1
|
Yuan D, Meng Y, Ai Z, Zhou S. Research trend of epigenetics and depression: adolescents' research needs to strengthen. Front Neurosci 2024; 17:1289019. [PMID: 38249586 PMCID: PMC10799345 DOI: 10.3389/fnins.2023.1289019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Objective With its high prevalence, depression's pathogenesis remains unclear. Recent attention has turned to the interplay between depression and epigenetic modifications. However, quantitative bibliometric analyses are lacking. This study aims to visually analyze depression epigenetics trends, utilizing bibliometric tools, while comprehensively reviewing its epigenetic mechanisms. Methods Utilizing the Web of Science core dataset, we collected depression and epigenetics-related studies. Employing VOSViewer software, we visualized data on authors, countries, journals, and keywords. A ranking table highlighted field leaders. Results Analysis encompassed 3,469 depression epigenetics studies published from January 2002 to June 2023. Key findings include: (1) Gradual publication growth, peaking in 2021; (2) The United States and its research institutions leading contributions; (3) Need for enhanced collaborations, spanning international and interdisciplinary efforts; (4) Keyword clustering revealed five main themes-early-life stress, microRNA, genetics, DNA methylation, and histone acetylation-highlighting research hotspots; (5) Limited focus on adolescent depression epigenetics, warranting increased attention. Conclusion Taken together, this study revealed trends and hotspots in depression epigenetics research, underscoring global collaboration, interdisciplinary fusion, and multi-omics data's importance. It discussed in detail the potential of epigenetic mechanisms in depression diagnosis and treatment, advocating increased focus on adolescent research in this field. Insights aid researchers in shaping their investigative paths toward understanding depression's epigenetic mechanisms and antidepressant interventions.
Collapse
Affiliation(s)
- Dongfeng Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yitong Meng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan, China
| | - Shiquan Zhou
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
2
|
Azargoonjahromi A. The role of epigenetics in anxiety disorders. Mol Biol Rep 2023; 50:9625-9636. [PMID: 37804465 DOI: 10.1007/s11033-023-08787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
Abstract
Anxiety disorders (ADs) are extremely common psychiatric conditions that frequently co-occur with other physical and mental disorders. The pathophysiology of ADs is multifaceted and involves intricate connections among biological elements, environmental stimuli, and psychological mechanisms. Recent discoveries have highlighted the significance of epigenetics in bridging the gap between multiple risk factors that contribute to ADs and expanding our understanding of the pathomechanisms underlying ADs. Epigenetics is the study of how changes in the environment and behavior can have an impact on gene function. Indeed, researchers have found that epigenetic mechanisms can affect how genes are activated or inactivated, as well as whether they are expressed. Such mechanisms may also affect how ADs form and are protected. That is, the bulk of pharmacological trials evaluating epigenetic treatments for the treatment of ADs have used histone deacetylase inhibitors (HDACi), yielding promising outcomes in both preclinical and clinical studies. This review will provide an outline of how epigenetic pathways can be used to treat ADs or lessen their risk. It will also present the findings from preclinical and clinical trials that are currently available on the use of epigenetic drugs to treat ADs.
Collapse
|
3
|
Brake AD, Yang X, Lee CY, Lee P, Keselman P, Eller OC, Choi IY, Harris JL, Christianson JA. Reduced Hippocampal Volume and Neurochemical Response to Adult Stress Exposure in a Female Mouse Model of Urogenital Hypersensitivity. FRONTIERS IN PAIN RESEARCH 2022; 3:809944. [PMID: 35295799 PMCID: PMC8915737 DOI: 10.3389/fpain.2022.809944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Early life stress exposure significantly increases the risk of developing chronic pain syndromes and comorbid mood and metabolic disorders later in life. Structural and functional changes within the hippocampus have been shown to contribute to many early life stress-related outcomes. We have previously reported that adult mice that underwent neonatal maternal separation (NMS) exhibit urogenital hypersensitivity, altered anxiety- and depression-like behaviors, increased adiposity, and decreased gene expression and neurogenesis in the hippocampus. Here, we are using magnetic resonance imaging and spectroscopy (MRI and MRS) to further investigate both NMS- and acute stress-induced changes in the hippocampus of female mice. Volumetric analysis of the whole brain revealed that the left hippocampus of NMS mice was 0.038 mm3 smaller compared to naïve mice. MRS was performed only on the right hippocampus and both total choline (tCho) and total N-acetylaspartate (tNAA) levels were significantly decreased due to NMS, particularly after WAS. Phosphoethanolamine (PE) levels were decreased in naïve mice after WAS, but not in NMS mice, and WAS increased ascorbate levels in both groups. The NMS mice showed a trend toward increased body weight and body fat percentage compared to naïve mice. A significant negative correlation was observed between body weight and phosphocreatine levels post-WAS in NMS mice, as well as a positive correlation between body weight and glutamine for NMS mice and a negative correlation for naïve mice. Together, these data suggest that NMS in mice reduces left hippocampal volume and may result in mitochondrial dysfunction and reduced neuronal integrity of the right hippocampus in adulthood. Hippocampal changes also appear to be related to whole body metabolic outcomes.
