1
|
Shangase KB, Luvuno M, Mabandla M. Effects of combined postweaning social isolation and ketamine administration on schizophrenia-like behaviour in male Sprague Dawley rats. Behav Brain Res 2025; 476:115214. [PMID: 39182622 DOI: 10.1016/j.bbr.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The pathophysiology behind negative and cognitive symptoms of schizophrenia is not well understood, thus limiting the effectiveness of treatment on these symptoms. Developing reliable animal model of schizophrenia is vital to advance our understanding on the neurobiological basis of the disorder. Double hit is used to refer to the use of two schizophrenia inducing interventions viz ketamine exposure and social isolation. In this study we aim to investigate the robustness of double hit model of schizophrenia in inducing negative and cognitive symptoms of schizophrenia. On postnatal day (PND) 23, thirty-two male Sprague Dawley rats were randomly grouped into four equal groups as follows: group housed + saline (GH), group housed + ketamine (GHK), isolated + saline (SI), and isolated + ketamine (SIK). A single ketamine dose (16 mg/kg) was administered 3 times a week for four weeks. Isolated animals were housed singly throughout the study. The following behavioural tests were carried out: elevated plus maze, three chamber social interaction, resident intruder tests, and novel object recognition (NOR). The SIK group exhibited high anxiety levels, with increased ACTH, corticosterone and norepinephrine concentration when compared to the other groups. The SIK animals also presented with reduced social interaction and decreased oxytocin concentration. SIK rats were more aggressive towards a juvenile intruder but had low testosterone concentration. The SIK group or double hit model showed impaired visual learning and memory and increased expression of proinflammatory cytokines. This suggest that the double hit model is more robust in inducing negative and cognitive symptoms of schizophrenia than each treatment alone.
Collapse
Affiliation(s)
- Khanyiso Bright Shangase
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| | - Mluleki Luvuno
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Musa Mabandla
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
2
|
Chellian R, Behnood-Rod A, Bruijnzeel AW. Sex differences in nicotine intake and relapse behavior in nicotine-dependent adult wistar rats. Front Pharmacol 2024; 15:1415219. [PMID: 39391691 PMCID: PMC11464435 DOI: 10.3389/fphar.2024.1415219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Tobacco use is highly addictive and the leading cause of premature mortality in the world. Long-access nicotine self-administration procedures in rats closely model human smoking behavior. However, significant gaps remain in our understanding of sex differences in the development of dependence and relapse in adult rats. Methods In the present study, we investigated operant responding for both nicotine and saline and the development of dependence in adult rats of both sexes. The rats had daily access to nicotine or saline for 6 h per day, 7 days per week. Dependence was assessed by evaluating precipitated and spontaneous somatic withdrawal signs, measuring locomotor activity in the small open field test, and assessing anxiety-like behavior in the large open field and elevated plus maze test. The sucrose preference test was used to determine if cessation of nicotine intake leads to anhedonia. It was also investigated if a period of forced abstinence affects nicotine-seeking behavior. Results This study showed that nicotine intake is higher in females than in males when given daily long access to nicotine. Daily nicotine self-administration led to more precipitated and spontaneous somatic withdrawal signs compared to saline self-administration, with no sex differences observed. In addition, cessation of nicotine intake led to a similar increase in activity in both males and females in the small open field test. However, cessation of nicotine intake did not increase anxiety-like behavior or cause anhedonia in either males or females. A time course analysis revealed that the nicotinic acetylcholine receptor antagonist mecamylamine affected nicotine intake differently in males and females, increasing intake in males and decreasing intake in females. Three weeks of forced abstinence led to an increase in nicotine and saline-seeking behavior. The rats exhibited more nicotine than saline seeking, and the females displayed more nicotine seeking than the males. Discussion The present findings demonstrate that females self-administer more nicotine and display more nicotine-seeking behavior than males. Furthermore, there were no sex differences in somatic withdrawal signs or activity during abstinence from nicotine. This work underscores the importance of considering sex differences across various aspects of addiction, including intake and relapse, when developing novel treatments for tobacco use disorder.
Collapse
|
3
|
Chellian R, Behnood-Rod A, Bruijnzeel AW. Mifepristone decreases nicotine intake in dependent and non-dependent adult rats. J Psychopharmacol 2024; 38:280-296. [PMID: 38332661 PMCID: PMC11061865 DOI: 10.1177/02698811241230255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
BACKGROUND Addiction to tobacco and nicotine products has adverse health effects and afflicts more than a billion people worldwide. Therefore, there is an urgent need for new treatments to reduce tobacco and nicotine use. Glucocorticoid receptor blockade shows promise as a novel treatment for drug abuse and stress-related disorders. AIM These studies aim to investigate whether glucocorticoid receptor blockade with mifepristone diminishes the reinforcing properties of nicotine in rats with intermittent or daily long access to nicotine. METHODS The rats self-administered 0.06 mg/kg/inf of nicotine for 6 h per day, with either intermittent or daily access for 4 weeks before treatment with mifepristone. Daily nicotine self-administration models regular smoking, while intermittent nicotine self-administration models occasional smoking. To determine whether the rats were dependent, they were treated with the nicotinic acetylcholine receptor antagonist mecamylamine, and somatic signs were recorded. RESULTS The rats with intermittent access to nicotine had a higher level of nicotine intake per session than those with daily access but only the rats with daily access to nicotine showed signs of physical dependence. Furthermore, mecamylamine increased nicotine intake during the first hour of access in rats with daily access but not in those with intermittent access. Mifepristone decreased total nicotine intake in rats with intermittent and daily access to nicotine. Moreover, mifepristone decreased the distance traveled and rearing in the open field test and operant responding for food pellets. CONCLUSION These findings indicate that mifepristone decreases nicotine intake but this effect may be partially attributed to the sedative effects of mifepristone.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
4
|
Barak R, Goshtasbi G, Fatehi R, Firouzabadi N. Signaling pathways and genetics of brain Renin angiotensin system in psychiatric disorders: State of the art. Pharmacol Biochem Behav 2024; 236:173706. [PMID: 38176544 DOI: 10.1016/j.pbb.2023.173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Along the conventional pathways, Renin-angiotensin system (RAS) plays a key role in the physiology of the CNS and pathogenesis of psychiatric diseases. RAS is a complex regulatory pathway which is composed of several peptides and receptors and comprises two counter-regulatory axes. The classical (ACE1/AngII/AT1 receptor) axis and the contemporary (ACE2/Ang (1-7)/Mas receptor) axis. The genes coding for elements of both axes have been broadly studied. Numerous functional polymorphisms on components of RAS have been identified to serve as informative disease and treatment markers. This review summarizes the role of each peptide and receptor in the pathophysiology of psychiatric disorders (depression, bipolar disorders and schizophrenia), followed by a concise look at the role of genetic polymorphism of the RAS in the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Roya Barak
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghazal Goshtasbi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Jing C, Kuai H, Matsumoto H, Yamaguchi T, Liao IY, Wang S. Addiction-related brain networks identification via Graph Diffusion Reconstruction Network. Brain Inform 2024; 11:1. [PMID: 38190053 PMCID: PMC10774517 DOI: 10.1186/s40708-023-00216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) provides insights into complex patterns of brain functional changes, making it a valuable tool for exploring addiction-related brain connectivity. However, effectively extracting addiction-related brain connectivity from fMRI data remains challenging due to the intricate and non-linear nature of brain connections. Therefore, this paper proposed the Graph Diffusion Reconstruction Network (GDRN), a novel framework designed to capture addiction-related brain connectivity from fMRI data acquired from addicted rats. The proposed GDRN incorporates a diffusion reconstruction module that effectively maintains the unity of data distribution by reconstructing the training samples, thereby enhancing the model's ability to reconstruct nicotine addiction-related brain networks. Experimental evaluations conducted on a nicotine addiction rat dataset demonstrate that the proposed GDRN effectively explores nicotine addiction-related brain connectivity. The findings suggest that the GDRN holds promise for uncovering and understanding the complex neural mechanisms underlying addiction using fMRI data.
