1
|
Zhou Q, Zhong Q, Liu Z, Zhao Z, Wang J, Zhang Z. Modulating Anxiety-Like Behaviors in Neuropathic Pain: Role of Anterior Cingulate Cortex Astrocytes Activation. CNS Neurosci Ther 2025; 31:e70227. [PMID: 39838823 PMCID: PMC11751476 DOI: 10.1111/cns.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
AIMS The comorbidity of anxiety-like symptoms in neuropathic pain (NP) is a significant yet often overlooked health concern. Anxiety sufferers may have a lower tolerance for pain, but which is difficult to treat. Accumulating evidence suggests a strong link between astrocytes and the manifestation of NP with concurrent anxiety-like behaviors. And the anterior cingulate cortex (ACC) has emerged as a key player in pain modulation and related emotional processing. However, the complex mechanisms that astrocytes in ACC influence anxiety behavior in mouse models of NP remain largely unexplored. METHODS Utilizing the traditional spared nerve injury (SNI) surgical model, we employed chemogenetic approaches, immunofluorescence, and western blot to investigate the functional significance and interactive dynamics between ACC astrocytes and excitatory neurons. RESULTS Our results revealed that SNI surgery induces NP and delayed anxiety-like behaviors, accompanied by increased astrocyte activity in the ACC. Chemogenetic manipulation demonstrated that inhibiting astrocytes alleviates anxiety symptoms, while activating them exacerbates anxiety-like behaviors, affecting local excitatory neurons and synapse density. Direct manipulation of ACC excitatory neurons also significantly impacted anxiety-like behaviors. CONCLUSION Our results highlight the pivotal role of ACC astrocytes in modulating anxiety-like behavior, suggesting a novel therapeutic strategy for anxiety associated with NP by targeting astrocyte function.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of AnesthesiologyZhongnan Hospital, Wuhan UniversityWuhanChina
| | - Qi Zhong
- Department of AnesthesiologyZhongnan Hospital, Wuhan UniversityWuhanChina
| | - Zhuang Liu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective DisordersSongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanInnovation Academy for Precision Measurement Science and Technology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ziyue Zhao
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective DisordersSongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanInnovation Academy for Precision Measurement Science and Technology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Wang
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective DisordersSongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zongze Zhang
- Department of AnesthesiologyZhongnan Hospital, Wuhan UniversityWuhanChina
| |
Collapse
|
2
|
Alper Karakus A, Dallali I, Arslan R, Eken H, Hasan A, Bektas N. Examination of the antiallodynic effect of rosmarinic acid in neuropathic pain and possible mechanisms of action. Neurosci Lett 2024; 842:137994. [PMID: 39307178 DOI: 10.1016/j.neulet.2024.137994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
This study aimed to explore the potential antiallodynic effects of rosmarinic acid, a natural antioxidant with a demonstrated safety profile across a broad dose range. Using a chronic constriction injury-induced neuropathic pain model, the impact of rosmarinic acid on allodynia was investigated. Furthermore, the involvement of adrenergic and opioidergic mechanisms in its activity was assessed. To evaluate rosmarinic acid's efficacy, doses of 10, 20, and 40 mg/kg were administered and the electronic von Frey test was utilized along with an activity cage apparatus. % MPE values were calculated to gauge the extent of pain relief. Mechanistic insights were obtained by pretreating animals with the β-adrenergic receptor antagonist propranolol, the α1-adrenergic receptor antagonist prazosin, α2-adrenergic receptor antagonist yohimbine, and the opioid receptor antagonist naloxone. Rosmarinic acid demonstrated a statistically significant antiallodynic effect that was independent of locomotor activity. This effect was noteworthy as it resembled both the level and duration of relief provided by pregabalin. Additionally, the %MPE value of the group treated with 40 mg/kg rosmarinic acid showed a significant difference compared to the value of the pregabalin-treated group (P<0.001). Pre-administration of the antagonists revealed that the antiallodynic activity was shown to be mediated by the stimulation of opioid and adrenergic receptors, with a primary contribution from α2-adrenergic receptor stimulation. Our findings suggest that rosmarinic acid may hold promise as a potential therapeutic agent for neuropathic pain. By elucidating the involvement of adrenergic and opioidergic mechanisms, we have provided valuable preclinical data that could inform novel treatment approaches.
Collapse
Affiliation(s)
- Ahmet Alper Karakus
- Graduate School of Health Sciences, Department of Pharmacology, Anadolu University, 26470 Eskisehir, Turkey
| | - Ilhem Dallali
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research and Department of Cellular and Molecular Medicine, KU Leuven, ON1 Herestraat 49 - box 802, 3000 Leuven, Belgium
| | - Rana Arslan
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Hazal Eken
- Department of Pharmacology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Ahmed Hasan
- Graduate School of Health Sciences, Department of Pharmacology, Anadolu University, 26470 Eskisehir, Turkey
| | - Nurcan Bektas
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey.
| |
Collapse
|
3
|
Anitua E, Troya M, Alkhraisat MH. Effectiveness of platelet derivatives in neuropathic pain management: A systematic review. Biomed Pharmacother 2024; 180:117507. [PMID: 39378680 DOI: 10.1016/j.biopha.2024.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) has a considerable impact on the global economic burden and seriously impairs patients' quality of life. Currently there is no evidence-based "effective" treatment and new treatments are needed. Recently, platelet rich plasma (PRP) has emerged as an alternative treatment. Therefore, a systematic review has been conducted to present an evidence-based assessment of the use of PRP in the treatment of NP. METHODS Randomized studies that investigated the effect of PRP injection on patients with NP compared to alternative treatments or placebo were included. An encompassing search of specific databases, from their inception to April 2024, was performed. The databases were as follows: PubMed, Web of Sciences (MEDLINE) and Cochrane Library. The Cochrane Risk-of-Bias 2 tool was used to assess study methodological quality. RESULTS A total of 12 randomized studies with 754 patients with different NP conditions were included in this systematic review. According to the results from the qualitative analysis, PRP injection exerted a positive effect on improving pain intensity on most of the trials (8 out of 12). In the remaining studies, no differences were found. A high safety profile was reported with no serious adverse effects in the analysed patients. CONCLUSION PRP treatment might be an effective therapeutic approach for patients with different neuropathic pain conditions. The efficacy of PRP was not dependant on the aetiology of the underlying disorder; nevertheless, interpretations of the results should be performed cautiously, as for the under-representation of NP conditions.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - María Troya
- BTI Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Mohammad H Alkhraisat
- BTI Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Adjunct professor, Faculty of Dentistry, University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Wang J, Wang Z, Zhang K, Cui Y, Zhou J, Liu J, Li H, Zhao M, Jiang J. The role of the ubiquitin system in the onset and reversal of neuropathic pain. Biomed Pharmacother 2024; 179:117127. [PMID: 39191026 DOI: 10.1016/j.biopha.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024] Open
Abstract
Neuropathic pain (NP) remains one of the world's most difficult problems, and people suffering from NP have their quality of life affected to a great extent and constantly suffer from pain. Sensitization of injurious receptors, ectopic firing of afferent nerves after nerve injury, and coupling between sympathetic and sensory neurons are involved in the onset or development of NP, but the pathogenesis of NP is still not well understood. We found that the ubiquitin system is involved in the pathogenesis of NP and has a crucial role in it. The ubiquitin system can be involved in the onset or reversal of NP by affecting ion channels, cellular signal transduction, glial cells, and the regulation of non-coding RNAs. This provides new ideas for the treatment of NP. The ubiquitin system may be a new effective target for the treatment of NP. A continued, in-depth understanding of the mechanisms of the ubiquitin system involved in NP could further refine the study of analgesic targets and improve pharmacological studies.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kexin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanping Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingruo Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiazhou Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanyi Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingxia Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Li M, Zhu X, Zhang M, Yu J, Jin S, Hu X, Piao H. The analgesic effect of paeoniflorin: A focused review. Open Life Sci 2024; 19:20220905. [PMID: 39220595 PMCID: PMC11365469 DOI: 10.1515/biol-2022-0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 09/04/2024] Open
Abstract
Pain has been a prominent medical concern since ancient times. Despite significant advances in the diagnosis and treatment of pain in contemporary medicine, there is no a therapeutic cure for chronic pain. Chinese herbaceous peony, a traditional Chinese analgesic herb has been in clinical use for millennia, with widespread application and substantial efficacy. Paeoniflorin (PF), the main active ingredient of Chinese herbaceous peony, has antioxidant, anti-inflammatory, anticancer, analgesic, and antispasmodic properties, among others. The analgesic effect of PF, involving multiple critical targets and pain regulatory pathways, has been a hot spot for current research. This article reviews the literature related to the analgesic effect of PF in the past decade and discusses the molecular mechanism of the analgesic effect of PF, including the protective effects of nerve cells, inhibition of inflammatory reactions, antioxidant effects, reduction of excitability in nociceptor, inhibition of the nociceptive excitatory neuroreceptor system, activation of the nociceptive inhibitory neuroreceptor system and regulation of other receptors involved in nociceptive sensitization. Thus, providing a theoretical basis for pain prevention and treatment research. Furthermore, the prospect of PF-based drug development is presented to propose new ideas for clinical analgesic therapy.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| | - Mingxue Zhang
- First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, Shenyang, Liaoning, 110032, China
| | - Jun Yu
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning, 110847, P.R. China
| | - Shengbo Jin
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning, 110847, P.R. China
| | - Xiaoli Hu
- First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, Shenyang, Liaoning, 110032, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| |
Collapse
|
6
|
Giri SS, Tripathi AS, Erkekoğlu P, Zaki MEA. Molecular pathway of pancreatic cancer-associated neuropathic pain. J Biochem Mol Toxicol 2024; 38:e23638. [PMID: 38613466 DOI: 10.1002/jbt.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 04/15/2024]
Abstract
The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1β into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.