Collapse
Affiliation(s)
- Aaron D. Brake
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Xiaofang Yang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chu-Yu Lee
- University of Kansas Medical Center, Hoglund Biomedical Imaging Center, Kansas City, KS, United States
| | - Phil Lee
- University of Kansas Medical Center, Hoglund Biomedical Imaging Center, Kansas City, KS, United States
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul Keselman
- University of Kansas Medical Center, Hoglund Biomedical Imaging Center, Kansas City, KS, United States
| | - Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - In-Young Choi
- University of Kansas Medical Center, Hoglund Biomedical Imaging Center, Kansas City, KS, United States
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Janna L. Harris
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Medical Center, Hoglund Biomedical Imaging Center, Kansas City, KS, United States
| | - Julie A. Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, Pain, and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
4
|
Lockwood L, Miller B, Youssef NA. Epigenetics and first-episode psychosis: A systematic review. Psychiatry Res 2022; 307:114325. [PMID: 34896847 DOI: 10.1016/j.psychres.2021.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Schizophrenia has a large disease burden globally. Early intervention in psychosis, and therefore a decreased duration of untreated psychosis, has a positive clinical impact. There are several recognized risk factors for psychosis, including trauma history and substance use. This systematic review examined the literature for studies related to epigenetic changes in first-episode psychosis, with the goal of identifying future research directions. METHODS A literature review was conducted from inception to October 3, 2021 using MedLine/PubMed, Web of Science, and PsycInfo searches with the keywords ("first-episode schizophrenia" OR "first-episode psychosis" OR "drug-naive schizophrenia" OR "drug-naive psychosis") AND (epigenetic OR methylation OR hydroxymethylation OR "histone modification" OR "miRNA") as well as a search of the bibliography of the identified papers. RESULTS Seventeen studies that examined various portions of the genome were included in this systematic review. There were two studies that showed hypomethylation at the LINE-1 portion of the genome and two that showed hypermethylation at LINE-1. Additionally, two studies showed hypomethylation specifically at the GRIN2B promoter (part of LINE-1). CONCLUSIONS Although sample sizes were small, these studies provide evidence for epigenetic alterations in early psychosis. Further research in this area is warranted for more definitive epigenetic correlations.
Collapse
Affiliation(s)
| | - Brian Miller
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta, GA, USA
| | - Nagy A Youssef
- Department of Psychiatry and Health Behavior, Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Motavalli R, Majidi T, Pourlak T, Abediazar S, Shoja MM, Zununi Vahed S, Etemadi J. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol 2021; 213:105952. [PMID: 34274458 DOI: 10.1016/j.jsbmb.2021.105952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
The impacts of glucocorticoids (GCs) are mainly mediated by a nuclear receptor (GR) existing in almost every tissue. The GR regulates a wide range of physiological functions, including inflammation, cell metabolism, and differentiation playing a major role in cellular responses to GCs and stress. Therefore, the dysregulation or disruption of GR can cause deficiencies in the adaptation to stress and the preservation of homeostasis. The number of GR polymorphisms associated with different diseases has been mounting per year. Tackling these clinical complications obliges a comprehensive understanding of the molecular network action of GCs at the level of the GR structure and its signaling pathways. Beyond genetic variation in the GR gene, epigenetic changes can enhance our understanding of causal factors involved in the development of diseases and identifying biomarkers. In this review, we highlight the relationships of GC receptor gene polymorphisms and epigenetics with different diseases.
