1
|
Stefanov A, Brakel K, Rau J, Joseph RM, Guice C, Araguz K, Hemphill A, Madry J, Irion A, Dash S, Souza KA, Hook MA. Depression-like behavior is associated with deficits in cognition and hippocampal neurogenesis in a subset of spinally contused male, but not female, rats. Brain Behav Immun 2024; 123:270-287. [PMID: 39288895 DOI: 10.1016/j.bbi.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024] Open
Abstract
Depression and cognitive deficits present at higher rates among people with spinal cord injury (SCI) compared to the general population, yet these SCI comorbidities are poorly addressed. Sex and age appear to play roles in depression incidence, but consensus on the direction of their effects is limited. Systemic and cortical inflammation and disruptions in hippocampal neurogenesis have been identified as potential treatment targets, but a comprehensive understanding of these mechanisms remains elusive. We used a rodent SCI model to interrogate these gaps in knowledge. We examined post-injury depression-like behavior and cognitive deficits, as well as the association between affect, cognition, chronic hippocampal inflammation and hippocampal neurogenesis, in young and middle-aged male and female Sprague-Dawley rats. Depression-like behavior manifested in male and female subsets of SCI rats irrespective of age, at rates commensurate with the incidence of clinical depression. Changes in components of behavior were driven by sex and age, and affective outcomes were independent of common post-injury pathophysiological outcomes including locomotor functional deficits and spinal lesion severity. Interestingly, however, only male depression-like SCI rats exhibited deficits in hippocampal-associated spatial cognition. Neurogenesis was also disrupted in only SCI males in regions of the hippocampus responsible for affective outcomes. Decreased neurogenesis among middle-aged male subjects coincided with increases in numbers of the pro-inflammatory markers CD86 and iNOS, while middle-aged females had increased numbers of cells expressing Iba-1 and anti-inflammatory marker CD206. Overall, the present data suggest that post-SCI depression and cognition may be affected, in part, by sex- and age-dependent changes in hippocampal neurogenesis and inflammation. Hippocampal neurogenesis is a potential target to address psychological wellbeing after SCI, but therapeutic strategies must carefully consider sex and age as biological variables.
Collapse
Affiliation(s)
- Alex Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843.
| | - Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| | - Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| | - Rose M Joseph
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Corey Guice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Kendall Araguz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Annebel Hemphill
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Jessica Madry
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Andrew Irion
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Swapnil Dash
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843
| |
Collapse
|
2
|
Wang Z, Xie Z, Zhang Z, Zhou W, Guo B, Li M. Multi-platform omics sequencing dissects the atlas of plasma-derived exosomes in rats with or without depression-like behavior after traumatic spinal cord injury. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110987. [PMID: 38438071 DOI: 10.1016/j.pnpbp.2024.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Exosomes can penetrate the blood-brain barrier for material exchange between the peripheral and central nervous systems. Differences in exosome contents could explain the susceptibility of different individuals to depression-like behavior after traumatic spinal cord injury (TSCI). METHODS Hierarchical clustering was used to integrate multiple depression-related behavioral outcomes in sham and TSCI rats and ultimately identify non-depressed and depressed rats. The difference in plasma exosome contents between non-depressed and depressed rats after TSCI was assessed in 15 random subjects by performing plasma exosome transcriptomics, mass spectroscope-based proteomics, and non-targeted metabolomics analyses. RESULTS The results revealed that about 27.6% of the rats developed depression-like behavior after TSCI. Totally, 10 differential metabolites, 81 differentially expressed proteins (DEPs), 373 differentially expressed genes (DEGs), and 55 differentially expressed miRNAs (DEmiRNAs) were identified between non-depressed TSCI and sham rats. Meanwhile, 37 differential metabolites, 499 DEPs, 1361 DEGs, and 89 DEmiRNAs were identified between depressed and non-depressed TSCI rats. Enrichment analysis showed that the progression of depression-like behavior after TSCI may be related to amino acid metabolism disorder and dysfunction of multiple signaling pathways, including endocytosis, lipid and atherosclerosis, toll-like receptor, TNF, and PI3K-Akt pathway. CONCLUSION Overall, our study systematically revealed for the first time the differences in plasma exosome contents between non-depressed and depressed rats after TSCI, which will help broaden our understanding of the complex molecular mechanisms involved in brain functional recombination after TSCI.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| | - Zhiping Xie
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Boyu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Silva S, Bicker J, Fialho S, Cunha S, Falcão A, Fortuna A. Intranasal delivery of paroxetine: A preclinical study on pharmacokinetics, depressive-like behaviour, and neurochemical sex differences. Biochem Pharmacol 2024; 223:116184. [PMID: 38556027 DOI: 10.1016/j.bcp.2024.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/02/2024]
Abstract
Treatment of major depressive disorder remains a major unmet clinical need. Given the advantages of intranasal administration for targeted brain delivery, the present study aimed at investigating the pharmacokinetics of paroxetine, after its intranasal instillation and assessing its potential therapeutic effect on female and male mice subjected to unpredictable chronic mild stress (UCMS) protocol. IN administration revealed direct nose-to-brain paroxetine delivery but dose- and sex-dependent differences. Pharmacokinetics was nonlinear and paroxetine concentrations were consistently higher in plasma and brain of male mice. Additionally, UCMS decreased animal preference for sucrose in both male and female mice following acute (p < 0.01) and chronic stress (p < 0.05), suggesting anhedonia. Both male and female mice exhibited depressive-like behavior in the forced swimming test. UCMS females displayed a significantly longer immobility time and shorter climbing time than the control group (p < 0.05), while no differences were found between male mice. Two weeks of paroxetine intranasal administration reduced immobility time and lengthened climbing and swimming time, approaching values similar to those observed in the healthy control group. The therapeutic effect was stronger on female mice. Importantly, melatonin plasma levels were significantly decreased in female mice following UCMS (p < 0.05), while males exhibited heightened corticosterone levels. On the other hand, treatment with IN paroxetine significantly increased corticosterone and melatonin levels in both sexes compared to healthy mice (p < 0.05). Intranasal paroxetine delivery undoubtedly ameliorated the behavioral despair, characteristic of depressive-like animals. Despite its efficiency in male and female mice subjected to UCMS, females were more prone to this novel therapeutic strategy.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - S Fialho
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Susana Cunha
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Phillips R, Walsh E, Jensen T, Nagy G, Kinard J, Cernasov P, Smoski M, Dichter G. Longitudinal associations between perceived stress and anhedonia during psychotherapy. J Affect Disord 2023; 330:206-213. [PMID: 36907457 PMCID: PMC10065950 DOI: 10.1016/j.jad.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Chronic stress alters reward sensitivity and contributes to the emergence of anhedonia. In clinical samples, the perception of stress is a strong predictor of anhedonia. While there is substantial evidence demonstrating psychotherapy reduces perceived stress, little is known regarding the effects of treatment-related decreases in perceived stress on anhedonia. METHODS The current study investigated reciprocal relations between perceived stress and anhedonia using a cross-lagged panel model approach in a 15-week clinical trial examining the effects of Behavioral Activation Treatment for Anhedonia (BATA), a novel psychotherapy to treat anhedonia, compared to a Mindfulness-Based Cognitive Therapy (MBCT) comparison intervention (ClinicalTrials.gov Identifiers NCT02874534 and NCT04036136). RESULTS Treatment completers (n = 72) experienced significant reductions in anhedonia (M = -8.94, SD = 5.66) on the Snaith-Hamilton Pleasure Scale (t(71) = 13.39, p < .0001), and significant reductions in perceived stress (M = -3.71, SD = 3.88) on the Perceived Stress Scale (t(71) = 8.11, p < .0001) following treatment. Across all treatment-seeking participants (n = 87), a longitudinal autoregressive cross-lagged model revealed significant paths showing that higher levels of perceived stress at treatment Week 1 predicted reductions in anhedonia at treatment Week 4; lower levels of perceived stress at Week 8 predicted reductions in anhedonia at Week 12. Anhedonia did not significantly predict perceived stress at any stage of treatment. CONCLUSIONS This study showed specific timing and directional effects of perceived stress on anhedonia during psychotherapy treatment. Individuals with relatively high perceived stress at the start of treatment were more likely to report relatively lower anhedonia a few weeks into treatment. At mid-treatment, individuals with low perceived stress were more likely to report lower anhedonia towards the end of treatment. These results demonstrate that early treatment components reduce perceived stress, thus allowing for downstream changes in hedonic functioning during mid-late treatment. The findings presented here suggest it will be critically important for future clinical trials evaluating novel interventions for anhedonia to measure stress levels repeatedly, as an important mechanism of change. TRIAL NAME Development of a Novel Transdiagnostic Intervention for Anhedonia - R61 Phase. TRIAL URL: https://clinicaltrials.gov/ct2/show/NCT02874534. TRIAL REGISTRATION NUMBER NCT02874534.
Collapse
Affiliation(s)
- Rachel Phillips
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, United States of America.
| | - Erin Walsh
- University of North Carolina at Chapel Hill, Department of Psychiatry, United States of America
| | - Todd Jensen
- University of North Carolina at Chapel Hill, School of Social Work, United States of America
| | - Gabriela Nagy
- Duke University Medical Center, United States of America
| | - Jessica Kinard
- University of North Carolina at Chapel Hill, Department of Psychiatry, United States of America
| | - Paul Cernasov
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, United States of America
| | - Moria Smoski
- Duke University Medical Center, United States of America
| | - Gabriel Dichter
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, United States of America; University of North Carolina at Chapel Hill, Department of Psychiatry, United States of America
| |
Collapse
|
5
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Hasbi A, Madras BK, George SR. Daily THC and withdrawal increase dopamine D1-D2 receptor heteromer to mediate anhedonia and anxiogenic-like behavior through a dynorphin and kappa opioid receptor mechanism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519471 PMCID: PMC10382712 DOI: 10.1016/j.bpsgos.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Background Frequent cannabis use is associated with a higher risk of developing cannabis use disorder and other adverse consequences. However, rodent models studying the underlying mechanisms of the reinforcing and withdrawal effects of the primary constituent of cannabis, Δ9-tetrahydrocannabinol (THC), have been limited. Methods This study investigated the effects of daily THC (1 mg/kg, intraperitoneal, 9 days) and spontaneous withdrawal (7 days) on hedonic and aversion-like behaviors in male rats. In parallel, underlying neuroadaptive changes in dopaminergic, opioidergic, and cannabinoid signaling in the nucleus accumbens were evaluated, along with a candidate peptide designed to reverse altered signaling. Results Chronic THC administration induced anhedonic- and anxiogenic-like behaviors not attributable to altered locomotor activity. These effects persisted after drug cessation. In the nucleus accumbens, THC treatment and withdrawal catalyzed increased cannabinoid CB1 receptor activity without modifying receptor expression. Dopamine D1-D2 receptor heteromer expression rose steeply with THC, accompanied by increased calcium-linked signaling, activation of BDNF/TrkB (brain-derived neurotrophic factor/tropomyosin receptor kinase B) pathway, dynorphin expression, and kappa opioid receptor signaling. Disruption of the D1-D2 heteromer by an interfering peptide during withdrawal reversed the anxiogenic-like and anhedonic-like behaviors as well as the neurochemical changes. Conclusions Chronic THC increases nucleus accumbens dopamine D1-D2 receptor heteromer expression and function, which results in increased dynorphin expression and kappa opioid receptor activation. These changes plausibly reduce dopamine release to trigger anxiogenic- and anhedonic-like behaviors after daily THC administration that persist for at least 7 days after drug cessation. These findings conceivably provide a therapeutic strategy to alleviate negative symptoms associated with cannabis use and withdrawal.