Collapse
Affiliation(s)
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Dudarev V, Barral O, Radaeva M, Davis G, Enns JT. Night time heart rate predicts next-day pain in fibromyalgia and primary back pain. Pain Rep 2024; 9:e1119. [PMID: 38322354 PMCID: PMC10843528 DOI: 10.1097/pr9.0000000000001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/24/2023] [Accepted: 09/30/2023] [Indexed: 02/08/2024] Open
Abstract
Introduction Primary chronic pain is pain that persists for over 3 months without associated measurable tissue damage. One of the most consistent findings in primary chronic pain is its association with autonomic hyperactivation. Yet whether the autonomic hyperactivation causes the pain or results from it is still unclear. It is also unclear to what extent autonomic hyperactivation is related to experienced pain intensity in different subtypes or primary chronic pain. Objectives Our first aim was to test lagged relationships between the markers of autonomic activation (heart rate) and pain intensity to determine its directionality. The main question here was whether autonomic biomarkers predict pain intensity or whether pain intensity predicts autonomic biomarkers. The second aim was to test whether this relationship is different between people with primary back pain and people with fibromyalgia. Methods Sixty-six patients with chronic pain were observed over an average of 81 days. Sleep heart rate and heart rate variability were measured with a wearable sensor, and pain intensity was assessed from daily subjective reports. Results The results showed a predictive relationship between sleep heart rate and next-day pain intensity (P < 0.05), but not between daily pain intensity and next night heart rate. There was no interaction with the type of chronic pain. Conclusions These findings suggest that autonomic hyperactivation, whether stress-driven or arising from other causes, precedes increases in primary chronic pain. Moreover, the present results suggest that autonomic hyperactivation is a common mechanism underlying the pain experience in fibromyalgia and chronic back pain.
Collapse
Affiliation(s)
- Veronica Dudarev
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- HealthQb Technologies, Vancouver, BC, Canada
| | | | - Mariia Radaeva
- HealthQb Technologies, Vancouver, BC, Canada
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Guy Davis
- HealthQb Technologies, Vancouver, BC, Canada
| | - James T. Enns
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Wang TY, Liang YY, Liu Q, Wang D, Sun Q, Li RT, Yang H, Jiang YM, Ye J. Effect of spirocyclopiperazinium salt compound LXM-15 on spinal nerve injury in rats. Eur J Pain 2024; 28:297-309. [PMID: 37668323 DOI: 10.1002/ejp.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Currently available therapies for neuropathic pain show limited efficacy. This study aimed to investigate the anti-nociceptive effect of the spirocyclopiperazinium salt compound LXM-15 in spinal nerve ligation (SNL) rats and to explore the potential mechanisms. METHODS Mechanical allodynia and thermal hyperalgesia tests were used to evaluate the effects of LXM-15 in SNL rats. The expression of CaMKIIα, CREB, JAK2, STAT3, c-fos and TNF-α was detected by western blotting, ELISA or qRT-PCR analysis. Receptor blocking test was performed to explore possible target. RESULTS Administration of LXM-15 (1, 0.5, 0.25 mg/kg, i.g.) dose-dependently attenuated mechanical allodynia and thermal hyperalgesia in rats subjected to SNL (p < 0.01, p < 0.05), and the effects were completely blocked by peripheral α7 nicotinic or M4 muscarinic receptor antagonist (p > 0.05). LXM-15 significantly decreased the overexpression of phosphorylated CaMKIIα, CREB, JAK2 and STAT3 proteins and the mRNA levels of TNF-α and c-fos (p < 0.01, p < 05). All of the effects could be blocked by α7 or M4 receptor antagonist. Furthermore, LXM-15 reduced the protein expression of TNF-α and c-fos (p < 0.01, p < 0.05). No significant acute toxicity or abnormal hepatorenal function was observed. CONCLUSIONS This is the first study to report that LXM-15 exerts significant anti-nociceptive effect on SNL rats. This effect may occur by activating peripheral α7 nicotinic and M4 muscarinic receptors, further inhibiting the CaMKIIα/CREB and JAK2/STAT3 signalling pathways, and finally inhibiting the expression of TNF-α and c-fos. SIGNIFICANCE Existing treatments for neuropathic pain show limited efficacy with severe adverse reactions. This paper is the first to report that LXM-15, a new spirocyclopiperazinium salt compound, exerts a significant anti-nociception in SNL rats without obvious toxicity. The underlying mechanisms include activating peripheral α7 nicotinic and M4 muscarinic receptors, then inhibiting the signalling pathways of CaMKIIα/CREB and JAK2/STAT3 and the expressions of TNF-α and c-fos. This study sheds new light on the development of novel analgesic drugs with fewer side effects.
Collapse
Affiliation(s)
- Tian Yu Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ying Ying Liang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qin Liu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ding Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Sun
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Run Tao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hua Yang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Min Jiang
- Medical and Healthy Analysis Center, Peking University, Beijing, China
| | - Jia Ye
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Bai P, Liu Y, Yang L, Ding W, Mondal P, Sang N, Liu G, Lu X, Ho TT, Zhou Y, Wu R, Birar VC, Wilks MQ, Tanzi RE, Lin H, Zhang C, Li W, Shen S, Wang C. Development and Pharmacochemical Characterization Discover a Novel Brain-Permeable HDAC11-Selective Inhibitor with Therapeutic Potential by Regulating Neuroinflammation in Mice. J Med Chem 2023; 66:16075-16090. [PMID: 37972387 DOI: 10.1021/acs.jmedchem.3c01491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Recent studies have shown that the epigenetic protein histone deacetylase 11 (HDAC11) is highly expressed in the brain and critically modulates neuroimmune functions, making it a potential therapeutic target for neurological disorders. Herein, we report the development of PB94, which is a novel HDAC11 inhibitor. PB94 exhibited potency and selectivity against HDAC11 with IC50 = 108 nM and >40-fold selectivity over other HDAC isoforms. Pharmacokinetic/pharmacodynamic evaluation indicated that PB94 possesses promising drug-like properties. Additionally, PB94 was radiolabeled with carbon-11 as [11C]PB94 for positron emission tomography (PET), which revealed significant brain uptake and metabolic properties suitable for drug development in live animals. Furthermore, we demonstrated that neuropathic pain was associated with brain upregulation of HDAC11 and that pharmacological inhibition of HDAC11 by PB94 ameliorated neuropathic pain in a mouse model. Collectively, our findings support further development of PB94 as a selective HDAC11 inhibitor for neurological indications, including pain.
Collapse
Affiliation(s)
- Ping Bai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Prasenjit Mondal
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Na Sang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Gang Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Thanh Tu Ho
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yanting Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Rui Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Vishal C Birar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
10
|
Zheng G, Ren J, Shang L, Bao Y. Role of autophagy in the pathogenesis and regulation of pain. Eur J Pharmacol 2023; 955:175859. [PMID: 37429517 DOI: 10.1016/j.ejphar.2023.175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pain is a ubiquitous and highly concerned clinical symptom, usually caused by peripheral or central nervous injury, tissue damage, or other diseases. The long-term existence of pain can seriously affect daily physical function and quality of life and produce great torture on the physiological and psychological levels. However, the complex pathogenesis of pain involving molecular mechanisms and signaling pathways has not been fully elucidated, and managing pain remains highly challenging. As a result, finding new targets to pursue effective and long-term pain treatment strategies is required and urgent. Autophagy is an intracellular degradation and recycling process that maintains tissue homeostasis and energy supply, which can be cytoprotective and is vital in maintaining neural plasticity and proper nervous system function. Much evidence has shown that autophagy dysregulation is linked to the emergence of neuropathic pain, such as postherpetic neuralgia and cancer-related pain. Autophagy has also been connected to pain caused by osteoarthritis and lumbar disc degeneration. It is worth noting that in recent years, studies on traditional Chinese medicine have also proved that several traditional Chinese medicine monomers involve autophagy in the mechanism of pain relief. Therefore, autophagy can serve as a potential regulatory target to provide new ideas and inspiration for pain management.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
11
|
Maschke M, Diener HC. [Chronic Back Pain]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:326-339. [PMID: 37463575 DOI: 10.1055/a-2055-5322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Chronic back pain is one of the most common diseases in Germany. In many cases, no morphological change is found, so that the genesis remains unspecific in over 90% of patients. This article is intended to provide an overview of drug therapy as well as non-drug measures and summarizes the corresponding guideline recommendations.
Collapse
|
12
|
Pușcașu C, Zanfirescu A, Negreș S. Recent Progress in Gels for Neuropathic Pain. Gels 2023; 9:gels9050417. [PMID: 37233008 DOI: 10.3390/gels9050417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. While several treatment options are available, they often have limited efficacy and are associated with adverse effects. In recent years, gels have emerged as a promising option for the treatment of neuropathic pain. Inclusion of various nanocarriers, such as cubosomes and niosomes, into gels results in pharmaceutical forms with higher drug stability and increased drug penetration into tissues compared to products currently marketed for the treatment of neuropathic pain. Furthermore, these compounds usually provide sustained drug release and are biocompatible and biodegradable, which makes them a safe option for drug delivery. The purpose of this narrative review was to provide a comprehensive analysis of the current state of the field and identify potential directions for future research in the development of effective and safe gels for the treatment of neuropathic pain, ultimately improving the quality of life for patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Ciprian Pușcașu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Simona Negreș
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
13
|
Karinja SJ, Gorky J, Valerio IL, Ruscic KJ, Eberlin KR. The Neuroma Startle Sign: A Surgical Indicator of Proximity to an Injured Nerve. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4890. [PMID: 36936466 PMCID: PMC10017393 DOI: 10.1097/gox.0000000000004890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
During operative intervention for the treatment of symptomatic neuromas, the authors have observed a hypersensitive "startle" response to stimulation in proximity to the painful nerve. This physiologic sign is an indicator of the specific anatomic localization of the painful stimulus, commonly a symptomatic neuroma, that appears to be reproducible. The aim of this article is to describe this "neuroma startle sign," posit the underlying mechanism for this observation, and propose how this phenomenon could be clinically harnessed for innovation and optimization in both surgery and anesthesia for more effective symptomatic neuroma localization.