Collapse
Affiliation(s)
- Roza Motavalli
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Majidi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tala Pourlak
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- Clinical Academy of Teaching and Learning, Ross University School of Medicine, Miramar, FL, USA
| | | | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Misiak B, Samochowiec J, Konopka A, Gawrońska-Szklarz B, Beszłej JA, Szmida E, Karpiński P. Clinical Correlates of the NR3C1 Gene Methylation at Various Stages of Psychosis. Int J Neuropsychopharmacol 2020; 24:322-332. [PMID: 33284958 PMCID: PMC8059494 DOI: 10.1093/ijnp/pyaa094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dysregulation of epigenetic processes might account for alterations of the hypothalamic-pituitary-adrenal axis observed in patients with schizophrenia. Therefore, in this study, we aimed to investigate methylation of the glucocorticoid receptor (NR3C1) gene in patients with schizophrenia-spectrum disorders, individuals at familial high risk of schizophrenia (FHR-P), and healthy controls with respect to clinical manifestation and a history of psychosocial stressors. METHODS We recruited 40 first-episode psychosis patients, 45 acutely relapsed schizophrenia (SCZ-AR) patients, 39 FHR-P individuals, and 56 healthy controls. The level of methylation at 9 CpG sites of the NR3C1 gene was determined using pyrosequencing. RESULTS The level of NR3C1 methylation was significantly lower in first-episode psychosis patients and significantly higher in SCZ-AR patients compared with other subgroups of participants. Individuals with FHR-P and healthy controls had similar levels of NR3C1 methylation. A history of adverse childhood experiences was associated with significantly lower NR3C1 methylation in all subgroups of participants. Higher methylation of the NR3C1 gene was related to worse performance of attention and immediate memory as well as lower level of general functioning in patients with psychosis. CONCLUSIONS Patients with schizophrenia-spectrum disorders show altered levels of NR3C1 methylation that are significantly lower in first-episode psychosis patients and significantly higher in SCZ-AR patients. Higher methylation of the NR3C1 gene might be related to cognitive impairment observed in this clinical population. The association between a history of adverse childhood experiences and lower NR3C1 methylation is not specific to patients with psychosis. Longitudinal studies are needed to establish causal mechanisms underlying these observations.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland,Correspondence: Błażej Misiak, MD, PhD, Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50–367 Wroclaw, Poland ()
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Anna Konopka
- Independent Clinical Psychology Unit, Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Szczecin, Poland
| | | | - Elżbieta Szmida
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland,Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
7
|
Straight B, Fisher G, Needham BL, Naugle A, Olungah C, Wanitjirattikal P, Root C, Farman J, Barkman T, Lalancette C. Lifetime stress and war exposure timing may predict methylation changes at NR3C1 based on a pilot study in a warrior cohort in a small-scale society in Kenya. Am J Hum Biol 2020; 33:e23515. [PMID: 33058324 DOI: 10.1002/ajhb.23515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Candidate gene methylation studies of NR3C1 have identified associations with psychosocial adversity, including war trauma. This pilot study (sample sizes from 22 to 45 for primary analyses) examined NR3C1 methylation in a group of Kenyan pastoralist young men in relation to culturally relevant traumatic experiences, including participation in coalitional lethal gun violence. METHODS Adolescent and young adult Samburu men ("warriors") were recruited for participation. DNA was obtained from whole saliva and methylation analyses performed using mass spectrometry. We performed a data reduction of variables from a standardized instrument of lifetime stress using a factor analysis and we assessed the association between the extracted factors with culturally relevant and cross-culturally comparative experiences. RESULTS Cumulative lifetime trauma exposure and forms of violence to which warriors are particularly susceptible were associated with DNA methylation changes in the NR3C1 1F promoter region but not in the NR3C1 1D promoter region. However, sensitivity analyses revealed significant associations between individual CpG sites in both regions and cumulative stress exposures, war exposure timing, and war fatalities. CONCLUSIONS This study supports the importance of NR3C1 methylation changes in response to challenging life circumstances, including in a global south cultural context that contrasts in notable ways from global north contexts and from the starkly tragic examples of the Rwandan genocide and war-associated rape explored in recent studies. Timing of traumatic exposure and culturally salient means to measure enduring symptoms of trauma remain important considerations for DNA methylation studies.
