1
|
Barrera-Conde M, Ramon-Duaso C, González-Parra JA, Veza-Estevez E, Chevaleyre V, Piskorowski RA, de la Torre R, Busquets-García A, Robledo P. Adolescent cannabinoid exposure rescues phencyclidine-induced social deficits through modulation of CA2 transmission. Prog Neurobiol 2024; 240:102652. [PMID: 38955325 DOI: 10.1016/j.pneurobio.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Psychotic disorders entail intricate conditions marked by disruptions in cognition, perception, emotions, and social behavior. Notably, psychotic patients who use cannabis tend to show less severe deficits in social behaviors, such as the misinterpretation of social cues and the inability to interact with others. However, the biological underpinnings of this epidemiological interaction remain unclear. Here, we used the NMDA receptor blocker phencyclidine (PCP) to induce psychotic-like states and to study the impact of adolescent cannabinoid exposure on social behavior deficits and synaptic transmission changes in hippocampal area CA2, a region known to be active during social interactions. In particular, adolescent mice underwent 7 days of subchronic treatment with the synthetic cannabinoid, WIN 55, 212-2 (WIN) followed by one injection of PCP. Using behavioral, biochemical, and electrophysiological approaches, we showed that PCP persistently reduced sociability, decreased GAD67 expression in the hippocampus, and induced GABAergic deficits in proximal inputs from CA3 and distal inputs from the entorhinal cortex (EC) to CA2. Notably, WIN exposure during adolescence specifically restores adult sociability deficits, the expression changes in GAD67, and the GABAergic impairments in the EC-CA2 circuit, but not in the CA3-CA2 circuit. Using a chemogenetic approach to target EC-CA2 projections, we demonstrated the involvement of this specific circuit on sociability deficits. Indeed, enhancing EC-CA2 transmission was sufficient to induce sociability deficits in vehicle-treated mice, but not in animals treated with WIN during adolescence, suggesting a mechanism by which adolescent cannabinoid exposure rescues sociability deficits caused by enhanced EC-CA2 activity in adult mice.
Collapse
Affiliation(s)
- Marta Barrera-Conde
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Carla Ramon-Duaso
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jose Antonio González-Parra
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Emma Veza-Estevez
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Vivien Chevaleyre
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatry and Neuroscience, Paris, France
| | - Rebecca A Piskorowski
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatry and Neuroscience, Paris, France
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Arnau Busquets-García
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain.
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
2
|
Cherry AL, Wheeler MJ, Mathisova K, Di Miceli M. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18:1294939. [PMID: 38404644 PMCID: PMC10894036 DOI: 10.3389/fninf.2024.1294939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1). Recently, the eCB system has been linked to several neurological diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, epilepsy, addiction and neurodevelopmental disorders. In the current study, we aim to: (i) highlight a potential link between the eCB system and neurological disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, and (iii) identify evolutionary-conserved residues in CB1R or TRPV1 in light of their function. Methods To address this, we used several bioinformatic approaches, such as transcriptomic (Gene Expression Omnibus), protein-protein (STRING), phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) analyzes. Results Using RNA sequencing datasets, we did not observe any dysregulation of eCB-related transcripts in major depressive disorders, bipolar disorder or schizophrenia in the anterior cingulate cortex, nucleus accumbens or dorsolateral striatum. Following in vivo THC exposure in adolescent mice, GPR55 was significantly upregulated in neurons from the ventral tegmental area, while other transcripts involved in the eCB system were not affected by THC exposure. Our results also suggest that THC likely induces neuroinflammation following in vitro application on mice microglia. Significant downregulation of TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe epilepsy was induced, confirming previous observations. In addition, several transcriptomic dysregulations were observed in neurons of both epileptic mice and humans, which included transcripts involved in neuronal death. When scanning known interactions for transcripts involved in the eCB system (n = 12), we observed branching between the eCB system and neurophysiology, including proteins involved in the dopaminergic system. Our protein phylogenic analyzes revealed that CB1R forms a clade with CB2R, which is distinct from related paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid receptors and melanocortin receptors. As expected, several conserved residues were identified, which are crucial for CB1R receptor function. The anandamide-binding pocket seems to have appeared later in evolution. Similar results were observed for TRPV1, with conserved residues involved in receptor activation. Conclusion The current study found that GPR55 is upregulated in neurons following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. Caution is advised when interpreting the present results, as we have employed secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from jawless vertebrates during the late Ordovician, 450 million years ago. Conserved residues are identified, which mediate crucial receptor functions.