Collapse
Affiliation(s)
- Sarah J. Karinja
- From the Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Jonathon Gorky
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Ian L. Valerio
- From the Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Katarina J. Ruscic
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Kyle R. Eberlin
- From the Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
14
|
Zheng G, Ren J, Shang L, Bao Y. Sonic Hedgehog Signaling Pathway: A Role in Pain Processing. Neurochem Res 2023; 48:1611-1630. [PMID: 36738366 DOI: 10.1007/s11064-023-03864-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Pain, as one of the most prevalent clinical symptoms, is a complex physiological and psychological activity. Long-term severe pain can become unbearable to the body. However, existing treatments do not provide satisfactory results. Therefore, new mechanisms and therapeutic targets need to be urgently explored for pain management. The Sonic hedgehog (Shh) signaling pathway is crucial in embryonic development, cell differentiation and proliferation, and nervous system regulation. Here, we review the recent studies on the Shh signaling pathway and its action in multiple pain-related diseases. The Shh signaling pathway is dysregulated under various pain conditions, such as pancreatic cancer pain, bone cancer pain, chronic post-thoracotomy pain, pain caused by degenerative lumbar disc disease, and toothache. Further studies on the Shh signaling pathway may provide new therapeutic options for pain patients.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
15
|
Wen YR, Shi J, Hu ZY, Lin YY, Lin YT, Jiang X, Wang R, Wang XQ, Wang YL. Is transcranial direct current stimulation beneficial for treating pain, depression, and anxiety symptoms in patients with chronic pain? A systematic review and meta-analysis. Front Mol Neurosci 2022; 15:1056966. [PMID: 36533133 PMCID: PMC9752114 DOI: 10.3389/fnmol.2022.1056966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 08/30/2023] Open
Abstract
Background Chronic pain is often accompanied by emotional dysfunction. Transcranial direct current stimulation (tDCS) has been used for reducing pain, depressive and anxiety symptoms in chronic pain patients, but its therapeutic effect remains unknown. Objectives To ascertain the treatment effect of tDCS on pain, depression, and anxiety symptoms of patients suffering from chronic pain, and potential factors that modulate the effectiveness of tDCS. Methods Literature search was performed on PubMed, Embase, Web of Science, and Cochrane Library from inception to July 2022. Randomized controlled trials that reported the effects of tDCS on pain and depression and anxiety symptoms in patients with chronic pain were included. Results Twenty-two studies were included in this review. Overall pooled results indicated that the use of tDCS can effectively alleviate short-term pain intensity [standard mean difference (SMD): -0.43, 95% confidence interval (CI): -0.75 to -0.12, P = 0.007] and depressive symptoms (SMD: -0.31, 95% CI, -0.47 to -0.14, P < 0.001), middle-term depressive symptoms (SMD: -0.35, 95% CI: -0.58 to -0.11, P = 0.004), long-term depressive symptoms (ES: -0.38, 95% CI: -0.64 to -0.13, P = 0.003) and anxiety symptoms (SMD: -0.26, 95% CI: -0.51 to -0.02, P = 0.03) compared with the control group. Conclusion tDCS may be an effective short-term treatment for the improvement of pain intensity and concomitant depression and anxiety symptoms in chronic pain patients. Stimulation site, stimulation frequency, and type of chronic pain were significant influence factors for the therapeutic effect of tDCS. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=297693, identifier: CRD42022297693.
Collapse
Affiliation(s)
- Yu-Rong Wen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Shi
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zheng-Yu Hu
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang-Yang Lin
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - You-Tian Lin
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Rui Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Yu-Ling Wang
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Kimoto Y, Hosomi K, Ohnishi Y, Emura T, Mori N, Nishi A, Yanagisawa T, Tani N, Oshino S, Saitoh Y, Kishima H. Tight adhesions after spinal cord stimulation observed during dorsal root entry zone lesioning for pain after spinal root avulsion: illustrative cases. JOURNAL OF NEUROSURGERY. CASE LESSONS 2022; 4:CASE22145. [PMID: 36281477 PMCID: PMC9592961 DOI: 10.3171/case22145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Patients often experience strong shooting pains after spinal root avulsion. The efficacy of spinal cord stimulation (SCS) for this type of pain is inconsistent; however, dorsal root entry zone (DREZ) lesioning (DREZ-lesion) has often proven to be an effective treatment modality. The authors report two cases in which DREZ-lesion was performed to treat pain after spinal root avulsion after implantation of SCS, but the operations were challenging due to strong adhesions. OBSERVATIONS The authors present two cases of patients with pain after spinal root avulsion in whom SCS implantation was only temporarily effective. Patients complained of persistent and paroxysmal shooting pains in the upper extremities. SCS removal and DREZ-lesion were performed, but adhesions in the epidural and subdural space contacting the leads were strong, making it difficult to expose the DREZ. LESSONS Although adhesions around the spinal cord can be caused by trauma, the authors believe that in these cases, the adhesions could have been caused by the SCS leads. There are few previous reports confirming the efficacy of SCS in treating pain after spinal root avulsion; therefore, caution is required when considering SCS implantation.
Collapse
Affiliation(s)
- Yuki Kimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan,Center for Pain Management, Osaka University Hospital, Suita, Osaka, Japan
| | - Yuichiro Ohnishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan,Department of Neurosurgery, Osaka Gyoumeikan Hospital, Osaka, Japan
| | - Takuto Emura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan,Center for Pain Management, Osaka University Hospital, Suita, Osaka, Japan
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan,Center for Pain Management, Osaka University Hospital, Suita, Osaka, Japan
| | - Youichi Saitoh
- Osaka University Graduate School of Engineering Science, Toyonaka, Osaka, Japan; and ,Tokuyukai Rehabilitation Clinic, Toyonaka, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan,Center for Pain Management, Osaka University Hospital, Suita, Osaka, Japan
| |
Collapse
|
17
|
Xiong HY, Zheng JJ, Wang XQ. Non-invasive Brain Stimulation for Chronic Pain: State of the Art and Future Directions. Front Mol Neurosci 2022; 15:888716. [PMID: 35694444 PMCID: PMC9179147 DOI: 10.3389/fnmol.2022.888716] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
As a technique that can guide brain plasticity, non-invasive brain stimulation (NIBS) has the potential to improve the treatment of chronic pain (CP) because it can interfere with ongoing brain neural activity to regulate specific neural networks related to pain management. Treatments of CP with various forms of NIBS, such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), using new parameters of stimulation have achieved encouraging results. Evidence of moderate quality indicates that high-frequency rTMS of the primary motor cortex has a clear effect on neuropathic pain (NP) and fibromyalgia. However, evidence on its effectiveness regarding pain relief in other CP conditions is conflicting. Concerning tDCS, evidence of low quality supports its benefit for CP treatment. However, evidence suggesting that it exerts a small treatment effect on NP and headaches is also conflicting. In this paper, we describe the underlying principles behind these commonly used stimulation techniques; and summarize the results of randomized controlled trials, systematic reviews, and meta-analyses. Future research should focus on a better evaluation of the short-term and long-term effectiveness of all NIBS techniques and whether they decrease healthcare use, as well as on the refinement of selection criteria.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | | | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
18
|
Yang QH, Zhang YH, Du SH, Wang YC, Fang Y, Wang XQ. Non-invasive Brain Stimulation for Central Neuropathic Pain. Front Mol Neurosci 2022; 15:879909. [PMID: 35663263 PMCID: PMC9162797 DOI: 10.3389/fnmol.2022.879909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The research and clinical application of the noninvasive brain stimulation (NIBS) technique in the treatment of neuropathic pain (NP) are increasing. In this review article, we outline the effectiveness and limitations of the NIBS approach in treating common central neuropathic pain (CNP). This article summarizes the research progress of NIBS in the treatment of different CNPs and describes the effects and mechanisms of these methods on different CNPs. Repetitive transcranial magnetic stimulation (rTMS) analgesic research has been relatively mature and applied to a variety of CNP treatments. But the optimal stimulation targets, stimulation intensity, and stimulation time of transcranial direct current stimulation (tDCS) for each type of CNP are still difficult to identify. The analgesic mechanism of rTMS is similar to that of tDCS, both of which change cortical excitability and synaptic plasticity, regulate the release of related neurotransmitters and affect the structural and functional connections of brain regions associated with pain processing and regulation. Some deficiencies are found in current NIBS relevant studies, such as small sample size, difficulty to avoid placebo effect, and insufficient research on analgesia mechanism. Future research should gradually carry out large-scale, multicenter studies to test the stability and reliability of the analgesic effects of NIBS.
Collapse
Affiliation(s)
- Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yong-Hui Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Chen Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu Fang
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Yu Fang,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
19
|
Nawafleh S, Qaswal AB, Alali O, Zayed FM, Al-Azzam AM, Al-Kharouf K, Ali MB, Albliwi MA, Al-Hamarsheh R, Iswaid M, Albanna A, Enjadat A, Al-Adwan MAO, Dibbeh K, Shareah EAA, Hamdan A, Suleiman A. Quantum Mechanical Aspects in the Pathophysiology of Neuropathic Pain. Brain Sci 2022; 12:brainsci12050658. [PMID: 35625044 PMCID: PMC9140023 DOI: 10.3390/brainsci12050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain is a challenging complaint for patients and clinicians since there are no effective agents available to get satisfactory outcomes even though the pharmacological agents target reasonable pathophysiological mechanisms. This may indicate that other aspects in these mechanisms should be unveiled to comprehend the pathogenesis of neuropathic pain and thus find more effective treatments. Therefore, in the present study, several mechanisms are chosen to be reconsidered in the pathophysiology of neuropathic pain from a quantum mechanical perspective. The mathematical model of the ions quantum tunneling model is used to provide quantum aspects in the pathophysiology of neuropathic pain. Three major pathophysiological mechanisms are revisited in the context of the quantum tunneling model. These include: (1) the depolarized membrane potential of neurons; (2) the cross-talk or the ephaptic coupling between the neurons; and (3) the spontaneous neuronal activity and the emergence of ectopic action potentials. We will show mathematically that the quantum tunneling model can predict the occurrence of neuronal membrane depolarization attributed to the quantum tunneling current of sodium ions. Moreover, the probability of inducing an ectopic action potential in the axons of neurons will be calculated and will be shown to be significant and influential. These ectopic action potentials are generated due to the formation of quantum synapses which are assumed to be the mechanism behind the ephaptic transmission. Furthermore, the spontaneous neuronal activity and the emergence of ectopic action potentials independently from any adjacent stimulated neurons are predicted to occur according to the quantum tunneling model. All these quantum mechanical aspects contribute to the overall hyperexcitability of the neurons and to the pathogenesis of neuropathic pain. Additionally, providing a new perspective in the pathophysiology of neuropathic pain may improve our understanding of how the neuropathic pain is generated and maintained and may offer new effective agents that can improve the overall clinical outcomes of the patients.