Collapse
Affiliation(s)
- Bilinda Straight
- Department of Anthropology, Western Michigan University, Kalamazoo, Michigan, USA
| | - Georgiana Fisher
- Department of Statistics, Western Michigan University, Kalamazoo, Michigan, USA
| | - Belinda L Needham
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy Naugle
- Department of Psychology, Western Michigan University, Kalamazoo, Michigan, USA
| | - Charles Olungah
- University of Nairobi Institute of Anthropology, Gender & African Studies, Nairobi, Nairobi, Kenya
| | | | - Cecilia Root
- Unaffiliated (Western Michigan University Department of Anthropology Alum), Kalamazoo, Michigan, USA
| | - Jen Farman
- Unaffiliated (Western Michigan University Department of Anthropology Alum), Kalamazoo, Michigan, USA
| | - Todd Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | | |
Collapse
|
8
|
Li M, Fu X, Xie W, Guo W, Li B, Cui R, Yang W. Effect of Early Life Stress on the Epigenetic Profiles in Depression. Front Cell Dev Biol 2020; 8:867. [PMID: 33117794 PMCID: PMC7575685 DOI: 10.3389/fcell.2020.00867] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
Depression is one of the most common mental disorders and has caused an overwhelming burden on world health. Abundant studies have suggested that early life stress may grant depressive-like phenotypes in adults. Childhood adversities that occurred in the developmental period amplified stress events in adulthood. Epigenetic-environment interaction helps to explain the role of early life stress on adulthood depression. Early life stress shaped the epigenetic profiles of the HPA axis, monoamine, and neuropeptides. In the context of early adversities increasing the risk of depression, early life stress decreased the activity of the glucocorticoid receptors, halted the circulation and production of serotonin, and reduced the molecules involved in modulating the neurogenesis and neuroplasticity. Generally, DNA methylation, histone modifications, and the regulation of non-coding RNAs programmed the epigenetic profiles to react to early life stress. However, genetic precondition, subtypes of early life stress, the timing of epigenetic status evaluated, demographic characteristics in humans, and strain traits in animals favored epigenetic outcomes. More research is needed to investigate the direct evidence for how early life stress-induced epigenetic changes contribute to the vulnerability of depression.
Collapse
Affiliation(s)
- Ming Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Xie
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wanxu Guo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Ferrer A, Labad J, Salvat-Pujol N, Monreal JA, Urretavizcaya M, Crespo JM, Menchón JM, Palao D, Soria V. Hypothalamic-pituitary-adrenal axis-related genes and cognition in major mood disorders and schizophrenia: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109929. [PMID: 32197928 DOI: 10.1016/j.pnpbp.2020.109929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysregulation and cognitive deficits are two well-characterized endophenotypes present in different serious mental illnesses (SMIs), including major depressive disorder, bipolar disorder and schizophrenia. Our aim was to study the influence of genetic and epigenetic variations in HPA axis-related genes on cognitive performance in clinical samples, including patients with major mood disorders and schizophrenia. A systematic search was performed using PubMed (Medline), PsycINFO and Scopus databases. The systematic review identified 12 studies dealing with HPA-related genes and cognition in samples including patients with SMIs, focusing on single nucleotide polymorphism (SNP) variants, while no studies analysing epigenetic variations were found. The results suggest different and specific effects on the cognitive performance of SNP variants in the HPA axis-related genes studied, as well as interactions with traumatic experiences. There was high heterogeneity in the studied samples, genes analysed, and cognitive tasks evaluated. The relationship between HPA-related genes and cognition in SMIs is still largely unknown, and further studies including larger samples and epigenetic variations are needed.
Collapse
Affiliation(s)
- Alex Ferrer
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain; Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Javier Labad
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain
| | - Neus Salvat-Pujol
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain; Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain
| | - José A Monreal
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain
| | - Mikel Urretavizcaya
- Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain
| | - José M Crespo
- Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain
| | - José M Menchón
- Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain
| | - Diego Palao
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain
| | - Virginia Soria
- Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Spain.