Collapse
Affiliation(s)
- Changhong Jing
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongzhi Kuai
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | - Hiroki Matsumoto
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | | | - Iman Yi Liao
- University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Shuqiang Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Ayman J, Palotai M, Dochnal R, Bagosi Z. Ghrelin Amplifies the Nicotine-Induced Release of Dopamine in the Bed Nucleus of Stria Terminalis (BNST). Biomedicines 2023; 11:2456. [PMID: 37760897 PMCID: PMC10525377 DOI: 10.3390/biomedicines11092456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ghrelin is an orexigenic neuropeptide that is known for stimulating the release of growth hormone (GH) and appetite. In addition, ghrelin has been implicated in addiction to drugs such as nicotine. Nicotine is the principal psychoactive component in tobacco and is responsible for the reward sensation produced by smoking. In our previous in vitro superfusion studies, it was demonstrated that ghrelin and nicotine stimulate equally the dopamine release in the rat amygdala, and ghrelin amplifies the nicotine-induced dopamine release in the rat striatum. However, less attention was paid to the actions of ghrelin and nicotine in the bed nucleus of the stria terminalis (BNST). Therefore, in the present study, nicotine and ghrelin were superfused to the BNST of male Wistar rats, and the dopamine release from the BNST was measured in vitro. In order to determine which receptors mediate these effects, mecamylamine, a non-selective nicotinic acetylcholine receptor (nAchR) antagonist, and GHRP-6, a selective growth hormone secretagogue receptor (GHS-R1A) antagonist, were also superfused to the rat BNST. Nicotine significantly increased the release of dopamine, and this effect was significantly inhibited by mecamylamine. Ghrelin increased dopamine release even more significantly than nicotine did, and this effect was significantly inhibited by GHRP-6. Moreover, when administered together, ghrelin significantly amplified the nicotine-induced release of dopamine in the BNST, and this additive effect was reversed partly by mecamylamine and partly by GHRP-6. Therefore, the present study provides a new base of evidence for the involvement of ghrelin in dopamine signaling implicated in nicotine addiction.
Collapse
Affiliation(s)
- Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6701 Szeged, Hungary;
| | - Miklós Palotai
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Roberta Dochnal
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6701 Szeged, Hungary;
| | - Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
7
|
Kim HC, Kaplan CM, Islam S, Anderson AS, Piper ME, Bradford DE, Curtin JJ, DeYoung KA, Smith JF, Fox AS, Shackman AJ. Acute nicotine abstinence amplifies subjective withdrawal symptoms and threat-evoked fear and anxiety, but not extended amygdala reactivity. PLoS One 2023; 18:e0288544. [PMID: 37471317 PMCID: PMC10358993 DOI: 10.1371/journal.pone.0288544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Tobacco smoking imposes a staggering burden on public health, underscoring the urgency of developing a deeper understanding of the processes that maintain addiction. Clinical and experience-sampling data highlight the importance of anxious withdrawal symptoms, but the underlying neurobiology has remained elusive. Mechanistic work in animals implicates the central extended amygdala (EAc)-including the central nucleus of the amygdala and the neighboring bed nucleus of the stria terminalis-but the translational relevance of these discoveries remains unexplored. Here we leveraged a randomized trial design, well-established threat-anticipation paradigm, and multidimensional battery of assessments to understand the consequences of 24-hour nicotine abstinence. The threat-anticipation paradigm had the expected consequences, amplifying subjective distress and arousal, and recruiting the canonical threat-anticipation network. Abstinence increased smoking urges and withdrawal symptoms, and potentiated threat-evoked distress, but had negligible consequences for EAc threat reactivity, raising questions about the translational relevance of prominent animal and human models of addiction. These observations provide a framework for conceptualizing nicotine abstinence and withdrawal, with implications for basic, translational, and clinical science.
Collapse
Affiliation(s)
- Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
| | - Claire M. Kaplan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Allegra S. Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Megan E. Piper
- Center for Tobacco Research and Intervention and Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, United States of America
| | - Daniel E. Bradford
- School of Psychological Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - John J. Curtin
- Department of Psychology, University of Wisconsin—Madison, Madison, Wisconsin, United States of America
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, California, United States of America
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
8
|
Carrette LLG, Kimbrough A, Davoudian PA, Kwan AC, Collazo A, George O. Hyperconnectivity of Two Separate Long-Range Cholinergic Systems Contributes to the Reorganization of the Brain Functional Connectivity during Nicotine Withdrawal in Male Mice. eNeuro 2023; 10:ENEURO.0019-23.2023. [PMID: 37295945 PMCID: PMC10306126 DOI: 10.1523/eneuro.0019-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic nicotine results in dependence with withdrawal symptoms on discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity; however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene Fos during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity, they were organized into two anticorrelated networks that were separated into basal forebrain-projecting and brainstem-thalamic-projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2, Chrna3, Chrna10, and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in Fos expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced Fos expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence.
Collapse
Affiliation(s)
| | - Adam Kimbrough
- Department of Psychiatry, UC San Diego, California 92093
| | - Pasha A Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut 06511
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Andres Collazo
- Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Olivier George
- Department of Psychiatry, UC San Diego, California 92093
| |
Collapse
|
9
|
Carrette LL, Kimbrough A, Davoudian PA, Kwan AC, Collazo A, George O. Hyperconnectivity of two separate long-range cholinergic systems contributes to the reorganization of the brain functional connectivity during nicotine withdrawal in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534836. [PMID: 37034602 PMCID: PMC10081261 DOI: 10.1101/2023.03.29.534836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Chronic nicotine results in dependence with withdrawal symptoms upon discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity, however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene FOS during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity they were organized into two anticorrelated networks that were separated into basal forebrain projecting and brainstem-thalamic projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2 , Chrna3 , Chrna10 , and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in FOS expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced FOS expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence. Significance Statement Discontinuation of nicotine use in dependent users is associated with increased whole-brain activation and functional connectivity and leads to withdrawal symptoms. Here we investigated the contribution of the nicotinic cholinergic receptors and main cholinergic projecting brain areas in the whole-brain changes associated with withdrawal. This not only allowed us to visualize and confirm the previously described duality of the cholinergic brain system using this novel methodology, but also identify nicotinic receptors together with 1751 other genes that contribute, and could thus be targets for treatments against, nicotine withdrawal and dependence.