Collapse
Affiliation(s)
- Sager Nawafleh
- Department of Anesthesia and Intensive Care Unit, The Hashemite University, Zarqa 13115, Jordan;
| | - Abdallah Barjas Qaswal
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
- Correspondence:
| | - Obada Alali
- Department of Anesthesia and Intensive Care, Alabdali Clemenceau Hospital, Amman 11190, Jordan;
| | - Fuad Mohammed Zayed
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | | | - Khaled Al-Kharouf
- Southampton Orthopedics: Centre for Arthroplasty and Revision Surgery, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK;
| | - Mo’ath Bani Ali
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Moath Ahmad Albliwi
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Rawan Al-Hamarsheh
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Mohammad Iswaid
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Ahmad Albanna
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Ahmad Enjadat
- Department of Internship Program, Jordan University Hospital, Amman 11942, Jordan;
| | - Mohammad Abu Orabi Al-Adwan
- School of Medicine, The University of Jordan, Amman 11942, Jordan; (F.M.Z.); (M.B.A.); (M.A.A.); (R.A.-H.); (M.I.); (A.A.); (M.A.O.A.-A.)
| | - Khaled Dibbeh
- Leicester University Hospitals, P.O. Box 7853, Leicester LE1 9WW, UK;
| | - Ez-Aldeen Abu Shareah
- Accident and Emergency Department, The Princess Alexandra Hospital NHS Trust, Hamstel Road, Harlow CM20 1QX, UK;
| | - Anas Hamdan
- Department of Anesthesia and Intensive Care Unit, Istishari Hospital, Amman 11184, Jordan;
| | - Aiman Suleiman
- Department of Anesthesia, Intensive Care and Pain Management, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| |
Collapse
|
20
|
Yan W, Liu W, Wu J, Wu L, Xuan S, Wang W, Shang A. Neuropeptide Y in the amygdala contributes to neuropathic pain-like behaviors in rats via the neuropeptide Y receptor type 2/mitogen-activated protein kinase axis. Bioengineered 2022; 13:8101-8114. [PMID: 35313782 PMCID: PMC9162000 DOI: 10.1080/21655979.2022.2051783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neuropeptide Y (NPY) is a highly conserved endogenous peptide in the central and peripheral nervous systems, which has been implicated in nociceptive signaling in neuropathic pain. However, downstream mechanistic actions remain uncharacterized. In this study, we sought to investigate the mechanism of NPY and its receptor NPY2R in the amygdala in rats with neuropathic pain-like behaviors induced by chronic constriction injury (CCI) of the sciatic nerve. The expression of NPY and NPY2R was found to be aberrantly up-regulated in neuropathic pain-related microarray dataset. Further, NPY was found to act on NPY2R in the basolateral amygdala (BLA). As reflected by the decrease in mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) as well as the increase of NPY expression in the amygdala of rats with neuropathic pain-like behaviors, NPY was closely related to the effect of amygdala nerve activity in neuropathic pain. Subsequently, mechanistic investigations indicated that NPY2R activated the MAPK signaling pathway in the amygdala. NPY2R-induced decrease of MWT and TWL were also restored in the presence of MAPK signaling pathway antagonist. Moreover, it was revealed that NPY2R overexpression promoted the viability while inhibiting the apoptosis of microglia. Taken together, NPY in the amygdala interacts with NPY2R to activate the MAPK signaling pathway, thereby promoting the occurrence of neuropathic pain.
Collapse
Affiliation(s)
- Wenhui Yan
- Department of Laboratory Medicine Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, P.R. China.,Department of Laboratory Medicine, Tinghu People's Hospital, Yancheng, P.R. China
| | - Wuchao Liu
- Department of Neurorehabilitation, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, P.R. China
| | - Junlu Wu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Lipei Wu
- Department of Laboratory Medicine, Dongtai People's Hospital & Dongtai Hospital of Nantong University, Yancheng, P.R. China
| | - Shihai Xuan
- Department of Laboratory Medicine, Dongtai People's Hospital & Dongtai Hospital of Nantong University, Yancheng, P.R. China
| | - Weiwei Wang
- Department of Pathology, Tinghu People's Hospital, Yancheng, P.R. China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
21
|
Site of Nerve Division Affects Pain-Related Behavior and Spinal Cord Glial Proliferation after C7 Neurotomy in a Rat Stroke Model. Pain Res Manag 2022; 2022:7446482. [PMID: 35371367 PMCID: PMC8967577 DOI: 10.1155/2022/7446482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022]
Abstract
Objective This study aimed to evaluate whether the site of C7 neurotomy affects spinal cord glial cell activation and pain-related behavior on the paralyzed side in a rat stroke model. Methods After middle cerebral artery occlusion (MCAO) was induced in male Sprague-Dawley rats, they underwent C7 neurotomy 0, 2, and 4 mm distal to the intervertebral foramen on the paralyzed side. Pain-related behavior and immunofluorescence examination of spinal cord glial cell activation in the ipsilateral C7 dorsal horn were evaluated. Results Mechanical paw withdrawal threshold (MPWT) was lower, and the number of microglia and astrocytes (/mm2) was higher as the distance between the site of C7 neurotomy and the intervertebral foramen decreased from 4 mm to 0. Conclusion The site of C7 neurotomy affects MPWT and spinal cord glial proliferation in rats with MCAO. Nerve division closer to intervertebral foramen resulted in lower MPWT and higher degree of glial proliferation in the spinal cord.
Collapse
|
22
|
Vincenzi M, Milella MS, D’Ottavio G, Caprioli D, Reverte I, Maftei D. Targeting Chemokines and Chemokine GPCRs to Enhance Strong Opioid Efficacy in Neuropathic Pain. Life (Basel) 2022; 12:life12030398. [PMID: 35330149 PMCID: PMC8955776 DOI: 10.3390/life12030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain (NP) originates from an injury or disease of the somatosensory nervous system. This heterogeneous origin and the possible association with other pathologies make the management of NP a real challenge. To date, there are no satisfactory treatments for this type of chronic pain. Even strong opioids, the gold-standard analgesics for nociceptive and cancer pain, display low efficacy and the paradoxical ability to exacerbate pain sensitivity in NP patients. Mounting evidence suggests that chemokine upregulation may be a common mechanism driving NP pathophysiology and chronic opioid use-related consequences (analgesic tolerance and hyperalgesia). Here, we first review preclinical studies on the role of chemokines and chemokine receptors in the development and maintenance of NP. Second, we examine the change in chemokine expression following chronic opioid use and the crosstalk between chemokine and opioid receptors. Then, we examine the effects of inhibiting specific chemokines or chemokine receptors as a strategy to increase opioid efficacy in NP. We conclude that strong opioids, along with drugs that block specific chemokine/chemokine receptor axis, might be the right compromise for a favorable risk/benefit ratio in NP management.
Collapse
Affiliation(s)
- Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.V.); (I.R.)
| | - Michele Stanislaw Milella
- Toxicology and Poison Control Center Unit, Department of Emergency, Anesthesia and Critical Care, Policlinico Umberto I Hospital-Sapienza University of Rome, 00161 Rome, Italy;
| | - Ginevra D’Ottavio
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniele Caprioli
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Ingrid Reverte
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Correspondence: (M.V.); (I.R.)
| | - Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
| |
Collapse
|
23
|
Tian C, Zhu X, Wang Q, Lv T, Cheng S, Yang D. Bibliometric analysis of hyperpolarization-activated cyclic nucleotide-gated (HCN)channels research (2004-2020). Channels (Austin) 2022; 16:49-59. [PMID: 35235763 PMCID: PMC8896186 DOI: 10.1080/19336950.2021.2020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Chuanxi Tian
- Graduate School of Beijing University of Chinese Medicine, Beijing, China.,Department of Traditional Chinese Medicine for Pulmonary Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xueping Zhu
- Cardiovascular Department, Guanganmen Hosptial, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyuan Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Tianyi Lv
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Siyi Cheng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Daowen Yang
- Department of Traditional Chinese Medicine for Pulmonary Diseases, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
24
|
Zhuo J, Gill JP, Jansen ED, Jenkins MW, Chiel HJ. Use of an invertebrate animal model ( Aplysia californica) to develop novel neural interfaces for neuromodulation. Front Neurosci 2022; 16:1080027. [PMID: 36620467 PMCID: PMC9813496 DOI: 10.3389/fnins.2022.1080027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
New tools for monitoring and manipulating neural activity have been developed with steadily improving functionality, specificity, and reliability, which are critical both for mapping neural circuits and treating neurological diseases. This review focuses on the use of an invertebrate animal, the marine mollusk Aplysia californica, in the development of novel neurotechniques. We review the basic physiological properties of Aplysia neurons and discuss the specific aspects that make it advantageous for developing novel neural interfaces: First, Aplysia nerves consist only of unmyelinated axons with various diameters, providing a particularly useful model of the unmyelinated C fibers in vertebrates that are known to carry important sensory information, including those that signal pain. Second, Aplysia's neural tissues can last for a long period in an ex vivo experimental setup. This allows comprehensive tests such as the exploration of parameter space on the same nerve to avoid variability between animals and minimize animal use. Third, nerves in large Aplysia can be many centimeters in length, making it possible to easily discriminate axons with different diameters based on their conduction velocities. Aplysia nerves are a particularly good approximation of the unmyelinated C fibers, which are hard to stimulate, record, and differentiate from other nerve fibers in vertebrate animal models using epineural electrodes. Fourth, neurons in Aplysia are large, uniquely identifiable, and electrically compact. For decades, researchers have used Aplysia for the development of many novel neurotechnologies. Examples include high-frequency alternating current (HFAC), focused ultrasound (FUS), optical neural stimulation, recording, and inhibition, microelectrode arrays, diamond electrodes, carbon fiber microelectrodes, microscopic magnetic stimulation and magnetic resonance electrical impedance tomography (MREIT). We also review a specific example that illustrates the power of Aplysia for accelerating technology development: selective infrared neural inhibition of small-diameter unmyelinated axons, which may lead to a translationally useful treatment in the future. Generally, Aplysia is suitable for testing modalities whose mechanism involves basic biophysics that is likely to be similar across species. As a tractable experimental system, Aplysia californica can help the rapid development of novel neuromodulation technologies.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jeffrey P Gill
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Biophotonics Center, Vanderbilt University, Nashville, TN, United States.,Department of Neurological Surgery, Vanderbilt University, Nashville, TN, United States
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
25
|
Zhang YZ, Wang MM, Wang SY, Wang XF, Yang WJ, Zhao YN, Han FT, Zhang Y, Gu N, Wang CL. Novel Cyclic Endomorphin Analogues with Multiple Modifications and Oligoarginine Vector Exhibit Potent Antinociception with Reduced Opioid-like Side Effects. J Med Chem 2021; 64:16801-16819. [PMID: 34781680 DOI: 10.1021/acs.jmedchem.1c01631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endomorphins (EMs) are potent pharmaceuticals for the treatment of pain. Herein, we investigated several novel EM analogues with multiple modifications and oligoarginine conjugation. Our results showed that analogues 1-6 behaved as potent μ-opioid agonists and enhanced stability and lipophilicity. Analogues 5 and 6 administered centrally and peripherally induced significant and prolonged antinociceptive effects in acute pain. Both analogues also produced long-acting antiallodynic effects against neuropathic and inflammatory pain. Furthermore, they showed a reduced acute antinociceptive tolerance. Analogue 6 decreased the extent of chronic antinociceptive tolerance, and analogue 5 exhibited no tolerance at the supraspinal level. Particularly, they displayed nontolerance-forming antinociception at the peripheral level. In addition, analogues 5 and 6 exhibited reduced or no opioid-like side effects on gastrointestinal transit, conditioned place preference (CPP), and motor impairment. The present investigation established that multiple modifications and oligoarginine-vector conjugation of EMs would be helpful in developing novel analgesics with fewer side effects.
