1
|
Mhaddolkar N, Astrup TF, Tischberger-Aldrian A, Pomberger R, Vollprecht D. Challenges and opportunities in managing biodegradable plastic waste: A review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024:734242X241279902. [PMID: 39344513 DOI: 10.1177/0734242x241279902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Biodegradable plastics have certain challenges in a waste management perspective. The existing literature reviews fail to provide a consolidated overview of different process steps of biodegradable plastic waste management and to discuss the support provided by the existing legislation for the same. The present review provides a holistic overview of these process steps and a comprehensive relative summary of 13 existing European Union (EU) laws related to waste management and circular economy, and national legislations plus source separation guidelines of 13 countries, to ensure the optimal use of resources in the future. Following were the major findings: (i) numerous types and low volumes of biodegradable plastics pose a challenge to developing cost-effective waste management infrastructure; (ii) biodegradable plastics are promoted as food-waste collection aids, but consumers are often confused about their proper disposal and are prone to greenwashing from manufacturers; (iii) industry-level studies demonstrating mechanical recycling on a full scale are unavailable; (iv) the existing EU legislation dealt with general topics related to biodegradable plastics; however, only the new proposal on plastic packaging waste and the EU policy framework for bioplastics clearly mentioned their disposal and (v) clear disparities were observed between disposal methods suggested by national legislation and available source separation guidelines. Thus, to appropriately manage biodegradable plastic waste, it is necessary to develop waste processing and material utilization infrastructure as well as create consumer awareness. In the end, recommendations were provided for improved biodegradable plastic waste management from the perspective of systemic challenges identified from the literature review.
Collapse
Affiliation(s)
- Namrata Mhaddolkar
- Chair of Waste Processing Technology and Waste Management (AVAW), Montanuniversität Leoben (MUL), Leoben, Austria
- DTU SUSTAIN, Department of Environmental Engineering, Danish Technical University (DTU), Lyngby, Denmark
| | - Thomas Fruergaard Astrup
- DTU SUSTAIN, Department of Environmental Engineering, Danish Technical University (DTU), Lyngby, Denmark
- Ramboll, Copenhagen S, Denmark
| | - Alexia Tischberger-Aldrian
- Chair of Waste Processing Technology and Waste Management (AVAW), Montanuniversität Leoben (MUL), Leoben, Austria
| | - Roland Pomberger
- Chair of Waste Processing Technology and Waste Management (AVAW), Montanuniversität Leoben (MUL), Leoben, Austria
| | - Daniel Vollprecht
- Chair of Resource and Chemical Engineering, University of Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Qu M, Guo Y, Cai Y, Nie Z, Zhang C. Upgrading Polyolefin Plastic Waste into Multifunctional Porous Graphene using Silicone-Assisted Direct Laser Writing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310273. [PMID: 38794868 DOI: 10.1002/smll.202310273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The widespread use of plastics, especially polyolefin including polyethylene and polypropylene, has led to severe environmental crises. Chemical recycling, a promising solution for extracting value from plastic waste, however, is underutilized due to its complexity. Here, a simple approach, silicone-assisted direct laser writing (SA-DLW) is developed, to upgrade polyolefin plastic waste into multifunctional porous graphene, called laser-induced graphene (LIG). This method involves infiltrating polyolefins with silicone, which retards ablation during the DLW process and supplies additional carbon atoms, as confirmed by experimental and molecular dynamic results. A remarkable conversion yield of 38.3% is achieved. The upgraded LIG exhibited a porous structure and high conductivity, which is utilized for the fabrication of diverse energy and electronic devices with commendable performance. Furthermore, the SA-DLW technique is versatile for upgrading plastic waste in various types and forms. Upgrading plastic waste in the form of fabric has significantly simplified pre-treatment. Finally, a wearable flex sensor is fabricated on the non-woven fabric of a discarded medical mask, which is applied for gesture monitoring. This work offers a simple but effective solution to upgrade plastic waste into valuable products, contributing to the mitigation of environmental challenges posed by plastic pollution.
Collapse
Affiliation(s)
- Menglong Qu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Yani Guo
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, 211816, China
- Sinopec Nanjing Engineering & Construction Incorporation, Nanjing, 210049, China
| | - Yahan Cai
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Zhengwei Nie
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Cheng Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| |
Collapse
|
3
|
Gil-Castell O, Jiménez-Robles R, Gálvez-Subiela A, Marco-Velasco G, Cumplido MP, Martín-Pérez L, Cháfer A, Badia JD. Factorial Analysis and Thermal Kinetics of Chemical Recycling of Poly(ethylene terephthalate) Aided by Neoteric Imidazolium-Based Ionic Liquids. Polymers (Basel) 2024; 16:2451. [PMID: 39274083 PMCID: PMC11397852 DOI: 10.3390/polym16172451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Poly(ethylene terephthalate) (PET) waste accumulation poses significant environmental challenges due to its persistent nature and current management limitations. This study explores the effectiveness of imidazolium-based neoteric solvents [Emim][OAc] and [Bmim][OAc] as catalytic co-solvents in the glycolysis of PET with ethylene glycol (EG). Reaction thermal kinetics showed that both ionic liquids (ILs) significantly enhanced the depolymerization rate of PET compared to traditional methods. The use of [Emim][OAc] offered a lower activation energy of 88.69 kJ·mol-1, thus making the process more energy-efficient. The contribution of key process parameters, including temperature (T), plastic-to-ionic liquid (P/IL) mass ratio, and plastic-to-solvent (P/S) mass ratio, were evaluated by means of a factorial analysis and optimized to achieve the maximum PET conversion for both neoteric solvents. The relevance sequence for both ionic liquids involved the linear factors T and P/S, followed by the interaction factors T×P/S and T×P/IL, with P/IL being the less significant parameter. The optimal conditions, with a predicted conversion of 100%, involved a temperature of 190 °C, with a P/IL of 1:1 and a P/S of 1:2.5, regardless of the IL used as the catalytic co-solvent.