Collapse
Affiliation(s)
- Amy L. Cherry
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Michael J. Wheeler
- Sustainable Environments Research Group, School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Karolina Mathisova
- School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
3
|
Martín-Sánchez A, González-Pardo H, Alegre-Zurano L, Castro-Zavala A, López-Taboada I, Valverde O, Conejo NM. Early-life stress induces emotional and molecular alterations in female mice that are partially reversed by cannabidiol. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110508. [PMID: 34973413 DOI: 10.1016/j.pnpbp.2021.110508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
Gender is considered as a pivotal determinant of mental health. Indeed, several psychiatric disorders such as anxiety and depression are more common and persistent in women than in men. In the past two decades, impaired brain energy metabolism has been highlighted as a risk factor for the development of these psychiatric disorders. However, comprehensive behavioural and neurobiological studies in brain regions relevant to anxiety and depression symptomatology are scarce. In the present study, we summarize findings describing cannabidiol effects on anxiety and depression in maternally separated female mice as a well-established rodent model of early-life stress associated with many mental disorders. Our results indicate that cannabidiol could prevent anxiolytic- and depressive-related behaviour in early-life stressed female mice. Additionally, maternal separation with early weaning (MSEW) caused long-term changes in brain oxidative metabolism in both nucleus accumbens and amygdalar complex measured by cytochrome c oxidase quantitative histochemistry. However, cannabidiol treatment could not revert brain oxidative metabolism impairment. Moreover, we identified hyperphosphorylation of mTOR and ERK 1/2 proteins in the amygdala but not in the striatum, that could also reflect altered brain intracellular signalling related with to bioenergetic impairment. Altogether, our study supports the hypothesis that MSEW induces profound long-lasting molecular changes in mTOR signalling and brain energy metabolism related to depressive-like and anxiety-like behaviours in female mice, which were partially ameliorated by CBD administration.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
4
|
Epps SA. Commonalities for comorbidity: Overlapping features of the endocannabinoid system in depression and epilepsy. Front Psychiatry 2022; 13:1041460. [PMID: 36339877 PMCID: PMC9626804 DOI: 10.3389/fpsyt.2022.1041460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
A wealth of clinical and pre-clinical data supports a bidirectional comorbidity between depression and epilepsy. This suggests commonalities in underlying mechanisms that may serve as targets for more effective treatment strategies. Unfortunately, many patients with this comorbidity are highly refractory to current treatment strategies, while others experience a worsening of one arm of the comorbidity when treating the other arm. This highlights the need for novel pharmaceutical targets that may provide safe and effective relief for both depression and epilepsy symptoms. The endocannabinoid system (ECS) of the brain has become an area of intense interest for possible roles in depression and epilepsy. Several existing literature reviews have provided in-depth analysis of the involvement of various aspects of the ECS in depression or epilepsy separately, while others have addressed the effectiveness of different treatment strategies targeting the ECS in either condition individually. However, there is not currently a review that considers the ECS when both conditions are comorbid. This mini-review will address areas of common overlap between the ECS in depression and in epilepsy, such as commonalities in endocannabinoids themselves, their receptors, and degradative enzymes. These areas of overlap will be discussed alongside their implications for treatment of this challenging comorbidity.
Collapse
Affiliation(s)
- S Alisha Epps
- Department of Psychology, Whitworth University, Spokane, WA, United States
| |
Collapse
|
5
|
Sheppard SG, Wall PV, Wheatley B, Kent W. Effects of Marijuana Use in Patients with Orthopaedic Trauma. JBJS Rev 2021; 9:01874474-202112000-00007. [PMID: 35102050 DOI: 10.2106/jbjs.rvw.21.00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
➢ The use of cannabis and cannabis-related products has increased dramatically in the last 2 decades. As states continue to legalize cannabis products, it is important for surgeons to understand the effects they may have on patients who have sustained orthopaedic trauma. ➢ Cannabinoids have been shown to decrease the severity of certain symptoms related to traumatic brain injury as well as posttraumatic stress disorder. ➢ Cannabinoids can modulate the body's endocannabinoid system, which can play an important role in bone homeostasis. Activation of cannabinoid receptors has been shown to be bone-protective in adults. ➢ Venous thromboembolism is a major concern for trauma patients. Cannabis use has been linked to overall increased rates of venous thromboembolism events. ➢ Literature regarding human-based cannabis studies is sparse; however, the growing field is opening new opportunities for research of this topic.