Collapse
Affiliation(s)
- Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Meng-Meng Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiao-Fang Wang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jiao Yang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ya-Nan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.,Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
26
|
ElKholy AR, Sallam AM, AlShamekh AS, Alomar N, Alghabban FA, Alzahrani BS, Bafaqih SM, AlSubaie FA, AlQadasi KS, Alturki AY, Bafaquh M. The efficacy of wrapping the neurorrhaphy site utilizing dura substitute: A case series. Surg Neurol Int 2021; 12:568. [PMID: 34877054 PMCID: PMC8645511 DOI: 10.25259/sni_586_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/04/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Different procedures have been developed to improve the surgical outcome of peripheral nerve injuries. The purpose of this study was to evaluate the efficacy of wrapping the neurorrhaphy site utilizing dura substitute graft as an alternative conduit in the management of peripheral nerve injury. METHODS This retrospective clinical case series included 42 patients with a single peripheral nerve injury. The mean age was 26.8 ± 11 years, and the mean duration of symptoms was 3 ± 1.8 months. The visual analogue score (VAS) for pain and the Medical Research Council's (MRC) grading for motor power were used to evaluate the functional outcome among our patients. All patients were operated on for primary microscopic end-to-end repair, followed by wrapping the neurorrhaphy site with dura substitute graft as a conduit. Patients were followed in the outpatient clinic with regular visits for average of 6 months. RESULTS Thirty-seven patients (83%), showed functional improvement in all aspects, the VAS for pain and the MRC for motor power, as well as the functional state. One patient (2.3%) developed a postoperative hematoma collection, which needed immediate evacuation. Superficial wound infection, reported in two patients (4.7%), was treated conservatively. No postoperative neuroma was observed among our patients during the follow-up period. CONCLUSION Wrapping the neurorrhaphy site utilizing dura substitute as conduit appears to be safe and might prove effective in managing peripheral nerve injury.
Collapse
Affiliation(s)
| | - Ahmed M. Sallam
- Department of Neurosurgery, National Neuroscience Institute, King Fahed Medical City, Riyadh, Saudi Arabia
| | - Arwa S. AlShamekh
- Department of Neurosurgery, National Neuroscience Institute, King Fahed Medical City, Riyadh, Saudi Arabia
| | - Najeeb Alomar
- Department of Neurosurgery, National Neuroscience Institute, King Fahed Medical City, Riyadh, Saudi Arabia
| | - Fatimah A. Alghabban
- Department of Neurosurgery, King Abdulaziz Specialist Hospital, Taif, Westeran, Saudi Arabia
| | - Basmah S. Alzahrani
- Department of Neurosurgery, Imam Abdulrahman Bin Faisal University, Alkhobar, Saudi Arabia
| | - Saeed M. Bafaqih
- Department of Medicine, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fahd A. AlSubaie
- Department of Neurosurgery, National Neuroscience Institute, King Fahed Medical City, Riyadh, Saudi Arabia
| | - Khalil S. AlQadasi
- Department of Neurosurgery, Royal Commission Hospital, Jubail, Saudi Arabia
| | - Abdulrahman Y. Alturki
- Department of Neurosurgery, National Neuroscience Institute, King Fahed Medical City, Riyadh, Saudi Arabia
| | - Mohammed Bafaquh
- Department of Neurosurgery, National Neuroscience Institute, King Fahed Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Király K, Karádi DÁ, Zádor F, Mohammadzadeh A, Galambos AR, Balogh M, Riba P, Tábi T, Zádori ZS, Szökő É, Fürst S, Al-Khrasani M. Shedding Light on the Pharmacological Interactions between μ-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain. Molecules 2021; 26:6168. [PMID: 34684749 PMCID: PMC8537077 DOI: 10.3390/molecules26206168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The current protocols for neuropathic pain management include µ-opioid receptor (MOR) analgesics alongside other drugs; however, there is debate on the effectiveness of opioids. Nevertheless, dose escalation is required to maintain their analgesia, which, in turn, contributes to a further increase in opioid side effects. Finding novel approaches to effectively control chronic pain, particularly neuropathic pain, is a great challenge clinically. Literature data related to pain transmission reveal that angiotensin and its receptors (the AT1R, AT2R, and MAS receptors) could affect the nociception both in the periphery and CNS. The MOR and angiotensin receptors or drugs interacting with these receptors have been independently investigated in relation to analgesia. However, the interaction between the MOR and angiotensin receptors has not been excessively studied in chronic pain, particularly neuropathy. This review aims to shed light on existing literature information in relation to the analgesic action of AT1R and AT2R or MASR ligands in neuropathic pain conditions. Finally, based on literature data, we can hypothesize that combining MOR agonists with AT1R or AT2R antagonists might improve analgesia.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Chronic Pain/drug therapy
- Humans
- Neuralgia/drug therapy
- Nociception/drug effects
- Pain Management/methods
- Proto-Oncogene Mas
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| |
Collapse
|
28
|
Doddamani RS, Garg S, Agrawal D, Meena RK, Sawarkar D, Singh PK, Verma S, Chandra SP. Microscissor DREZotomy for post brachial plexus avulsion neuralgia: A single center experience. Clin Neurol Neurosurg 2021; 208:106840. [PMID: 34418706 DOI: 10.1016/j.clineuro.2021.106840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Brachial neuralgia is a dreaded sequelae which substantially impairs the quality of life in patients with brachial plexus avulsion (BPA) injuries. Dorsal Root Entry Zone (DREZ) lesioning of the cervical spinal cord is the most utilized procedure for alleviating this painful condition. In this study, we share a single center experience of surgically managing post BPA neuropathic pain. The efficacy, results and complications of the modified technique of DREZ, called the Microscissor DREZotomy (MDZ) are discussed along with the review of relevant literature. METHODS This retrospective analysis included all the patients undergoing MDZ for post BPA brachialgia over 5 years period (2012-2018) at our institution. The pain was quantified using the Numeric rating Scale (NRS) between 0 and 10 scale and was graded as 'Excellent' in patients with more than 75% pain relief, 'Good' with 50-75% relief, 'Fair' between 25% and 50% and 'Poor' if less than 25%. RESULTS A total of 56 patients underwent MDZ and a mean follow up of 32 months (range 18-69 months) available for 47 patients. Thirty three patients (70.4%) judged pain relief as Excellent, Five (10.6%) as Good, 3 (7%) as Fair and 6 (12%) having poor pain relief. Overall, in 38 (81%) patients long term analgesic effect (> 50%) was noted and 3 (7%) patients had more than 25% pain relief, making up an overall 41 (87%) of patients with some relief from pain. CONCLUSION MDZ is a safe, efficacious technique with good long term pain relief and quality of life. This technique entails utilization of routine surgical instruments and can be performed with ease even in resource limited settings.
Collapse
Affiliation(s)
| | - Sharat Garg
- Max Superspeciality Hospital, Department of Neurosurgery, New Delhi, India
| | - Deepak Agrawal
- Department of Neurosurgery& Gamma-Knife, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Rajesh Kumar Meena
- Department of Neurosurgery& Gamma-Knife, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dattaraj Sawarkar
- Department of Neurosurgery& Gamma-Knife, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pankaj Kumar Singh
- Department of Neurosurgery& Gamma-Knife, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Satish Verma
- Department of Neurosurgery& Gamma-Knife, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sarat P Chandra
- Department of Neurosurgery& Gamma-Knife, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
29
|
Negrini-Ferrari SE, Medeiros P, Malvestio RB, de Oliveira Silva M, Medeiros AC, Coimbra NC, Machado HR, de Freitas RL. The primary motor cortex electrical and chemical stimulation attenuates the chronic neuropathic pain by activation of the periaqueductal grey matter: The role of NMDA receptors. Behav Brain Res 2021; 415:113522. [PMID: 34391797 DOI: 10.1016/j.bbr.2021.113522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Motor cortex stimulation (MCS) is proper as a non-pharmacological therapy for patients with chronic and neuropathic pain (NP). AIMS This work aims to investigate if the MCS in the primary motor cortex (M1) produces analgesia and how the MCS could interfere in the MCS-induced analgesia. Also, to elucidate if the persistent activation of N-methyl-d-aspartic acid receptor (NMDAr) in the periaqueductal grey matter (PAG) can contribute to central sensitisation of the NP. METHODS Male Wistar rats were submitted to the von Frey test to evaluate the mechanical allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve. The MCS was performed with low-frequency (20 μA, 100 Hz) currents during 15 s by a deep brain stimulation (DBS) device. Moreover, the effect of M1-treatment with an NMDAr agonist (at 2, 4, and 8 nmol) was investigated in CCI rats. The PAG dorsomedial column (dmPAG) was pretreated with the NMDAr antagonist LY 235959 (at 8 nmol), followed by MCS. RESULTS The MCS decreased the mechanical allodynia in rats with chronic NP. The M1-treatment with an NMDA agonist at 2 and 8 nmol reduced the mechanical allodynia in CCI rats. In addition, dmPAG-pretreatment with LY 235959 at 8 nmol attenuated the mechanical allodynia evoked by MCS. CONCLUSION The M1 cortex glutamatergic system is involved in the modulation of chronic NP. The analgesic effect of MCS may depend on glutamate signaling recruitting NMDAr located on PAG neurons in rodents with chronic NP.
