT-4. Typical APD, haloperidol, had the opposite effect in regulating T cell differentiation when compared with atypical APDs including risperidone and clozapine. Haloperidol decreased the expression of GATA-3, a Th2-related transcription factor, by inhibiting NF-κB activation rather than STAT-6 phosphorylation and thus decreased Th2 differentiation. In addition, chronic risperidone and clozapine treatment reduces the IFN-γ producing CD4(+) T-cell population within PBMC. In conclusion, this study suggests that APDs do indeed regulate the body's immune response and therefore all APDs should have their own patent in regulating immune responses.
Collapse
Affiliation(s)
- Mao-Liang Chen
- Department of Research, Buddhist Tzu Chi General Hospital, Taipei Branch, New Taipei City, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Bishnoi M, Chopra K, Rongzhu L, Kulkarni SK. Protective Effect of Curcumin and its Combination with Piperine (Bioavailability Enhancer) Against Haloperidol-Associated Neurotoxicity: Cellular and Neurochemical Evidence. Neurotox Res 2010; 20:215-25. [DOI: 10.1007/s12640-010-9229-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/09/2010] [Accepted: 10/09/2010] [Indexed: 01/30/2023]
|
14
|
Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1473-8. [PMID: 18554768 DOI: 10.1016/j.pnpbp.2008.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 11/22/2022]
Abstract
Long term use of typical neuroleptics such as haloperidol may be limited by unwanted motor side effects like tardive dyskinesia characterized by repetitive involuntary movements, involving the mouth, face and trunk. Atypical neuroleptics, such as clozapine and risperidone are devoid of these side effects. However the precise mechanisms of the neuronal toxicity induced by haloperidol are poorly understood. It is possible that typical and atypical antipsychotic differently affects neuronal survival and death and that these effects considerably contribute to the differences in the development of TD. The aim of the present study is to investigate the role of TNF-alpha and NFkappaB on the toxicity induced by chronic haloperidol administration in an animal model of tardive dyskinesia. Rats were treated for 21 days with: haloperidol (5 mg/kg), clozapine (5 and 10 mg/kg), risperidone (5 mg/kg) or saline. Orofacial dyskinetic movements and total locomotor activity was evaluated. Striatal levels of dopamine were measure by HPLC/ED whereas striatal levels of TNF-alpha and NFkappaB p65 subunit were measured by ELISA technique. Haloperidol increased orofacial dyskinetic movements and total locomotor activity (on day 22) (P<or=0.05). Clozapine and risperidone also increased the orofacial dyskinetic movements but that significantly less than haloperidol (P<or=0.05). Differential effect of haloperidol and atypical neuroleptics on striatal dopamine levels and striatal levels of TNF-alpha and NFkappaB p65 subunit was found out. Haloperidol significantly decreased the striatal dopamine levels whereas clozapine and risperidone did not. Haloperidol but not clozapine and risperidone significantly increased the levels of TNF-alpha and NFkappaB p65 subunit (P<or=0.05). The present study suggests the impossible involvement of striatal TNF-alpha and NFkappaB p65 subunit in haloperidol-induced orofacial dyskinesia in rats, an animal model for human tardive dyskinesia.