Collapse
|
7
|
Guan X, Wang Q, Liu M, Sun A, Li X. Possible Involvement of the IL-6/JAK2/STAT3 Pathway in the Hypothalamus in Depressive-Like Behavior of Rats Exposed to Chronic Mild Stress. Neuropsychobiology 2022; 80:279-287. [PMID: 33238265 DOI: 10.1159/000509908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/19/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The interleukin-6/janus kinase 2/signal transducer and activator of transcription 3 (IL-6/JAK2/STAT3) pathway plays an important role in immune function, but little research has focused on this pathway in depression. We sought to examine the relationship between the IL-6/JAK2/STAT3 pathway and depressive-like behavior. METHODS Using a chronic mild stress (CMS) paradigm, a total of 36 adult male Sprague-Dawley rats were divided into four matched groups: (1) control + vehicle, (2) CMS + vehicle, (3) control + paroxetine, and (4) CMS + paroxetine. We investigated the effects of CMS on depressive-like behavior by using the forced swimming test (FST). Subsequently, the mRNA levels of members of the IL-6/JAK2/STAT3 pathway were assessed by qRT-PCR. RESULTS We found that rats exposed to CMS displayed a significant increase in immobility time and a decrease in climbing time in the FST. Moreover, mRNA levels of IL-6, JAK2, and STAT3 in the hypothalamus were increased following CMS. We also found that mRNA levels of IL-6, JAK2, and STAT3 were normalized by paroxetine administration, which coincided with normalization of the depressive-like behavior. CONCLUSIONS The IL-6/JAK2/STAT3 pathway may be activated in depression, and targeting this pathway may provide a novel effective therapeutic approach for the treatment of depression.
Collapse
Affiliation(s)
- Xiaofeng Guan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Medical Psychology, General Hospital of Shenyang Military Command, Shenyang, China
| | - Mengxi Liu
- Department of Medical Psychology, Navy General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Anji Sun
- Northeast Yucai Experimental School, Shenyang, China
| | - Xiaobai Li
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China,
| |
Collapse
|
8
|
Beaver JN, Gilman TL. Salt as a non-caloric behavioral modifier: A review of evidence from pre-clinical studies. Neurosci Biobehav Rev 2021; 135:104385. [PMID: 34634356 DOI: 10.1016/j.neubiorev.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
Though excess salt intake is well-accepted as a dietary risk factor for cardiovascular diseases, relatively little has been explored about how it impacts behavior, despite the ubiquity of salt in modern diets. Given the challenges of manipulating salt intake in humans, non-human animals provide a more tractable means for evaluating behavioral sequelae of high salt. By describing what is known about the impact of elevated salt on behavior, this review highlights how underexplored salt's behavioral effects are. Increased salt consumption in adulthood does not affect spontaneous anxiety-related behaviors or locomotor activity, nor acquisition of maze or fear tasks, but does impede expression of spatial/navigational and fear memory. Nest building is reduced by heightened salt in adults, and stress responsivity is augmented. When excess salt exposure occurs during development, and/or to parents, offspring locomotion is increased, and both spatial memory expression and social investigation are attenuated. The largely consistent findings reviewed here indicate expanded study of salt's effects will likely uncover broader behavioral implications, particularly in the scarcely studied female sex.
Collapse
Affiliation(s)
- Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
9
|
Muhammad RN, Ahmed LA, Abdul Salam RM, Ahmed KA, Attia AS. Crosstalk Among NLRP3 Inflammasome, ET BR Signaling, and miRNAs in Stress-Induced Depression-Like Behavior: a Modulatory Role for SGLT2 Inhibitors. Neurotherapeutics 2021; 18:2664-2681. [PMID: 34664178 PMCID: PMC8804152 DOI: 10.1007/s13311-021-01140-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is an overwhelming health concern, and many patients fail to optimally respond to available standard therapies. Neuroplasticity and blood-brain barrier (BBB) integrity are the cornerstones of a well-functioning central nervous system, but they are vulnerable to an overly active NLRP3 inflammasome pathway that can also indirectly trigger the release of ET-1 and contribute to the ET system disturbance, which further damages stress resilience mechanisms. Here, the promising yet unexplored antidepressant potential of dapagliflozin (Dapa), a sodium-glucose co-transporter-2 inhibitor, was investigated by assessing its role in the modulation of the NLRP3 inflammasome pathway and ETBR signal transduction, and their impact on neuroplasticity and BBB integrity in an animal model of depression. Dapa (1 mg/kg/day; p.o.) with and without BQ-788 (1 mg/kg/day; i.p.), a specific ETBR blocker, were administered to adolescent male Wistar rats exposed to a 5-week chronic unpredictable stress protocol. The depressive animals demonstrated marked activation of the NLRP3 inflammasome pathway (NF-κB/NLRP3/caspase-1/IL/TNF-α), which was associated with both peripheral and central inflammatory responses. The ET system was disrupted, with noticeable reduction in miR-125a-5p and ETBR gene expression. Cortical ZO-1 expression was downregulated under the influence of NLRP3/TNF-α/miR-501-3p signaling, along with a prominent reduction in hippocampal BDNF and synapsin-1. With ETBR up-regulation being a cornerstone outcome, Dapa administration efficiently created an overall state of resilience, improved histopathological and behavioral variables, and preserved BBB function. These observations were further verified by the results obtained with BQ-788 co-administration. Thus, Dapa may exert its antidepressant action by reinforcing BBB integrity and promoting neuroplasticity through manipulation of the NLRP3/ET-1/ETBR/BDNF/ZO-1 axis, with a significant role for ETBR signaling. Graphical illustration for the proposed mechanisms of the anti-depressant potential of Dapa. Dapa suppressed NLRP3 inflammasome activation and assembly with subsequent inhibition of pro-inflammatory ILs. This results in attenuation of neuro-inflammation, BBB disruption, glial cell activation, TNF-α and ET-1 release, and the enhanced production of neurotrophins. The role of ETBR signaling was emphasized; Dapa possibly augmented ETBR expression, which is thought to boost neurotrophins production. The ETBR blocker, BQ-788, suppressed most of the positive outcomes of Dapa. Finally, miR-125a-5p and miR-501-3p that played major roles in these pathological pathways were modulated by Dapa. It is not yet clear whether Dapa has a direct or rather indirect effect on their expression. BBB, blood-brain barrier; Dapa, dapagliflozin; ET-1, endothelin-1; ETBR, endothelin B receptor; IL, interleukin; NF-κB, nuclear factor kappa B; NLRP3, nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3; TNF-α, tumor necrosis factor-α. Created with BioRender.com.
Collapse
Affiliation(s)
- Radwa N Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rania M Abdul Salam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Biology, School of Pharmacy, New Giza University, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amina S Attia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
10
|
Waye SC, Dinesh OC, Hasan SN, Conway JD, Raymond R, Nobrega JN, Blundell J, Bambico FR. Antidepressant action of transcranial direct current stimulation in olfactory bulbectomised adolescent rats. J Psychopharmacol 2021; 35:1003-1016. [PMID: 33908307 DOI: 10.1177/02698811211000765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Antidepressant drugs in adolescent depression are sometimes mired by efficacy issues and paradoxical effects. Transcranial direct current stimulation (tDCS) could represent an alternative. AIMS/METHODS We tested the antidepressant action of prefrontal tDCS and paroxetine (20 mg/kg, intraperitoneal) in olfactory bulbectomised (OBX) adolescent rats. Using enzyme-linked immunosorbent assays and in situ hybridisation, we examined treatment-induced changes in plasma brain-derived neurotrophic factor (BDNF) and brain serotonin transporter (SERT) and 5-HT-1A mRNA. RESULTS OBX-induced anhedonia-like reductions in sucrose preference (SP) correlated with open field (OF) hyperactivity. These were accompanied by decreased zif268 mRNA in the piriform/amygdalopiriform transition area, and increased zif268 mRNA in the hypothalamus. Acute paroxetine (2 days) led to a profound SP reduction, an effect blocked by combined tDCS-paroxetine administration. Chronic (14 days) tDCS attenuated hyperlocomotion and its combination with paroxetine blocked OBX-induced SP reduction. Correlations among BDNF, SP and hyperlocomotion scores were altered by OBX but were normalised by tDCS-paroxetine co-treatment. In the brain, paroxetine increased zif268 mRNA in the hippocampal CA1 subregion and decreased it in the claustrum. This effect was blocked by tDCS co-administration, which also increased zif268 in CA2. tDCS-paroxetine co-treatment had variable effects on 5-HT1A receptors and SERT mRNA. 5-HT1A receptor changes were found exclusively within depression-related parahippocampal/hippocampal subregions, and SERT changes within fear/defensive response-modulating brainstem circuits. CONCLUSION These findings point towards potential synergistic efficacies of tDCS and paroxetine in the OBX model of adolescent depression via mechanisms associated with altered expression of BDNF, 5-HT1A, SERT and zif268 in discrete corticolimbic areas.