Collapse
Affiliation(s)
- Sylmara Esther Negrini-Ferrari
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Braghetto Malvestio
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Mariana de Oliveira Silva
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ana Carolina Medeiros
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil
| | - Helio Rubens Machado
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Brain Protection Laboratory in Childhood, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil.
| |
Collapse
|
30
|
Jia D, Sun Y, Liu G, Xue M, Huang Z, Huang C. Trifluoro-icaritin alleviates mechanical hypersensitivity and improves motor coordination and balance in rats with spared nerve injury-induced neuropathic pain. Neurosci Lett 2021; 761:136125. [PMID: 34302890 DOI: 10.1016/j.neulet.2021.136125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022]
Abstract
Neuropathic pain is still one of the unsolved public health problems worldwide. Although the current reagents can attenuate neuropathic pain to a certain extent, their clinical application is very limited owing to larger toxicity and serious side effects. Trifluoro-icaritin (ICTF) has been documented to possess profound anti-inflammatory and neuroprotective activities, but whether ICTF exerts an anti-nociceptive effect on neuropathic pain remains unknown. Here, a rat model of spared nerve injury (SNI)-induced neuropathic pain was used. SNI rats were administrated with ICTF (i.p.) once daily lasting for 21 days, and subsequently the pain-related behaviors were evaluated by applying mechanical or thermal pain threshold, CatWalk gait parameter, and rotarod test on day 1 before and day 1, 3, 7, 10, 14, and 21 after SNI surgery, respectively. The results showed that ICTF (0.5 mg/kg, 1.5 mg/kg, and 5.0 mg/kg, i.p.) treatment alleviated SNI-induced mechanical allodynia but not thermal hyperalgesia in a dose-dependent manner. After administration of ICTF at the most effective dose of 5.0 mg/kg to SNI rats, CatWalk gait analysis revealed that ICTF not only significantly enhanced gait parameters including max contact max intensity, max intensity, print area, and stand time but also decreased the swing time; Rotarod test further exhibited that ICTF could effectively prolong the time on rod and increase the rotating speed in SNI rats. Additionally, following ICTF (5.0 mg/kg) treatment of SNI rats for 21 consecutive days, the max contact max intensity was found to be positively correlated with the rotating speed. Taken together, ICTF successfully ameliorates mechanical hypersensitivity and improves the motor coordination and balance in SNI rats, suggesting that ICTF may be exploited as a potential candidate in the management of neuropathic pain.
Collapse
Affiliation(s)
- Dandan Jia
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Yalan Sun
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Guangsen Liu
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Meng Xue
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou 341000, PR China; Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, PR China
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou 341000, PR China; Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
31
|
Reyes-Long S, Alfaro-Rodríguez A, Cortes-Altamirano JL, Lara-Padilla E, Herrera-Maria E, Romero-Morelos P, Salcedo M, Bandala C. The Mechanisms of Action of Botulinum Toxin Type A in Nociceptive and Neuropathic Pathways in Cancer Pain. Curr Med Chem 2021; 28:2996-3009. [PMID: 32767912 DOI: 10.2174/0929867327666200806105024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Botulinum toxin type A (BoNT-A) is widely employed for cosmetic purposes and in the treatment of certain diseases such as strabismus, hemifacial spasm and focal dystonia among others. BoNT-A effect mainly acts at the muscular level by inhibiting the release of acetylcholine at presynaptic levels consequently blocking the action potential in the neuromuscular junction. Despite the great progress in approval and pharmaceutical usage, improvement in displacing BoNT-A to other pathologies has remained very limited. Patients under diagnosis of several types of cancer experience pain in a myriad of ways; it can be experienced as hyperalgesia or allodynia, and the severity of the pain depends, to some degree, on the place where the tumor is located. Pain relief in patients diagnosed with cancer is not always optimal, and as the disease progresses, transition to more aggressive drugs, like opioids is sometimes unavoidable. In recent years BoNT-A employment in cancer has been explored, as well as an antinociceptive drug; experiments in neuropathic, inflammatory and acute pain have been carried out in animal models and humans. Although its mechanism has not been fully known, evidence has shown that BoNT-A inhibits the secretion of pain mediators (substance P, Glutamate, and calcitonin gene related protein) from the nerve endings and dorsal root ganglion, impacting directly on the nociceptive transmission through the anterolateral and trigeminothalamic systems. AIM The study aimed to collect available literature regarding molecular, physiological and neurobiological evidence of BoNT-A in cancer patients suffering from acute, neuropathic and inflammatory pain in order to identify possible mechanisms of action in which the BoNT-A could impact positively in pain treatment. CONCLUSION BoNT-A could be an important neo-adjuvant and coadjuvant in the treatment of several types of cancer, to diminish pro-tumor activity and secondary pain.
Collapse
Affiliation(s)
- Samuel Reyes-Long
- Escuela Superior de Medicina, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Alfonso Alfaro-Rodríguez
- Division de Neurociencias, Instituto Nacional de Rehabilitacion, Secretaria de Salud, Ciudad de Mexico, Mexico
| | - Jose Luis Cortes-Altamirano
- Division de Neurociencias, Instituto Nacional de Rehabilitacion, Secretaria de Salud, Ciudad de Mexico, Mexico
| | - Eleazar Lara-Padilla
- Escuela Superior de Medicina, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | | | | | - Mauricio Salcedo
- Laboratorio de Oncologia Genomica, Unidad de Investigacion Medica en Enfermedades Oncologicas, Hospital de Oncologia, CMN-SXXI, IMSS, Ciudad de Mexico, Mexico
| | - Cindy Bandala
- Escuela Superior de Medicina, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
32
|
Zhao M, Zhang X, Tao X, Zhang B, Sun C, Wang P, Song T. Sirt2 in the Spinal Cord Regulates Chronic Neuropathic Pain Through Nrf2-Mediated Oxidative Stress Pathway in Rats. Front Pharmacol 2021; 12:646477. [PMID: 33897435 PMCID: PMC8063033 DOI: 10.3389/fphar.2021.646477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
Reduction in Nrf2-mediated antioxidant response in the central nervous system plays an important role in the development and maintenance of neuropathic pain (NP). However, the mechanisms regulating Nrf2 activity in NP remain unclear. A recent in vitro study revealed that Sirt2, a member of the sirtuin family of proteins, affects antioxidant capacity by modulating Nrf2 activity. Here we examined whether central Sirt2 regulates NP through Nrf2-mediated oxidative stress pathway. In a rat model of spared nerve injury (SNI)-induced NP, mechanical allodynia and thermal hyperalgesia were observed on day 1 and up to day 14 post-SNI. The expression of Sirt2, Nrf2 and its target gene NQO1 in the spinal cord in SNI rats, compared with sham rats, was significantly decreased from day 7 and remained lower until the end of the experiment (day 14). The mechanical allodynia and thermal hyperalgesia in SNI rats were ameliorated by intrathecal injection of Nrf2 agonist tBHQ, which normalized expression of Nrf2 and NQO1 and reversed SNI-induced decrease in antioxidant enzyme superoxide dismutase (SOD) and increase in oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the spinal cord. Moreover, intrathecal injection of a recombinant adenovirus expressing Sirt2 (Ad-Sirt2) that upregulated expression of Sirt2, restored expression of Nrf2 and NQO1 and attenuated oxidative stress in the spinal cord, leading to improvement of thermal hyperalgesia and mechanical allodynia in SNI rats. These findings suggest that peripheral nerve injury downregulates Sirt2 expression in the spinal cord, which inhibits Nrf2 activity, leading to increased oxidative stress and the development of chronic NP.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xiaojiao Zhang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xueshu Tao
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bohan Zhang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Cong Sun
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Pinying Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Tao Song
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Carona A, Bicker J, Silva R, Fonseca C, Falcão A, Fortuna A. Pharmacology of lacosamide: From its molecular mechanisms and pharmacokinetics to future therapeutic applications. Life Sci 2021; 275:119342. [PMID: 33713668 DOI: 10.1016/j.lfs.2021.119342] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023]
Abstract
Epilepsy is one of the most common brain disorders, affecting more than 50 million people worldwide. Although its treatment is currently symptomatic, the last generation of anti-seizure drugs is characterized by better pharmacokinetic profiles, efficacy, tolerability and safety. Lacosamide is a third-generation anti-seizure drug that stands out due to its good efficacy and safety profile. It is used with effectiveness in the treatment of partial-onset seizures with or without secondary generalization, primary generalized tonic-clonic seizures and off-label in status epilepticus. Despite scarcely performed until today, therapeutic drug monitoring of lacosamide is proving to be advantageous by allowing the control of inter and intra-individual variability and promoting a successful personalized therapy, particularly in special populations. Herein, the pharmacology, pharmacokinetics, and clinical data of lacosamide were reviewed, giving special emphasis to the latest molecular investigations underlying its mechanism of action and therapeutic applications in pathologies besides epilepsy. In addition, the pharmacokinetic characteristics of lacosamide were updated, as well as current literature concerning the high pharmacokinetic variability observed in special patient populations and that must be considered during treatment individualization.
Collapse
Affiliation(s)
- Andreia Carona
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Rui Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| |
Collapse
|
34
|
Chiari LP, da Silva AP, de Oliveira AA, Lipinski CF, Honório KM, da Silva AB. Drug design of new sigma-1 antagonists against neuropathic pain: A QSAR study using partial least squares and artificial neural networks. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Shaw S, Uniyal A, Gadepalli A, Tiwari V, Belinskaia DA, Shestakova NN, Venugopala KN, Deb PK, Tiwari V. Adenosine receptor signalling: Probing the potential pathways for the ministration of neuropathic pain. Eur J Pharmacol 2020; 889:173619. [DOI: 10.1016/j.ejphar.2020.173619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/05/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022]
|
36
|
Zhang YZ, Yang WJ, Wang XF, Wang MM, Zhang Y, Gu N, Wang CL. The spinal anti-allodynic effects of endomorphin analogs with C-terminal hydrazide modification in neuropathic pain model. Peptides 2020; 134:170407. [PMID: 32926948 DOI: 10.1016/j.peptides.2020.170407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022]
Abstract
The present study was undertaken to further investigate the spinal anti-allodynic effects of endomorphins (EMs) and their C-terminal hydrazide modified analogs EM-1-NHNH2 and EM-2-NHNH2 in the spared nerve injury (SNI) model of neuropathic pain in mice. Our results demonstrated that intrathecal (i.t.) administration of endomorphin-1 (EM-1), endomorphin-2 (EM-2), EM-1-NHNH2 and EM-2-NHNH2 produced potent anti-allodynic effects ipsilaterally in neuropathic pain model. Judging from the area under the curve (AUC) values, these two analogs exhibited higher antinociception than their parent peptides. Moreover, they also displayed significant antinociceptive effects in the contralateral paw administered intrathecally. Interestingly, EM-1 and its analog EM-1-NHNH2 displayed their antinociception probably by μ2-opioid receptor subtype since the μ1-opioid receptor antagonist naloxonazine didn't significantly block the anti-allodynia of EM-1 and EM-1-NHNH2, which implied a same opioid mechanism. However, the anti-allodynia induced by EM-2, but not EM-2-NHNH2 was significantly reduced by both μ1-opioid antagonist, naloxonazine and κ-antagonist, nor-binaltorphamine (nor-BNI), indicating multiple opioid receptors were involved in the anti-allodynic effects of EM-2. Most importantly, EM-1-NHNH2 decreased the antinociceptive tolerance, and EM-2-NHNH2 displayed non-tolerance-forming antinociception. Therefore, C-terminal amide to hydrazide conversion changed the spinal antinociceptive profiles of EMs in neuropathic pain. The present investigation is of great value in the development of novel opioid therapeutics against neuropathic pain.