| |
Collapse
|
10
|
Peedicayil J. The Potential Role of Epigenetic Drugs in the Treatment of Anxiety Disorders. Neuropsychiatr Dis Treat 2020; 16:597-606. [PMID: 32184601 PMCID: PMC7060022 DOI: 10.2147/ndt.s242040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that abnormalities in epigenetic mechanisms of gene expression contribute to the pathogenesis of anxiety disorders (ADs). This article discusses the role of epigenetic mechanisms of gene expression in the pathogenesis of ADs. It also discusses the data so far obtained from preclinical and clinical trials on the use of epigenetic drugs for treating ADs. Most drug trials investigating the use of epigenetic drugs for treating ADs have used histone deacetylase inhibitors (HDACi). HDACi are showing favorable results in both preclinical and clinical drug trials for treating ADs. However, at present the mode of action of HDACi in ADs is not clear. More work needs to be done to elucidate how epigenetic dysregulation contributes to the pathogenesis of ADs. More work also needs to be done on the mode of action of HDACi in alleviating the signs and symptoms of ADs.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
11
|
Twin study designs as a tool to identify new candidate genes for depression: A systematic review of DNA methylation studies. Neurosci Biobehav Rev 2020; 112:345-352. [PMID: 32068032 DOI: 10.1016/j.neubiorev.2020.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 11/21/2022]
Abstract
Monozygotic (MZ) twin studies constitute a key resource for the dissection of environmental and biological risk factors for human complex disorders. Given that epigenetic differences accumulate throughout the lifespan, the assessment of MZ twin pairs discordant for depression offers a genetically informative design to explore DNA methylation while accounting for the typical confounders of the field, shared by co-twins of a pair. In this review, we systematically evaluate all twin studies published to date assessing DNA methylation in association with depressive phenotypes. However, difficulty to recruit large numbers of MZ twin pairs fails to provide enough sample size to develop genome-wide approaches. Alternatively, region and pathway analysis revealed an enrichment for nervous system related functions; likewise, evidence supports an accumulation of methylation variability in affected subjects when compared to their co-twins. Nevertheless, longitudinal studies incorporating known risk factors for depression such as childhood trauma are required for understanding the role that DNA methylation plays in the etiology of depression.
Collapse
|
12
|
Iftimovici A, Kebir O, He Q, Jay TM, Rouleau GA, Krebs MO, Chaumette B. Stress, Cortisol and NR3C1 in At-Risk Individuals for Psychosis: A Mendelian Randomization Study. Front Psychiatry 2020; 11:680. [PMID: 32754072 PMCID: PMC7367416 DOI: 10.3389/fpsyt.2020.00680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/29/2020] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION The emergence of psychosis in at-risk individuals results from interactions between genetic vulnerability and environmental factors, possibly involving dysregulation of the hypothalamic-pituitary-adrenal axis. Hypercorticism was indeed described in schizophrenia and ultra-high-risk states, but its association with clinical outcome has yet to be demonstrated. The impact of stress through cortisol may vary depending on the expression level of genes related to the stress pathway. METHODS To test this hypothesis, we selected NR3C1, the gene encoding the glucocorticoid receptor, and modeled through logistic regression how its peripheral expression could explain some of the risk of psychosis, independently of peripheral cortisol levels, in a French longitudinal prospective cohort of 133 at-risk individuals, adjusted for sex, age, cannabis, and antipsychotic medication intake. We then performed a genome-wide association analysis, stratified by sex (55 females and 78 males), to identify NR3C1 expression quantitative trait loci to be used as instrumental variables in a Mendelian randomization framework. RESULTS NR3C1 expression was significantly associated with a higher risk of conversion to psychosis (OR = 2.03, p = 0.03), independently of any other factor. Cortisol was not associated with outcome nor correlated with NR3C1. In the female subgroup, rs6849528 was associated both with NR3C1 mRNA levels (p = 0.015, Effect-Size = 2.7) and conversion (OR = 8.24, p = 0.03). CONCLUSIONS For the same level of cortisol, NR3C1 expression increases psychotic risk, independently of sex, age, cannabis, and antipsychotic intake. In females, Mendelian randomization confirmed NR3C1's effect on outcome to be unbiased by any environmental confounder.