Collapse
Affiliation(s)
- Shannon C Waye
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - O Chandani Dinesh
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Sm Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Joshua D Conway
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada.,Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
11
|
Brakel K, Aceves M, Garza A, Yoo C, Escobedo G, Panchani N, Shapiro L, Hook M. Inflammation increases the development of depression behaviors in male rats after spinal cord injury. Brain Behav Immun Health 2021; 14:100258. [PMID: 34589764 PMCID: PMC8474513 DOI: 10.1016/j.bbih.2021.100258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
Following spinal cord injury, 18-26% of patients are diagnosed with depressive disorders, compared to 8-12% in the general population. As increased inflammation strongly correlates with depression in both animal and human studies, we hypothesized that the immune activation inherent to SCI could increase depression-like behavior. Thus, we proposed that reducing immune activation with minocycline, a microglial inhibitor, would decrease depression-like behavior following injury. Male Sprague-Dawley rats were given minocycline in their drinking water for 14 days following a moderate, mid-thoracic (T12) spinal contusion. An array of depression-like behaviors (social activity, sucrose preference, forced swim, open field activity) were examined prior to injury as well as on days 9-10, 19-20, and 29-30 post-injury. Peripheral cytokine levels were analyzed in serum collected prior to injury and 10 days post-injury. Hierarchical cluster analysis divided subjects into two groups based on behavior: depressed and not-depressed. Depressed subjects displayed lower levels of open field activity and social interaction relative to their not-depressed counterparts. Depressed subjects also showed significantly greater expression of pro-inflammatory cytokines both before and after injury and displayed lower levels of hippocampal neurogenesis than not-depressed subjects. Intriguingly, subjects who later showed depressive behaviors had higher baseline levels of the pro-inflammatory cytokine IL-6, which persisted throughout the duration of the experiment. Minocycline, however, did not affect serum cytokine levels and did not block the development of depression; equal numbers of minocycline versus vehicle-treated subjects appeared in both phenotypic groups. Despite this, these data overall suggest that molecular correlates of inflammation prior to injury could predict the development of depression after a physical stressor.
Collapse
Affiliation(s)
- Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Miriam Aceves
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
- Department of Biology, Texas A&M University, Interdisciplinary Life Sciences Building, College Station, TX, United States
| | - Aryana Garza
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Chaeyoung Yoo
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Gabriel Escobedo
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Nishah Panchani
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Lee Shapiro
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| | - Michelle Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Medical Research and Education Building, Ste. 1005 8447 Riverside Pkwy, Bryan, TX, 77807, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building, Rm 3148, 3474, TAMU, College Station, TX, United States
| |
Collapse
|
12
|
Yun B, Yoo JY, Park MR, Ryu S, Lee WJ, Choi HJ, Kang MK, Kim Y, Oh S. Ingestion of Gouda Cheese Ameliorates the Chronic Unpredictable Mild Stress in Mice. Food Sci Anim Resour 2020; 40:145-153. [PMID: 31970338 PMCID: PMC6957452 DOI: 10.5851/kosfa.2019.e81] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
Depression is a kind of mood disorder characterized by decline in motivation,
interest, attention, mental activity, and appetite. Although depression is
caused by a variety of causes, including genetic, endocrine and environmental
stress, mild depression has been reported to improve with diet. Therefore,
various type of food sources including functional and nutritional supplement are
required to treat the depressive patients. Cheese contains bioactive peptides
that have beneficial effects on host health. In particular, Jersey milk has been
reported to contain higher solids than does Holstein milk. This study
investigated the effects of Gouda cheese from Jersey and Holstein milk on
chronic, unpredictable, mildly stressed (CUMS) mice. Here, spontaneous
alterations in cheese-fed stressed mice were noted to be effectively recovered
with statistical significance regardless cow species. Interestingly, for the
analysis of fecal microbiota, Bacteroidetes were noted to
increase with a reduction in Firmicutes at the phylum level
with Jersey cheese. Taken together, we suggest that cheese intake provided a
beneficial effect on stressed mice in recovering recognition ability. In
particular, changes in internal microbiota were observed, suggesting that the
bioactive ingredients in cheese act as improvement agents with respect to mood
and brain function.
Collapse
Affiliation(s)
- Bohyun Yun
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Ja Yeon Yoo
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Mi Ri Park
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Sangdon Ryu
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Woong Ji Lee
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Hye Jin Choi
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju 54896, Korea
| | - Min Kyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| |
Collapse
|
13
|
Zhao Y, Jia Y, Shi T, Wang W, Shao D, Zheng X, Sun M, He K, Chen L. Depression promotes hepatocellular carcinoma progression through a glucocorticoid-mediated upregulation of PD-1 expression in tumor-infiltrating NK cells. Carcinogenesis 2019; 40:1132-1141. [PMID: 30715244 DOI: 10.1093/carcin/bgz017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
There is a growing belief that depression was positively associated with the progression of liver cancer. However, the driving molecular events behind the depression in liver cancer are poorly understood and need to be elucidated. Since hyperactivity of the hypothalamic-pituitary-adrenal axis during depression leads to the excessive release of glucocorticoids (GCs), which suppress the activity of natural killer (NK) cells, we hypothesized that high levels of GCs during depression may inhibit function of tumor-infiltrating NK cells during the progress of the liver cancer. Using chronic unpredictable mild stress-induced depressed mice model, we showed that the progression of liver cancer was significantly accelerated in the depressed mice. The high levels of GCs were observed in both depressed mice and depressed patients with liver cancer. Importantly, the expression of programmed death (PD)-1 on NK cells was specifically increased in the tumor microenvironment rather than that in blood or spleen. Coculture studies demonstrated that the expression of PD-1 was significantly increased and cytotoxicity of NK92 cells was remarkably decreased by the dexamethasone treatment through PD-L1-dependent pathway. To the best of our knowledge, we first found that PD-1/PD-L1-mediated exhaustion of infiltrated NK cells promoted hepatocellular carcinoma progression under depression and provided a novel strategy for GC-mediated antidepressant therapy in patients with liver cancer.
Collapse
Affiliation(s)
- Yawei Zhao
- Department of Pharmacology, College of Basic Medical Sciences
| | - Yong Jia
- School of Nursing, Jilin University, Changchun, China
| | - Tongfei Shi
- Department of Pharmacology, College of Basic Medical Sciences
| | - Wencong Wang
- Department of Pharmacology, College of Basic Medical Sciences
| | - Dan Shao
- Department of Pharmacology, College of Basic Medical Sciences
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Xiao Zheng
- Department of Pharmacology, College of Basic Medical Sciences
| | - Madi Sun
- Department of Pharmacology, College of Basic Medical Sciences
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
14
|
Lamontagne SJ, Melendez SI, Olmstead MC. Investigating dopamine and glucocorticoid systems as underlying mechanisms of anhedonia. Psychopharmacology (Berl) 2018; 235:3103-3113. [PMID: 30136143 DOI: 10.1007/s00213-018-5007-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022]
Abstract
RATIONALE Anhedonia, a deficit in reward processing, is an endophenotype of several neuropsychiatric conditions. Despite its prevalence and debilitating effects, treatments for anhedonia are lacking, primarily because its underlying mechanisms are poorly understood. Dopamine (DA) has been implicated in anhedonia through its role in reward-related learning; glucocorticoid systems may also be involved in that anhedonia is often preceded by chronic stress. OBJECTIVE This study investigated DA and glucocorticoid systems in anhedonia using a rat version of the probabilistic reward task (PRT). METHODS Adult male Wistar rats were trained on the PRT and then tested following: (1) activation or inhibition of DA activity induced by amphetamine (AMPH) or pramipexole (PRAMI) injections, (2) chronic mild stress (CMS), or (3) glucocorticoid system activation (dexamethasone (DEX)) or inhibition (mifepristone (MIFE)). RESULTS AMPH increased and PRAMI decreased response bias, pointing to enhanced and diminished reward responsiveness with DA agonism and antagonism, respectively. CMS reduced response bias but only in a subpopulation of rats. DEX also decreased response bias, suggesting that glucocorticoid processes contribute to anhedonia, although glucocorticoid inhibition (MIFE) had no effect. None of the manipulations altered the ability to detect and respond to reward-paired stimuli. CONCLUSIONS These results confirm a role of DA in anhedonia and elucidate the contribution of the glucocorticoid system to this effect. In addition, chronic stress may interfere with normal DA functioning, leading to impaired reward-related learning in some animals. These findings may direct future treatment of anhedonia by targeting DA and glucocorticoid systems, as well as a possible interaction between the two.
Collapse
Affiliation(s)
- Steven J Lamontagne
- Department of Psychology, Queens University, 62 Arch St., Kingston, ON, K7L 3N6, Canada
| | - Sofia I Melendez
- Department of Psychology, Queens University, 62 Arch St., Kingston, ON, K7L 3N6, Canada
| | - Mary C Olmstead
- Department of Psychology, Queens University, 62 Arch St., Kingston, ON, K7L 3N6, Canada. .,Centre for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
15
|
Burstein O, Doron R. The Unpredictable Chronic Mild Stress Protocol for Inducing Anhedonia in Mice. J Vis Exp 2018. [PMID: 30417885 DOI: 10.3791/58184] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Depression is a highly prevalent and debilitating condition, only partially addressed by current pharmacotherapies. The lack of response to treatment by many patients prompts the need to develop new therapeutic alternatives and to better understand the etiology of the disorder. Pre-clinical models with translational merits are rudimentary for this task. Here we present a protocol for the unpredictable chronic mild stress (UCMS) method in mice. In this protocol, adolescent mice are chronically exposed to interchanging unpredictable mild stressors. Resembling the pathogenesis of depression in humans, stress exposure during the sensitive period of mice adolescence instigates a depressive-like phenotype evident in adulthood. UCMS can be used for screenings of antidepressants on the variety of depressive-like behaviors and neuromolecular indices. Among the more prominent tests to assess depressive-like behavior in rodents is the sucrose preference test (SPT), which reflects anhedonia (core symptom of depression). The SPT will also be presented in this protocol. The ability of UCMS to induce anhedonia, instigate long-term behavioral deficits and enable reversal of these deficits via chronic (but not acute) treatment with antidepressants strengthens the protocol's validity compared to other animal protocols for inducing depressive-like behaviors.
Collapse
Affiliation(s)
- Or Burstein
- School of Behavioral Science, The Academic College Tel-Aviv-Yaffo
| | - Ravid Doron
- School of Behavioral Science, The Academic College Tel-Aviv-Yaffo; Department of Education and Psychology, Open University;
| |
Collapse
|
16
|
Sawada K, Kawakami R, Shigemoto R, Nemoto T. Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices. Eur J Neurosci 2018. [PMID: 29512842 PMCID: PMC5969222 DOI: 10.1111/ejn.13901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three‐dimensional (3D) super‐resolution microscopy technique structured illumination microscopy (SIM) imaging of dendritic spines along the dendrite has not been previously performed in fixed tissues, mainly due to deterioration of the stripe pattern of the excitation laser induced by light scattering and optical aberrations. To address this issue and solve these optical problems, we applied a novel clearing reagent, LUCID, to fixed brains. In SIM imaging, the penetration depth and the spatial resolution were improved in LUCID‐treated slices, and 160‐nm spatial resolution was obtained in a large portion of the imaging volume on a single apical dendrite. Furthermore, in a morphological analysis of spine heads of layer V pyramidal neurons (L5PNs) in the medial prefrontal cortex (mPFC) of chronic dexamethasone (Dex)‐treated mice, SIM imaging revealed an altered distribution of spine forms that could not be detected by high‐NA confocal imaging. Thus, super‐resolution SIM imaging represents a promising high‐throughput method for revealing spine morphologies in single dendrites.