Collapse
Affiliation(s)
- Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Wen-Jiao Yang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Xiao-Fang Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Meng-Meng Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China.
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
37
|
Kamoun N, Gazzo G, Goumon Y, Andry V, Yalcin I, Poisbeau P. Long-lasting analgesic and neuroprotective action of the non-benzodiazepine anxiolytic etifoxine in a mouse model of neuropathic pain. Neuropharmacology 2020; 182:108407. [PMID: 33212115 DOI: 10.1016/j.neuropharm.2020.108407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is frequently associated with anxiety and major depressive disorders, which considerably impact the overall patient experience. Favoring GABAergic inhibition through the pain matrix has emerged as a promising strategy to restore proper processing of nociceptive and affective information in neuropathic pain states. In this context, the non-benzodiazepine anxiolytic etifoxine (EFX), known to amplify GABAergic inhibition through positive modulation of GABAA receptors and neurosteroidogenesis, presents several advantages. Therefore, we sought to investigate the preclinical therapeutic potential of EFX on the somatosensory and affective components of neuropathic pain. Here, we used a murine model in which neuropathic pain was induced by the implantation of a compressive cuff around the sciatic nerve (mononeuropathy). We showed that the intraperitoneal EFX treatment for five consecutive days (50 mg/kg) relieved mechanical allodynia in a sustained manner. Besides its effect on evoked mechanical hypersensitivity, EFX also alleviated aversiveness of ongoing pain as well as anxiodepressive-like consequences of neuropathic pain following cuff-induced mononeuropathy. This effect was also seen 12 weeks after induction of the neuropathy when allodynia was no longer present. Analgesic and neuroprotective actions of EFX were also seen by the absence of neuropathic pain symptoms if a second sciatic nerve constriction injury was applied to the contralateral hindpaw. Mass spectrometry analysis revealed a normalization of brainstem serotonin levels in EFX-treated animals and an increase in norepinephrine. This study suggests that EFX presents promising therapeutic potential for the relief of both somatosensory and affective consequences of neuropathic pain, a beneficial effect that is likely to involve monoamine descending controls.
Collapse
Affiliation(s)
- Nisrine Kamoun
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Géraldine Gazzo
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Yannick Goumon
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France; Mass Spectrometry Facilities of the CNRS UPR3212, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Virginie Andry
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France; Mass Spectrometry Facilities of the CNRS UPR3212, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI), 67000, Strasbourg, France.
| |
Collapse
|
38
|
Fonseca-Rodrigues D, Amorim D, Almeida A, Pinto-Ribeiro F. Emotional and cognitive impairments in the peripheral nerve chronic constriction injury model (CCI) of neuropathic pain: A systematic review. Behav Brain Res 2020; 399:113008. [PMID: 33171146 DOI: 10.1016/j.bbr.2020.113008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Emotional and cognitive impairments are common comorbidities of chronic neuropathic pain that significantly impact the quality of life of patients. While the nociceptive components of the peripheral nerve chronic constriction injury (CCI) animal model have been extensively analyzed, data related to the development of mood and cognitive disorders, and especially its impact on female rats remains fragmented. We systematically reviewed the literature analyzing the methods used to induce and evaluate the development of emotional- and cognitive-like impairments and sex-specific differences in the CCI model. DATABASES AND DATA TREATMENT We searched PubMed, Google Scholar and Web of Science from inception to September 30th, 2019, and a total of 44 papers were considered eligible for inclusion. We included animal studies assessing nociception, locomotion, anxious-like, depressive-like and cognitive behaviours after the CCI induction. RESULTS The overall quality of the studies was considered moderate to high. Overall, the induction of CCI leads to the development of emotional impairments, namely anxiety- and depressive-like behaviours, as well as cognitive impairments. With the majority of the studies using male subjects, the lack of evidence on female animals prevents the evaluation of sex-specific differences. CONCLUSIONS This review supports the development of an anxiodepressive-like phenotype, associated with cognitive impairments, in CCI-induced animals. These results support the use of this animal model for the study of the mechanisms underlying these comorbidities, as well as a screening tool for the development/repurposing of drugs that tackle both the neuropathy-induced nociceptive and emotional impairments, such as tricyclic antidepressants. Importantly, our review also highlights the need for studies performed in female rodents as these are almost non-existent.
Collapse
Affiliation(s)
- Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Many polyneuropathies cause significant neuropathic pain, resulting in substantial morbidity and reduced quality of life. Appropriate management is crucial for maintaining quality of life for patients with painful polyneuropathies. The US Food and Drug Administration (FDA) has only approved one new drug for painful diabetic neuropathy in the past decade, a topical capsaicin patch that was initially approved for the treatment of postherpetic neuralgia in 2009. Gabapentinoids and serotonin norepinephrine reuptake inhibitors (SNRIs) continue to have an advantage in safety profiles and efficacy. Other antiepileptic medications remain second-line agents because of fewer studies documenting efficacy. RECENT FINDINGS This article reviews recent literature on complementary and pharmacologic therapies for the management of painful polyneuropathies. Exercise has emerged as an important therapeutic tool and may also improve the underlying polyneuropathy in the setting of obesity, metabolic syndrome, and diabetes. SUMMARY The approach to management of painful polyneuropathies is multifactorial, using both pharmacologic and nonpharmacologic measures to improve pain severity and patient quality of life.
Collapse
|
40
|
Egeo G, Fofi L, Barbanti P. Botulinum Neurotoxin for the Treatment of Neuropathic Pain. Front Neurol 2020; 11:716. [PMID: 32849195 PMCID: PMC7431775 DOI: 10.3389/fneur.2020.00716] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023] Open
Abstract
Botulinum neurotoxin is widely used for the treatment of central and peripherical neurological conditions. Initially used to treat strabismus, over the years its use has been expanded also to spasticity and other neurological disorders. This review summarizes the evidence from the published literature regarding its effect on neuropathic pain. Almost all investigations were performed using onabotulinum toxin type A (BoNT/A). Most studies provided positive results, even though toxin formulation, dose, dilution, injection techniques, and sites are heterogeneous across studies. Future larger, high-quality, specifically designed clinical trials are warranted to confirm botulinum neurotoxin efficacy in neuropathic pain.
Collapse
Affiliation(s)
- Gabriella Egeo
- Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Luisa Fofi
- Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Piero Barbanti
- Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| |
Collapse
|
41
|
A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur J Med Chem 2020; 200:112447. [DOI: 10.1016/j.ejmech.2020.112447] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
|
42
|
Xiong B, Zhang W, Zhang L, Huang X, Zhou W, Zou Q, Manyande A, Wang J, Tian Y, Tian X. Hippocampal glutamatergic synapses impairment mediated novel-object recognition dysfunction in rats with neuropathic pain. Pain 2020; 161:1824-1836. [PMID: 32701842 DOI: 10.1097/j.pain.0000000000001878] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive impairment is one of the most common complications associated with chronic pain. Almost 20% of chronic pain patients suffer from cognitive impairment, which may substantially influence their quality of life. Levels of major excitatory neurotransmitters in the central nervous system and alterations in the glutamatergic system may influence cognitive function and the pain sensory pathway. In this study, we adopted the spared nerve injury model to establish the progress of chronic pain and investigated the mechanism underlying the cognitive aspect related to it. At behavioral level, using the novel-object recognition test, mechanical hypersensitivity was observed in peripheral nerve-injured rats because they exhibited recognition deficits. We showed a dramatic decrease in hippocampal glutamate concentration using nuclear magnetic resonance and reduced glutamatergic synaptic transmission using whole-cell recordings. These were associated with deficient hippocampal long-term potentiation induced by high-frequency stimulation of the Schaffer collateral afferent. Ultra-high-performance liquid chromatography revealed lower levels of D-serine in the hippocampus of the spared nerve injury rats and that D-serine treatment could restore synaptic plasticity and cognitive dysfunction. The reduction of excitatory synapses was also increased by administering D-serine. These findings suggest that chronic pain has a critical effect on synaptic plasticity linked to cognitive function and may built up a new target for the development of cognitive impairment under chronic pain conditions.
Collapse
Affiliation(s)
- Bingrui Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Longqing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Huang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenchang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Zou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yuke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
43
|
Mo Y, Liu B, Qiu S, Wang X, Zhong L, Han X, Mi F. Down‐regulation of microRNA‐34c‐5p alleviates neuropathic pain
via
the SIRT1/STAT3 signaling pathway in rat models of chronic constriction injury of sciatic nerve. J Neurochem 2020; 154:301-315. [PMID: 32126145 DOI: 10.1111/jnc.14998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Yanshuai Mo
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Benjuan Liu
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Shuang Qiu
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Xueqin Wang
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Lina Zhong
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Xiao Han
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Fuli Mi
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| |
Collapse
|
44
|
Moraes TR, Elisei LS, Malta IH, Galdino G. Participation of CXCL1 in the glial cells during neuropathic pain. Eur J Pharmacol 2020; 875:173039. [PMID: 32119843 DOI: 10.1016/j.ejphar.2020.173039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain is a chronic pain characterized by injury to the central or peripheral nervous system and that most often causes disability in individuals. Among the mechanisms involved in central sensitization during neuropathic pain are cytokines and chemokines released by spinal glial cells; however, these mechanisms are not well elucidated. Thus, the present study aimed to investigate the involvement of Chemokine (C-X-C motif) ligand 1 (CXCL1) and glial cells in this process. Male Wistar rats weighing 220-240 g were used and underwent a neuropathic pain model induced by chronic constriction injury (CCI). To investigate the involvement of CXCL1, chemokine receptor type 2 (CXCR2), mitogen-activated protein kinases (MAPK) p38, and microglia and astrocytes, the following drugs were used: SB225002, an CXCR2 antagonist; SML0543, a MAPK p38 inhibitor; minocycline, a microglia inhibitor; fluorocitrate, an astrocytes inhibitor; and recombinant CXCL1. The microglia, astrocytes, CXCL1, and MAPK p38 protein levels was evaluated by a Western blot assay. Furthermore, an immunofluorescence assay was performed to localize microglia and astrocytes immunoreactivity in the spinal cord. The results demonstrated that both CCI and CXCL1 induced nociception, and this effect was reversed by SB225002. In addition, minocycline, fluorocitrate, and SML0543 reversed the mechanical allodynia induced by CCI. Furthermore, there was an increase of spinal CXCL1 and microglial marker Iba1 protein levels , which was reversed by SB225002. This antagonist also reduced the Iba1 immunoreactivity in spinal cord. Thus, the present study suggests that the CXCL1 chemokine participates in neuropathic pain through CXCR2 activation in spinal microglia.
