1
|
Souza INDO, Roychaudhuri R, de Belleroche J, Mothet JP. d-Amino acids: new clinical pathways for brain diseases. Trends Mol Med 2023; 29:1014-1028. [PMID: 37770379 DOI: 10.1016/j.molmed.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Free d-amino acids (d-AAs) are emerging as a novel and important class of signaling molecules in many organs, including the brain and endocrine systems. There has been considerable progress in our understanding of the fundamental roles of these atypical messengers, with increasingly recognized implications in a wide range of neuropathologies, including schizophrenia (SCZ), epilepsy, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), substance abuse, and chronic pain, among others. Research has enabled the discovery that d-serine, d-aspartate and more recently d-cysteine are essential for the healthy development and function of the central nervous system (CNS). We discuss recent progress that has profoundly transformed our vision of numerous physiological processes but has also shown how d-AAs are now offering therapeutic promise in clinical settings for several human diseases.
Collapse
Affiliation(s)
- Isis Nem de Oliveira Souza
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France; Molecular Pharmacology Laboratory, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robin Roychaudhuri
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacqueline de Belleroche
- Neurogenetics Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jean-Pierre Mothet
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Amani H, Soltani Khaboushan A, Terwindt GM, Tafakhori A. Glia Signaling and Brain Microenvironment in Migraine. Mol Neurobiol 2023; 60:3911-3934. [PMID: 36995514 DOI: 10.1007/s12035-023-03300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
Migraine is a complicated neurological disorder affecting 6% of men and 18% of women worldwide. Various mechanisms, including neuroinflammation, oxidative stress, altered mitochondrial function, neurotransmitter disturbances, cortical hyperexcitability, genetic factors, and endocrine system problems, are responsible for migraine. However, these mechanisms have not completely delineated the pathophysiology behind migraine, and they should be further studied. The brain microenvironment comprises neurons, glial cells, and vascular structures with complex interactions. Disruption of the brain microenvironment is the main culprit behind various neurological disorders. Neuron-glia crosstalk contributes to hyperalgesia in migraine. In the brain, microenvironment and related peripheral regulatory circuits, microglia, astrocytes, and satellite cells are necessary for proper function. These are the most important cells that could induce migraine headaches by disturbing the balance of the neurotransmitters in the nervous system. Neuroinflammation and oxidative stress are the prominent reactions glial cells drive during migraine. Understanding the role of cellular and molecular components of the brain microenvironment on the major neurotransmitters engaged in migraine pathophysiology facilitates the development of new therapeutic approaches with higher effectiveness for migraine headaches. Investigating the role of the brain microenvironment and neuroinflammation in migraine may help decipher its pathophysiology and provide an opportunity to develop novel therapeutic approaches for its management. This review aims to discuss the neuron-glia interactions in the brain microenvironment during migraine and their potential role as a therapeutic target for the treatment of migraine.
Collapse
Affiliation(s)
- Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Soltani Khaboushan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Imam Khomeini Hospital, Keshavarz Blvd., Tehran, Iran.
| |
Collapse
|
3
|
Genetic overlap between temporomandibular disorders and primary headaches: A systematic review. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:69-88. [PMID: 35242249 PMCID: PMC8881721 DOI: 10.1016/j.jdsr.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/18/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Primary headache disorders (PHD), specifically migraine, are strongly associated with temporomandibular disorders (TMD), sharing some patterns of orofacial pain. Both disorders have significant genetic contributions already studied. PRISMA guidelines were followed to conduct this systematic review, which comprehensively summarize and discuss the genetic overlap between TMD and PHD to aid future research in potential therapy targets. This review included eight original articles published between 2015 and 2020, written in English and related to either TMD and/or PHD. The genes simultaneously assessed in PHD and TMD studies were COMT, MTHFR, and ESR1. COMT was proved to play a critical role in TMD pathogenesis, as all studies have concluded about its impact on the occurrence of the disease, although no association with PHD was found. No proof on the impact of MTHFR gene regulation on either TMD or PHD was found. The most robust results are concerning the ESR1 gene, which is present in the genetic profile of both clinical conditions. This novel systematic review highlights not only the need for a clear understanding of the role of ESR1 and COMT genes in pain pathogenesis, but it also evaluates their potential as a promising therapeutic target to treat both pathologies.