Collapse
|
6
|
Yu Y, Chen W, Meng D, Zhou XM, Wang LL, Xu C. A Cannabinoid-1 Receptor Antagonist MJ08 with Different Effects in Stomach and Small Intestine. Assay Drug Dev Technol 2021; 19:176-183. [PMID: 33784479 DOI: 10.1089/adt.2020.1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: To investigate the inverse agonistic effect of a novel type 1 cannabinoid (CB1) receptor antagonist, MJ08, on the gastrointestinal tract (GIT). Methods: In vivo, carbon propulsion within the stomach of mice was undertaken to investigate the effects of MJ08. In vitro, the effects of MJ08 were investigated on the contraction of smooth muscle on the isolated gastric fundus, gastric body, duodenum, jejunum, and ileum. Results: Western blotting results showed that MJ08 (0.62 mg/kg body weight) reversed WIN55,212-2 (1.0 mg/kg)-induced reduction of carbon transit. MJ08 (1.25, 2.5 mg/kg) stimulated carbon transit dose dependently, demonstrating an inverse agonistic effect. In vitro experiments showed that the expression of MJ08 increased the contraction of small intestine, and that its inverse agonistic effect was significantly stronger than that of SR141716A, but no effect was noted on the gastric body. Western blotting showed that the MJ08 increased the expression of CB1 receptor in different GIT segments. Conclusion: MJ08 is not only an antagonist but also an inverse agonist of the CB1 receptor. MJ08 and SR141716A can enhance motility in the small intestine and increase the expression of CB1 receptor in the small intestine.
Collapse
Affiliation(s)
- Yang Yu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Wei Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dan Meng
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xiao-Mian Zhou
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Li-Li Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Martín-Sánchez A, García-Baos A, Castro-Zavala A, Alegre-Zurano L, Valverde O. Early-life stress exacerbates the effects of WIN55,212-2 and modulates the cannabinoid receptor type 1 expression. Neuropharmacology 2021; 184:108416. [PMID: 33271186 DOI: 10.1016/j.neuropharm.2020.108416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
Early-life stress induces an abnormal brain development and increases the risk of psychiatric diseases, including depression, anxiety and substance use disorders. We have developed a reliable model for maternal neglect, named maternal separation with early weaning (MSEW) in CD1 mice. In the present study, we evaluated the long-term effects on anxiety-like behaviours, nociception as well as the Iba1-positive microglial cells in this model in comparison to standard nest (SN) mice. Moreover, we investigated whether MSEW alters the cannabinoid agonist WIN55,212-2 effects regarding reward, spatial and emotional memories, tolerance to different cannabinoid responses, and physical dependence. Adult male offspring of MSEW group showed impaired responses on spatial and emotional memories after a repeated WIN55,212-2 treatment. These behavioural impairments were associated with an increase in basolateral amygdala and hippocampal CB1-expressing fibres and higher number of CB1-containing cells in cerebellum. Additionally, MSEW promotes a higher number of Iba1-positive microglial cells in basolateral amygdala and cerebellum. As for the cannabinoid-induced effects, rearing conditions did not influence the rewarding effects of WIN55,212-2 in the conditioned place preference paradigm. However, MSEW mice showed a delay in the development of tolerance to the cannabinoid effects. Moreover, CB1-positive fibres were reduced in limbic areas in MSEW mice after cannabinoid withdrawal precipitated with the CB1 antagonist SR141617A. These findings support that early-life stress promotes behavioural and molecular changes in the sensitivity to cannabinoids, which are mediated by alterations in CB1 signalling in limbic areas and it induces an increased Iba1-microglial marker which could interfere in emotional memories formation.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
8
|
deRoon-Cassini TA, Stollenwerk TM, Beatka M, Hillard CJ. Meet Your Stress Management Professionals: The Endocannabinoids. Trends Mol Med 2020; 26:953-968. [PMID: 32868170 PMCID: PMC7530069 DOI: 10.1016/j.molmed.2020.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
The endocannabinoid signaling system (ECSS) is altered by exposure to stress and mediates and modulates the effects of stress on the brain. Considerable preclinical data support critical roles for the endocannabinoids and their target, the CB1 cannabinoid receptor, in the adaptation of the brain to repeated stress exposure. Chronic stress exposure increases vulnerability to mental illness, so the ECSS has attracted attention as a potential therapeutic target for the prevention and treatment of stress-related psychopathology. We discuss human genetic studies indicating that the ECSS contributes to risk for mental illness in those exposed to severe stress and trauma early in life, and we explore the potential difficulties in pharmacological manipulation of the ECSS.