Collapse
Affiliation(s)
- Kazuaki Sawada
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryosuke Kawakami
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Tomomi Nemoto
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita, Sapporo, 001-0020, Hokkaido, Japan
| |
Collapse
|
17
|
Wong J, Tran LT, Lynch KA, Wood LJ. Dexamethasone exacerbates cytotoxic chemotherapy induced lethargy and weight loss in female tumor free mice. Cancer Biol Ther 2018; 19:87-96. [PMID: 29231783 PMCID: PMC5790388 DOI: 10.1080/15384047.2017.1394549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/15/2017] [Indexed: 02/08/2023] Open
Abstract
Cytotoxic chemotherapy can induce a systemic inflammatory response which has been proposed to be an underlying mechanism of cancer treatment related fatigue. Dexamethasone, a synthetic glucocorticoid that has potent anti-inflammatory effects, is incorporated into chemotherapy regimens to prevent chemotherapy-induced nausea and vomiting (CINV). The purpose of this study was to determine whether by suppressing cytotoxic chemotherapy-induced inflammation, dexamethasone could ameliorate chemotherapy induced fatigue/lethargy in tumor free mice. The effect of dexamethasone (DEX) on Cytoxan-Adriamycin (CA)-induced inflammation was assessed by measuring circulating levels of IL-1β, TNF-α, IL-6, GCSF, KC, and MCP-1 twenty-four-hours post CA injection. Decline in voluntary wheel running activity (VWRA) from baseline (used as a proxy for fatigue/lethargy), body weight and composition, and food intake were monitored in mice administered four cycles of CA every two weeks with or without DEX. CA increased circulating levels of IL-6, GCSF, KC, and MCP-1 and caused a rapid decline in VWRA and body weight immediately following CA-injection. Although the acute CA-induced decline in VWRA and body weight was not evident in mice administered CA + DEX, DEX alone had a suppressive effect on VWRA, and body weight continued to decline in mice administered both CA and DEX while it returned to baseline in CA-treated mice. CA or DEX alone had no long term impact on VWRA but DEX exacerbated lethargy and weight loss in CA-treated mice. Despite dampening the systemic inflammatory response to chemotherapy, dexamethasone failed to ameliorate acute or long term chemotherapy related fatigue/lethargy. Our pre-clinical findings suggest that supportive therapies like dexamethasone used to acutely control nausea and vomiting in cancer patients may actually contribute to overall symptom burden in cancer patients.
Collapse
Affiliation(s)
- John Wong
- School of Nursing, MGH Institute of Health Professions, Boston MA, USA
| | - Lisa T. Tran
- School of Nursing, MGH Institute of Health Professions, Boston MA, USA
| | - Kaari A. Lynch
- School of Nursing, MGH Institute of Health Professions, Boston MA, USA
| | - Lisa J. Wood
- School of Nursing, MGH Institute of Health Professions, Boston MA, USA
| |
Collapse
|
18
|
Souza LC, Jesse CR, de Gomes MG, Del Fabbro L, Goes ATR, Donato F, Boeira SP. Activation of Brain Indoleamine-2,3-dioxygenase Contributes to Depressive-Like Behavior Induced by an Intracerebroventricular Injection of Streptozotocin in Mice. Neurochem Res 2017. [PMID: 28631232 DOI: 10.1007/s11064-017-2329-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a lack of information concerning the molecular events underlying the depressive-like effect of an intracerebroventricular injection of streptozotocin (ICV-STZ) in mice. The elevated activity of the tryptophan-degrading enzyme indoleamine-2,3-dioxygenase (IDO) has been proposed to mediate depression in inflammatory disorders. In the present study, we reported that ICV-STZ activates IDO in the hippocampus of mice and culminates in depressive-like behaviors, as measured by the increased duration of immobility in the tail suspension test and decreased sucrose intake in the sucrose preference test. The blockade of IDO activation by the IDO inhibitor 1-methyltryptophan (1-MT) prevents the development of depressive-like behaviors and attenuates STZ-induced up-regulation of proinflammatory cytokines in the hippocampus. 1-MT abrogates kynurenine production and normalizes brain-derived neurotrophic factor (BDNF) and the kynurenine/tryptophan ratio, but does not protect the biomarkers of the serotonin (5-HT) system in the hippocampus of STZ-injected mice. These results implicate IDO as a critical molecular mediator of STZ-induced depressive-like behavior, likely through activation of the kynurenine pathway and subsequent reduction of BDNF levels. Impairment of the 5-HT system may reflect the inflammatory response induced by STZ and also contributes to observed depression symptoms. The present study not only provides evidence that IDO plays a critical role in mediating inflammation-induced depression but also supports the notion that neuroinflammation and the kynurenine pathway are important targets for novel therapeutic drugs for depression. In addition, this study provides new insights on the neurobiological mechanisms underlying ICV-STZ and indicates that this model could be employed in preclinical research of depression.
Collapse
Affiliation(s)
- Leandro Cattelan Souza
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil.
| | - Marcelo Gomes de Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Lucian Del Fabbro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - André Tiago Rossito Goes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Franciele Donato
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| |
Collapse
|
19
|
Kim D, Chung S, Lee SH, Koo JH, Lee JH, Jahng JW. Decreased expression of 5-HT1A in the circumvallate taste cells in an animal model of depression. Arch Oral Biol 2017; 76:42-47. [PMID: 28119169 DOI: 10.1016/j.archoralbio.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVE It has been reported that stress can cause anhedonia, a core symptom of depression, and also affect taste responses of the stressed subjects. Anhedonia refers to a reduction of the ability to experience pleasure, which can be detected by decreased response to palatable food in rats. The present study was conducted to examine if stress-induced anhedonia is accompanied by changes in gene expression for taste. DESIGN For anhedonia test, rats had free choices of cookies, a palatable food, and chow for 1h following 1h of daily restraint sessions. To examine the development of behavioral depression by restraint stress, ambulatory activity and forced swim tests were performed. Taste cells were harvested from the circumvallate papillae of rats on the 1st, 3rd and 7th day of stress exposure and subjected to the analysis of gene expression for taste. RESULTS One hour of daily stress exposure did not affect chow intake during the entire experimental period. However, from day 2 cookie intake was suppressed, suggesting the development of anhedonia. Ambulatory activity was significantly decreased, and immobility during forced swim test was increased, after the 7th day of stress exposure, but not before. 5-HT1A mRNA expression, but not T1R2, T1R3, T2R6, α-gustducin or PLCβ2 mRNA expression, appeared to be decreased after the 3rd day of stress exposure. CONCLUSION Reduced expression of 5-HT1A in the taste cells, possibly leading to a reduced processing of taste information for palatable food, may additively contribute to the development of anhedonia as a pre-symptomatic feature of depression in stressed subjects.
Collapse
Affiliation(s)
- Doyun Kim
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University, School of Dentistry, Seoul, 110-768, South Korea; Department of Brain Science, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea
| | - Sena Chung
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University, School of Dentistry, Seoul, 110-768, South Korea
| | - Sung Ho Lee
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University, School of Dentistry, Seoul, 110-768, South Korea
| | - Jae Hyung Koo
- Department of Brain Science, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea
| | - Jong-Ho Lee
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University, School of Dentistry, Seoul, 110-768, South Korea.
| | - Jeong Won Jahng
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University, School of Dentistry, Seoul, 110-768, South Korea.
| |
Collapse
|
20
|
Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3 -/- mice, but not wildtype mice. Sci Rep 2017; 7:40399. [PMID: 28071711 PMCID: PMC5223197 DOI: 10.1038/srep40399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 12/07/2016] [Indexed: 12/02/2022] Open
Abstract
Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are ‘direct’ effects of light on affect, an ‘indirect’ pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3−/− mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3−/−) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2–3 of dim light at night, whereas WT mice did not. Per3−/− mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3−/− nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3−/− phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light.
Collapse
|
21
|
Effect of environmental enrichment on physical and psychological dependence signs and voluntary morphine consumption in morphine-dependent and morphine-withdrawn rats. Behav Pharmacol 2016; 27:270-8. [PMID: 26397757 DOI: 10.1097/fbp.0000000000000197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study was designed to examine the effect of environmental enrichment during morphine dependency and withdrawal on the severity of naloxone-precipitated withdrawal signs, anxiety, and depressive-like behaviors and voluntary morphine consumption in morphine-dependent rats. The rats were injected with bi-daily doses (10 mg/kg, 12 h intervals) of morphine for 14 days following rearing in a standard environment (SE) or enriched environment (EE) during the development of morphine dependence and withdrawal. Then, rats were tested for withdrawal signs after naloxone injection, anxiety (the elevated plus maze) and depression-related behavior (sucrose preference test), and voluntary consumption of morphine using a two-bottle choice paradigm, in morphine-dependent and morphine-withdrawn rats. The results showed that EE decreased naloxone-precipitated withdrawal signs, but not anxiety or sucrose preference during dependence on morphine. The EE-withdrawn rats showed an increase in the elevated plus maze open arm time and entries and higher levels of sucrose preference than SE rats. Voluntary consumption of morphine was lower in the EE-withdrawn rats than in the SE groups in the second period of drug intake. Thus, exposure to EE reduced the severity of morphine dependence and voluntary consumption of morphine, alongside reductions in anxiety and depression-related behavior in morphine-withdrawn rats.
Collapse
|
22
|
Packard AEB, Egan AE, Ulrich-Lai YM. HPA Axis Interactions with Behavioral Systems. Compr Physiol 2016; 6:1897-1934. [PMID: 27783863 DOI: 10.1002/cphy.c150042] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perhaps the most salient behaviors that individuals engage in involve the avoidance of aversive experiences and the pursuit of pleasurable experiences. Engagement in these behaviors is regulated to a significant extent by an individual's hormonal milieu. For example, glucocorticoid hormones are produced by the hypothalamic-pituitary-adrenocortical (HPA) axis, and influence most aspects of behavior. In turn, many behaviors can influence HPA axis activity. These bidirectional interactions not only coordinate an individual's physiological and behavioral states to each other, but can also tune them to environmental conditions thereby optimizing survival. The present review details the influence of the HPA axis on many types of behavior, including appetitively-motivated behaviors (e.g., food intake and drug use), aversively-motivated behaviors (e.g., anxiety-related and depressive-like) and cognitive behaviors (e.g., learning and memory). Conversely, the manuscript also describes how engaging in various behaviors influences HPA axis activity. Our current understanding of the neuronal and/or hormonal mechanisms that underlie these interactions is also summarized. © 2016 American Physiological Society. Compr Physiol 6:1897-1934, 2016.
