1
|
Abstract
Cognitive impairment affects up to 80% of patients with Parkinson's disease (PD) and is associated with poor quality of life. PD cognitive dysfunction includes poor working memory, impairments in executive function and difficulty in set-shifting. The pathophysiology underlying cognitive impairment in PD is still poorly understood, but there is evidence to support involvements of the cholinergic, dopaminergic, and noradrenergic systems. Only rivastigmine, an acetyl- and butyrylcholinesterase inhibitor, is efficacious for the treatment of PD dementia, which limits management of cognitive impairment in PD. Whereas the role of the serotonergic system in PD cognition is less understood, through its interactions with other neurotransmitters systems, namely, the cholinergic system, it may be implicated in cognitive processes. In this chapter, we provide an overview of the pharmacological, clinical and pathological evidence that implicates the serotonergic system in mediating cognition in PD.
Collapse
|
2
|
Gharib A, Komaki A, Manoochehri Khoshinani H, Saidijam M, Barkley V, Sarihi A, Mirnajafi-Zadeh J. Intrahippocampal 5-HT 1A receptor antagonist inhibits the improving effect of low-frequency stimulation on memory impairment in kindled rats. Brain Res Bull 2019; 148:109-117. [PMID: 30902574 DOI: 10.1016/j.brainresbull.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 01/10/2023]
Abstract
In addition to its anticonvulsant effect, low frequency stimulation (LFS) improves learning and memory in kindled animals. In the present study, the role of 5-HT1A receptors in mediating LFS' improving effect on spatial learning and memory was investigated in amygdala-kindled rats. Amygdala kindling was conducted in a semi-rapid kindling stimulations (12 stimulations per day) in male Wistar rats. LFS (4 trains of 0.1 ms pulse duration at 1 Hz, 200 pulses, 50-150 μA, at 5 min intervals) was applied after termination of kindling stimulations. NAD-299 (a selective 5-HT1A receptor antagonist; 2.5 and 5 μg/μl) was microinjected into the hippocampal CA1 before applying LFS. The Morris water maze, and novel object recognition tests were conducted after the last kindling stimulation. Hippocampal samples were also prepared, and 5-HT1A receptor gene expression levels were assessed using quantitative RT-PCR. In kindled animals, LFS reduced impairments in spatial learning and memory in the Morris water maze and novel object recognition tests. Microinjection of NAD doses of 5 μg/μl reduced the effects of LFS on learning and memory. The gene expression level of 5-HT1A receptors increased significantly in the hippocampus of amygdala-kindled rats. However, LFS applied after kindling stimulations inhibited this effect. It seems that activation of 5-HT1A receptors in the CA1 field is necessary for LFS' improving effects on spatial learning and memory in kindled animals; although surprisingly, LFS application prevented the elevation in gene expression of 5-HT1A receptors in kindled animals.
Collapse
Affiliation(s)
- Alireza Gharib
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Manoochehri Khoshinani
- Department of Molecular Medicine and Genetics, School of Medicine, Hamedan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamedan University of Medical Sciences, Hamadan, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Afshar S, Shahidi S, Rohani AH, Komaki A, Asl SS. The effect of NAD-299 and TCB-2 on learning and memory, hippocampal BDNF levels and amyloid plaques in Streptozotocin-induced memory deficits in male rats. Psychopharmacology (Berl) 2018; 235:2809-2822. [PMID: 30027497 DOI: 10.1007/s00213-018-4973-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/11/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Alzheimer's disease (AD) is the most common form of dementia characterized by a progressive decline in cognitive function. The serotonergic system via the 5-HT1A receptor and 5-HT2A receptor is proposed to affect the cognitive process. OBJECTIVE In the present study, the effects of NAD-299 (5-HT1AR antagonist) and TCB-2 (5-HT2AR agonist) on learning and memory processes, hippocampal brain-derived neurotrophic factor (BDNF) levels, neuronal necrosis, and Aβ plaque production have been investigated on the intracerebroventricular (icv) injection of streptozotocin (STZ)-induced memory deficits in rats. METHODS Fifty-four adult male Wistar rats (250-300 g) were divided into six groups (n = 9 in each group): control, sham-operated, AD (icv-STZ (3 mg/kg, 10 μl)), AD+NAD-299 (5 μg/1 μl icv for 30 days), AD+TCB-2 (5 μg/1 μl icv for 30 days), and AD+NAD-299 + TCB-2 (NAD-299 (5 μg/0.5 μl icv) and TCB-2 (5 μg/0.5 μl icv) for 30 days). Following the treatment period, rats were subjected to behavioral tests of learning and memory. Then, hippocampal BDNF, amyloid-beta (Aβ) plaque, and neuronal loss were determined by ELISA Kit, Congo red staining, and Nissl staining, respectively. RESULTS The results of behavioral tests showed that icv-STZ injection decreased the discrimination index in the novel