Collapse
Affiliation(s)
- Oscar Gil-Castell
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Ramón Jiménez-Robles
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Alejandro Gálvez-Subiela
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Gorka Marco-Velasco
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - M Pilar Cumplido
- Plastic Technology Centre (AIMPLAS), Gustave Eiffel 4, 46980 Paterna, Valencia, Spain
| | - Laia Martín-Pérez
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Amparo Cháfer
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Jose D Badia
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
4
|
Jha S, Akula B, Enyioma H, Novak M, Amin V, Liang H. Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions. Polymers (Basel) 2024; 16:2262. [PMID: 39204482 PMCID: PMC11359911 DOI: 10.3390/polym16162262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Biodegradable biobased polymers derived from biomass (such as plant, animal, marine, or forestry material) show promise in replacing conventional petrochemical polymers. Research and development have been conducted for decades on potential biodegradable biobased polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and succinate polymers. These materials have been evaluated for practicality, cost, and production capabilities as limiting factors in commercialization; however, challenges, such as the environmental limitations on the biodegradation rates for biodegradable biobased polymer, need to be addressed. This review provides a history and overview of the current development in the synthesis process and properties of biodegradable biobased polymers, along with a techno-commercial analysis and discussion on the environmental impacts of biodegradable biobased polymers. Specifically, the techno-commercial analysis focuses on the commercial potential, financial assessment, and life-cycle assessment of these materials, as well as government initiatives to facilitate the transition towards biodegradable biobased polymers. Lastly, the environmental assessment focuses on the current challenges with biodegradation and methods of improving the recycling process and reusability of biodegradable biobased polymers.
Collapse
Affiliation(s)
- Swarn Jha
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| | - Bhargav Akula
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| | - Hannah Enyioma
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| | - Megan Novak
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| | - Vansh Amin
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| | - Hong Liang
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| |
Collapse
|
5
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
6
|
Szewczyk-Łagodzińska M, Oleksiuk D, Kowalczyk S, Czajka A, Dużyńska A, Łapińska A, Ryszkowska J, Dziewit P, Janiszewski J, Plichta A. Multifunctional Block Copolymers, Acting as Recycling Aids, by Atom Transfer Radical Polymerization. CHEMSUSCHEM 2024; 17:e202301232. [PMID: 37975580 DOI: 10.1002/cssc.202301232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Block copolymers utilizing oligomeric poly(pentylene-co-hexylene carbonate)diol modified with 2,4-diisocyanatotoluene and further with 2-bromo-N-(3-hydroxypropyl)-2-methylpropanamide were synthesized and utilized as Activators ReGenerated by Electron Transfer Atom Transfer Radical Polymerization macroinitiators to obtain a first generation of multifunctional recycling additives with poly(glycidyl methacrylate-co-butyl methacrylate-co-methyl methacrylate) side chains, which could act as chain extenders. Then, chosen additive was reacted with a radical scavenger, 3,5-ditertbutyl-4-hydroxybenzoic acid (DHBA), to obtain a second generation of reactive additives. Those copolymers had different numbers of epoxy groups per polymer chain, and different number of epoxides opened with DHBA, hence showed a range of properties, and were utilized as reactive modifiers for polylactide (PLA) extrusion melting. The first-generation modifiers caused an increase in PLA's blends relative melt viscosity, stabilized material properties, and enhanced impact strength, while the second-generation modifiers with more than 8 % of epoxide ring opened showed worse properties. However, they managed to suppress the UV degradation of PLA blend plates.
Collapse
Affiliation(s)
| | - Dawid Oleksiuk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Sebastian Kowalczyk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Anna Czajka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Anna Dużyńska
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Anna Łapińska
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Joanna Ryszkowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Piotr Dziewit
- Faculty of Mechatronics, Armament and Aerospace, Jarosław Dąbrowski Military University of Technology, Gen. Sylwester Kaliski 2, 00-908, Warsaw, Poland
| | - Jacek Janiszewski
- Faculty of Mechatronics, Armament and Aerospace, Jarosław Dąbrowski Military University of Technology, Gen. Sylwester Kaliski 2, 00-908, Warsaw, Poland
| | - Andrzej Plichta
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
7
|
Chai M, Xu G, Yang R, Sun H, Wang Q. Degradation Product-Promoted Depolymerization Strategy for Chemical Recycling of Poly(bisphenol A carbonate). Molecules 2024; 29:640. [PMID: 38338384 PMCID: PMC10856637 DOI: 10.3390/molecules29030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The accumulation of waste plastics has a severe impact on the environment, and therefore, the development of efficient chemical recycling methods has become an extremely important task. In this regard, a new strategy of degradation product-promoted depolymerization process was proposed. Using N,N'-dimethyl-ethylenediamine (DMEDA) as a depolymerization reagent, an efficient chemical recycling of poly(bisphenol A carbonate) (BPA-PC or PC) material was achieved under mild conditions. The degradation product 1,3-dimethyl-2-imidazolidinone (DMI) was proven to be a critical factor in facilitating the depolymerization process. This strategy does not require catalysts or auxiliary solvents, making it a truly green process. This method improves the recycling efficiency of PC and promotes the development of plastic reutilization.
Collapse
Affiliation(s)
- Maoqing Chai
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Rulin Yang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Hongguang Sun
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Qinggang Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
8
|
Lahtela V, Mielonen K, Parkar P, Kärki T. The Effects of Bromine Additives on the Recyclability of Injection Molded Electronic Waste Polymers. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300157. [PMID: 37970537 PMCID: PMC10632664 DOI: 10.1002/gch2.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/31/2023] [Indexed: 11/17/2023]
Abstract
Excessive waste amounts, such as waste electrical and electronic equipment (WEEE) and plastic waste, have increased simultaneously with the development of society. Despite the increased material amounts, the recycling rates are too low and those have a great potential to contribute actions toward a circular economy. A certain restricted factor for recycling is the heterogenous nature of materials, such as WEEE-included additives. This study investigates the effects of a WEEE polymer including bromine on recycling ability, analyzing its physical and mechanical features. The study demonstrates that polymer sorting is profitable for WEEE polymers from the material qualitative perspective, because various processability and material features are achieved in the study between material categories, and especially unidentified polymers have the weakest features in the studied tests. The separation of bromine concentration is also recommended because bromine-free materials have more advanced features that can be confirmed by statistical analyses. The achieved results support the idea that novel circular economy actions have the potential for effective, efficient WEEE polymer recycling processes with technological innovations, especially when all variables (e.g., recycling cycles and process parameters) are observed and it enables an option to reduce the need for virgin plastic.