Collapse
Affiliation(s)
- Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
23
|
Dang R, Guo Y, Zhang L, Chen L, Yang R, Jiang P. Chronic stress and excessive glucocorticoid exposure both lead to altered Neuregulin-1/ErbB signaling in rat myocardium. Steroids 2016; 112:47-53. [PMID: 27133902 DOI: 10.1016/j.steroids.2016.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/21/2016] [Accepted: 04/22/2016] [Indexed: 11/20/2022]
Abstract
Exposure to chronic stress or excess glucocorticoids is associated with the development of depression and heart disease, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in cardiac function, much is still unknown concerning the biological link between NRG1/ErbB pathway and the stress-induced comorbidity of depression and cardiac dysfunction. Therefore, we examined the protein expression of NRG1 and ErbB receptors in the myocardium of rats following chronic unpredictable mild stress (CUMS) or rats treated with two different doses (0.2 and 2mg/kg/day, respectively) of dexamethasone (Dex). The stressed rats showed elevated expression of NRG1 and phosphorylated ErbB4 (pErbB4) in the myocardium, whereas ErbB2 and pErbB2 were inhibited. The lower dose of Dex enhanced myocardial NRG1/ErbB signaling, but as the dose is increased, while ErbB4 remained activated, the expression of ErbB2 and pErbB2 became compromised. Both CUMS and 2mg/kg of Dex suppressed the downstream Akt and ERK phosphorylation. Although the lower dose of Dex increased myocardial antiapoptotic Bcl-xl expression, a significant decrease of Bcl-xl expression was found in rats treated with the higher dose. Meanwhile, both CUMS and two different doses of Dex induced proapoptotic Bax level. Combined, our data firstly showed (mal)adaptive responses of NRG1/ErbB system in the stressed heart, indicating the potential involvement of NRG1/ErbB pathway in the stress-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Ling Zhang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Lei Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Ranyao Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
24
|
Wang L, Shen M, Jiang C, Ma L, Wang F. Parvalbumin Interneurons of Central Amygdala Regulate the Negative Affective States and the Expression of Corticotrophin-Releasing Hormone During Morphine Withdrawal. Int J Neuropsychopharmacol 2016; 19:pyw060. [PMID: 27385383 PMCID: PMC5137277 DOI: 10.1093/ijnp/pyw060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/21/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The central nucleus of the amygdala (CeA) is a crucial component of the neuronal circuitry mediating aversive emotion. Its role in the negative affective states during drug withdrawal includes changes in opioidergic, GABAergic, and corticotropin-releasing factor neurotransmission. However, the modulation of the neurobiological interconnectivity in the CeA and its effects in the negative reinforcement of drug dependents are poorly understood. METHOD We performed electrophysiological recordings to assess the membrane excitability of parvalbumin (PV)+ interneurons in the CeA during chronic morphine withdrawal. We tested the morphine withdrawal-induced negative affective states, such as the aversive (assessed by conditioned place aversion), anxiety (assessed by elevated plus maze), and anhedonic-like (assessed by saccharin preference test) behaviors, as well as the mRNA level of corticotropin-releasing hormone (CRH) via optogenetic inhibition or activation of PV+ interneurons in the CeA. RESULT Chronic morphine withdrawal increased the firing rate of CeA PV+ interneurons. Optogenetic inhibition of the activity of CeA PV+ interneurons attenuated the morphine withdrawal-induced negative affective states, such as the aversive, anxiety, and anhedonic-like behaviors, while direct activation of CeA PV+ interneurons could trigger those negative affective-like behaviors. Optogenetic inhibition of the CeA PV+ interneurons during the morphine withdrawal significantly attenuated the elevated CRH mRNA level in the CeA. CONCLUSION The activity of PV+ interneurons in the CeA was up-regulated during chronic morphine withdrawal. The activation of PV+ interneurons during morphine withdrawal was crucial for the induction of the negative emotion and the up-regulation of CRH mRNA levels in the CeA.
Collapse
Affiliation(s)
- Li Wang
- *These authors contributed equally to this work
| | - Minjie Shen
- *These authors contributed equally to this work
| | | | - Lan Ma
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Drs L Wang, Ma, F Wang, and Shen, and Mr Jiang); Department of Assisted Reproduction, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China (Dr L Wang)
| | - Feifei Wang
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Drs L Wang, Ma, F Wang, and Shen, and Mr Jiang); Department of Assisted Reproduction, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China (Dr L Wang)
| |
Collapse
|
25
|
Kurhe Y, Mahesh R. Pioglitazone, a PPARγ agonist rescues depression associated with obesity using chronic unpredictable mild stress model in experimental mice. Neurobiol Stress 2016; 3:114-121. [PMID: 27981184 PMCID: PMC5146196 DOI: 10.1016/j.ynstr.2016.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/19/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
Pioglitazone, a peroxisome proliferator activated receptor gamma (PPARγ) agonist belonging to thiazolidinedione class, is mainly used in diabetes mellitus. Obese subjects are twice likely to become depressed than non-obese individuals. The biological mechanisms linking depression with obesity still remain poorly understood and there is immense need for better therapeutic intervention against such co-morbid disorders. The present study investigates the effect of pioglitazone on the chronic unpredictable mild stress (CUMS) induced depression in obese mice by using behavioral tests and biochemical estimations. Mice were fed with high fat diet (HFD) for 14 weeks and were further subjected to different stress procedures for 28 days to induce depressive behavior. Animals were administered orally with pioglitazone (30 mg/kg p.o.)/escitalopram (10 mg/kg p.o.)/vehicle (10 ml/kg p.o.) daily from day 15-28. Various behavioral paradigms such as sucrose preference test, forced swim test (FST), tail suspension test (TST) and elevated plus maze (EPM) were performed. Biochemical estimations including plasma glucose, total cholesterol, triglycerides, and total proteins were performed. The data obtained from behavioral assays and biochemical assessments indicated that obese animals exhibited severe depressive-like behavior compared to non-obese animals. Furthermore, obese animals subjected to CUMS worsen the depressive behavior compared to obese control animals. Repetitive treatment with pioglitazone reversed the CUMS induced behavioral and biochemical alterations in HFD fed obese mice which atleast in part may be mediated through improving altered plasma glucose. The study suggests that pioglitazone needs further attention with respect to molecular mechanisms that could provide a better therapeutic strategy against depression associated with obesity.
Collapse
Affiliation(s)
- Yeshwant Kurhe
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India
| | | |
Collapse
|
26
|
Mahmoud ME, Ihara F, Fereig RM, Nishimura M, Nishikawa Y. Induction of depression-related behaviors by reactivation of chronic Toxoplasma gondii infection in mice. Behav Brain Res 2016; 298:125-33. [DOI: 10.1016/j.bbr.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/25/2022]
|
27
|
Yu M, Zhang Y, Chen X, Zhang T. Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in a rat model of chronic stress. Stress 2016; 19:104-13. [PMID: 26466744 DOI: 10.3109/10253890.2015.1108302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to examine whether amantadine (AMA), as a low-affinity noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, is able to improve cognitive deficits caused by chronic stress in rats. Male Wistar rats were divided into four groups: control, control + AMA, stress and stress + AMA groups. The chronic stress model combined chronic unpredictable stress (CUS) with isolated feeding. Animals were exposed to CUS continued for 21 days. AMA (25 mg/kg) was administrated p.o. for 20 days from the 4th day of CUS to the 23rd. Weight and sucrose consumption were measured during model establishing period. Spatial memory was evaluated using the Morris water maze (MWM) test. Following MWM testing, both long-term potentiation (LTP) and depotentiation were recorded in the hippocampal CA1 region. NR2B and postsynaptic density protein 95 (PSD-95) proteins were measured by Western-blot analysis. AMA increased weight and sucrose consumption of stressed rats. Spatial memory and reversal learning in stressed rats were impaired relative to controls, whereas AMA significantly attenuated cognitive impairment. AMA also mitigated the chronic stress-induced impairment of hippocampal synaptic plasticity, in which both the LTP and depotentiation were significantly inhibited in stressed rats. Moreover, AMA enhanced the expression of hippocampal NR2B and PSD-95 in stressed rats. The data suggest that AMA may be an effective therapeutic agent for depression-like symptoms and associated cognitive disturbances.
Collapse
Affiliation(s)
- Mei Yu
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University , Tianjin , PR China
| | - Yuan Zhang
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University , Tianjin , PR China
| | - Xiaoyu Chen
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University , Tianjin , PR China
| | - Tao Zhang
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University , Tianjin , PR China
| |
Collapse
|
28
|
The nonsteroidal antiinflammatory drug piroxicam reverses the onset of depressive-like behavior in 6-OHDA animal model of Parkinson’s disease. Neuroscience 2015; 300:246-53. [DOI: 10.1016/j.neuroscience.2015.05.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022]
|
29
|
Kurhe Y, Mahesh R, Gupta D, Thangaraj D. Effect of (4a) a novel 5-HT3 receptor antagonist on chronic unpredictable mild stress induced depressive-like behavior in mice: an approach using behavioral tests battery. J Basic Clin Physiol Pharmacol 2015; 26:25-33. [PMID: 24706431 DOI: 10.1515/jbcpp-2013-0160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND The inconsistent therapeutic outcome necessitates designing and identifying novel therapeutic interventions for depression. Hence, the present study deals with the investigation of antidepressant-like effects of a novel 5-HT3 receptor antagonist (4-phenylpiperazin-1-yl) (quinoxalin-2-yl) methanone (4a) on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alterations. METHODS Animals were subjected to different stressors for a period of 28 days. On day 15 after the subsequent stress procedure, mice were administered with (4a) (2 and 4 mg/kg p.o.), escitalopram (10 mg/kg p.o.), or vehicle (10 mL/kg p.o.) until day 28 along with the CUMS. Thereafter, behavioral battery tests like locomotor score, sucrose preference test, forced swim test (FST), tail suspension test (TST), and elevated plus maze (EPM) were performed. Biochemical assays like lipid peroxidation, nitrite levels, reduced glutathione (GSH), catalase, and superoxide dismutase (SOD) were estimated in the mice brain homogenate. RESULTS (4a) Dose dependently attenuated the behavioral alterations by increasing the sucrose consumption, reducing the immobility time in FST and TST, increasing the open arm number of entries and time in EPM. Furthermore, biochemical alterations were reversed by (4a) as examined by reduced lipid peroxidation and nitrite levels and elevated antioxidant enzyme levels like GSH, catalase and SOD. CONCLUSIONS (4a) exhibits antidepressant potential by reversing the CUMS induced behavioral and biochemical changes in mice.