Collapse
Affiliation(s)
| | - Adam Kimbrough
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92032, United States
| | - Pasha A. Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, 06511, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Andres Collazo
- Beckman Institute, CalTech, Pasadena, CA, 91125, United States
| | - Olivier George
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92032, United States
| |
Collapse
|
10
|
Bruijnzeel AW, Behnood-Rod A, Malphurs W, Chellian R, Caudle RM, Febo M, Setlow B, Neubert JK. Oxycodone decreases anxiety-like behavior in the elevated plus-maze test in male and female rats. Behav Pharmacol 2022; 33:418-426. [PMID: 35947068 PMCID: PMC9373716 DOI: 10.1097/fbp.0000000000000690] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The prescription opioid oxycodone is widely used for the treatment of pain in humans. Oxycodone misuse is more common among people with an anxiety disorder than those without one. Therefore, oxycodone might be misused for its anxiolytic properties. We investigated if oxycodone affects anxiety-like behavior in adult male and female rats. The rats were treated with oxycodone (0.178, 0.32, 0.56, or 1 mg/kg), and anxiety-like behavior was investigated in the elevated plus-maze test. Immediately after the elevated plus-maze test, a small open field test was conducted to determine the effects of oxycodone on locomotor activity. In the elevated plus-maze test, oxycodone increased the percentage of time spent on the open arms, the percentage of open arm entries, time on the open arms, open arm entries, and the distance traveled. The males treated with vehicle had a lower percentage of open arm entries than the females treated with vehicle, and oxycodone treatment led to a greater increase in the percentage of open arm entries in the males than females. Furthermore, the females spent more time on the open arms, made more open arm entries, spent less time in the closed arms, and traveled a greater distance than the males. In the small open field test, treatment with oxycodone did not affect locomotor activity or rearing. Sex differences were observed; the females traveled a greater distance and displayed more rearing than the males. In conclusion, oxycodone decreases anxiety-like behavior in rats, and oxycodone has a greater anxiolytic-like effect in males than females.
Collapse
Affiliation(s)
- Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida
- Center for Addiction Research and Education, University of Florida
| | | | | | | | - Robert M Caudle
- Oral and Maxillofacial Surgery, University of Florida, Gainesville, Florida, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida
- Center for Addiction Research and Education, University of Florida
| | - Barry Setlow
- Department of Psychiatry, University of Florida
- Center for Addiction Research and Education, University of Florida
| | | |
Collapse
|
11
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
12
|
Chellian R, Behnood-Rod A, Wilson R, Bruijnzeel AW. Rewarding Effects of Nicotine Self-administration Increase Over Time in Male and Female Rats. Nicotine Tob Res 2021; 23:2117-2126. [PMID: 33987656 DOI: 10.1093/ntr/ntab097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Smoking and the use of other nicotine-containing products is rewarding in humans. The self-administration of nicotine is also rewarding in male rats. However, it is unknown if there are sex differences in the reward-enhancing effects of nicotine self-administration and if the rewarding effects of nicotine change over time. METHODS Rats were prepared with catheters and intracranial self-stimulation (ICSS) electrodes to investigate the effects of nicotine and saline self-administration on reward function. A decrease in thresholds in the ICSS procedure reflects an enhancement of reward function. The ICSS parameters were determined before and after the self-administration sessions from days 1 to 10, and after the self-administration sessions from days 11 to 15. RESULTS During the first 10 days, there was no sex difference in nicotine intake, but during the last 5 days, the females took more nicotine than the males. During the first 10 days, nicotine self-administration did not lower the brain reward thresholds but decreased the response latencies. During the last 5 days, nicotine lowered the reward thresholds and decreased the response latencies. An analysis with the 5-day averages (days 1-5, 6-10, and 11-15) showed that the reward enhancing and stimulatory effects of nicotine increased over time. There were no sex differences in the reward-enhancing and stimulatory effects of nicotine. The nicotinic receptor antagonist mecamylamine diminished the reward-enhancing and stimulatory effects of nicotine. CONCLUSION These findings indicate that the rewarding effects of nicotine self-administration increase over time, and there are no sex differences in the reward-enhancing effects of nicotine self-administration in rats. IMPLICATIONS This study investigated the rewarding effect of nicotine and saline self-administration in male and female rats. The self-administration of nicotine, but not saline, enhanced brain reward function and had stimulatory effects. The rewarding effects of nicotine increased over time in the males and the females. Despite that the females had a higher level of nicotine intake than the males, the reward-enhancing effects of nicotine self-administration were the same. These findings suggest that in new tobacco and e-cigarette users, nicotine's rewarding effects might increase quickly, and a higher level of nicotine use in females might not translate into greater rewarding effects.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Hernandez CM, Orsini CA, Blaes SL, Bizon JL, Febo M, Bruijnzeel AW, Setlow B. Effects of repeated adolescent exposure to cannabis smoke on cognitive outcomes in adulthood. J Psychopharmacol 2021; 35:848-863. [PMID: 33295231 PMCID: PMC8187454 DOI: 10.1177/0269881120965931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cannabis (marijuana) is the most widely used illicit drug in the USA, and consumption among adolescents is rising. Some animal studies show that adolescent exposure to delta 9-tetrahydrocannabinol or synthetic cannabinoid receptor 1 agonists causes alterations in affect and cognition that can persist into adulthood. It is less clear, however, whether similar alterations result from exposure to cannabis via smoke inhalation, which remains the most frequent route of administration in humans. AIMS To begin to address these questions, a rat model was used to determine how cannabis smoke exposure during adolescence affects behavioral and cognitive outcomes in adulthood. METHODS Adolescent male Long-Evans rats were assigned to clean air, placebo smoke, or cannabis smoke groups. Clean air or smoke exposure sessions were conducted daily during adolescence (from P29-P49 days of age ) for a total of 21 days, and behavioral testing began on P70. RESULTS Compared to clean air and placebo smoke conditions, cannabis smoke significantly attenuated the normal developmental increase in body weight, but had no effects on several measures of either affect/motivation (open field activity, elevated plus maze, instrumental responding under a progressive ratio schedule of reinforcement) or cognition (set shifting, reversal learning, intertemporal choice). Surprisingly, however, in comparison to clean air controls rats exposed to either cannabis or placebo smoke in adolescence exhibited enhanced performance on a delayed response working memory task. CONCLUSIONS These findings are consistent with a growing body of evidence for limited long-term adverse cognitive and affective consequences of adolescent exposure to relatively low levels of cannabinoids.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, USA,Department of Psychiatry, University of Florida, Gainesville, USA,Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, USA
| | - Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA,Department of Psychology, The University of Texas at Austin, Austin, USA
| | - Shelby L Blaes
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, USA,Center for Addiction Research and Education, University of Florida, Gainesville, USA
| |
Collapse
|
14
|
Adolescent nicotine treatment causes robust locomotor sensitization during adolescence but impedes the spontaneous acquisition of nicotine intake in adult female Wistar rats. Pharmacol Biochem Behav 2021; 207:173224. [PMID: 34197844 DOI: 10.1016/j.pbb.2021.173224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
Very few people are able to quit smoking, and therefore it is essential to know which factors contribute to the development of compulsive nicotine use. These studies aimed to investigate if early-adolescent nicotine exposure causes locomotor sensitization and affects anxiety-like behavior and the spontaneous acquisition of intravenous nicotine self-administration. Early-adolescent male and female rats were treated with nicotine from postnatal (P) days 24 to 42, and anxiety-like behavior and locomotor activity were investigated one day after the cessation of nicotine treatment and in adulthood (>P75). The spontaneous acquisition of nicotine self-administration was also investigated in adulthood. The rats self-administered 0.03 mg/kg/infusion of nicotine for six days under a fixed-ratio (FR) 1 schedule and four days under an FR2 schedule (3-h sessions). Repeated nicotine administration increased locomotor activity, rearing, and stereotypies in a small open field in adolescent male and female rats. One day after the last nicotine injection, the percentage of open arm entries in the elevated plus-maze test was decreased in the males and increased in the females. However, locomotor activity in the small open field was unaffected. Adolescent nicotine treatment did not affect anxiety-like behavior and locomotor activity in adulthood. During the 10-day nicotine self-administration period, the females had a higher level of nicotine intake than the males. Adolescent nicotine treatment decreased nicotine intake in the females. In conclusion, these findings indicate that repeated nicotine administration during adolescence causes robust behavioral sensitization and leads to lower nicotine intake in females throughout the acquisition period in adulthood in rats.