Collapse
Affiliation(s)
- Thamyris Reis Moraes
- Laboratory of Experimental Physiotherapy, Science of Motricity Institute, Federal University of Alfenas, Minas Gerais, Brazil
| | - Livia Silvestre Elisei
- Laboratory of Experimental Physiotherapy, Science of Motricity Institute, Federal University of Alfenas, Minas Gerais, Brazil
| | - Iago Henrique Malta
- Laboratory of Experimental Physiotherapy, Science of Motricity Institute, Federal University of Alfenas, Minas Gerais, Brazil
| | - Giovane Galdino
- Laboratory of Experimental Physiotherapy, Science of Motricity Institute, Federal University of Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
45
|
Neuropathic pain in individuals with sickle cell disease. Neurosci Lett 2020; 714:134445. [DOI: 10.1016/j.neulet.2019.134445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/06/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
46
|
LaMacchia ZM, Spengler RN, Jaffari M, Abidi AH, Ahmed T, Singh N, Tobinick EL, Ignatowski TA. Perispinal injection of a TNF blocker directed to the brain of rats alleviates the sensory and affective components of chronic constriction injury-induced neuropathic pain. Brain Behav Immun 2019; 82:93-105. [PMID: 31376497 DOI: 10.1016/j.bbi.2019.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is chronic pain that follows nerve injury, mediated in the brain by elevated levels of the inflammatory protein tumor necrosis factor-alpha (TNF). We have shown that peripheral nerve injury increases TNF in the hippocampus/pain perception region, which regulates neuropathic pain symptoms. In this study we assessed pain sensation and perception subsequent to specific targeting of brain-TNF (via TNF antibody) administered through a novel subcutaneous perispinal route. Neuropathic pain was induced in Sprague-Dawley rats via chronic constriction injury (CCI), and thermal hyperalgesia was monitored for 10 days post-surgery. On day 8 following CCI and sensory pain behavior testing, rats were randomized to receive perispinal injection of TNF antibody or control IgG isotype antibody. Pain perception was assessed using conditioned place preference (CPP) to the analgesic, amitriptyline. CCI-rats receiving the perispinal injection of TNF antibody had significantly decreased CCI-induced thermal hyperalgesia the following day, and did not form an amitriptyline-induced CPP, whereas CCI-rats receiving perispinal IgG antibody experienced pain alleviation only in conjunction with i.p. amitriptyline and did form an amitriptyline-induced CPP. The specific targeting of brain TNF via perispinal delivery alleviates thermal hyperalgesia and positively influences the affective component of pain. PERSPECTIVE: This study presents a novel route of drug administration to target central TNF for treatment of neuropathic pain. Targeting central TNF through perispinal drug delivery could potentially be a more efficient and sustained method to treat patients with neuropathic pain.
Collapse
Affiliation(s)
- Zach M LaMacchia
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | | | - Muhammad Jaffari
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | - Asif H Abidi
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | - Tariq Ahmed
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | - Natasha Singh
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | | | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA; Program for Neuroscience, University at Buffalo, The State University of New York, USA.
| |
Collapse
|
47
|
Birmann PT, Sousa FSS, Domingues M, Brüning CA, Vieira BM, Lenardão EJ, Savegnago L. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole promotes recovery of neuropathic pain and depressive-like behavior induced by partial constriction of the sciatic nerve in mice. J Trace Elem Med Biol 2019; 54:126-133. [PMID: 31109602 DOI: 10.1016/j.jtemb.2019.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023]
Abstract
3-(4-Chlorophenylselanyl)-1-methyl-1H-indole (CMI) is an organoselenium compound that presents antioxidant activity, antinociceptive, anti-inflammatory and antidepressive-like effect in mice in previous studies conducted by our research group. In this study, we evaluate the anti-allodynic, anti-hyperalgesic and antidepressant-like effects of CMI on partial sciatic nerve ligation (PSNL) in male adult Swiss mice (25-35 g) as well as the involvement of oxidative stress in these effects. Mice underwent PSNL surgery and after 4 weeks they were treated with CMI (10 mg/kg, intragastric route [i.g.]) or vehicle. The treatment with CMI (10 mg/kg, i.g.) reversed the increased the percentage of response to Von-Frey Hair (VFH) stimulation, decreased the latency time to nociceptive response in the hot-plate test, increased immobility time in the forced swimming test (FST) and decreased groomings activity in the splash test, all induced by PSNL. Additionally, CMI also reversed increased the levels of reactive oxygen species (ROS) and lipid peroxidation in cortex and hippocampus and plasmatic levels of corticosterone in mice, induced by PSNL. Results demonstrate that CMI reversed behavioral and biochemical alterations in the dyad pain-depression induced by PSNL and possibly modulation of oxidative system.
Collapse
Affiliation(s)
- Paloma T Birmann
- Technologic Development Center, Biotechnology Unit, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fernanda S S Sousa
- Center of Chemical, Pharmaceutical and Food Sciences, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Micaela Domingues
- Technologic Development Center, Biotechnology Unit, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - César A Brüning
- Center of Chemical, Pharmaceutical and Food Sciences, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Beatriz M Vieira
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Technologic Development Center, Biotechnology Unit, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil; Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
48
|
Vicario N, Pasquinucci L, Spitale FM, Chiechio S, Turnaturi R, Caraci F, Tibullo D, Avola R, Gulino R, Parenti R, Parenti C. Simultaneous Activation of Mu and Delta Opioid Receptors Reduces Allodynia and Astrocytic Connexin 43 in an Animal Model of Neuropathic Pain. Mol Neurobiol 2019; 56:7338-7354. [PMID: 31030416 DOI: 10.1007/s12035-019-1607-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is a chronic condition triggered by lesions to the somatosensory nervous system in which pain stimuli occur spontaneously or as pathologically amplified responses. In this scenario, the exchange of signaling molecules throughout cell-to-cell and cell-to-extracellular environment communications plays a key role in the transition from acute to chronic pain. As such, connexin 43 (Cx43), the core glial gap junction and hemichannel-forming protein, is considered a triggering factor for disease chronicization in the central nervous system (CNS). Drugs targeting μ opioid receptors (MOR) are currently used for moderate to severe pain conditions, but their use in chronic pain is limited by the tolerability profile. δ opioid receptors (DOR) have become attractive targets for the treatment of persistent pain and have been associated with the inhibition of pain-sustaining factors. Moreover, it has been shown that simultaneous targeting of MOR and DOR leads to an improved pharmacological fingerprint. Herein, we aimed to study the effects of the benzomorphan ligand LP2, a multitarget MOR/DOR agonist, in an experimental model of neuropathic pain induced by the unilateral sciatic nerve chronic constriction injury (CCI) on male Sprague-Dawley rats. Results showed that LP2 significantly ameliorated mechanical allodynia from the early phase of treatment up to 21 days post-ligatures. We additionally showed that LP2 prevented CCI-induced Cx43 alterations and pro-apoptotic signaling in the CNS. These findings increase the knowledge of neuropathic pain development and the role of spinal astrocytic Cx43, suggesting new approaches for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Section of Medicinal Chemistry, University of Catania, 95125, Catania, Italy
| | - Federica M Spitale
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy.,Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, Section of Medicinal Chemistry, University of Catania, 95125, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy.,Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy.
| | - Carmela Parenti
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy
| |
Collapse
|
49
|
Effect of mito-TEMPO, a mitochondria-targeted antioxidant, in rats with neuropathic pain. Neuroreport 2019; 29:1275-1281. [PMID: 30052549 DOI: 10.1097/wnr.0000000000001105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The therapeutic effects of mitochondria-targeted antioxidants have been demonstrated in many pathological conditions, but their effect on neuropathic pain remains unclear. The objective was to study the therapeutic effects and mechanisms of mito-TEMPO (MT), as a nitroxide conjugated with a triphenylphosphonium moiety, on neuropathic pain in rats. Rats were randomly assigned to sham control (sham), chronic constrictive injury (CCI) or MT treatment groups (sham+MT and CCI+MT). All animals received CCI of the left sciatic nerve except those in the sham group. Overall, 0.7 mg/kg of MT was intraperitoneally injected once daily for 14 consecutive days starting from day 7 after surgery. Mechanical paw withdrawal threshold and thermal paw withdrawal latency were detected to assess pain behavior. Malondialdehyde and reduced glutathione content and total superoxide dismutase activity of serum and spinal cord tissues were estimated to assess oxidative stress levels. Mitochondrial morphology and dynamin-related proteins were used to evaluate mitochondrial function, such as fusion [Mitofusin (Mfn) and optic atrophy 1 gene protein (OPA1)] and fission [dynamin-related protein (DRP1) and Fis1]. Paw withdrawal threshold and thermal paw withdrawal latency were significantly increased in the CCI+MT group compared with the CCI group. The malondialdehyde content was decreased whereas glutathione content and superoxide dismutase activity were increased in the serum of CCI+MT rats. Furthermore, MT substantially attenuated the elevated number and decreased size of mitochondria induced by CCI. Finally, MT significantly increased expressions of Mfn1 and OPA1 and significantly decreased expression of DRP1 and Fis1. The mitochondria-targeted antioxidant MT relieved neuropathic pain induced by CCI by protecting mitochondria against oxidative stress injury.
Collapse
|
50
|
Biomarkers mapping of neuropathic pain in a nerve chronic constriction injury mice model. Biochimie 2019; 158:172-179. [PMID: 30639439 DOI: 10.1016/j.biochi.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Neuropathic pain is caused by a lesion or disease of the somatosensory nervous system and has a considerable impact on the quality of life. Neuropathic pain has a dynamic and complex aetiology and gives heterogeneous symptoms across patients; therefore, it represents an important clinical challenge. Current pharmacological treatment includes tricyclic antidepressant serotonin-noradrenaline uptake inhibitors such as duloxetine, pregabalin, and gabapentin. However, these drugs do not show efficacy in all patients suffering from neuropathic pain. In this work we used a nerve chronic constriction injury mice model based on the ligation of sciatic nerve to analyse, by two-dimensional electrophoresis and mass spectrometry, blood proteins significantly altered by neuropathic pain one-week after surgery. A sham-ligated group of mice acting as control and a group of ligated mice treated with gabapentin were also analysed. The results indicated that four haptoglobin isoforms were significantly more expressed, while transthyretin and alpha-2-macroglobulin expression decreased in the serum of the murine neuropathic pain model with respect to the control mice. Interestingly, the treatment with the gabapentin reversed these conditions. The outcomes of this study can provide a further understanding of the pathophysiological meaning of the biomarkers involved in neuropathic pain.
Collapse
|