Collapse
|
15
|
Activation of striatal inflammatory mediators and caspase-3 is central to haloperidol-induced orofacial dyskinesia. Eur J Pharmacol 2008; 590:241-5. [DOI: 10.1016/j.ejphar.2008.06.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/02/2008] [Accepted: 06/10/2008] [Indexed: 12/18/2022]
|
16
|
Saldaña M, Mullol J, Aguilar E, Bonastre M, Marin C. Nuclear factor kappa-B p50 and p65 subunits expression in dementia with Lewy bodies. Neuropathol Appl Neurobiol 2007; 33:308-16. [PMID: 17442064 DOI: 10.1111/j.1365-2990.2007.00806.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dementia with Lewy bodies (DLB) is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD). Parkinsonism in DLB is mainly caused by neuronal loss with Lewy bodies (LBs) in the substantia nigra, thereby inducing degeneration of the nigrostriatal dopaminergic pathway similar to that in Parkinson's disease (PD). To clarify the pathogenesis of DLB, it is important to investigate the mechanisms involved in the degenerative process of LB-bearing neurones. Several reports suggest a role for nuclear factor kappa-B (NFkappaB) in the manifestation of neurodegenerative conditions such as AD and PD. The aim of the present study was to investigate whether NFkappaB subunits are involved in the pathogenesis of neurodegeneration in DLB by measuring tyrosine hydroxylase (TH), NFkappaB p65 and p50 protein expression in frontal cortex and substantia nigra pars compacta of DLB and control human brains. An increase, although not statistically significant, in nigral TH expression in DLB cases was observed. There were no differences in the cortical and nigral expression levels of NFkappaB p65 subunit between control and DLB cases. Western blots of the frontal cortex showed no differences in the expression levels of NFkappaB p50 subunit. However, NFkappaB p50 levels were significantly decreased (P < 0.05) in the pars compacta of the substantia nigra in the DLB cases in comparison with controls. The decrease in the expression of the p50 subunit in the substantia nigra of DLB cases achieved in the present study may increase the vulnerability of the dopaminergic neurones to a possible neurotoxic effect of p65 subunit. Thus, normal levels of NFkappaB p65 might be toxic in neurones with a low expression of the NFkappaB p50 subunit.
Collapse
Affiliation(s)
- M Saldaña
- Laboratori de Neurologia Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Marin C, Saldaña M, Roca-Ferrer J, Bonastre M, Aguilar E, Mullol J. Striatal and nigral COX-2 expression after chronic typical and atypical neuroleptic administration in rats. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:678-82. [PMID: 17289239 DOI: 10.1016/j.pnpbp.2006.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/29/2006] [Accepted: 12/29/2006] [Indexed: 11/25/2022]
Abstract
Haloperidol, but not clozapine, induces dopaminergic nigrostriatal degeneration. However, the mechanisms by which haloperidol causes neurotoxicity are not fully understood. An increase in cyclooxygenase-2 (COX-2) expression has been observed correlated with nigrostriatal degeneration. We investigated the modifications of striatal and nigral COX-2 expression induced by chronic haloperidol and clozapine administration. Rats were treated for 21 days with: haloperidol (1 mg/kg), clozapine (1 mg/kg) or saline. No significant differences were observed in striatal and nigral COX-2 expression between haloperidol and clozapine-treated animals. This observation might suggest that nigral COX-2 expression is not the underlying mechanisms involved in haloperidol-induced dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Fredriksson A, Archer T. Subchronic administration of haloperidol influences the functional deficits of postnatal iron administration in mice. Neurotox Res 2007; 10:123-9. [PMID: 17062374 DOI: 10.1007/bf03033241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C57/BL6 mice were administered either 7.5 mg Fe(2+) (II)/ kg or vehicle (saline) postnatally on Days 10-12 after birth. From 64 days of age onwards for 24 days, groups of mice were administered either haloperidol (0.25 or 1 or 2 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Postnatal Fe(2+)-treatment (7.5 mg/kg, postnatally) reduced motor activity parameters during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity, confirming previous observations. Subchronic administration of haloperidol, at the 1 and 2 mg/kg doses, and to a lesser extent the 0.25 mg/kg dose, increased the levels of activity in all three motor activity parameters in postnatal iron-treated mice: locomotion (1st and 2nd 20 min periods), rearing (1st and 2nd 20 min periods) and total activity (1st 20 min period). All three doses of haloperidol abolished the later hyperactivity in iron-treated mice, with the exception of the 0.25 mg/kg dose with regard to rearing behaviour. Apomorphine (1 mg/kg, s.c.)-induced activity was elevated by postnatal iron administration and by subchronic administration of apomorphine at the higher dose levels. In the context of these and other observations, it is suggested that subchronic administration of haloperidol interacting with postnatal iron induces different expressions of dopamine neuron comorbidity underlying movement disorder.