Collapse
|
4
|
jiayang G, Xin G, chunxia Y, Xiaojuan G, Pan M, Shanzhi G, Bao Z. Transcriptome-wide association study by different approaches reveals candidate causal genes for cannabis use disorder. Gene 2022; 851:147048. [DOI: 10.1016/j.gene.2022.147048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
|
5
|
Bahrami S, Hindley G, Winsvold BS, O’Connell KS, Frei O, Shadrin A, Cheng W, Bettella F, Rødevand L, Odegaard KJ, Fan CC, Pirinen MJ, Hautakangas HM, Dale AM, Djurovic S, Smeland OB, Andreassen OA. Dissecting the shared genetic basis of migraine and mental disorders using novel statistical tools. Brain 2022; 145:142-153. [PMID: 34273149 PMCID: PMC8967089 DOI: 10.1093/brain/awab267] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022] Open
Abstract
Migraine is three times more prevalent in people with bipolar disorder or depression. The relationship between schizophrenia and migraine is less certain although glutamatergic and serotonergic neurotransmission are implicated in both. A shared genetic basis to migraine and mental disorders has been suggested but previous studies have reported weak or non-significant genetic correlations and five shared risk loci. Using the largest samples to date and novel statistical tools, we aimed to determine the extent to which migraine's polygenic architecture overlaps with bipolar disorder, depression and schizophrenia beyond genetic correlation, and to identify shared genetic loci. Summary statistics from genome-wide association studies were acquired from large-scale consortia for migraine (n cases = 59 674; n controls = 316 078), bipolar disorder (n cases = 20 352; n controls = 31 358), depression (n cases = 170 756; n controls = 328 443) and schizophrenia (n cases = 40 675, n controls = 64 643). We applied the bivariate causal mixture model to estimate the number of disorder-influencing variants shared between migraine and each mental disorder, and the conditional/conjunctional false discovery rate method to identify shared loci. Loci were functionally characterized to provide biological insights. Univariate MiXeR analysis revealed that migraine was substantially less polygenic (2.8 K disorder-influencing variants) compared to mental disorders (8100-12 300 disorder-influencing variants). Bivariate analysis estimated that 800 (SD = 300), 2100 (SD = 100) and 2300 (SD = 300) variants were shared between bipolar disorder, depression and schizophrenia, respectively. There was also extensive overlap with intelligence (1800, SD = 300) and educational attainment (2100, SD = 300) but not height (1000, SD = 100). We next identified 14 loci jointly associated with migraine and depression and 36 loci jointly associated with migraine and schizophrenia, with evidence of consistent genetic effects in independent samples. No loci were associated with migraine and bipolar disorder. Functional annotation mapped 37 and 298 genes to migraine and each of depression and schizophrenia, respectively, including several novel putative migraine genes such as L3MBTL2, CACNB2 and SLC9B1. Gene-set analysis identified several putative gene sets enriched with mapped genes including transmembrane transport in migraine and schizophrenia. Most migraine-influencing variants were predicted to influence depression and schizophrenia, although a minority of mental disorder-influencing variants were shared with migraine due to the difference in polygenicity. Similar overlap with other brain-related phenotypes suggests this represents a pool of 'pleiotropic' variants that influence vulnerability to diverse brain-related disorders and traits. We also identified specific loci shared between migraine and each of depression and schizophrenia, implicating shared molecular mechanisms and highlighting candidate migraine genes for experimental validation.
Collapse
Affiliation(s)
- Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Guy Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
| | - Bendik Slagsvold Winsvold
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kevin S O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, PO Box 1080, Blindern, 0316 Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Francesco Bettella
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Linn Rødevand
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Ketil J Odegaard
- NORMENT, Division of Psychiatry, Haukeland University Hospital and Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Chun C Fan
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Matti J Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Heidi M Hautakangas
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Srdjan Djurovic
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| |
Collapse
|
6
|
Wolosker H, Balu DT. D-Serine as the gatekeeper of NMDA receptor activity: implications for the pharmacologic management of anxiety disorders. Transl Psychiatry 2020; 10:184. [PMID: 32518273 PMCID: PMC7283225 DOI: 10.1038/s41398-020-00870-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fear, anxiety, and trauma-related disorders, including post-traumatic stress disorder (PTSD), are quite common and debilitating, with an estimated lifetime prevalence of ~28% in Western populations. They are associated with excessive fear reactions, often including an inability to extinguish learned fear, increased avoidance behavior, as well as altered cognition and mood. There is an extensive literature demonstrating the importance of N-methyl-D-aspartate receptor (NMDAR) function in regulating these behaviors. NMDARs require the binding of a co-agonist, D-serine or glycine, at the glycine modulatory site (GMS) to function. D-serine is now garnering attention as the primary NMDAR co-agonist in limbic brain regions implicated in neuropsychiatric disorders. L-serine is synthesized by astrocytes, which is then transported to neurons for conversion to D-serine by serine racemase (SR), a model we term the 'serine shuttle.' The neuronally-released D-serine is what regulates NMDAR activity. Our review discusses how the systems that regulate the synaptic availability of D-serine, a critical gatekeeper of NMDAR-dependent activation, could be targeted to improve the pharmacologic management of anxiety-related disorders where the desired outcomes are the facilitation of fear extinction, as well as mood and cognitive enhancement.