Collapse
Affiliation(s)
- Ville Lahtela
- SCI‐MAT Research Platform & Fiber Composite LaboratorySchool of Energy SystemsLappeenranta‐Lahti University of TechnologyYliopistonkatu 34LappeenrantaFI‐53851Finland
- Fiber Composite LaboratorySchool of Energy SystemsLappeenranta‐Lahti University of TechnologyYliopistonkatu 34LappeenrantaFI‐53851Finland
| | - Katriina Mielonen
- Fiber Composite LaboratorySchool of Energy SystemsLappeenranta‐Lahti University of TechnologyYliopistonkatu 34LappeenrantaFI‐53851Finland
| | - Prashant Parkar
- Fiber Composite LaboratorySchool of Energy SystemsLappeenranta‐Lahti University of TechnologyYliopistonkatu 34LappeenrantaFI‐53851Finland
| | - Timo Kärki
- Fiber Composite LaboratorySchool of Energy SystemsLappeenranta‐Lahti University of TechnologyYliopistonkatu 34LappeenrantaFI‐53851Finland
| |
Collapse
|
9
|
Main P, Petersmann S, Wild N, Feuchter M, Duretek I, Edeleva M, Ragaert P, Cardon L, Lucyshyn T. Impact of Multiple Reprocessing on Properties of Polyhydroxybutyrate and Polypropylene. Polymers (Basel) 2023; 15:4126. [PMID: 37896370 PMCID: PMC10611211 DOI: 10.3390/polym15204126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Biobased plastics have the potential to be sustainable, but to explore their circularity further, current end-of-life options need to be broadened. Mechanical recycling is one of the most accepted methods to bring back plastics into the loop. Polyhydroxybutyrates (PHBs) are biobased and biodegradable in nature with promising properties and varied applications in the market. This study focuses on their potential for mechanical recycling by multiple extrusion cycles (E1-E5) and multi-faceted characterization of the virgin (V) and reprocessed materials from E1 to E5. The behavior is compared to polypropylene (PP) as a reference with a similar property profile, which has also been reprocessed five times. The thermal properties of both series showed a stable melting point and thermal decomposition temperature from thermal analyses (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)). However, a steady increase in the degree of crystallinity was observed which could counterbalance the decrease in molecular weight due to repeated extrusion measured by gel permeation chromatography and resulted in similar values of tensile strength across the cycles. The strain at break was impacted after the first extrusion, but no significant change was observed thereafter; the same was observed for impact strength. Even in scanning electron microscopy (SEM) images, virgin and E5 samples appeared similar, showing the stability of morphological characteristics. Fourier transform infrared spectroscopy (FTIR) results revealed that no new groups are being formed even on repeated processing. The deviation between the PHB and PP series was more predominant in the melt mass flow rate (MFR) and rheology studies. There was a drastic drop in the MFR values in PHB from virgin to E5, whereas not much difference was observed for PP throughout the cycles. This observation was corroborated by frequency sweeps conducted with the parallel plate method. The viscosity dropped from virgin to E1 and E2, but from E3 to E5 it presented similar values. This was in contrast to PP, where all the samples from virgin to E5 had the same values of viscosity. This paper highlights the possibilities of mechanical recycling of PHB and explains why future work with the addition of virgin material and other additives is an area to be explored.
Collapse
Affiliation(s)
- Priyanka Main
- Polymer Processing, Montanuniversitaet Leoben, Otto-Gloeckel-Straße 2, 8700 Leoben, Austria;
- Faculty of Engineering and Architecture, Centre for Polymer and Material Technologies, Ghent University, Technologiepark Zwijnaarde 130 (Zone C3), 9052 Zwijnaarde, Belgium; (M.E.); (L.C.)
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium;
| | - Sandra Petersmann
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Otto Gloeckel-Straße 2, 8700 Leoben, Austria; (S.P.); (N.W.); (M.F.)
| | - Nadine Wild
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Otto Gloeckel-Straße 2, 8700 Leoben, Austria; (S.P.); (N.W.); (M.F.)
| | - Michael Feuchter
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Otto Gloeckel-Straße 2, 8700 Leoben, Austria; (S.P.); (N.W.); (M.F.)
| | - Ivica Duretek
- Polymer Processing, Montanuniversitaet Leoben, Otto-Gloeckel-Straße 2, 8700 Leoben, Austria;
| | - Mariya Edeleva
- Faculty of Engineering and Architecture, Centre for Polymer and Material Technologies, Ghent University, Technologiepark Zwijnaarde 130 (Zone C3), 9052 Zwijnaarde, Belgium; (M.E.); (L.C.)
| | - Peter Ragaert
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium;
| | - Ludwig Cardon
- Faculty of Engineering and Architecture, Centre for Polymer and Material Technologies, Ghent University, Technologiepark Zwijnaarde 130 (Zone C3), 9052 Zwijnaarde, Belgium; (M.E.); (L.C.)
| | - Thomas Lucyshyn
- Polymer Processing, Montanuniversitaet Leoben, Otto-Gloeckel-Straße 2, 8700 Leoben, Austria;
| |
Collapse
|
10
|
Kassab A, Al Nabhani D, Mohanty P, Pannier C, Ayoub GY. Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy. Polymers (Basel) 2023; 15:3881. [PMID: 37835930 PMCID: PMC10575100 DOI: 10.3390/polym15193881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The concept of the circular economy has emerged as a promising solution to address the mounting concerns surrounding plastic waste and the urgent need for sustainable resource management. While conventional centralized recycling remains a common practice for plastic waste, centralized facilities may prove inadequate in handling the ever-increasing volumes of plastic waste generated globally. Consequently, exploring alternative recycling methods, such as distributed recycling by additive manufacturing, becomes paramount. This innovative approach encompasses actively involving communities in recycling practices and promotes a circular economy. This comprehensive review paper aims to explore the critical aspects necessary to realize the potential of distributed recycling by additive manufacturing. In this paper, our focus lies on proposing schemes that leverage existing literature to harness the potential of distributed recycling by additive manufacturing as an effective approach to plastic waste management. We explore the intricacies of the recycling process, optimize 3D printing parameters, address potential challenges, and evaluate the mechanical properties of recycled materials. Our investigation draws heavily from the literature of the last five years, as we conduct a thorough critical assessment of DRAM implementation and its influence on the properties of 3D printing structures. Through comprehensive analysis, we reveal the potential of recycled materials in delivering functional components, with insights into their performance, strengths, and weaknesses. This review serves as a comprehensive guide for those interested in embracing distributed recycling by additive manufacturing as a transformative approach to plastic recycling. By fostering community engagement, optimizing 3D printing processes, and incorporating suitable additives, it is possible to collectively contribute to a more sustainable future while combatting the plastic waste crisis. As progress is made, it becomes essential to further delve into the complexities of material behavior, recycling techniques, and the long-term durability of recycled 3D printed components. By addressing these challenges head-on, it is feasible to refine and advance distributed recycling by additive manufacturing as a viable pathway to minimize plastic waste, fostering a circular economy and cultivating a cleaner planet for generations to come.