object recognition (NOR) test. In the passive avoidance learning (PAL) task, icv-STZ injection significantly decreased step-through latency (STLr) and increased time spent in dark compartment (TDC). Treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 attenuated the STZ-induced memory impairment in both NOR and PAL tasks. icv-STZ induced a decrease in hippocampal BDNF levels and increased Aβ plaques production in the brain, whereas treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 reduced Aβ plaques in the brain and increased the hippocampal BDNF level. Results of Nissl staining showed that icv-STZ injection increased neuronal loss in the hippocampus, while treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 reduced hippocampal neurodegeneration. CONCLUSION These findings suggest that 5-HT1AR blockade by NAD-299 and 5-HT2AR activation by TCB-2 improve cognitive dysfunction in icv-STZ-treated rats, and these drugs may potentially prevent the progression of AD.
Collapse
Affiliation(s)
- Simin Afshar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ali Haeri Rohani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Gharib A, Sayyahi Z, Komaki A, Barkley V, Sarihi A, Mirnajafi-Zadeh J. The role of 5-HT 1A receptors of hippocampal CA1 region in anticonvulsant effects of low-frequency stimulation in amygdala kindled rats. Physiol Behav 2018; 196:119-125. [PMID: 30179595 DOI: 10.1016/j.physbeh.2018.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/24/2023]
Abstract
Low frequency stimulation (LFS) has been proposed as a method in the treatment of epilepsy, but its anticonvulsant mechanism is still unknown. In the current study, the hippocampal CA1 region was microinjected with NAD-299 (a selective 5-HT1A antagonist), and its role in mediating the inhibitory action of LFS on amygdala kindling was investigated. Male Wistar rats were kindled by amygdala stimulation in a semi-rapid kindling manner (12 stimulations per day). LFS (0.1 ms pulse duration at 1 Hz, 200 pulses, 50-150 μA) was applied at 5 min after termination of daily kindling stimulations. NAD (a selective 5-HT1A antagonist) was microinjected into the CA1 region of the hippocampus at the doses of 2.5 and 5 μg/1 μl. An open field test was also run to determine the motor activity of animals in different experimental groups. The application of LFS following daily kindling stimulations reduced the behavioral seizure stages, afterdischarge duration, and stage 5 seizure duration and increased the latency to stage 4 seizure compared to the kindled group. However, microinjection of NAD at the doses of 5 μg/1 μl, but not 2.5 μg/1 μl, blocked the inhibitory effect of LFS on behavioral and electrophysiological parameters in kindled animals. It could be presumed that 5-HT1A receptors in the CA1 area are involved in mediating the antiepileptic effects of LFS.
Collapse
Affiliation(s)
- Alireza Gharib
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zeinab Sayyahi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Abdolrahman Sarihi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Kumar JR, Rajkumar R, Lee LC, Dawe GS. Nucleus incertus contributes to an anxiogenic effect of buspirone in rats: Involvement of 5-HT1A receptors. Neuropharmacology 2016; 110:1-14. [PMID: 27436722 DOI: 10.1016/j.neuropharm.2016.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 12/16/2022]
Abstract
The nucleus incertus (NI), a brainstem structure with diverse anatomical connections, is implicated in anxiety, arousal, hippocampal theta modulation, and stress responses. It expresses a variety of neurotransmitters, neuropeptides and receptors such as 5-HT1A, D2 and CRF1 receptors. We hypothesized that the NI may play a role in the neuropharmacology of buspirone, a clinical anxiolytic which is a 5-HT1A receptor partial agonist and a D2 receptor antagonist. Several preclinical studies have reported a biphasic anxiety-modulating effect of buspirone but the precise mechanism and structures underlying this effect are not well-understood. The present study implicates the NI in the anxiogenic effects of a high dose of buspirone. Systemic buspirone (3 mg/kg) induced anxiogenic effects in elevated plus maze, light-dark box and open field exploration paradigms in rats and strongly activated the NI, as reflected by c-Fos expression. This anxiogenic effect was reproduced by direct infusion of buspirone (5 μg) into the NI, but was abolished in NI-CRF-saporin-lesioned rats, indicating that the NI is present in neural circuits driving anxiogenic behaviour. Pharmacological studies with NAD 299, a selective 5-HT1A antagonist, or quinpirole, a D2/D3 agonist, were conducted to examine the receptor system in the NI involved in this anxiogenic effect. Opposing the 5-HT1A agonism but not the D2 antagonism of buspirone in the NI attenuated the anxiogenic effects of systemic buspirone. In conclusion, 5-HT1A receptors in the NI contribute to the anxiogenic effect of an acute high dose of buspirone in rats and may be functionally relevant to physiological anxiety.