Collapse
|
30
|
Ding L, Zhang X, Guo H, Yuan J, Li S, Hu W, Golden T, Wu N. The Functional Study of a Chinese Herbal Compounded Antidepressant Medicine--Jie Yu Chu Fan Capsule on Chronic Unpredictable Mild Stress Mouse Model. PLoS One 2015; 10:e0133405. [PMID: 26186537 PMCID: PMC4506077 DOI: 10.1371/journal.pone.0133405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/26/2015] [Indexed: 12/26/2022] Open
Abstract
Jie Yu Chu Fan capsule (JYCF) is a new compounded Chinese herbal medicine for the treatment of depression. The present study was designed to explore the antidepressant effects and the possible mechanisms of JYCF by using chronic unpredictable mild stress (CUMS) mouse model and comparing results to that of fluoxetine. Behavioral tests including an open field test, sucrose preference test and forced swim test were performed to evaluate the antidepressant effects of JYCF. The concentrations of monoamine neurotransmitters and metabolic products including norepinephrine (NE), 5-hydroxytryptamine (5-HT), dopamine (DA), 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the cerebral cortex and hippocampus of mice were determined by means of high performance liquid chromatography with electrochemical detection (HPLC-EC). The results show that a successful mouse CUMS model was established through 5 weeks of continuous unpredictable stimulation, as indicated by the significant decrease in sucrose preference and locomotor activity and increase in immobility time in the forced swim test. Chronic treatment of JYCF (1.25, 2.5 and 5 g/kg) and fluoxetine (20mg/kg) significantly reversed the CUMS-induced behavioral abnormalities. JYCF (1.25, 2.5 and 5 g/kg) significantly increased NE in CUMS mouse prefrontal cortex (P < 0.01, P < 0.01, P < 0.05 respectively) and 5-HT in hippocampus (P < 0.05). In summary, our findings suggest that JYCF exerts comparable antidepressant-like effects to that of fluoxetine in CUMS mice. Besides, the antidepressant-like effect of JYCF is mediated by the increase of monoaminergic transmitters including 5-HT and NE.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Zhang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongliang Guo
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junliang Yuan
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shujuan Li
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- * E-mail:
| | - Teresa Golden
- Department of Biological Sciences, Southeastern Oklahoma State University, Durant, Oklahoma, United States of America
| | - Ning Wu
- Department of Biological Sciences, Southeastern Oklahoma State University, Durant, Oklahoma, United States of America
| |
Collapse
|
31
|
Lee B, Sur B, Shim I, Lee H, Hahm DH. Angelica gigas ameliorate depression-like symptoms in rats following chronic corticosterone injection. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:210. [PMID: 26138544 PMCID: PMC4490640 DOI: 10.1186/s12906-015-0746-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Repeated injection of corticosterone (CORT) induces dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depression. We examined the effects of Angelica gigas extract (AGN) treatment in a rat model of depressive and anxiety-like behaviors, induced by chronic CORT exposure. METHODS Male rats received 10, 20, or 50 mg/kg AGN (i.p.) 30 min prior to a daily injection of CORT for 21 consecutive days. Activation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotropin-releasing factor in the hypothalamus. RESULTS Daily AGN administration significantly reversed the depression and anxiety-like behavioral abnormalities. It also blocked increases in tyrosine hydroxylase expression in the locus coeruleus, and suppressed the decreased expression levels of brain-derived neurotrophic factor (BDNF) and its receptor TrkB mRNAs in the hippocampus. CONCLUSIONS These findings indicate that administration of AGN prior to high-dose exogenous CORT significantly improved helpless behaviors, possibly by modulating the central noradrenergic system and regulation of BDNF expression in rats. Thus, AGN may be a useful agent for the treatment or alleviation of psychiatric disorders associated with depression and anxiety disorders.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| | - Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
- BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
- BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea.
| |
Collapse
|
32
|
Khedr LH, Nassar NN, El-Denshary ES, Abdel-Tawab AM. Paroxetine ameliorates changes in hippocampal energy metabolism in chronic mild stress-exposed rats. Neuropsychiatr Dis Treat 2015; 11:2887-901. [PMID: 26622178 PMCID: PMC4654549 DOI: 10.2147/ndt.s87089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The molecular mechanisms underlying stress-induced depression have not been fully outlined. Hence, the current study aimed at testing the link between behavioral changes in chronic mild stress (CMS) model and changes in hippocampal energy metabolism and the role of paroxetine (PAROX) in ameliorating these changes. Male Wistar rats were divided into three groups: vehicle control, CMS-exposed rats, and CMS-exposed rats receiving PAROX (10 mg/kg/day intraperitoneally). Sucrose preference, open-field, and forced swimming tests were carried out. Corticosterone (CORT) was measured in serum, while adenosine triphosphate and its metabolites, cytosolic cytochrome-c (Cyt-c), caspase-3 (Casp-3), as well as nitric oxide metabolites (NOx) were measured in hippocampal tissue homogenates. CMS-exposed rats showed a decrease in sucrose preference as well as body weight compared to control, which was reversed by PAROX. The latter further ameliorated the CMS-induced elevation of CORT in serum (91.71±1.77 ng/mL vs 124.5±4.44 ng/mL, P<0.001) as well as the changes in adenos-ine triphosphate/adenosine diphosphate (3.76±0.02 nmol/mg protein vs 1.07±0.01 nmol/mg protein, P<0.001). Furthermore, PAROX reduced the expression of Cyt-c and Casp-3, as well as restoring NOx levels. This study highlights the role of PAROX in reversing depressive behavior associated with stress-induced apoptosis and changes in hippocampal energy metabolism in the CMS model of depression.
Collapse
Affiliation(s)
- Lobna H Khedr
- Department of Pharmacology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Ahmed M Abdel-Tawab
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
33
|
Fadaei A, Gorji HM, Hosseini SM. Swimming reduces the severity of physical and psychological dependence and voluntary morphine consumption in morphine dependent rats. Eur J Pharmacol 2014; 747:88-95. [PMID: 25498794 DOI: 10.1016/j.ejphar.2014.11.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/10/2014] [Accepted: 11/27/2014] [Indexed: 11/26/2022]
Abstract
Previous studies have indicated that voluntary exercise decreases the severity of the anxiogenic-like behaviors in both morphine-dependent and withdrawn rats. This study examined the effects of regular swimming exercise during the development of dependency and spontaneous morphine withdrawal on the anxiety-depression profile and voluntary morphine consumption in morphine dependent rats. The rats were chronically treated with bi-daily doses (10 mg/kg, at 12h intervals) of morphine over a period of 14 days. The exercising rats were allowed to swim (45 min/d, five days per a week, for 14 or 21 days) during the development of morphine dependence and withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice paradigm in animal models of craving. The results showed that withdrawal signs were decreased in swimmer morphine dependent rats than sedentary rats (P<0.05). Also, the swimmer morphine-dependent and withdrawn rats exhibited an increase in EPM open arm time and entries (P<0.05), higher levels of sucrose preference (P<0.001) than sedentary rats. Voluntary consumption of oral morphine was less in the swimmer morphine-withdrawn rats than the sedentary groups during four periods of the intake of drug (P<0.01). We conclude that regular swimming exercise reduces the severity of morphine dependence and voluntary morphine consumption with reducing anxiety and depression in morphine-dependent and withdrawn rats. Thus, swimming exercise may be a potential method to ameliorate some of the deleterious behavioral consequences of morphine dependence.
Collapse
Affiliation(s)
- Atefeh Fadaei
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Hossein Miladi Gorji
- Laboratory of Animal Addiction Models, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
34
|
Gupta D, Radhakrishnan M, Kurhe Y, Thangaraj D, Prabhakar V, Kanade P. Antidepressant-like effects of a novel 5-HT3 receptor antagonist 6z in acute and chronic murine models of depression. Acta Pharmacol Sin 2014; 35:1493-503. [PMID: 25418380 DOI: 10.1038/aps.2014.89] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/28/2014] [Indexed: 12/19/2022] Open
Abstract
AIM To investigate the antidepressant-like effects of a novel 5-HT3 receptor antagonist N-(benzo[d]thiazol-2-yl)-3-methoxyquinoxalin-2-carboxamide (6z) in acute and chronic murine models of depression. METHODS 5-HT3 receptor antagonism was examined in guinea pig ileum in vitro. A tail suspension test (TST) was used as acute depression model to evaluate the antidepressant-like behavior in mice treated with 6z (0.5-2 mg/kg, ip). In chronic depression model, mice were exposed to a 4-week chronic unpredictable stress (CUS) protocol, and treated with 6z (0.5-2 mg·kg(-1)·d(-1), po) or a positive drug fluoxetine (10 mg·kg(-1)·d(-1), po) in the last 2 weeks, followed by behavioral and biochemical assessments. RESULTS The 5-HT3 receptor antagonism of 6z (pA2=7.4) in guinea pig ileum was more potent than that of a standard 5-HT3 receptor antagonist ondansetron (pA2=6.9). In acute depression model, 6z administration significantly decreased the immobility duration. In chronic depression model, 6z administration reversed CUS-induced depressive-like behavior, as evidenced by increased immobility duration in the forced swim test and sucrose preference in the sucrose preference test. Furthermore, chronic administration of 6z prevented CUS-induced brain oxidative stress, with significant reduction of pro-oxidant markers and elevation of antioxidant enzyme activity. Moreover, chronic administration of 6z attenuated CUS-induced hypothalamic-pituitary-adrenal axis hyperactivity, as shown by reduced plasma corticosterone levels. Similar results were observed in the fluoxetine-treated group. CONCLUSION 6z is a novel 5-HT3 receptor antagonist with potential antidepressant-like activities, which may be related to modulating hypothalamic-pituitary-adrenal axis and attenuating brain oxidative damage.