Collapse
Affiliation(s)
- Ali Kassab
- Department of Industrial and Manufacturing Systems, University of Michigan-Dearborn, Dearborn, MI 48128, USA;
| | - Dawood Al Nabhani
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (D.A.N.); (C.P.)
| | - Pravansu Mohanty
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (D.A.N.); (C.P.)
| | - Christopher Pannier
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (D.A.N.); (C.P.)
| | - Georges Y. Ayoub
- Department of Industrial and Manufacturing Systems, University of Michigan-Dearborn, Dearborn, MI 48128, USA;
| |
Collapse
|
11
|
Nagengast N, Bay C, Döpper F, Schmidt HW, Neuber C. Thermo-Mechanical Recyclability of Additively Manufactured Polypropylene and Polylactic Acid Parts and Polypropylene Support Structures. Polymers (Basel) 2023; 15:2291. [PMID: 37242864 PMCID: PMC10223719 DOI: 10.3390/polym15102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Polymers have a reputation for several advantageous characteristics like chemical resistance, weight reduction, and simple form-giving processes. The rise of additive manufacturing technologies such as Fused Filament Fabrication (FFF) has introduced an even more versatile production process that supported new product design and material concepts. This led to new investigations and innovations driven by the individualization of customized products. The other side of the coin contains an increasing resource and energy consumption satisfying the growing demand for polymer products. This turns into a magnitude of waste accumulation and increased resource consumption. Therefore, appropriate product and material design, taking into account end-of-life scenarios, is essential to limit or even close the loop of economically driven product systems. In this paper, a comparison of virgin and recycled biodegradable (polylactic acid (PLA)) and petroleum-based (polypropylene (PP) & support) filaments for extrusion-based Additive Manufacturing is presented. For the first time, the thermo-mechanical recycling setup contained a service-life simulation, shredding, and extrusion. Specimens and complex geometries with support materials were manufactured with both, virgin and recycled materials. An empirical assessment was executed through mechanical (ISO 527), rheological (ISO 1133), morphological, and dimensional testing. Furthermore, the surface properties of the PLA and PP printed parts were analyzed. In summary, PP parts and parts from its support structure showed, in consideration of all parameters, suitable recyclability with a marginal parameter variance in comparison to the virgin material. The PLA components showed an acceptable decline in the mechanical values but through thermo-mechanical degradation processes, rheological and dimensional properties of the filament dropped decently. This results in significantly identifiable artifacts of the product optics, based on an increase in surface roughness.
Collapse
Affiliation(s)
- Niko Nagengast
- Chair of Biomechanics, Faculty of Engineering, University of Bayreuth, Universitaetsstrasse 9, 95447 Bayreuth, Germany
| | - Christian Bay
- Research Center for Additive Innovations, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
- Chair of Manufacturing and Remanufacturing Technology, Faculty of Engineering, University of Bayreuth, Universitaetsstrasse 9, 95447 Bayreuth, Germany
| | - Frank Döpper
- Research Center for Additive Innovations, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
- Chair of Manufacturing and Remanufacturing Technology, Faculty of Engineering, University of Bayreuth, Universitaetsstrasse 9, 95447 Bayreuth, Germany
| | - Hans-Werner Schmidt
- Chair of Macromolecular Chemistry, Faculty of Natural Science, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Christian Neuber
- Chair of Macromolecular Chemistry, Faculty of Natural Science, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
12
|
Velghe I, Buffel B, Vandeginste V, Thielemans W, Desplentere F. Review on the Degradation of Poly(lactic acid) during Melt Processing. Polymers (Basel) 2023; 15:polym15092047. [PMID: 37177194 PMCID: PMC10181416 DOI: 10.3390/polym15092047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
This review paper presents an overview of the state of the art on process-induced degradation of poly(lactic acid) (PLA) and the relative importance of different processing variables. The sensitivity of PLA to degradation, especially during melt processing, is considered a significant challenge as it may result in deterioration of its properties. The focus of this review is on degradation during melt processing techniques such as injection molding and extrusion, and therefore it does not deal with biodegradation. Firstly, the general processing and fundamental variables that determine the degradation are discussed. Secondly, the material properties (for example rheological, thermal, and mechanical) are presented that can be used to monitor and quantify the degradation. Thirdly, the effects of different processing variables on the extent of degradation are reviewed. Fourthly, additives are discussed for melt stabilization of PLA. Although current literature reports the degradation reactions and clearly indicates the effect of degradation on PLA's properties, there are still knowledge gaps in how to select and predict the processing conditions that minimize process-induced degradation to save raw materials and time during production.
Collapse
Affiliation(s)
- Ineke Velghe
- Processing of Polymers and Innovative Material Systems ProPoliS, Department of Materials Engineering, KU Leuven Campus Bruges, Spoorwegstraat 12, 8200 Bruges, Belgium
| | - Bart Buffel
- Processing of Polymers and Innovative Material Systems ProPoliS, Department of Materials Engineering, KU Leuven Campus Bruges, Spoorwegstraat 12, 8200 Bruges, Belgium
| | - Veerle Vandeginste
- Surface and Interface Engineering Materials, Department of Materials Engineering, KU Leuven Campus Bruges, Spoorwegstraat 12, 8200 Bruges, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Frederik Desplentere
- Processing of Polymers and Innovative Material Systems ProPoliS, Department of Materials Engineering, KU Leuven Campus Bruges, Spoorwegstraat 12, 8200 Bruges, Belgium
| |
Collapse
|
13
|
Bartolucci L, Cordiner S, De Maina E, Kumar G, Mele P, Mulone V, Igliński B, Piechota G. Sustainable Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers. Int J Mol Sci 2023; 24:ijms24097696. [PMID: 37175402 PMCID: PMC10178466 DOI: 10.3390/ijms24097696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Plastics-based materials have a high carbon footprint, and their disposal is a considerable problem for the environment. Biodegradable bioplastics represent an alternative on which most countries have focused their attention to replace of conventional plastics in various sectors, among which food packaging is the most significant one. The evaluation of the optimal end-of-life process for bioplastic waste is of great importance for their sustainable use. In this review, the advantages and limits of different waste management routes-biodegradation, mechanical recycling and thermal degradation processes-are presented for the most common categories of biopolymers on the market, including starch-based bioplastics, PLA and PBAT. The analysis outlines that starch-based bioplastics, unless blended with other biopolymers, exhibit good biodegradation rates and are suitable for disposal by composting, while PLA and PBAT are incompatible with this process and require alternative strategies. The thermal degradation process is very promising for chemical recycling, enabling building blocks and the recovery of valuable chemicals from bioplastic waste, according to the principles of a sustainable and circular economy. Nevertheless, only a few articles have focused on this recycling process, highlighting the need for research to fully exploit the potentiality of this waste management route.