Collapse
Affiliation(s)
- Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Liying Corinne Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore.
| |
Collapse
|
6
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
7
|
Stiedl O, Pappa E, Konradsson-Geuken Å, Ögren SO. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol 2015; 6:162. [PMID: 26300776 PMCID: PMC4528280 DOI: 10.3389/fphar.2015.00162] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.
Collapse
Affiliation(s)
- Oliver Stiedl
- Department of Functional Genomics, Behavioral Neuroscience Group, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam - VU University Amsterdam Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Behavioral Neuroscience Group, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam -VU University Amsterdam Amsterdam, Netherlands
| | - Elpiniki Pappa
- Department of Functional Genomics, Behavioral Neuroscience Group, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam - VU University Amsterdam Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Behavioral Neuroscience Group, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam -VU University Amsterdam Amsterdam, Netherlands
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
8
|
Mandillo S, Golini E, Marazziti D, Di Pietro C, Matteoni R, Tocchini-Valentini GP. Mice lacking the Parkinson's related GPR37/PAEL receptor show non-motor behavioral phenotypes: age and gender effect. GENES BRAIN AND BEHAVIOR 2013; 12:465-77. [DOI: 10.1111/gbb.12041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/15/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022]
Affiliation(s)
- S. Mandillo
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - E. Golini
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - D. Marazziti
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - C. Di Pietro
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - R. Matteoni
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - G. P. Tocchini-Valentini
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| |
Collapse
|
9
|
Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013; 7:55. [PMID: 23653591 PMCID: PMC3642390 DOI: 10.3389/fncel.2013.00055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Andrew S. Gibbons
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Jaclyn Neo
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience, The University of MelbourneParkville, VIC, Australia
| | - Brian Dean
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| |
Collapse
|
10
|
Rodríguez JJ, Noristani HN, Verkhratsky A. The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol 2012; 99:15-41. [DOI: 10.1016/j.pneurobio.2012.06.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/24/2012] [Accepted: 06/22/2012] [Indexed: 01/11/2023]
|
11
|
Jalkanen AJ, Piepponen TP, Hakkarainen JJ, De Meester I, Lambeir AM, Forsberg MM. The effect of prolyl oligopeptidase inhibition on extracellular acetylcholine and dopamine levels in the rat striatum. Neurochem Int 2011; 60:301-9. [PMID: 22210165 DOI: 10.1016/j.neuint.2011.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/05/2011] [Accepted: 12/14/2011] [Indexed: 12/22/2022]
Abstract
Prolyl oligopeptidase (PREP, EC 3.4.21.26) inhibitors have potential as cognition enhancers, but the mechanism of action behind the cognitive effects remains unclear. Since acetylcholine (ACh) and dopamine (DA) are known to be associated with the regulation of cognitive processes, we investigated the effects of two PREP inhibitors on the extracellular levels of ACh and DA in the rat striatum using in vivo microdialysis. KYP-2047 and JTP-4819 were administered either as a single systemic dose (50 μmol/kg∼17 mg/kg i.p.) or directly into the striatum by retrodialysis via the microdialysis probe (12.5, 37.5 or 125 μM at 1.5 μl/min for 60 min). PREP inhibitors had no significant effect on striatal DA levels after systemic administration. JTP-4819 significantly decreased ACh levels both after systemic (by ∼25%) and intrastriatal (by ∼30-50%) administration. KYP-2047 decreased ACh levels only after intrastriatal administration by retrodialysis (by ∼40-50%) when higher drug levels were reached, indicating that higher brain drug levels are needed to modulate ACh levels than to inhibit PREP. This result does not support the earlier hypothesis that the positive cognitive effects of PREP inhibitors in rodents would be mediated through the cholinergic system. In vitro specificity studies did not reveal any obvious off-targets that could explain the observed effect of KYP-2047 and JTP-4819 on ACh levels, instead confirming the concept that these compounds have a high selectivity towards PREP.