Collapse
Affiliation(s)
- A Fredriksson
- University of Uppsala, Department of Neuroscience and Psychiatry, Ulleraker, SE-750 17 Uppsala, Sweden
| | | |
Collapse
|
19
|
Saldaña M, Bonastre M, Aguilar E, Marin C. Differential nigral expression of Bcl-2 protein family in chronically haloperidol and clozapine-treated rats: role in neurotoxicity and stereotyped behavior. Exp Neurol 2006; 203:302-8. [PMID: 17069804 DOI: 10.1016/j.expneurol.2006.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Tardive dyskinesia (TD) is a syndrome characterized by repetitive involuntary movements induced by the administration of typical neuroleptics such as haloperidol. TD generally persists after haloperidol withdrawal indicating that haloperidol produces long-lasting changes in brain function. In contrast to the typicals, atypical medications, such as clozapine, have very low rates of TD. The mechanisms underlying drug-induced TD are poorly understood. We have investigated the role of nigral expression of the bcl-2 family of proteins on haloperidol-induced neurotoxicity. Rats were treated for 21 days with the following drugs: haloperidol (1 mg/kg), clozapine (1 mg/kg) or saline. After a 3-day washout period, apomorphine-induced stereotyped behavior was scored. Western blotting was performed to evaluate the nigral expression of the dopamine transporter (DAT), bax, bcl-x(L) and bcl-2 proteins. Haloperidol administration, but not clozapine, increased stereotyped behavior (p<0.01) in association with a decrease in striatal DAT expression (p<0.05). Haloperidol and clozapine treatment significantly decreased the nigral expression of bax (p<0.05, p<0.01, respectively). Neither treatment modified bcx(L) expression. Haloperidol increased (p<0.05), whereas clozapine did not significantly modify the nigral expression of bcl-2. Our results suggest that the increase in bcl-2 expression in the haloperidol-treated animals might be a compensatory mechanism that may reflect cellular damage induced by haloperidol in the dopaminergic neurons in the pars compacta of the substantia nigra.
Collapse
Affiliation(s)
- M Saldaña
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Fredriksson A, Archer T. Subchronic administration of haloperidol influences the functional deficits of postnatal iron administration in mice. Neurotox Res 2006; 9:305-12. [PMID: 16782590 DOI: 10.1007/bf03033321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
C57/BL6 mice were administered either 7.5 mg Fe (II)/ kg or vehicle (saline) postnatally on Days 10-12 after birth. From 64 days of age onwards for 24 days, groups of mice were administered either haloperidol (0.25 or 1 or 2 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Postnatal Fe (II)-treatment (7.5 mg/kg, postnatally) reduced motor activity parameters during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity, confirming previous observations. Subchronic administration of haloperidol, at the 1 and 2 mg/kg doses, and to a lesser extent the 0.25 mg/kg dose, increased the levels of activity in all three motor activity parameters in postnatal iron-treated mice: locomotion (1st and 2nd 20 min periods), rearing (1st and 2nd 20 min periods) and total activity (1st 20 min period). All three doses of haloperidol abolished the later hyperactivity in iron-treated mice, with the exception of the 0.25 mg/kg dose with regard to rearing behaviour. Apomorphine (1 mg/kg, s.c.) -induced activity was elevated by postnatal iron administration and by subchronic administration of apomorphine at the higher dose levels. In the context of these and other observations, it is suggested that subchronic administration of haloperidol interacting with postnatal iron induces different expressions of dopamine neuron comorbidity underlying movement disorder.
Collapse
Affiliation(s)
- Anders Fredriksson
- University of Uppsala, Department of Neuroscience AND Psychiatry, Ulleraker, SE-750 17 Uppsala, Sweden
| | | |
Collapse
|