Collapse
Affiliation(s)
- Lorenzo Bartolucci
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Stefano Cordiner
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Emanuele De Maina
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Pietro Mele
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Vincenzo Mulone
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Bartłomiej Igliński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, Legionów 40a/3, 87-100 Toruń, Poland
| |
Collapse
|
14
|
Kumar R, Sadeghi K, Jang J, Seo J. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163446. [PMID: 37075991 DOI: 10.1016/j.scitotenv.2023.163446] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The extensive use of petroleum-based non-biodegradable plastics for various applications has led to global concerns regarding the severe environmental issues associated with them. However, biodegradable plastics are emerging as green alternatives to petroleum-based non-biodegradable plastics. Biodegradable plastics, which include bio-based and petroleum-based biodegradable polymers, exhibit advantageous properties such as renewability, biocompatibility, and non-toxicity. Furthermore, certain biodegradable plastics are compatible with existing recycling streams intended for conventional plastics and are biodegradable in controlled and/or predicted environments. Recycling biodegradable plastics before their end-of-life (EOL) degradation further enhances their sustainability and reduces their carbon footprint. Since the production of biodegradable plastic is increasing and these materials will coexist with conventional plastics for many years to come, it is essential to identify the optimal recycling options for each of the most prevalent biodegradable plastics. The substitution of virgin biodegradable plastics by their recyclates leads to higher savings in the primary energy demand and reduces global warming impact. This review covers the current state of the mechanical, chemical, and bio-recycling of post-industrial and post-consumer waste of biodegradable plastics and their related composites. The effects of recycling on the chemical structure and thermomechanical properties of biodegradable plastics are also reported. Additionally, the improvement of biodegradable plastics by blending them with other polymers and nanoparticles is comprehensively discussed. Finally, the status of bioplastic usage, life cycle assessment, EOL management, bioplastic market, and the challenges associated with the recyclability of biodegradable plastics are addressed. This review gives comprehensive insights into the recycling processes that may be employed for the recycling of biodegradable plastics.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Kambiz Sadeghi
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Jaeyoung Jang
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Jongchul Seo
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea.
| |
Collapse
|
15
|
Ramos‐Hernández T, Robledo‐Ortíz JR, González‐López ME, del Campo ASM, González‐Núñez R, Rodrigue D, Pérez Fonseca AA. Mechanical recycling of
PLA
: Effect of weathering, extrusion cycles, and chain extender. J Appl Polym Sci 2023. [DOI: 10.1002/app.53759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
| | | | | | | | - Rubén González‐Núñez
- Departamento de Ingeniería Química Universidad de Guadalajara Guadalajara Mexico
| | - Denis Rodrigue
- Department of Chemical Engineering Université Laval Quebec City Quebec Canada
| | | |
Collapse
|
16
|
Innovative solutions and challenges to increase the use of Poly(3-hydroxybutyrate) in food packaging and disposables. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Farias NC, Major I, Devine D, Brennan Fournet M, Pezzoli R, Farshbaf Taghinezhad S, Hesabi M. Multiple recycling of a
PLA
/
PHB
biopolymer blend for sustainable packaging applications: Rheology‐morphology, thermal, and mechanical performance analysis. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Naiara C. Farias
- Material Research Institute Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| | - Ian Major
- Material Research Institute Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| | - Declan Devine
- Material Research Institute Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| | - Margaret Brennan Fournet
- Material Research Institute Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| | - Romina Pezzoli
- Applied Polymer Technologies Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| | | | - Mohammadnabi Hesabi
- Material Research Institute Technological University of the Shannon: Midlands Midwest (TUS) Athlone Ireland
| |
Collapse
|
18
|
Reprocessability of PLA through Chain Extension for Fused Filament Fabrication. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2022. [DOI: 10.3390/jmmp6010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
As additive manufacturing (AM) technologies have been gaining popularity in the plastic processing sector, it has become a major concern to establish closed-loop recycling strategies to maximize the value of the materials processed, therefore enhancing their sustainability. However, there are challenges to overcome related to the performance of recycled materials since, after mechanical recycling, the molecular degradation of thermoplastics shifts their performance and processability. In this work, it was hypothesized that the incorporation of a chain extender (CE) during the reprocessing would allow us to overcome these drawbacks. To attest this conjecture, the influence of 1,3-Bis(4,5-dihydro-2-oxazolyl)benzene (PBO), used as a CE, on mechanical, thermal, and rheological properties of polilactic acid (PLA) was studied. Furthermore, a closed-loop recycling system based on Fused Filament Fabrication (FFF) was attempted, consisting of the material preparation, filament extrusion, production of 3D components, and mechanical recycling steps. PBO partially recovered the recycled PLA mechanical performance, reflected by an increase in both tensile modulus (+13%) and tensile strength (+121%), when compared with recycled PLA without PBO. Printability tests were conducted, with the material’s brittle behavior being the major constraint for successfully establishing a closed-loop recycling scheme for FFF applications.
Collapse
|
19
|
Gomes TEP, Cadete MS, Dias-de-Oliveira J, Neto V. Controlling the properties of parts 3D printed from recycled thermoplastics: a review of current practices. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Gioia C, Giacobazzi G, Vannini M, Totaro G, Sisti L, Colonna M, Marchese P, Celli A. End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. CHEMSUSCHEM 2021; 14:4167-4175. [PMID: 34363734 PMCID: PMC8518687 DOI: 10.1002/cssc.202101226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Indexed: 05/16/2023]
Abstract
Nowadays the issues related to the end of life of traditional plastics are very urgent due to the important pollution problems that plastics have caused. Biodegradable plastics can help to try to mitigate these problems, but even bioplastics need much attention to carefully evaluate the different options for plastic waste disposal. In this Minireview, three different end-of-life scenarios (composting, recycling, and upcycling) were evaluated in terms of literature review. As a result, the ability of bioplastics to be biodegraded by composting has been related to physical variables and materials characteristics. Hence, it is possible to deduce that the process is mature enough to be a good way to minimize bioplastic waste and valorize it for the production of a fertilizer. Recycling and upcycling options, which could open up many interesting new scenarios for the production of high-value materials, are less studied. Research in this area can be strongly encouraged.