Collapse
|
15
|
Oliveira LA, Gomes-de-Souza L, Benini R, Wood SK, Crestani CC. Both CRF 1 and CRF 2 receptors in the bed nucleus of stria terminalis are involved in baroreflex impairment evoked by chronic stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110009. [PMID: 32535028 DOI: 10.1016/j.pnpbp.2020.110009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/23/2023]
Abstract
Chronic exposure to adverse events has been proposed as a prominent factor involved in etiology and progression of cardiovascular dysfunctions in humans and animals. However, the neurobiological mechanisms involved are still poorly understood. In this sense, chronic stress has been reported to evoke neuroplasticity in corticotropin-releasing factor (CRF) neurotransmission in several limbic structures, including the bed nucleus of the stria terminalis. However, a possible involvement of BNST CRF neurotransmission in cardiovascular dysfunctions evoked by chronic stress has never been reported. Thus, this study investigated the involvement of CRF1 and CRF2 receptors within the BNST in cardiovascular changes evoked by chronic stress in rats. We identified that exposure to a 10-day chronic variable stress (CVS) protocol decreased expression of both CRF1 and CRF2 receptors within the BNST. These effects were followed by increased arterial pressure and impairment of baroreflex function, but without changes on heart rate. Bilateral microinjection of either the selective CRF1 receptor antagonist CP376395 or the selective CRF2 receptor antagonist antisauvagine-30 into the BNST did not affect CVS-evoked arterial pressure increase. Nevertheless, BNST treatment with CP376395 decreased both tachycardic and bradycardic responses of the baroreflex in non-stressed rats; but these effects were not identified in chronically stressed animals. BNST pharmacological treatment with antisauvagine-30 decreased the reflex tachycardia in control animals, whereas reflex bradycardic response was increased in CVS animals. Altogether, the results reported in the present study indicate that down regulation of both CRF1 and CRF2 receptors within the BNST is involved in baroreflex impairment evoked by chronic stress.
Collapse
Affiliation(s)
- Leandro A Oliveira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, Brazil
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, Brazil.
| |
Collapse
|
16
|
Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol Biochem Behav 2021; 204:173168. [PMID: 33684454 DOI: 10.1016/j.pbb.2021.173168] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
There is a growing need for a better understanding of sex differences in animal models of psychiatric disorders. The elevated plus-maze (EPM) test and large open field (LOF) test are widely used to study anxiety-like behavior in rodents. Our studies explored sex differences in anxiety and activity parameters in the LOF and EPM and determined whether these parameters correlate within and between tests. Drug naïve adult male and female Wistar rats (n = 47/sex) were used for the studies, and the rats were tested for 5 min in the EPM and 10 min in the LOF. The females spent more time on the open arms of the EPM and made more open arms entries than the males. The females also spent more time in the center zone of the LOF and made more center zone entries. The females traveled a greater distance in the LOF and EPM. There was a moderate positive correlation between time on the open arms of the EPM and time in the center zone of the LOF. There was also a moderate positive correlation between open arms entries in the EPM and center zone entries in the LOF. A hierarchical cluster analysis revealed one cluster with LOF parameters, one cluster with EPM parameters, and one cluster with parameters related to the avoidance of open spaces. In conclusion, these findings indicate that female rats display less anxiety-like behavior in the EPM and LOF. Furthermore, there are sex differences for almost all behavioral parameters in these anxiety tests.
Collapse
|
17
|
Chellian R, Wilks I, Levin B, Xue S, Behnood-Rod A, Wilson R, McCarthy M, Ravula A, Chandasana H, Derendorf H, Bruijnzeel AW. Tobacco smoke exposure enhances reward sensitivity in male and female rats. Psychopharmacology (Berl) 2021; 238:845-855. [PMID: 33410984 PMCID: PMC7914215 DOI: 10.1007/s00213-020-05736-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Systemic administration of the tobacco smoke constituent nicotine stimulates brain reward function in rats. However, it is unknown if the inhalation of tobacco smoke affects brain reward function. OBJECTIVES These experiments investigated if exposure to smoke from high-nicotine SPECTRUM research cigarettes increases reward function and affects the rewarding effects of nicotine in adult male and female Wistar rats. METHODS Reward function after smoke or nicotine exposure was investigated using the intracranial self-stimulation (ICSS) procedure. A decrease in reward thresholds reflects an increase in reward function. In the first experiment, the rats were exposed to tobacco smoke for 40 min/day for 9 days, and the rewarding effects of nicotine (0.03-0.6 mg/kg) were investigated 3 weeks later. In the second experiment, the dose effects of tobacco smoke exposure (40-min sessions, 1-4 cigarettes burnt simultaneously) on reward function were investigated. RESULTS Tobacco smoke exposure did not affect the nicotine-induced decrease in reward thresholds or response latencies in male and female rats. Smoke exposure lowered the brain reward thresholds to a similar degree in males and females and caused a greater decrease in latencies in females. There was a positive relationship between plasma nicotine and cotinine levels and the nicotine content of the SPECTRUM research cigarettes. Similar smoke exposure conditions led to higher plasma nicotine and cotinine levels in female than male rats. CONCLUSION These findings indicate that tobacco smoke exposure enhances brain reward function but does not potentiate the rewarding effects of nicotine in male and female rats.