Collapse
Affiliation(s)
- Aaro J Jalkanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
12
|
A role for 5-HT1A receptors in the basolateral amygdala in the development of conditioned defeat in Syrian hamsters. Pharmacol Biochem Behav 2011; 100:592-600. [PMID: 21967885 DOI: 10.1016/j.pbb.2011.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 11/22/2022]
Abstract
The basolateral nucleus of the amygdala (BLA) is a key brain region regulating behavioral changes following stressful events, including social defeat. Previous research has shown that activation of serotonin (5-HT) 1A receptors in the BLA reduces conditioned fear and anxiety-like behavior. The objective of this study was to test whether 5-HT1A receptors in the BLA contribute to conditioned defeat in male Syrian hamsters (Mesocricetus auratus). We tested whether injection of the selective 5-HT1A receptor agonist flesinoxan (400 ng, 800 ng, or 1200 ng in 200 nl saline) into the BLA prior to social defeat would reduce the acquisition of conditioned defeat, and whether a similar injection prior to testing would reduce the expression of conditioned defeat. We also tested whether injection of the selective 5-HT1A receptor antagonist WAY-100635 (400 ng or 1600 ng in 200 nl saline) into the BLA prior to social defeat would enhance the acquisition of conditioned defeat, and whether a similar injection prior to testing would enhance the expression of conditioned defeat. We found that injection of flesinoxan into the BLA decreased both the acquisition and expression of conditioned defeat. However, injection of WAY-100635 into the BLA did not alter the acquisition or expression of conditioned defeat. These data indicate that pharmacological activation of 5-HT1A receptors in the BLA is sufficient to impair the acquisition and expression of conditioned defeat. Our results suggest that pharmacological treatments that activate 5-HT1A receptors in the BLA are capable of reducing the development of stress-induced changes in behavior.
Collapse
|
13
|
Gold PE, Countryman RA, Dukala D, Chang Q. Acetylcholine release in the hippocampus and prelimbic cortex during acquisition of a socially transmitted food preference. Neurobiol Learn Mem 2011; 96:498-503. [PMID: 21907814 DOI: 10.1016/j.nlm.2011.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/08/2011] [Accepted: 08/17/2011] [Indexed: 01/13/2023]
Abstract
Interference with cholinergic functions in hippocampus and prefrontal cortex impairs learning and memory for social transmission of food preference, suggesting that acetylcholine (ACh) release in the two brain regions may be important for acquiring the food preference. This experiment examined release of ACh in the hippocampus and prefrontal cortex of rats during training for social transmission of food preference. After demonstrator rats ate a food with novel flavor and odor, a social transmission of food preference group of rats was allowed to interact with the demonstrators for 30 min, while in vivo microdialysis collected samples for later measurement of ACh release with HPLC methods. A social control group observed a demonstrator that had eaten food without novel flavor and odor. An odor control group was allowed to smell but not ingest food with novel odor. Rats in the social transmission but not control groups preferred the novel food on a trial 48 h later. ACh release in prefrontal cortex, with probes that primarily sampled prelimbic cortex, did not increase during acquisition of the social transmission of food preference, suggesting that training-initiated release of ACh in prelimbic cortex is not necessary for acquisition of the food preference. In contrast, ACh release in the hippocampus increased substantially (200%) upon exposure to a rat that had eaten the novel food. Release in the hippocampus increased significantly less (25%) upon exposure to a rat that had eaten normal food and did not increase significantly in the rats exposed to the novel odor; ACh release in the social transmission group was significantly greater than that of the either of the control groups. Thus, ACh release in the hippocampus but not prelimbic cortex distinguished well the social transmission vs. control conditions, suggesting that cholinergic mechanisms in the hippocampus but not prelimbic cortex are important for acquiring a socially transmitted food preference.
Collapse
Affiliation(s)
- P E Gold
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| | | | | | | |
Collapse
|