Collapse
Affiliation(s)
- Terri A deRoon-Cassini
- Neuroscience Research Center, USA; Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Margaret Beatka
- Neuroscience Research Center, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cecilia J Hillard
- Neuroscience Research Center, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
9
|
Sbarski B, Akirav I. Cannabinoids as therapeutics for PTSD. Pharmacol Ther 2020; 211:107551. [PMID: 32311373 DOI: 10.1016/j.pharmthera.2020.107551] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/08/2020] [Indexed: 02/09/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex disorder that involves dysregulation of multiple neurobiological systems. The traumatic stressor plays a causal role in producing psychological dysfunction and the pattern of findings suggests that the hypothalamic-pituitary-adrenal (HPA) axis, which is instrumental for stress adaptation, is critically dysfunctional in PTSD. Given the lack of understanding of the basic mechanisms and underlying pathways that cause the disorder and its heterogeneity, PTSD poses challenges for treatment. Targeting the endocannabinoid (ECB) system to treat mental disorders, and PTSD in particular, has been the focus of research and interest in recent years. The ECB system modulates multiple functions, and drugs enhancing ECB signaling have shown promise as potential therapeutic agents in stress effects and other psychiatric and medical conditions. In this review, we focus on the interaction between the ECB-HPA systems in animal models for PTSD and in patients with PTSD. We summarize evidence supporting the use of cannabinoids in preventing and treating PTSD in preclinical and clinical studies. As the HPA system plays a key role in the mediation of the stress response and the pathophysiology of PTSD, we describe preclinical studies suggesting that enhancing ECB signaling is consistent with decreasing PTSD symptoms and dysfunction of the HPA axis. Overall, we suggest that a pharmacological treatment targeted at one system (e.g., HPA) may not be very effective because of the heterogeneity of the disorder. There are abnormalities across different neurotransmitter systems in the pathophysiology of PTSD and none of these systems function uniformly among all patients with PTSD. Hence, conceptually, enhancing ECB signaling may be a more effective avenue for pharmacological treatment.
Collapse
Affiliation(s)
- Brenda Sbarski
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
10
|
Vimalanathan A, Gidyk DC, Diwan M, Gouveia FV, Lipsman N, Giacobbe P, Nobrega JN, Hamani C. Endocannabinoid modulating drugs improve anxiety but not the expression of conditioned fear in a rodent model of post-traumatic stress disorder. Neuropharmacology 2020; 166:107965. [PMID: 31962287 DOI: 10.1016/j.neuropharm.2020.107965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 12/23/2022]
Abstract
The endocannabinoid (eCB) system is a potential target for the treatment of symptoms of post-traumatic stress disorder (PTSD). Similar to clinical PTSD, approximately 25-30% of rats that undergo cued fear conditioning exhibit impaired extinction learning. In addition to extinction-resistant fear, these "weak extinction" (WE) rats show persistent anxiety-like behaviors. The goal of the present study was to test the hypothesis that behavioural differences between WE animals and those presenting normal extinction patterns (strong extinction; SE) could be mediated by the eCB system. Rats undergoing fear conditioning/extinction and fear recall sessions were initially segregated in weak and strong-extinction groups. Two weeks later, animals underwent a fear recall session followed by a novelty-suppressed feeding (NSF) test. In acute experiments, WE rats were injected with either the fatty acid amide hydrolase (FAAH) inhibitor URB597 or the CB1 agonist WIN55,212-2 1 h prior to long-term recall and NSF testing. SE animals were injected with the inverse CB1 receptor agonist AM251. In chronic experiments, WE and SE rats were given daily injections of URB597 or AM251 between short and long-term recall sessions. We found that acute administration of WIN55,212-2 but not URB597 reduced anxiety-like behaviour in WE rats. In contrast, AM251 was anxiogenic in SE animals. Neither treatment was effective in altering freezing expression during fear recall. The chronic administration of AM251 to SE or URB597 to WE did not alter fear or anxiety-like behaviour or changed the expression of FAAH and CB1. Together, these results suggest that systemic manipulations of the eCB system may alter anxiety-like behaviour but not the behavioural expression of an extinction-resistant associative fear memory.