Collapse
Affiliation(s)
- Anton Iftimovici
- Institut de Psychiatrie et Neurosciences de Paris, INSERM UMR 1266, Laboratoire de Physiopathologie des Maladies Psychiatriques, Université de Paris, GDR3557-Institut de Psychiatrie, Paris, France.,NeuroSpin, Atomic Energy Commission, Gif-sur-Yvette, France
| | - Oussama Kebir
- Institut de Psychiatrie et Neurosciences de Paris, INSERM UMR 1266, Laboratoire de Physiopathologie des Maladies Psychiatriques, Université de Paris, GDR3557-Institut de Psychiatrie, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Qin He
- Institut de Psychiatrie et Neurosciences de Paris, INSERM UMR 1266, Laboratoire de Physiopathologie des Maladies Psychiatriques, Université de Paris, GDR3557-Institut de Psychiatrie, Paris, France
| | - Thérèse M Jay
- Institut de Psychiatrie et Neurosciences de Paris, INSERM UMR 1266, Laboratoire de Physiopathologie des Maladies Psychiatriques, Université de Paris, GDR3557-Institut de Psychiatrie, Paris, France
| | | | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Marie-Odile Krebs
- Institut de Psychiatrie et Neurosciences de Paris, INSERM UMR 1266, Laboratoire de Physiopathologie des Maladies Psychiatriques, Université de Paris, GDR3557-Institut de Psychiatrie, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Boris Chaumette
- Institut de Psychiatrie et Neurosciences de Paris, INSERM UMR 1266, Laboratoire de Physiopathologie des Maladies Psychiatriques, Université de Paris, GDR3557-Institut de Psychiatrie, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Paris, France.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Palma-Gudiel H, Fañanás L, Horvath S, Zannas AS. Psychosocial stress and epigenetic aging. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 150:107-128. [PMID: 32204828 DOI: 10.1016/bs.irn.2019.10.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is the single most important risk factor for diseases that are currently the leading causes of morbidity and mortality. However, there is considerable inter-individual variability in risk for aging-related disease, and studies suggest that biological age can be influenced by multiple factors, including exposure to psychosocial stress. Among markers of biological age that can be affected by stress, the present article focuses on the so-called measures of epigenetic aging: DNA methylation-based age predictors that are measured in a range of tissues, including the brain, and can predict lifespan and healthspan. We review evidence linking exposure to diverse types of psychosocial stress, including early-life stress, cumulative stressful experiences, and low socioeconomic status, with accelerated epigenetic aging as a putative mediator of the effects of psychosocial environment on health and disease. The chapter also discusses methodological differences that may contribute to discordant findings across studies to date and plausible mechanisms that may underlie the effects of stress on the aging epigenome. Future studies examining the effects of adversity on epigenetic and other indicators of biological weathering may provide important insights into the pathogenesis of aging-related disease states.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | - Lourdes Fañanás
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States; Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States; Department of Genetics, University of North Carolina, Chapel Hill, NC, United States; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States; Institute for Trauma Recovery, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
14
|
Epigenetics-by-sex interaction for somatization conferred by methylation at the promoter region of SLC6A4 gene. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:125-131. [PMID: 30201454 DOI: 10.1016/j.pnpbp.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Depression, anxiety and somatoform disorders are all more prevalent in women than in men. However, specific biological mechanisms contributing to such sex differences remain unknown. Serotonergic pathways are involved in mood and behavior regulation and thus have been suggested to be altered in several psychiatric disorders. The serotonin transporter (SERT), encoded by SLC6A4 gene, has received major attention due to its crucial role in serotonergic transmission. METHODS 148 monozygotic twin subjects were assessed for (i) lifetime categorical diagnosis of anxious-depressive disorders, following SCID-I-based DSM-IV criteria, and (ii) current psychiatric symptomatology, from a dimensional approach, by means of the Brief Symptom Inventory (BSI). SLC6A4 gene methylation was analyzed by means of Infinium HumanMethylation450 in a subset of the sample. CpG-specific methylation at the promoter region of SLC6A4 gene was further analyzed by means of pyrosequencing technology in the total sample. RESULTS SLC6A4 methylation was found to be significantly higher in women when compared to men independent of DSM-IV diagnosis. SLC6A4 methylation was further associated with the BSI-derived somatization dimension. CONCLUSIONS Female hypermethylation of a discrete region located within SLC6A4 promoter region could underlie differential SERT expression in women when compared to men and could be one of the causative mechanisms by which women exhibit increased prevalence of somatic symptoms.