Collapse
Affiliation(s)
- Claudio Gioia
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Greta Giacobazzi
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Micaela Vannini
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Grazia Totaro
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Martino Colonna
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Paola Marchese
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| |
Collapse
|
21
|
Physical Properties and Non-Isothermal Crystallisation Kinetics of Primary Mechanically Recycled Poly(l-lactic acid) and Poly(3-hydroxybutyrate- co-3-hydroxyvalerate). Polymers (Basel) 2021; 13:polym13193396. [PMID: 34641213 PMCID: PMC8512861 DOI: 10.3390/polym13193396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023] Open
Abstract
The physical properties and non-isothermal melt- and cold-crystallisation kinetics of poly (l-lactic acid) (PLLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biobased polymers reprocessed by mechanical milling of moulded specimens and followed injection moulding with up to seven recycling cycles are investigated. Non-isothermal crystallisation kinetics are evaluated by the half-time of crystallisation and a procedure based on the mathematical treatment of DSC cumulative crystallisation curves at their inflection point (Kratochvil-Kelnar method). Thermomechanical recycling of PLLA raised structural changes that resulted in an increase in melt flow properties by up to six times, a decrease in the thermal stability by up to 80 °C, a reduction in the melt half-time crystallisation by up to about 40%, an increase in the melt crystallisation start temperature, and an increase in the maximum melt crystallisation rate (up to 2.7 times). Furthermore, reprocessing after the first recycling cycle caused the elimination of cold crystallisation when cooling at a slow rate. These structural changes also lowered the cold crystallisation temperature without impacting the maximum cold crystallisation rate. The structural changes of reprocessed PHBV had no significant effect on the non-isothermal crystallisation kinetics of this material. Additionally, the thermomechanical behaviour of reprocessed PHBV indicates that the technological waste of this biopolymer is suitable for recycling as a reusable additive to the virgin polymer matrix. In the case of reprocessed PLLA, on the other hand, a significant decrease in tensile and flexural strength (by 22% and 46%, respectively) was detected, which reflected changes within the biobased polymer structure. Apart from the elastic modulus, all the other thermomechanical properties of PLLA dropped down with an increasing level of recycling.
Collapse
|
22
|
Demina TS, Akopova TA, Zelenetsky AN. Materials Based on Chitosan and Polylactide: From Biodegradable Plastics to Tissue Engineering Constructions. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The transition to green chemistry and biodegradable polymers is a logical stage in the development of modern chemical science and technology. In the framework of this review, the advantages, disadvantages, and potential of biodegradable polymers of synthetic and natural origin are compared using the example of polylactide and chitosan as traditional representatives of these classes of polymers, and the possibilities of their combination via obtaining composite materials or copolymers are assessed. The mechanochemical approach to the synthesis of graft copolymers of chitosan with oligolactides/polylactides is considered in more detail.
Collapse
|
23
|
Investigation of the Thermal and Hydrolytic Degradation of Polylactide during Autoclave Foaming. Polymers (Basel) 2021; 13:polym13162624. [PMID: 34451160 PMCID: PMC8399406 DOI: 10.3390/polym13162624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Polylactide (PLA) is one of the most important bioplastics worldwide and thus represents a good potential substitute for bead foams made of the fossil-based Polystyrene (PS). However, foaming of PLA comes with a few challenges. One disadvantage of commercially available PLA is its low melt strength and elongation properties, which play an important role in foaming. As a polyester, PLA is also very sensitive to thermal and hydrolytic degradation. Possibilities to overcome these disadvantages can be found in literature, but improving the properties for foaming of PLA as well as the degradation behavior during foaming have not been investigated yet. In this study, reactive extrusion on a twin-screw extruder is used to modify PLA in order to increase the melt strength and to protect it against thermal degradation and hydrolysis. PLA foams are produced in an already known process from the literature and the influence of the modifiers on the properties is estimated. The results show that it is possible to enhance the foaming properties of PLA and to protect it against hydrolysis at the same time.
Collapse
|
24
|
Mtibe A, Motloung MP, Bandyopadhyay J, Ray SS. Synthetic Biopolymers and Their Composites: Advantages and Limitations-An Overview. Macromol Rapid Commun 2021; 42:e2100130. [PMID: 34216411 DOI: 10.1002/marc.202100130] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/20/2021] [Indexed: 12/17/2022]
Abstract
Recently, polymer science and engineering research has shifted toward the development of environmentally benign polymers to reduce the impact of plastic leakage on the ecosystems. Stringent regulations and concerns regarding conventional polymers are the main driving forces for the development of renewable, biodegradable, sustainable, and environmentally benign materials. Although biopolymers can alleviate plastic-related pollution, several factors dictate the utilization of biopolymers. Herein, an overview of the potential and limitations of synthetic biopolymers and their composites in the context of environmentally benign materials for a sustainable future are presented. The synthetic biopolymer market, technical advancements for different applications, lifecycle analysis, and biodegradability are covered. The current trends, challenges, and opportunities for bioplastic recycling are also discussed. In summary, this review is expected to provide guidelines for future development related to synthetic biopolymer-based sustainable polymeric materials suitable for various applications.
Collapse
Affiliation(s)
- Asanda Mtibe
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa.,Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, Johannesburg, South Africa
| | - Jayita Bandyopadhyay
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| |
Collapse
|
25
|
Beltrán FR, Arrieta MP, Elena Antón D, Lozano-Pérez AA, Cenis JL, Gaspar G, de la Orden MU, Martínez Urreaga J. Effect of Yerba Mate and Silk Fibroin Nanoparticles on the Migration Properties in Ethanolic Food Simulants and Composting Disintegrability of Recycled PLA Nanocomposites. Polymers (Basel) 2021; 13:polym13121925. [PMID: 34200571 PMCID: PMC8230047 DOI: 10.3390/polym13121925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 11/29/2022] Open
Abstract
The main objective of the present research is to study the effect of the incorporation of low amounts of silk fibroin nanoparticles (SFNs) and yerba mate nanoparticles (YMNs) on the migration phenomenon into ethanolic food simulants as well as on the disintegrability under composting conditions of mechanically recycled polylactic acid (PLA). Recycled PLA was obtained under simulated recycling conditions by melt processing virgin PLA into films and further subjecting them to an accelerated aging process, which involved photochemical, thermal, and hydrothermal aging steps followed by an intense washing step. SFNs were extracted from Bombyx mori cocoons and YMNs from yerba mate waste. Then, recycled PLA was melted, reprocessed, and reinforced with either 1%wt. of SFNs or YMNs, by melt extrusion, and further processed into films by compression molding. The obtained nanocomposites were exposed to ethanolic food simulants (ethanol 10% v/v, simulant A and ethanol 50% v/v, simulant D1) and the structural, thermal, and mechanical properties were studied before and after the exposure to the food simulants. The migration levels in both food simulants were below the overall migration limits required for food contact materials. The materials were disintegrated under simulated composting conditions at the laboratory scale level and it was observed that the nanoparticles delayed the disintegration rate of the recycled PLA matrix, but nanocomposites were fully disintegrated in less than one month.