Collapse
Affiliation(s)
- Ranjithkumar Chellian
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Isaac Wilks
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Brandon Levin
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Song Xue
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Megan McCarthy
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Abhigyan Ravula
- Department of Pharmaceutics, University of Florida, Gainesville, USA
| | - Hardik Chandasana
- Department of Pharmaceutics, University of Florida, Gainesville, USA
| | - Hartmut Derendorf
- Department of Pharmaceutics, University of Florida, Gainesville, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Behnood-Rod A, Chellian R, Wilson R, Hiranita T, Sharma A, Leon F, McCurdy CR, McMahon LR, Bruijnzeel AW. Evaluation of the rewarding effects of mitragynine and 7-hydroxymitragynine in an intracranial self-stimulation procedure in male and female rats. Drug Alcohol Depend 2020; 215:108235. [PMID: 32889450 PMCID: PMC7542979 DOI: 10.1016/j.drugalcdep.2020.108235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Kratom (Mitragyna speciosa Korth.) has been used in Southeast Asia for hundreds of years to increase energy, for relaxation, and to diminish opioid withdrawal. Kratom use has recently spread to Western countries. Kratom could potentially be used for the treatment of opioid withdrawal and pain, but more insight is needed into its abuse potential. Therefore, we investigated the rewarding properties of the primary kratom alkaloid mitragynine and its active metabolite 7-hydroxymitragynine, and morphine as a reference drug in male and female rats. These compounds have agonist activity at mu-opioid receptors. METHODS The compounds were tested in an intracranial self-stimulation (ICSS) procedure, which allows for the evaluation of the rewarding/aversive and sedative effects of drugs. Rewarding doses of drugs decrease the brain reward thresholds, and aversive drug doses have the opposite effect. RESULTS Mitragynine, 7-hydroxymitragynine, and morphine affected the brain reward thresholds. A high dose of 7-hydroxymitragynine (3.2 mg/kg) increased the brain reward thresholds, whereas an intermediate dose of morphine (10 mg/kg) decreased the reward thresholds. 7-Hydroxymitragynine and morphine affected the response latencies. Five mg/kg of morphine increased response latencies. 7-Hydroxymitragynine tended to increase the response latencies, but the post hoc analyses did not reveal a significant effect. There were no sex differences in the effects of mitragynine, 7-hydroxymitragynine, and morphine on the reward thresholds and the response latencies. CONCLUSIONS These initial findings indicate that mitragynine and 7-hydroxymitragynine are not rewarding in the ICSS procedure. The present results suggest that these kratom alkaloids do not have abuse potential.
Collapse
Affiliation(s)
- Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Takato Hiranita
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Francisco Leon
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R. McCurdy
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA,Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lance R. McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
19
|
Moreno-Santos B, Marchi-Coelho C, Costa-Ferreira W, Crestani CC. Angiotensinergic receptors in the medial amygdaloid nucleus differently modulate behavioral responses in the elevated plus-maze and forced swimming test in rats. Behav Brain Res 2020; 397:112947. [PMID: 33011187 DOI: 10.1016/j.bbr.2020.112947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
The brain renin-angiotensin system (RAS) has been implicated in anxiety and depression disorders, but the specific brain sites involved are poorly understood. The medial amygdaloid nucleus (MeA) is involved in expression of behavioral responses. However, despite evidence of the presence of all angiotensinergic receptors in this amygdaloid nucleus, regulation of anxiety- and depressive-like behaviors by angiotensinergic neurotransmissions within the MeA has never been reported. Thus, the present study aimed to investigate the role angiotensin II (AT1 and AT2 receptors) and angiotensin-(1-7) (Mas receptor) receptors present within the MeA in behavioral responses in the elevated plus-maze (EPM) and forced swimming test (FST). For this, male Wistar rats had cannula-guide bilaterally implanted into the MeA, and independent sets of animals received bilateral microinjections of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective Mas receptor antagonist A-779 or vehicle into the MeA before the EPM and FST. Treatment of the MeA with either PD123319 or A-779 decreased the EPM open arms exploration, while losartan did not affect behavioral responses in this apparatus. However, intra-MeA microinjection of losartan decreased immobility in the FST. Administration of either PD123319 or A-779 into the MeA did not affect the immobility during the FST, but changed the pattern of the active behaviors swimming and climbing. Altogether, these results indicate the presence of different angiotensinergic mechanisms within the MeA controlling behavioral responses in the FST and EPM.
Collapse
Affiliation(s)
- Beatriz Moreno-Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
20
|
Geste JR, Levin B, Wilks I, Pompilus M, Zhang X, Esser KA, Febo M, O'Dell L, Bruijnzeel AW. Relationship Between Nicotine Intake and Reward Function in Rats With Intermittent Short Versus Long Access to Nicotine. Nicotine Tob Res 2020; 22:213-223. [PMID: 30958557 DOI: 10.1093/ntr/ntz052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/01/2019] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Tobacco use improves mood states and smoking cessation leads to anhedonia, which contributes to relapse. Animal studies have shown that noncontingent nicotine administration enhances brain reward function and leads to dependence. However, little is known about the effects of nicotine self-administration on the state of the reward system. METHODS To investigate the relationship between nicotine self-administration and reward function, rats were prepared with intracranial self-stimulation electrodes and intravenous catheters. The rats were trained on the intracranial self-stimulation procedure and allowed to self-administer 0.03 mg/kg/infusion of nicotine. All rats self-administered nicotine daily for 10 days (1 hour/day) and were then switched to an intermittent short access (ShA, 1 hour/day) or long access (LgA, 23 hour/day) schedule (2 days/week, 5 weeks). RESULTS During the first 10 daily, 1-hour sessions, nicotine self-administration decreased the reward thresholds, which indicates that nicotine potentiates reward function. After switching to the intermittent LgA or ShA schedule, nicotine intake was lower in the ShA rats than the LgA rats. The LgA rats increased their nicotine intake over time and they gradually consumed a higher percentage of their nicotine during the light phase. The nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine induced a larger increase in reward thresholds (ie, anhedonia) in the LgA rats than the ShA rats. In the LgA rats, nAChR blockade with mecamylamine decreased nicotine intake for 2 hours and this was followed by a rebound increase in nicotine intake. CONCLUSIONS A brief period of nicotine self-administration enhances reward function and a high level of nicotine intake leads to dependence. IMPLICATIONS These animal studies indicate that there is a strong relationship between the level of nicotine intake and brain reward function. A high level of nicotine intake was more rewarding than a low level of nicotine intake and nicotine dependence was observed after long, but not short, access to nicotine. This powerful combination of nicotine reward and withdrawal makes it difficult to quit smoking. Blockade of nAChRs temporarily decreased nicotine intake, but this was followed by a large rebound increase in nicotine intake. Therefore, nAChR blockade might not decrease the use of combustible cigarettes or electronic cigarettes.