Collapse
Affiliation(s)
- Herman Wolosker
- grid.6451.60000000121102151Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096 Israel
| | - Darrick T. Balu
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XTranslational Psychiatry Laboratory, McLean Hospital, Belmont, MA 02478 USA
| |
Collapse
|
7
|
Wang X, Yu Z, He Z, Zhang Q, Yu S. Intracerebroventricular infusion of D-serine decreases nociceptive behaviors induced by electrical stimulation of the dura mater of rat. Neurol Res 2018; 41:204-207. [PMID: 30585136 DOI: 10.1080/01616412.2018.1531200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE AND METHOD D-serine acts as an obligatory ligand for the glycine sites of N-methyl-D-aspartate receptors. To investigate its effect on head-facial pain, nociceptive behaviors of rats induced by electrical stimulation of the dura mater were observed after cerebroventricular infusion of D-serine. RESULTS Rats in the D-serine infusion group showed significantly fewer nociceptive behaviors, including grooming and head flicking, than rats in the saline infusion group and control rats. CONCLUSIONS This is the first study to introduce D-serine to a trigeminovascular headache model that demonstrates an antinociceptive-like effect in rats.
Collapse
Affiliation(s)
- Xiaolin Wang
- a Department of neurology , The Chinese PLA general hospital , Beijing , China
| | - Zhe Yu
- a Department of neurology , The Chinese PLA general hospital , Beijing , China
| | - Zi He
- a Department of neurology , The Chinese PLA general hospital , Beijing , China
| | - Qiang Zhang
- b Department of orthopedics , The Chinese PLA general hospital , Beijing , China
| | - Shengyuan Yu
- a Department of neurology , The Chinese PLA general hospital , Beijing , China
| |
Collapse
|
8
|
Bogdan R, Baranger DAA, Agrawal A. Polygenic Risk Scores in Clinical Psychology: Bridging Genomic Risk to Individual Differences. Annu Rev Clin Psychol 2018; 14:119-157. [PMID: 29579395 PMCID: PMC7772939 DOI: 10.1146/annurev-clinpsy-050817-084847] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomewide association studies (GWASs) across psychiatric phenotypes have shown that common genetic variants generally confer risk with small effect sizes (odds ratio < 1.1) that additively contribute to polygenic risk. Summary statistics derived from large discovery GWASs can be used to generate polygenic risk scores (PRS) in independent, target data sets to examine correlates of polygenic disorder liability (e.g., does genetic liability to schizophrenia predict cognition?). The intuitive appeal and generalizability of PRS have led to their widespread use and new insights into mechanisms of polygenic liability. However, when currently applied across traits they account for small amounts of variance (<3%), are relatively uninformative for clinical treatment, and, in isolation, provide no insight into molecular mechanisms. Larger GWASs are needed to increase the precision of PRS, and novel approaches integrating various data sources (e.g., multitrait analysis of GWASs) may improve the utility of current PRS.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAINLab, Department of Psychological and Brain Sciences, and Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63110, USA;
| | - David A A Baranger
- BRAINLab, Department of Psychological and Brain Sciences, and Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63110, USA;
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
9
|
Serine Racemase and D-serine in the Amygdala Are Dynamically Involved in Fear Learning. Biol Psychiatry 2018; 83:273-283. [PMID: 29025687 PMCID: PMC5806199 DOI: 10.1016/j.biopsych.2017.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND The amygdala is a central component of the neural circuitry that underlies fear learning. N-methyl-D-aspartate receptor-dependent plasticity in the amygdala is required for pavlovian fear conditioning and extinction. N-methyl-D-aspartate receptor activation requires the binding of a coagonist, D-serine, which is synthesized from L-serine by the neuronal enzyme serine racemase (SR). However, little is known about SR and D-serine function in the amygdala. METHODS We used immunohistochemical methods to characterize the cellular localization of SR and D-serine in the mouse and human amygdala. Using biochemical and molecular techniques, we determined whether trace fear conditioning and extinction engages the SR/D-serine system in the brain. D-serine was administered systemically to mice to evaluate its effect on fear extinction. Finally, we investigated whether the functional single nucleotide polymorphism rs4523957, which is an expression quantitative trait locus of the human serine racemase (SRR) gene, was associated with fear-related phenotypes in a highly traumatized human cohort. RESULTS We demonstrate that approximately half of the neurons in the amygdala express SR, including both excitatory and inhibitory neurons. We find that the acquisition and extinction of fear memory engages the SR/D-serine system in the mouse amygdala and that D-serine administration facilitates fear extinction. We also demonstrate that the SRR single nucleotide polymorphism, rs4523957, is associated with posttraumatic stress disorder in humans, consistent with the facilitatory effect of D-serine on fear extinction. CONCLUSIONS These new findings have important implications for understanding D-serine-mediated N-methyl-D-aspartate receptor plasticity in the amygdala and how this system could contribute to disorders with maladaptive fear circuitry.