Collapse
Affiliation(s)
- Freddys R. Beltrán
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
- Correspondence: ; Tel.: +34-910-677-301
| | - Diego Elena Antón
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
| | - Antonio A. Lozano-Pérez
- Depertamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150 Murcia, Spain; (A.A.L.-P.); (J.L.C.)
| | - José L. Cenis
- Depertamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150 Murcia, Spain; (A.A.L.-P.); (J.L.C.)
| | - Gerald Gaspar
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
| | - María U. de la Orden
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
- Deparamento de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Joaquín Martínez Urreaga
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
| |
Collapse
|
26
|
Pascual-Jose B, Badia J, Múgica A, Addiego F, Müller AJ, Ribes-Greus A. Analysis of plasticization and reprocessing effects on the segmental cooperativity of polylactide by dielectric thermal spectroscopy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Promoting Interfacial Interactions with the Addition of Lignin in Poly(Lactic Acid) Hybrid Nanocomposites. Polymers (Basel) 2021; 13:polym13020272. [PMID: 33467623 PMCID: PMC7830551 DOI: 10.3390/polym13020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/06/2023] Open
Abstract
In this paper, the calorimetric response of the amorphous phase was examined in hybrid nanocomposites which were prepared thanks to a facile synthetic route, by adding reduced graphene oxide (rGO), Cloisite 30B (C30B), or multiwalled carbon nanotubes (MWCNT) to lignin-filled poly(lactic acid) (PLA). The dispersion of both lignin and nanofillers was successful, according to a field-emission scanning-electron microscopy (FESEM) analysis. Lignin alone essentially acted as a crystallization retardant for PLA, and the nanocomposites shared this feature, except when MWCNT was used as nanofiller. All systems exhibiting a curtailed crystallization also showed better thermal stability than neat PLA, as assessed from thermogravimetric measurements. As a consequence of favorable interactions between the PLA matrix, lignin, and the nanofillers, homogeneous dispersion or exfoliation was assumed in amorphous samples from the increase of the cooperative rearranging region (CRR) size, being even more remarkable when increasing the lignin content. The amorphous nanocomposites showed a signature of successful filler inclusion, since no rigid amorphous fraction (RAF) was reported at the filler/matrix interface. Finally, the nanocomposites were crystallized up to their maximum extent from the glassy state in nonisothermal conditions. Despite similar degrees of crystallinity and RAF, significant variations in the CRR size were observed among samples, revealing different levels of mobility constraining in the amorphous phase, probably linked to a filler-dimension dependence of space filling.
Collapse
|
28
|
Briassoulis D, Pikasi A, Hiskakis M. Recirculation potential of post-consumer /industrial bio-based plastics through mechanical recycling - Techno-economic sustainability criteria and indicators. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109217] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Alberti C, Enthaler S. Depolymerization of End‐of‐Life Poly(lactide) to Lactide via Zinc‐Catalysis. ChemistrySelect 2020. [DOI: 10.1002/slct.202003979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christoph Alberti
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Stephan Enthaler
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| |
Collapse
|
30
|
Cheung E, Alberti C, Enthaler S. Chemical Recycling of End-of-Life Poly(lactide) via Zinc-Catalyzed Depolymerization and Polymerization. ChemistryOpen 2020; 9:1224-1228. [PMID: 33304737 PMCID: PMC7705614 DOI: 10.1002/open.202000243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
The chemical recycling of poly(lactide) was investigated based on depolymerization and polymerization processes. Using methanol as depolymerization reagent and zinc salts as catalyst, poly(lactide) was depolymerized to methyl lactate applying microwave heating. An excellent performance was observed for zinc(II) acetate with turnover frequencies of up to 45000 h-1. In a second step the monomer methyl lactate was converted to (pre)poly(lactide) in the presence of catalytic amounts of zinc salts. Here zinc(II) triflate revealed excellent performance for the polymerization process (yield: 91 %, Mn ∼8970 g/mol). Moreover, the (pre)poly(lactide) was depolymerized to lactide, the industrial relevant molecule for accessing high molecular weight poly(lactide), using zinc(II) acetate as catalyst.
Collapse
Affiliation(s)
- Even Cheung
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| | - Christoph Alberti
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| | - Stephan Enthaler
- Universität HamburgInstitut für Anorganische und Angewandte ChemieMartin-Luther-King-Platz 6D-20146HamburgGermany
| |
Collapse
|
31
|
Alberti C, Kricheldorf HR, Enthaler S. Application of Bismuth Catalysts for the Methanolysis of End‐of‐Life Poly(lactide). ChemistrySelect 2020. [DOI: 10.1002/slct.202003389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christoph Alberti
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| | - Hans Rytger Kricheldorf
- Universität Hamburg Institut für Technische und Makromolekulare Chemie Bundesstr. 45 D-20146 Hamburg Germany
| | - Stephan Enthaler
- Universität Hamburg Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 D-20146 Hamburg Germany
| |
Collapse
|
32
|
Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers (Basel) 2020; 12:polym12071558. [PMID: 32674366 PMCID: PMC7407213 DOI: 10.3390/polym12071558] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Environmental impacts and consumer concerns have necessitated the study of bio-based materials as alternatives to petrochemicals for packaging applications. The purpose of this review is to summarize synthetic and non-synthetic materials feasible for packaging and textile applications, routes of upscaling, (industrial) applications, evaluation of sustainability, and end-of-life options. The outlined bio-based materials include polylactic acid, polyethylene furanoate, polybutylene succinate, and non-synthetically produced polymers such as polyhydrodyalkanoate, cellulose, starch, proteins, lipids, and waxes. Further emphasis is placed on modification techniques (coating and surface modification), biocomposites, multilayers, and additives used to adjust properties especially for barriers to gas and moisture and to tune their biodegradability. Overall, this review provides a holistic view of bio-based packaging material including processing, and an evaluation of the sustainability of and options for recycling. Thus, this review contributes to increasing the knowledge of available sustainable bio-based packaging material and enhancing the transfer of scientific results into applications.
Collapse
|
33
|
Anukiruthika T, Sethupathy P, Wilson A, Kashampur K, Moses JA, Anandharamakrishnan C. Multilayer packaging: Advances in preparation techniques and emerging food applications. Compr Rev Food Sci Food Saf 2020; 19:1156-1186. [PMID: 33331690 DOI: 10.1111/1541-4337.12556] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/12/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
In recent years, with advantages of versatility, functionality, and convenience, multilayer food packaging has gained significant interest. As a single entity, multilayer packaging combines the benefits of each monolayer in terms of enhanced barrier properties, mechanical integrity, and functional properties. Of late, apart from conventional approaches such as coextrusion and lamination, concepts of nanotechnology have been used in the preparation of composite multilayer films with improved physical, chemical, and functional characteristics. Further, emerging techniques such as ultraviolet and cold plasma treatments have been used in manufacturing films with enhanced performance through surface modifications. This work provides an up-to-date review on advancements in the preparation of multilayer films for food packaging applications. This includes critical considerations in design, risk of interaction between the package and the food, mathematical modeling and simulation, potential for scale-up, and costs involved. The impact of in-package processing is also explained considering cases of nonthermal processing and advanced thermal processing. Importantly, challenges associated with degradability and recycling multilayer packages and associated implications on sustainability have been discussed.