Collapse
Affiliation(s)
- Jean R Geste
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Brandon Levin
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Isaac Wilks
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Xiping Zhang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Neuroscience, University of Florida, Gainesville, FL
| | - Laura O'Dell
- Department of Psychology, University of Texas at El Paso, El Paso, TX
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
21
|
Xue S, Behnood-Rod A, Wilson R, Wilks I, Tan S, Bruijnzeel AW. Rewarding Effects of Nicotine in Adolescent and Adult Male and Female Rats as Measured Using Intracranial Self-stimulation. Nicotine Tob Res 2020; 22:172-179. [PMID: 30452710 DOI: 10.1093/ntr/nty249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Tobacco is highly addictive, and after the development of dependence, it is difficult to quit smoking. Therefore, it is important to understand the factors that play a role in the initiation of smoking. The rewarding effects of nicotine play a role in the initiation of smoking and the goal of the present study was to determine the rewarding effects of nicotine in adolescent and adult male and female rats. METHODS Male and female Wistar rats were prepared with intracranial self-stimulation (ICSS) electrodes between postnatal day (P) 23 and 33. They were then trained on the ICSS procedure and the effect of nicotine (0, 0.03, 0.1, 0.3 mg/kg) on the reward thresholds and response latencies was investigated during adolescence (P40-59) or adulthood (>P75). RESULTS Nicotine lowered the brain reward thresholds of the adult and adolescent male and female rats. The nicotine-induced decrease in the reward thresholds was the same in the adult male and adult female rats. However, nicotine induced a greater decrease in the reward thresholds of the adolescent female rats than the adolescent male rats. Nicotine decreased the response latencies of all groups and there was no effect of age or sex. CONCLUSIONS Nicotine enhances reward function and psychomotor performance in adolescent and adult male and female rats. Adolescent female rats are more sensitive to the acute rewarding effects of nicotine than adolescent male rats. Therefore, the rewarding effects of nicotine might play a greater role in the initiation of smoking in adolescent females than in adolescent males. IMPLICATIONS The great majority of people start smoking during adolescence. The present studies suggest that during this period female rats are more sensitive to the acute rewarding effects of low and intermediate doses of nicotine than male rats. The rewarding properties of nicotine play a role in the initiation of smoking and establishing habitual smoking. Therefore, the present findings might explain why adolescent females are at a higher risk for becoming nicotine dependent than adolescent males.
Collapse
Affiliation(s)
- Song Xue
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Isaac Wilks
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Sijie Tan
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Histology and Embryology, University of South China, Hengyang, Hunan, China
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
22
|
Chellian R, Behnood-Rod A, Wilson R, Wilks I, Knight P, Febo M, Bruijnzeel AW. Exposure to smoke from high- but not low-nicotine cigarettes leads to signs of dependence in male rats and potentiates the effects of nicotine in female rats. Pharmacol Biochem Behav 2020; 196:172998. [PMID: 32681850 DOI: 10.1016/j.pbb.2020.172998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/03/2023]
Abstract
Nicotine is only mildly rewarding, but after becoming dependent, it is difficult to quit smoking. The goal of these studies was to determine if low-nicotine cigarettes are less likely to cause dependence and enhance the reinforcing effects of nicotine than regular high-nicotine cigarettes. Male and female rats were exposed to tobacco smoke with a low or high nicotine level for 35 days. It was investigated if smoke exposure affects the development of dependence, anxiety- and depressive-like behavior, and nicotine-induced behavioral sensitization. Smoke exposure did not affect locomotor activity in a small open field or sucrose preference. Mecamylamine precipitated somatic withdrawal signs in male rats exposed to smoke with a high level of nicotine, but not in male rats exposed to smoke with a low level of nicotine or in females. After cessation of smoke exposure, there was a small decrease in sucrose preference in the male rats, which was not observed in the females. Cessation of smoke exposure did not affect anxiety-like behavior in the large open field or the elevated plus maze test. Female rats displayed less anxiety-like behavior in both these tests. Repeated treatment with nicotine increased locomotor activity, rearing, and stereotypies. Prior exposure to smoke with a high level of nicotine increased nicotine-induced rearing in the females. These findings indicate that exposure to smoke with a low level of nicotine does not lead to dependence and does not potentiate the effects of nicotine. Exposure to smoke with a high level of nicotine differently affects males and females.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Isaac Wilks
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Parker Knight
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
23
|
Simpson S, Shankar K, Kimbrough A, George O. Role of corticotropin-releasing factor in alcohol and nicotine addiction. Brain Res 2020; 1740:146850. [PMID: 32330519 DOI: 10.1016/j.brainres.2020.146850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The two most prevalent substance use disorders involve alcohol and nicotine, which are often co-abused. Robust preclinical and translational evidence indicates that individuals initiate drug use for the acute rewarding effects of the substance. The development of negative emotional states is key for the transition from recreational use to substance use disorders as subjects seek the substance to obtain relief from the negative emotional states of acute withdrawal and protracted abstinence. The neuropeptide corticotropin-releasing factor (CRF) is a major regulator of the brain stress system and key in the development of negative affective states. The present review examines the role of CRF in preclinical models of alcohol and nicotine abuse and explores links between CRF and anxiety-like, dysphoria-like, and other negative affective states. Finally, the present review discusses preclinical models of nicotine and alcohol use with regard to the CRF system, advances in molecular and genetic manipulations of CRF, and the importance of examining both males and females in this field of research.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Adam Kimbrough
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
24
|
Uribe KP, Correa VL, Pinales BE, Flores RJ, Cruz B, Shan Z, Bruijnzeel AW, Khan AM, O'Dell LE. Overexpression of corticotropin-releasing factor in the nucleus accumbens enhances the reinforcing effects of nicotine in intact female versus male and ovariectomized female rats. Neuropsychopharmacology 2020; 45:394-403. [PMID: 31614362 PMCID: PMC6901467 DOI: 10.1038/s41386-019-0543-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022]
Abstract
This study assessed the role of stress systems in the nucleus accumbens (NAc) in promoting sex differences in the reinforcing effects of nicotine. Intravenous self-administration (IVSA) of various doses of nicotine was compared following overexpression of corticotropin-releasing factor (CRF) in the NAc of female and male rats. Ovariectomized (OVX) females were also included to assess the role of ovarian hormones in promoting nicotine reinforcement. Rats received intra-NAc administration of an adeno-associated vector that overexpressed CRF (AAV2/5-CRF) or green fluorescent protein (AAV2/5-GFP). All rats were then given extended access (23 h/day) to an inactive and an active lever that delivered nicotine. Separate groups of rats received intra-NAc AAV2/5-CRF and saline IVSA. Rats were also allowed to nose-poke for food and water during IVSA testing. At the end of the study, the NAc was dissected and rt-qPCR methods were used to estimate CRF overexpression and changes in CRF receptors (CRFr1, CRFr2) and the CRF receptor internalizing protein, β-arrestin2 (Arrb2). Overexpression of CRF in the NAc increased nicotine IVSA to a larger extent in intact female versus male and OVX females. Food intake was increased to a larger extent in intact and OVX females as compared to males. The increase in CRF gene expression was similar across all groups; however, in females, overexpression of CRF resulted in a larger increase in CRFr1 and CRFr2 relative to males. In males, overexpression of CRF produced a larger increase in Arrb2 than females, suggesting greater CRF receptor internalization. Our results suggest that stress systems in the NAc promote the reinforcing effectiveness of nicotine in female rats in an ovarian hormone-dependent manner.