Collapse
|
35
|
Bhatt S, Radhakrishnan M, Jindal A, Devadoss T, Dhar AK. Neuropharmacological evaluation of a novel 5-HT3 receptor antagonist (6g) on chronic unpredictable mild stress-induced changes in behavioural and brain oxidative stress parameters in mice. Indian J Pharmacol 2014; 46:191-6. [PMID: 24741192 PMCID: PMC3987189 DOI: 10.4103/0253-7613.129316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/22/2013] [Accepted: 01/24/2014] [Indexed: 12/27/2022] Open
Abstract
AIM The aim of the study was to evaluate a novel 5 HT3 receptor antagonist (6g) on chronic stress induced changes in behavioural and brain oxidative stress parameter in mice. A complicated relationship exists among stressful stimuli, body's reaction to stress and the onset of clinical depression. Chronic unpredictable stressors can produce a situation similar to human depression, and such animal models can be used for the preclinical evaluation of antidepressants. MATERIALS AND METHODS In the present study, a novel and potential 5-HT3 receptor antagonist (4-benzylpiperazin-1-yl)(3-methoxyquinoxalin-2-yl) methanone (6g) with good Log P (3.08) value and pA 2(7.5) values, synthesized in our laboratory was investigated to study the effects on chronic unpredictable mild stress (CUMS)-induced behavioural and biochemical alterations in mice. Mice were subjected to different stress paradigms daily for a period of 28 days to induce depressive-like behaviour. RESULTS The results showed that CUMS caused depression-like behaviour in mice, as indicated by the significant (P < 0.05) decrease in sucrose consumption and locomotor activity and increase in immobility the forced swim test. In addition, it was found that lipid peroxidation and nitrite levels were significantly (P < 0.05) increased, whereas glutathione levels, superoxide dismutase and catalase activities decreased in brain tissue of CUMS-treated mice. '6g' (1 and 2 mg/kg, p.o., 21 days) and fluoxetine treatment (20 mg/kg, p.o., 21 days) significantly (P < 0.05) reversed the CUMS-induced behavioural (increased immobility period, reduced sucrose preference and decreased locomotor activity) and biochemical (increased lipid peroxidation; decreased glutathione levels, superoxide dismutase and catalase activities). However fluoxetine treatment (20 mg/kg, p.o., 21 days) significantly decreased the nitrite level in the brain while '6g' (1 and 2 mg/kg, p.o., 21 days) did not show significant (P < 0.05) effect on the nitrite levels in brain. CONCLUSION Compound '6g' exerted antidepressant-like effects in behavioural despair paradigm in chronically stressed mice by restoring antioxidant mechanisms.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Mahesh Radhakrishnan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Ankur Jindal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Thangaraj Devadoss
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Arghya Kusum Dhar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
36
|
Behavioral and molecular alterations in mice resulting from chronic treatment with dexamethasone: relevance to depression. Neuroscience 2014; 286:141-50. [PMID: 25433240 DOI: 10.1016/j.neuroscience.2014.11.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/20/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022]
Abstract
Chronic stress, the administration of glucocorticoids and the prolonged activation of glucocorticoid receptors (GRs) are reported to induce affective changes in humans and rodents that resemble a depressive state. However, data concerning the behavioral and molecular effects of the selective activation of specific GRs are limited, and the conclusions derived remain debatable. In this study, our goal was to investigate the behavioral and molecular changes following the prolonged activation of GRs in mice via exposure to the specific agonist dexamethasone (DEX). C57BL/6J mice were injected daily with DEX (4 mg/kg, i.p.) or saline, and the behavior of the animals was assessed in the following paradigms: the forced swimming test (FST), the light-dark box test, the saccharin preference test and activity boxes. The mRNA expression levels of the corticosteroid receptors mineralocorticoid (MR, Nr3c2) and glucocorticoid (GR, Nr3c1), selected stress dependent genes and glial markers were analyzed in the prefrontal cortex, hippocampus and striatum. DEX-treated mice exhibited a variety of depression-like behaviors: increased time of immobility in the FST, a reduced preference for saccharin consumption and increased anxiety-like behavior. Behavioral alterations were accompanied by a decrease in the mRNA expression of GR and the increased expression of Fkbp5 and Sgk1 in the prefrontal cortex, hippocampus and striatum of DEX-treated mice. Furthermore, our results indicate a decrease in the mRNA expression of glutamate aspartate transporter (GLAST, Slc1a3), an astroglial cell marker, in the hippocampus and prefrontal cortex. These results demonstrate that the prolonged activation of GR receptors induced a depression-like state in mice, activated stress-related genes and induced a decrease in the mRNA expression of GLAST, an astroglial marker, in the prefrontal cortex and hippocampus. Together, the results reported here challenge several hypotheses concerning the role of GRs in the development of behavioral and molecular alterations relevant to stress-related disorders, such as depression, under the same experimental conditions.
Collapse
|
37
|
Kurhe Y, Mahesh R, Devadoss T. QCM-4, a 5-HT₃ receptor antagonist ameliorates plasma HPA axis hyperactivity, leptin resistance and brain oxidative stress in depression and anxiety-like behavior in obese mice. Biochem Biophys Res Commun 2014; 456:74-9. [PMID: 25446100 DOI: 10.1016/j.bbrc.2014.11.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022]
Abstract
Several preclinical studies have revealed antidepressant and anxiolytic-like effect of 5-HT3 receptor antagonists. In our earlier study, we have reported the antidepressive-like effect of 3-methoxy-N-p-tolylquinoxalin-2-carboxamide (QCM-4) in obese mice subjected to chronic stress. The present study deals with the biochemical mechanisms associated with depression co-morbid with obesity. Mice were fed with high fat diet (HFD) for 14 weeks, further subjected for treatment with QCM-4 (1 and 2mg/kg p.o.) and standard antidepressant escitalopram (ESC) (10mg/kg p.o.) for 28 days. Behavioral assays for depression such as sucrose preference test (SPT), forced swim test (FST) and for anxiety such as light and dark test (LDT) and hole board test (HBT) were performed in obese mice. Biochemical assessments including plasma leptin and corticosterone concentration followed by brain oxidative stress parameters malonaldehyde (MDA) and reduced glutathione (GSH) were performed. Results confirmed that QCM-4 exhibits antidepressive effect by increasing the sucrose consumption in SPT, reducing immobility time in FST and anxiolytic effect by increasing transitions and time in light chamber in LDT, increasing head dip and crossing score in HBT. Furthermore, QCM-4 attenuated the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity by reducing the plasma corticosterone, reversing altered plasma leptin, restoring the imbalance of brain MDA and GSH concentration. In conclusion, QCM-4 showed antidepressive and anxiolytic effect by reversing the behavioral alterations that were supported by biochemical estimations in obese mice.
Collapse
Affiliation(s)
- Yeshwant Kurhe
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India.
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India
| | - Thangaraj Devadoss
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India
| |
Collapse
|
38
|
The impacts of swimming exercise on hippocampal expression of neurotrophic factors in rats exposed to chronic unpredictable mild stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:729827. [PMID: 25477997 PMCID: PMC4244932 DOI: 10.1155/2014/729827] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022]
Abstract
Depression is associated with stress-induced neural atrophy in limbic brain regions, whereas exercise has antidepressant effects as well as increasing hippocampal synaptic plasticity by strengthening neurogenesis, metabolism, and vascular function. A key mechanism mediating these broad benefits of exercise on the brain is induction of neurotrophic factors, which instruct downstream structural and functional changes. To systematically evaluate the potential neurotrophic factors that were involved in the antidepressive effects of exercise, in this study, we assessed the effects of swimming exercise on hippocampal mRNA expression of several classes of the growth factors (BDNF, GDNF, NGF, NT-3, FGF2, VEGF, and IGF-1) and peptides (VGF and NPY) in rats exposed to chronic unpredictable mild stress (CUMS). Our study demonstrated that the swimming training paradigm significantly induced the expression of BDNF and BDNF-regulated peptides (VGF and NPY) and restored their stress-induced downregulation. Additionally, the exercise protocol also increased the antiapoptotic Bcl-xl expression and normalized the CUMS mediated induction of proapoptotic Bax mRNA level. Overall, our data suggest that swimming exercise has antidepressant effects, increasing the resistance to the neural damage caused by CUMS, and both BDNF and its downstream neurotrophic peptides may exert a major function in the exercise related adaptive processes to CUMS.
Collapse
|
39
|
Neuropharmacological effect of novel 5-HT3 receptor antagonist, N-n-propyl-3-ethoxyquinoxaline-2-carboxamide (6n) on chronic unpredictable mild stress-induced molecular and cellular response: Behavioural and biochemical evidences. Pharmacol Rep 2014; 66:804-10. [DOI: 10.1016/j.pharep.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 11/21/2022]
|
40
|
Kurhe Y, Mahesh R, Gupta D, Devadoss T. QCM-4, a serotonergic type 3 receptor modulator attenuates depression co-morbid with obesity in mice: An approach based on behavioral and biochemical investigations. Eur J Pharmacol 2014; 740:611-8. [DOI: 10.1016/j.ejphar.2014.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022]
|
41
|
Jiang P, Xue Y, Li HD, Liu YP, Cai HL, Tang MM, Zhang LH. Dysregulation of vitamin D metabolism in the brain and myocardium of rats following prolonged exposure to dexamethasone. Psychopharmacology (Berl) 2014; 231:3445-51. [PMID: 24448902 DOI: 10.1007/s00213-014-3440-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/02/2014] [Indexed: 12/23/2022]
Abstract
RATIONALE Chronic stress or hypercortisolism may increase the risks of depression, cardiac disorders, and osteoporosis, which are also associated with vitamin D (VD) deficiency. Both glucocorticoid receptor (GR) and vitamin D receptor (VDR) are widely distributed and affect many aspects of human physiology. The cross talk between the two steroids is pervasive, but the effect of glucocorticoids on circulating VD and local VD metabolism remains elusive. OBJECTIVES To fill this critical gap, we assessed the alterations of circulating VD and VD intracrine system in the brain and myocardium of rats treated with two different doses (0.2 and 2 mg/kg/day, respectively) of dexamethasone (Dex). RESULTS Daily treatment with 2 mg/kg of Dex for 10 days induced the rats to a depressive-like state and decreased the expression of both VDR and the cytochromes P450 enzymes involved in VD activation (CYP27B1) and catabolism (CYP24A1) in the prefrontal cortex and hippocampus. Meanwhile, the dose of 0.2 mg/kg Dex increased the expression of VDR in the prefrontal cortex but inhibited CYP27B1/CYP24A1/VDR expression in the hippocampus. Similarly, in the myocardium, the rats treated with Dex showed significantly lower expression of CYP27B1/CYP24A1/VDR. Renal VD metabolism and serum VD status were unchanged in 0.2 mg/kg Dex-treated rats. However, the higher dose suppressed the three key players involved in VD metabolism but did not alter serum VD levels. CONCLUSION These data provide new evidence that glucocorticoids could affect intracrine actions of VD in the brain and myocardium, which suggests the potential involvement of VD in the neural and cardiac dysfunctions induced by glucocorticoid excess.