Collapse
|
15
|
Epigenetic outlier profiles in depression: A genome-wide DNA methylation analysis of monozygotic twins. PLoS One 2018; 13:e0207754. [PMID: 30458022 PMCID: PMC6245788 DOI: 10.1371/journal.pone.0207754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022] Open
Abstract
Recent discoveries highlight the importance of stochastic epigenetic changes, as indexed by epigenetic outlier DNA methylation signatures, as a valuable tool to understand aberrant cell function and subsequent human pathology. There is evidence of such changes in different complex disorders as diverse as cancer, obesity and, to a lesser extent, depression. The current study was aimed at identifying outlying DNA methylation signatures of depressive psychopathology. Here, genome-wide DNA methylation levels were measured (by means of Illumina Infinium HumanMethylation450 Beadchip) in peripheral blood of thirty-four monozygotic twins informative for depressive psychopathology (lifetime DSM-IV diagnoses). This dataset was explored to identify outlying epigenetic signatures of depression, operationalized as extreme hyper- or hypo-methylation in affected co-twins from discordant pairs that is not observed across the rest of the study sample. After adjusting for blood cell count, there were thirteen CpG sites across which depressed co-twins from the discordant pairs exhibited outlying DNA methylation signatures. None of them exhibited a methylation outlier profile in the concordant and healthy pairs, and some of these loci spanned genes previously associated with neuropsychiatric phenotypes, such as GHSR and KCNQ1. This exploratory study provides preliminary proof-of-concept validation that epigenetic outlier profiles derived from genome-wide DNA methylation data may be related to depression risk.
Collapse
|
16
|
Ishiguro H, Horiuchi Y, Tabata K, Liu QR, Arinami T, Onaivi ES. Cannabinoid CB2 Receptor Gene and Environmental Interaction in the Development of Psychiatric Disorders. Molecules 2018; 23:E1836. [PMID: 30042304 PMCID: PMC6114128 DOI: 10.3390/molecules23081836] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
CB2 cannabinoid receptor (CB2R) gene is associated with depression. We investigated the gene-environment interaction between CB2R function and diverse stressors. First, anxiety-like behavior during chronic-mild-stress (CMS) was evaluated in C57BL/6JJmsSlc mice following treatment with CB2R agonist JWH015 or inverse-agonist AM630. Second, locomotor activity and anxiety-like behavior were measured following exposure to an immune poly I:C stressor. Gene expressions of HPA axis related molecules, Fkbp5, Nr3c1 and Crf and pro-inflammatory cytokine Il-1b, as well as Bdnf as a key neurotrophin that supports neuron health, function, and synaptic plasticity, were determined in hippocampus of Cnr2 knockout mice, as indicators of stressful environment. CMS-induced anxiety-like behavior was enhanced by AM630 and reduced by JWH015 and fluvoxamine. Poly I:C reduced locomotor activity and increased anxiety-like behavior, and these effects were pronounced in the heterozygote than in the wild type mice. Fkbp5 and Nr3c1 expression were lower in the Cnr2 heterozygotes than in the wild type mice with Poly I:C treatment. These findings indicate that interaction between CB2R gene and stressors increases the risk of depression-like behaviors that may be linked with neuro-immune crosstalk. Further studies in human subjects are necessary to determine the role of CB2R and environmental interaction in the development of depression.
Collapse
MESH Headings
- Animals
- Anxiety/chemically induced
- Anxiety/genetics
- Anxiety/immunology
- Anxiety/physiopathology
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/immunology
- Cannabinoid Receptor Agonists/pharmacology
- Corticotropin-Releasing Hormone/genetics
- Corticotropin-Releasing Hormone/immunology
- Depression/chemically induced
- Depression/genetics
- Depression/immunology
- Depression/physiopathology
- Disease Models, Animal
- Gene Expression Regulation
- Gene-Environment Interaction
- Hippocampus/drug effects
- Hippocampus/immunology
- Hippocampus/physiopathology
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/immunology
- Hypothalamo-Hypophyseal System/physiopathology
- Immunologic Factors/administration & dosage
- Indoles/pharmacology
- Interleukin-1beta/genetics
- Interleukin-1beta/immunology
- Locomotion/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pituitary-Adrenal System/drug effects
- Pituitary-Adrenal System/immunology
- Pituitary-Adrenal System/physiopathology
- Poly I-C/administration & dosage
- Receptor, Cannabinoid, CB2/deficiency
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/immunology
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/immunology
- Signal Transduction
- Tacrolimus Binding Proteins/genetics
- Tacrolimus Binding Proteins/immunology
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Neuropsychiatry and Clinical Ethics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan.
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| | - Koichi Tabata
- Department of Neuropsychiatry and Clinical Ethics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan.
| | - Qing-Rong Liu
- National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA.
| | - Tadao Arinami
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA.
| |
Collapse
|