Collapse
Affiliation(s)
- Kevin P Uribe
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Victor L Correa
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Briana E Pinales
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rodolfo J Flores
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Bryan Cruz
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, 49931, USA
| | | | - Arshad M Khan
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
25
|
Ravula A, Chandasana H, Jagnarine D, Wall SC, Setlow B, Febo M, Bruijnzeel AW, Derendorf H. Pharmacokinetic and Pharmacodynamic Characterization of Tetrahydrocannabinol-Induced Cannabinoid Dependence After Chronic Passive Cannabis Smoke Exposure in Rats. Cannabis Cannabinoid Res 2019; 4:240-254. [PMID: 32042924 DOI: 10.1089/can.2019.0049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: Cannabis is the most widely used illicit drug in the US, and cannabis use among young adults continues to rise. Previous studies have shown that chronic administration of delta 9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, induces dependence in animal models. Because smoking is the most frequent route of THC self-administration, it is critical to investigate the effects of cannabis smoke inhalation. The goal of the current study was to develop a rat model to characterize the pharmacokinetics (PKs) of THC after cannabis smoke inhalation, and to determine if chronic cannabis smoke inhalation leads to the development of cannabis dependence. Materials and Methods: For the PK study, male Wistar rats were administered THC intravenously (1 mg/kg) or exposed to smoke from 5 or 10 sequentially smoked cannabis cigarettes (5.3% THC) in an automated smoking machine. Plasma samples were collected from 10 min to 10 hours post smoke exposure (or intravenous administration) and analyzed using liquid chromatography-mass spectrometry to characterize the PK of THC. A three-compartment PK model was used to characterize the PKs. In a separate study, three groups of male Wistar rats were trained in an intracranial self-stimulation (ICSS) procedure, and exposed to smoke from burning 5 or 10 cannabis cigarettes (or clean air control conditions), 5 days/week for 4 weeks. Discussion and Conclusions: Across exposure days, the change from baseline in ICSS thresholds for cannabis smoke-exposed groups was significantly lower and response latencies were significantly faster in the cannabis smoke-exposed groups compared to controls, suggesting that chronic cannabis smoke exposure has rewarding properties. Acute administration of the CB1 receptor antagonist rimonabant (0.3, 1.0, 3.0 mg/kg) induced a dose-dependent increase in ICSS thresholds in the smoke-exposed rats, suggestive of dependence and withdrawal. Finally, an effect compartment PK-pharmacodynamic model was used to describe the relationship between THC concentrations and changes in ICSS thresholds after cannabis smoke exposure.
Collapse
Affiliation(s)
- Abhigyan Ravula
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| | - Hardik Chandasana
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| | - Darin Jagnarine
- Department of Psychiatry, University of Florida, Gainesville, Florida
| | - Shannon C Wall
- Department of Psychiatry, University of Florida, Gainesville, Florida
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, Florida
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, Florida
| | | | - Hartmut Derendorf
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
Tan S, Xue S, Behnood-Rod A, Chellian R, Wilson R, Knight P, Panunzio S, Lyons H, Febo M, Bruijnzeel AW. Sex differences in the reward deficit and somatic signs associated with precipitated nicotine withdrawal in rats. Neuropharmacology 2019; 160:107756. [PMID: 31487496 DOI: 10.1016/j.neuropharm.2019.107756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 01/27/2023]
Abstract
Female smokers are more likely to relapse than male smokers, but little is known about sex differences in nicotine withdrawal. Therefore, male and female rats were prepared with minipumps that contained nicotine or saline and sex differences in precipitated and spontaneous nicotine withdrawal were investigated. The intracranial self-stimulation (ICSS) procedure was used to assess mood states. Elevations in brain reward thresholds reflect a deficit in reward function. Anxiety-like behavior was investigated after the acute nicotine withdrawal phase in a large open field and the elevated plus maze test. The nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-treated rats but did not affect those of the saline-treated control rats. A low dose of mecamylamine elevated the brain reward thresholds of the nicotine-treated male rats but not those of the females. Mecamylamine also precipitated more somatic withdrawal signs in the nicotine-treated male than female rats. Minipump removal elevated the brain reward thresholds of the nicotine-treated rats for about 36 h but did not affect those of the saline-treated rats. There was no sex difference in the reward deficit during spontaneous nicotine withdrawal. In addition, the nicotine-treated male and female rats did not display increased anxiety-like behavior three to four days after minipump removal. In conclusion, these studies suggest that relatively low doses of a nicotinic receptor antagonist induce a greater reward deficit and more somatic withdrawal signs in male than female rats, but there is no sex difference in the reward deficit during spontaneous withdrawal.
Collapse
Affiliation(s)
- Sijie Tan
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Department of Histology and Embryology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Song Xue
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Parker Knight
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Stefany Panunzio
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Hannah Lyons
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
27
|
Bruijnzeel AW, Knight P, Panunzio S, Xue S, Bruner MM, Wall SC, Pompilus M, Febo M, Setlow B. Effects in rats of adolescent exposure to cannabis smoke or THC on emotional behavior and cognitive function in adulthood. Psychopharmacology (Berl) 2019; 236:2773-2784. [PMID: 31044291 PMCID: PMC6752736 DOI: 10.1007/s00213-019-05255-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022]
Abstract
RATIONALE Cannabis use is common among adolescents and some research suggests that adolescent cannabis use increases the risk for depression, anxiety, and cognitive impairments in adulthood. In human studies, however, confounds may affect the association between cannabis use and the development of brain disorders. OBJECTIVES These experiments investigated the effects of adolescent exposure to either cannabis smoke or THC on anxiety- and depressive-like behavior and cognitive performance in adulthood in Long-Evans rats. METHODS Adolescent rats of both sexes were exposed to either cannabis smoke from postnatal days (P) 29-49 or ascending doses of THC from P35-45. When the rats reached adulthood (P70), anxiety-like behavior was investigated in the large open field and elevated plus maze, depressive-like behavior in the sucrose preference and forced swim tests, and cognitive function in the novel object recognition test. RESULTS Despite sex differences on some measures in the open field, elevated plus maze, forced swim, and novel object recognition tests, there were no effects of either adolescent cannabis smoke or THC exposure, and only relatively subtle interactions between exposure conditions and sex, such that sex differences on some performance measures were slightly attenuated. CONCLUSION Neither cannabis smoke nor THC exposure during adolescence produced robust alterations in adult behavior after a period of abstinence, suggesting that adverse effects associated with adolescent cannabis use might be due to non-cannabinoid concomitants of cannabis use.