Collapse
Affiliation(s)
- Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Effect of a selective cyclooxygenase type 2 inhibitor celecoxib on depression associated with obesity in mice: an approach using behavioral tests. Neurochem Res 2014; 39:1395-402. [PMID: 24816895 DOI: 10.1007/s11064-014-1322-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/19/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
The biological mechanisms that link the development of depression to metabolic disorders such as obesity and diabetes remain ambiguous. In the present study the potential of a selective cyclooxygenase inhibitor celecoxib (15 mg/kg p.o.) was investigated in depression associated with obesity in mice. Behavioral tests used to assess depressive-like behavior were sucrose preference test, forced swim test (FST), tail suspension test (TST) and elevated plus maze (EPM). The basal locomotor score in obese mice was not altered. Furthermore, estimation of biochemical parameters was performed for plasma glucose, total cholesterol, triglycerides and total proteins. Escitalopram (10 mg/kg p.o.) served as reference standard drug. In the results, chronic treatment with celecoxib for 28 days significantly attenuated the behavioral alterations as indicated by increased the sucrose consumption, reduced the immobility time in FST and TST, increased the percent open arm time and entries in EPM in obese mice. In the biochemical parameters celecoxib significantly reversed the increased plasma glucose, total cholesterol, triglycerides and total proteins in obese mice. In conclusion, celecoxib exhibited potential antidepressant-like effect in depression associated with obesity, which to some extent is mediated by reversing the altered plasma glucose in obese mice.
Collapse
|
43
|
Bhatt S, Mahesh R, Jindal A, Devadoss T. Protective effects of a novel 5-HT3 receptor antagonist, N-n-butyl-3-methoxy quinoxaline-2-carboxamide (6o) against chronic unpredictable mild stress-induced behavioral changes and biochemical alterations. Pharmacol Biochem Behav 2014; 122:234-9. [PMID: 24769308 DOI: 10.1016/j.pbb.2014.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 02/25/2014] [Accepted: 03/30/2014] [Indexed: 11/18/2022]
Abstract
Stimulation of high oxidative stress in the brain is considered as an important factor for neurotoxicity towards the pathophysiology of chronic stress-induced depression disorder. In the present research, a potential 5-HT₃ receptor antagonist N-n-butyl-3-methoxy quinoxaline-2-carboxamide (6o) having good Log P (2.60) and pA₂ (7.7) values was examined for its effect on the behavioral and biochemical changes induced by the chronic unpredictable mild stress (CUMS) model. In the current investigation mice were introduced to different stress procedures daily for a period of 28 days to induce a depressive-like behavior. The results show that CUMS caused a depression-like behavior in mice, as indicated by the significant decrease in sucrose consumption and locomotor activity and increase in immobility in the forced swim test (FST). Moreover, it was found that oxidative stress markers such as lipid peroxide and nitrite levels were significantly increased, whereas, antioxidant enzymes such as glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels were decreased in the brain tissue of CUMS-subjected mice. "Compound 6o" (1 and 2 mg/kg, p.o.) and fluoxetine treatment (20 mg/kg, p.o.) for a period of 21 days altered the CUMS-induced behavioral (increased immobility period, reduced sucrose preference and decreased locomotor activity) and biochemical (increased lipid peroxide, increased brain nitrite; decreased GSH, SOD and CAT levels) alterations. Moreover normal mice treated with "compound 6o" (2 mg/kg, p.o.) showed a significant decrease in the duration of immobility in FST as compared to normal vehicle treated mice. In conclusion, "compound 6o" produced antidepressant-like effects in behavioral despair paradigm in chronically stressed mice by restoring antioxidant enzyme activity.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani 333031, Rajasthan, India.
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani 333031, Rajasthan, India
| | - Ankur Jindal
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani 333031, Rajasthan, India
| | - Thangaraj Devadoss
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
44
|
Manikowska K, Mikołajczyk M, Mikołajczak PŁ, Bobkiewicz-Kozłowska T. The influence of mianserin on TNF-α, IL-6 and IL-10 serum levels in rats under chronic mild stress. Pharmacol Rep 2014; 66:22-7. [DOI: 10.1016/j.pharep.2013.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 10/25/2022]
|
45
|
Sickmann HM, Li Y, Mørk A, Sanchez C, Gulinello M. Does stress elicit depression? Evidence from clinical and preclinical studies. Curr Top Behav Neurosci 2014; 18:123-159. [PMID: 24633891 DOI: 10.1007/7854_2014_292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Exposure to stressful situations may induce or deteriorate an already existing depression. Stress-related depression can be elicited at an adolescent/adult age but evidence also shows that early adverse experiences even at the fetal stage may predispose the offspring for later development of depression. The hypothalamus-pituitary-adrenal axis (HPA-axis) plays a key role in regulating the stress response and dysregulation in the system has been linked to depression both in humans and in animal models. This chapter critically reviews clinical and preclinical findings that may explain how stress can cause depression, including HPA-axis changes and alterations beyond the HPA-axis. As stress does not elicit depression in the majority of the population, this motivated research to focus on understanding the biology underlying resilient versus sensitive subjects. Animal models of depression have contributed to a deeper understanding of these mechanisms. Findings from these models will be presented.
Collapse
Affiliation(s)
- Helle M Sickmann
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
46
|
Kurhe Y, Radhakrishnan M, Gupta D, Devadoss T. QCM-4 a novel 5-HT3 antagonist attenuates the behavioral and biochemical alterations on chronic unpredictable mild stress model of depression in Swiss albino mice. J Pharm Pharmacol 2013; 66:122-32. [DOI: 10.1111/jphp.12163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/16/2013] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
The inconsistent therapeutic outcome necessitates identifying novel compounds for the treatment of depression. Therefore, the present study is aimed at evaluating the antidepressant-like effects of a novel 5-HT3 receptor antagonist 3-methoxy-N-p-tolylquinoxalin-2-carboxamide (QCM-4) on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alterations in mice.
Methods
Animals were subjected to different stressors for a period of 28 days. Thereafter, battery tests like locomotor score, sucrose preference test, forced swim test (FST), tail suspension test (TST), elevated plus maze (EPM) and open field test (OFT) were performed. Biochemical assays like lipid peroxidation, nitrite levels, reduced glutathione (GSH), catalase and superoxide dismutase (SOD) were assessed in brain homogenate.
Key findings
QCM-4 dose dependently reversed the CUMS induced behavioral and biochemical alterations by increasing the sucrose consumption, reducing the immobility time in FST and TST, increasing the percent time in open arm in EPM and increasing the ambulation along with the rearings and decreased number of fecal pellets in OFT. Further, biochemical alterations were attenuated by QCM-4 as indicated by reduced lipid peroxidation and nitrite levels and elevated antioxidant enzyme levels like GSH, catalase and SOD.
Conclusions
QCM-4 attenuated the behavioral and biochemical derangements induced by CUMS in mice, indicating antidepressant behavior of the novel compound.
Collapse
Affiliation(s)
- Yeshwant Kurhe
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Mahesh Radhakrishnan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Deepali Gupta
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Thangaraj Devadoss
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
47
|
Acupuncture Activates ERK-CREB Pathway in Rats Exposed to Chronic Unpredictable Mild Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:469765. [PMID: 23843874 PMCID: PMC3703360 DOI: 10.1155/2013/469765] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 11/17/2022]
Abstract
Extracellular signal-regulated kinase (ERK)-cAMP response element binding protein (CREB) signal pathway has been implicated in the pathogenesis of depression. There is growing evidence that acupuncture in traditional Chinese medicine has antidepressant-like effect. However, the effect of acupuncture on ERK-CREB pathway remains unknown. In our study, the antidepressant-like effect of acupuncture treatment was measured by sucrose intake test and open field test in rats exposed to chronic unpredictable mild stress (CUMS) for 4 weeks. The protein levels of ERK1/2, CREB, phosphorylated ERK1/2 (p-ERK1/2), and phosphorylated CREB (p-CREB) in the hippocampus (HP) and prefrontal cortex (PFC) were examined by Western blot analysis. Our results showed that CUMS rats exhibited the reduction in behavioral activities, whereas acupuncture stimulation at acupoints Baihui (Du20) and Neiguan (PC6) reversed the behavioral deficit. In addition, exposure to CUMS resulted in the decrease of p-ERK1/2 and p-CREB in the HP and PFC. Acupuncture increased the ratio of p-ERK1/2 to ERK1/2 and the ratio of p-CREB to CREB in the HP and PFC. Our study suggested that one potential way, by which acupuncture had antidepressant-like effect, might be mediated by activating the ERK-CREB pathway in the brain.
Collapse
|
48
|
Jindal A, Mahesh R, Bhatt S. Etazolate, a phosphodiesterase 4 inhibitor reverses chronic unpredictable mild stress-induced depression-like behavior and brain oxidative damage. Pharmacol Biochem Behav 2013; 105:63-70. [DOI: 10.1016/j.pbb.2013.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/20/2013] [Accepted: 01/24/2013] [Indexed: 01/25/2023]
|
49
|
Depressive-like behaviour induced by an intracerebroventricular injection of streptozotocin in mice. Behav Pharmacol 2013; 24:79-86. [DOI: 10.1097/fbp.0b013e32835efc2f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Nobiletin Ameliorates the Deficits in Hippocampal BDNF, TrkB, and Synapsin I Induced by Chronic Unpredictable Mild Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:359682. [PMID: 23573124 PMCID: PMC3613093 DOI: 10.1155/2013/359682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/11/2022]
Abstract
Background. Our previous study has demonstrated that nobiletin could reverse the behavioral alterations in stressed mice. However, the relation of its antidepressant-like action with neurotrophic molecular expression remains unknown. This study aimed to explore the antidepressant-like mechanism of nobiletin related to the neurotrophic system in rats exposed to chronic unpredictable mild stress (CUMS). Methods. Depressive-like anhedonia (assessed by sucrose preference) and serum corticosterone secretion were evaluated in the CUMS, followed by brain-derived neurotrophic factor (BDNF), its tropomyosin-related kinase receptor B (TrkB), and the downstream target synapsin I expressions in the hippocampus. Results. Anhedonia, which occurred within week 2, was rapidly ameliorated by nobiletin. While fluoxetine needed additional 2 weeks to improve the anhedonia. In addition, nobiletin administration for 5 weeks significantly ameliorated CUMS-induced increase in serum corticosterone levels. Furthermore, we also found that CUMS-induced deficits of hippocampal BDNF, TrkB, and synapsin I were ameliorated by nobiletin.
Conclusions. Taken together, these findings suggest that nobiletin produces rapidly acting antidepressant-like responses in the CUMS and imply that BDNF-TrkB pathway may play an important role in the antidepressant-like effect of nobiletin.
Collapse
|