Collapse
|
10
|
Nelson DL, Applegate GA, Beio ML, Graham DL, Berkowitz DB. Human serine racemase structure/activity relationship studies provide mechanistic insight and point to position 84 as a hot spot for β-elimination function. J Biol Chem 2017; 292:13986-14002. [PMID: 28696262 DOI: 10.1074/jbc.m117.777904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/26/2017] [Indexed: 11/06/2022] Open
Abstract
There is currently great interest in human serine racemase, the enzyme responsible for producing the NMDA co-agonist d-serine. Reported correlation of d-serine levels with disorders including Alzheimer's disease, ALS, and ischemic brain damage (elevated d-serine) and schizophrenia (reduced d-serine) has further piqued this interest. Reported here is a structure/activity relationship study of position Ser84, the putative re-face base. In the most extreme case of functional reprogramming, the S84D mutant displays a dramatic reversal of β-elimination substrate specificity in favor of l-serine over the normally preferred l-serine-O-sulfate (∼1200-fold change in kcat/Km ratios) and l (l-THA; ∼5000-fold change in kcat/Km ratios) alternative substrates. On the other hand, the S84T (which performs l-Ser racemization activity), S84A (good kcat but high Km for l-THA elimination), and S84N mutants (nearly WT efficiency for l-Ser elimination) displayed intermediate activity, all showing a preference for the anionic substrates, but generally attenuated compared with the native enzyme. Inhibition studies with l-erythro-β-hydroxyaspartate follow this trend, with both WT serine racemase and the S84N mutant being competitively inhibited, with Ki = 31 ± 1.5 μm and 1.5 ± 0.1 mm, respectively, and the S84D being inert to inhibition. Computational modeling pointed to a key role for residue Arg-135 in binding and properly positioning the l-THA and l-serine-O-sulfate substrates and the l-erythro-β-hydroxyaspartate inhibitor. Examination of available sequence data suggests that Arg-135 may have originated for l-THA-like β-elimination function in earlier evolutionary variants, and examination of available structural data suggests that a Ser84-H2O-Lys114 hydrogen-bonding network in human serine racemase lowers the pKa of the Ser84re-face base.
Collapse
Affiliation(s)
- David L Nelson
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Greg A Applegate
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Matthew L Beio
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Danielle L Graham
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - David B Berkowitz
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588.
| |
Collapse
|
11
|
Fujita Y, Ishima T, Hashimoto K. Supplementation with D-serine prevents the onset of cognitive deficits in adult offspring after maternal immune activation. Sci Rep 2016; 6:37261. [PMID: 27853241 PMCID: PMC5112512 DOI: 10.1038/srep37261] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Prenatal maternal infection contributes to the etiology of schizophrenia, with D-serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA) receptor, playing a role in the pathophysiology of this disease. We examined whether supplementation with D-serine during juvenile and adolescent stages could prevent the onset of cognitive deficits, prodromal and the core symptoms of schizophrenia in adult offspring after maternal immune activation (MIA). Juvenile offspring exposed prenatally to poly(I:C) showed reduced expression of NMDA receptor subunits in the hippocampus. Supplementing drinking water with D-serine (600 mg/L from P28 to P56) prevented the onset of cognitive deficits in adult offspring after MIA, in a significant manner. This study shows that supplementing offspring with D-serine during juvenile and adolescent stages could prevent the onset of psychosis in adulthood, after MIA. Therefore, early intervention with D-serine may prevent the occurrence of psychosis in high-risk subjects.
Collapse
Affiliation(s)
- Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| |
Collapse
|