Collapse
Affiliation(s)
- Akshayan Vimalanathan
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Darryl C Gidyk
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Mustansir Diwan
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Flavia V Gouveia
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
11
|
The Cannabinoid Receptor Agonist WIN55,212-2 Ameliorates Hippocampal Neuronal Damage After Chronic Cerebral Hypoperfusion Possibly Through Inhibiting Oxidative Stress and ASK1-p38 Signaling. Neurotox Res 2019; 37:847-856. [PMID: 31808139 DOI: 10.1007/s12640-019-00141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is a major contributor to cognitive decline and degenerative processes leading to Alzheimer's disease, vascular dementia, and aging. However, the delicate mechanism of CCH-induced neuronal damage, and therefore proper treatment, remains unclear. WIN55,212-2 (WIN) is a nonselective cannabinoid receptor agonist that has been shown to have effects on hippocampal neuron survival. In this study, we investigated the potential roles of WIN, as well as its underlying mechanism in a rat CCH model of bilateral common carotid artery occlusion. Hippocampal morphological changes and mitochondrial ultrastructure were detected using hematoxylin and eosin staining and electron microscopy, respectively. Various biomarkers, such as reactive oxidative species (ROS), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were used to assess the level of oxidative stress in the hippocampus. Furthermore, the expression levels of neuronal nuclei (NeuN), apoptosis signal-regulating kinase 1 (ASK1)-p38 signaling proteins, cleaved Caspase-9 and -3, and cytochrome-c (Cyt-C) were accessed by western blotting. CCH decreased the levels of NeuN, Cyt-C (mitochondrial), SOD, and CAT, and increased the levels of MDA, phosphorylated ASK1 and phosphorylated p38, cleaved Caspase-9 and -3, and Cyt-C (cytoplasm), which were reversed by WIN treatment. Chronic treatment with WIN also improved CCH-induced neuronal degeneration and mitochondrial fragmentation. These findings indicated that WIN may be a potential therapeutic agent for ischemic neuronal damage, involving a mechanism associated with the suppression of oxidative stress and ASK1-p38 signaling.
Collapse
|
12
|
Ney LJ, Matthews A, Bruno R, Felmingham KL. Cannabinoid interventions for PTSD: Where to next? Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:124-140. [PMID: 30946942 DOI: 10.1016/j.pnpbp.2019.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023]
Abstract
Cannabinoids are a promising method for pharmacological treatment of post-traumatic stress disorder (PTSD). Despite considerable research devoted to the effect of cannabinoid modulation on PTSD symptomology, there is not a currently agreed way by which the cannabinoid system should be targeted in humans. In this review, we present an overview of recent research identifying neurological pathways by which different cannabinoid-based treatments may exert their effects on PTSD symptomology. We evaluate the strengths and weaknesses of each of these different approaches, including recent challenges presented to favourable options such as fatty acid amide hydrolase (FAAH) inhibitors. This article makes the strengths and challenges of different potential cannabinoid treatments accessible to psychological researchers interested in cannabinoid therapeutics and aims to aid selection of appropriate tools for future clinical trials.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | | | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
13
|
Lisboa SF, Vila-Verde C, Rosa J, Uliana DL, Stern CAJ, Bertoglio LJ, Resstel LB, Guimaraes FS. Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology (Berl) 2019; 236:201-226. [PMID: 30604182 DOI: 10.1007/s00213-018-5127-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Aversive learning and memory are essential to cope with dangerous and stressful stimuli present in an ever-changing environment. When this process is dysfunctional, however, it is associated with posttraumatic stress disorder (PTSD). The endocannabinoid (eCB) system has been implicated in synaptic plasticity associated with physiological and pathological aversive learning and memory. OBJECTIVE AND METHODS The objective of this study was to review and discuss evidence on how and where in the brain genetic or pharmacological interventions targeting the eCB system would attenuate aversive/traumatic memories through extinction facilitation in laboratory animals and humans. The effect size of the experimental intervention under investigation was also calculated. RESULTS Currently available data indicate that direct or indirect activation of cannabinoid type-1 (CB1) receptor facilitates the extinction of aversive/traumatic memories. Activating CB1 receptors around the formation of aversive/traumatic memories or their reminders can potentiate their subsequent extinction. In most cases, the effect size has been large (Cohen's d ≥ 1.0). The brain areas responsible for the abovementioned effects include the medial prefrontal cortex, amygdala, and/or hippocampus. The potential role of cannabinoid type-2 (CB2) receptors in extinction learning is now under investigation. CONCLUSION Drugs augmenting the brain eCB activity can temper the impact of aversive/traumatic experiences by diverse mechanisms depending on the moment of their administration. Considering the pivotal role the extinction process plays in PTSD, the therapeutic potential of these drugs is evident. The sparse number of clinical trials testing these compounds in stress-related disorders is a gap in the literature that needs to be addressed.
Collapse
Affiliation(s)
- Sabrina F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - C Vila-Verde
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - J Rosa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - D L Uliana
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - C A J Stern
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - L J Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - L B Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - F S Guimaraes
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|