Collapse
Affiliation(s)
- Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA.
| | - Parker Knight
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Stefany Panunzio
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Song Xue
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Matthew M Bruner
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Shannon C Wall
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
29
|
Self-administration of the synthetic cathinone MDPV enhances reward function via a nicotinic receptor dependent mechanism. Neuropharmacology 2018; 137:286-296. [PMID: 29778945 DOI: 10.1016/j.neuropharm.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 01/28/2023]
Abstract
Methylenedioxypyrovalerone (MDPV) is an addictive synthetic drug with severe side effects. Previous studies have shown that MDPV has positive reinforcing properties. However, little is known about the effect of MDPV self-administration on the state of the brain reward system and the neuronal mechanisms by which MDPV mediates its effects. The goal of the present studies was to determine the effect of MDPV self-administration on reward function and the role of cholinergic neurotransmission in the reinforcing effects of MDPV. To study the effect of MDPV self-administration on the brain reward system, rats were prepared with intravenous catheters and intracranial self-stimulation electrodes (ICSS). For 10 days, the reward thresholds were assessed immediately before (23 h post prior session) and after 1 h of MDPV self-administration. The reward thresholds were decreased immediately after MDPV self-administration, which is indicative of a potentiation of brain reward function. The reward thresholds 23 h after MDPV intake gradually increased over time, which is indicative of anhedonia. Pretreatment with the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine decreased the self-administration of MDPV and completely prevented the decrease in reward thresholds. A control study with palatable chocolate pellets showed that responding for a natural reinforcer does not affect the state of the brain reward system. Furthermore, mecamylamine did not affect responding for food pellets. In conclusion, the self-administration of MDPV potentiates reward function and nAChR blockade prevents the reward enhancing effects of MDPV self-administration. Preventing the MDPV-induced increase in cholinergic neurotransmission might be a safe approach to diminish MDPV abuse.
Collapse
|
30
|
Colon-Perez LM, Pino JA, Saha K, Pompilus M, Kaplitz S, Choudhury N, Jagnarine DA, Geste JR, Levin BA, Wilks I, Setlow B, Bruijnzeel AW, Khoshbouei H, Torres GE, Febo M. Functional connectivity, behavioral and dopaminergic alterations 24 hours following acute exposure to synthetic bath salt drug methylenedioxypyrovalerone. Neuropharmacology 2018; 137:178-193. [PMID: 29729891 DOI: 10.1016/j.neuropharm.2018.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022]
Abstract
Among cathinone drugs known as bath salts, methylenedioxypyrovalerone (MDPV) exerts its potent actions via the dopamine (DA) system, and at intoxicating doses may produce adverse behavioral effects. Previous work by our group suggests that prolonged alterations in correlated neural activity between cortical and striatal areas could underlie, at least in part, the adverse reactions to this bath salt drug. In the present study, we assessed the effect of acute MDPV administration on brain functional connectivity at 1 and 24 h in rats. Using graph theory metrics to assess in vivo brain functional network organization we observed that 24 h after MDPV administration there was an increased clustering coefficient, rich club index, and average path length. Increases in these metrics suggests that MDPV produces a prolonged pattern of correlated activity characterized by greater interactions between subsets of high degree nodes but a reduced interaction with regions outside this core subset. Further analysis revealed that the core set of nodes include prefrontal cortical, amygdala, hypothalamic, somatosensory and striatal areas. At the molecular level, MDPV downregulated the dopamine transporter (DAT) in striatum and produced a shift in its subcellular distribution, an effect likely to involve rapid internalization at the membrane. These new findings suggest that potent binding of MDPV to DAT may trigger internalization and a prolonged alteration in homeostatic regulation of DA and functional brain network reorganization. We propose that the observed MDPV-induced network reorganization and DAergic changes may contribute to previously reported adverse behavioral responses to MDPV.
Collapse
Affiliation(s)
- Luis M Colon-Perez
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA; Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jose A Pino
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kaustuv Saha
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Marjory Pompilus
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sherman Kaplitz
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nafisa Choudhury
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Darin A Jagnarine
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jean R Geste
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon A Levin
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Isaac Wilks
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Barry Setlow
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Gonzalo E Torres
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA; Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
31
|
Sotiriou I, Chalkiadaki K, Nikolaidis C, Sidiropoulou K, Chatzaki E. Pharmacotherapy in smoking cessation: Corticotropin Releasing Factor receptors as emerging intervention targets. Neuropeptides 2017; 63:49-57. [PMID: 28222901 DOI: 10.1016/j.npep.2017.02.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
Smoking represents perhaps the single most important health risk factor and a global contributor to mortality that can unquestionably be prevented. Smoking is responsible for many diseases, including various types of cancer, chronic obstructive pulmonary disease, coronary heart disease, peripheral vascular disease and peptic ulcer, while it adversely affects fetal formation and development. Since smoking habit duration is a critical factor for mortality, the goal of treatment should be its timely cessation and relapse prevention. Drug intervention therapy is an important ally in smoking cessation. Significant positive steps have been achieved in the last few years in the development of supportive compounds. In the present review, we analyze reports studying the role of Corticotropin Releasing Factor (CRF), the principle neuroendocrine mediator of the stress response and its two receptors (CRF1 and CRF2) in the withdrawal phase as well as in the abstinence from nicotine use. Although still in pre-clinical evaluation, therapeutic implications of these data were investigated in order to highlight potential pharmaceutical interventions.
Collapse
Affiliation(s)
- Ioannis Sotiriou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Christos Nikolaidis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| |
Collapse
|
32
|
Bruijnzeel AW. Neuropeptide systems and new treatments for nicotine addiction. Psychopharmacology (Berl) 2017; 234:1419-1437. [PMID: 28028605 PMCID: PMC5420481 DOI: 10.1007/s00213-016-4513-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE The mildly euphoric and cognitive enhancing effects of nicotine play a role in the initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in nicotine addiction. OBJECTIVES The goal of this paper is to describe the role of neuropeptide systems in the initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine seeking. RESULTS The reviewed studies indicate that several drugs that target neuropeptide systems diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria during nicotine withdrawal, and melanocortin 4 receptor blockade prevents stress-induced reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 receptors in cue-induced reinstatement of nicotine seeking. CONCLUSION Drugs that target neuropeptide systems might decrease the euphoric effects of smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress resilience.
Collapse
Affiliation(s)
- Adriaan W. Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA,Department of Neuroscience, University of Florida, Gainesville, Florida, USA,Center for Addiction Research and Education, University of Florida, Gainesville, Florida, USA
| |
Collapse
|