Collapse
Affiliation(s)
- T Anukiruthika
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Priyanka Sethupathy
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Anila Wilson
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Kiran Kashampur
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Chinnaswamy Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
34
|
Liparoti S, Speranza V, Titomanlio G, Pantani R. Effect of Rapid Mold Heating on the Structure and Performance of Injection-Molded Polypropylene. Polymers (Basel) 2020; 12:polym12020341. [PMID: 32033359 PMCID: PMC7077433 DOI: 10.3390/polym12020341] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/03/2022] Open
Abstract
The tailoring by the process of the properties developed in the plastic objects is the more effective way to improve the sustainability of the plastic objects. The possibility to tailor to the final use the properties developed within the molded object requires further understanding of the relationship between the properties of the plastic objects and the process conduction. One of the main process parameters that allow adjusting the properties of molded objects is the mold temperature. In this work, a thin electrical heater was located below the cavity surface in order to obtain rapid and localized surface heating/cooling cycles during the injection molding process. An isotactic polypropylene was adopted for the molding tests, during which surface temperature was modulated in terms of values and heating times. The modulation of the cavity temperature was found able to control the distribution of relevant morphological characteristics, thus, properties along the sample thickness. In particular, lamellar thickness, crystallinity distribution, and orientation were analyzed by synchrotron X-ray experiments, and the morphology and elastic modulus were characterized by atomic force microscopy acquisitions carried out with a tool for the simultaneous nanomechanical characterization. The crystalline degree slightly increased with the cavity temperature, and this induced an increase in the elastic modulus when high temperatures were adopted for the cavity surface. The cavity temperature strongly influenced the orientation distribution that, on its turn, determined the highest values of the elastic modulus found in the shear layer. Furthermore, although the sample core, not experiencing a strong flow field, was not characterized by high levels of orientation, it might show high values of the elastic modulus if temperature and time during crystallization were sufficient. In particular, if the macromolecules spent adequate time at temperatures close to the crystallization temperature, they could achieve high levels of structuring and, thus, high values of elastic modulus.
Collapse
Affiliation(s)
- Sara Liparoti
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano (SA), Italy; (S.L.); (G.T.); (R.P.)
| | - Vito Speranza
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano (SA), Italy; (S.L.); (G.T.); (R.P.)
- Correspondence:
| | - Giuseppe Titomanlio
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano (SA), Italy; (S.L.); (G.T.); (R.P.)
- Institute of Polymers, Composites and Biomaterials (IPCB), The National Research Council (Cnr), Via Previati 1/C, 23900 Lecco (LC), Italy
| | - Roberto Pantani
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano (SA), Italy; (S.L.); (G.T.); (R.P.)
| |
Collapse
|
35
|
Beltrán FR, Climent-Pascual E, de la Orden MU, Martínez Urreaga J. Effect of solid-state polymerization on the structure and properties of mechanically recycled poly(lactic acid). Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2019.109045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Hofmann M, Alberti C, Scheliga F, Meißner RRR, Enthaler S. Tin(ii) 2-ethylhexanoate catalysed methanolysis of end-of-life poly(lactide). Polym Chem 2020. [DOI: 10.1039/d0py00292e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The depolymerisation of end-of-life poly(lactide) (PLA) goods was studied as part of the chemical recycling of PLA.
Collapse
Affiliation(s)
- Melanie Hofmann
- Universität Hamburg
- Institut für Anorganische und Angewandte Chemie
- D-20146 Hamburg
- Germany
| | - Christoph Alberti
- Universität Hamburg
- Institut für Anorganische und Angewandte Chemie
- D-20146 Hamburg
- Germany
| | - Felix Scheliga
- Universität Hamburg
- Institut für Technische und Makromolekulare Chemie
- Universität Hamburg
- D-20146 Hamburg
- Germany
| | - Roderich R. R. Meißner
- Universität Hamburg
- Institut für Anorganische und Angewandte Chemie
- D-20146 Hamburg
- Germany
| | - Stephan Enthaler
- Universität Hamburg
- Institut für Anorganische und Angewandte Chemie
- D-20146 Hamburg
- Germany
| |
Collapse
|
37
|
Lagazzo A, Moliner C, Bosio B, Botter R, Arato E. Evaluation of the Mechanical and Thermal Properties Decay of PHBV/Sisal and PLA/Sisal Biocomposites at Different Recycle Steps. Polymers (Basel) 2019; 11:E1477. [PMID: 31510004 PMCID: PMC6780613 DOI: 10.3390/polym11091477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
The recyclability of polylactide acid (PLA) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV)-based biocomposites (10%, 20% and 30% by weight of sisal natural fibre) was evaluated in this work. The mechanical and thermal properties were initially determined and were shown to be similar to commodity plastics, such as polyethylene or polypropylene. Three recycle steps were carried out and the mechanical and thermal properties of recycled samples were evaluated and compared to the reference samples. The tensile modulus increased for recycled PLA biocomposites, whereas it was hardly influenced by recycling the PHBV biocomposites. The tensile strength and deformation at the break decreased notably after the first cycle in all cases. Although all the biocomposites became more brittle with recycling, the properties were conserved along until the third cycle, proving their promising recyclability. From the data obtained from the dynamic mechanical analysis, a slight decrease of the storage modulus of PHBV was observed, whereas PLA showed a significant decay of its properties at the 3rd recyclate. The PLA specimens were filled with sisal fibres until they reached 20%wt, which seemed also less subject to the embrittlement occurring along the recycling phase. The characteristic temperatures (glass transition-Tg, crystallization-Tc, melting-Tm) of all the biocomposites were not highly affected by recycling. Only a slight decrease on the melting point of the recycled PHBV was observed suggesting an overall good reprocessability. Moreover, the processing conditions lied in the same range as the conventional plastics which would facilitate potential joint valorization techniques.
Collapse
Affiliation(s)
- Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, via all'Opera Pia 15, 16145 Genova, Italy.
| | - Cristina Moliner
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, via all'Opera Pia 15, 16145 Genova, Italy.
| | - Barbara Bosio
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, via all'Opera Pia 15, 16145 Genova, Italy.
| | - Rodolfo Botter
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, via all'Opera Pia 15, 16145 Genova, Italy.
| | - Elisabetta Arato
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, via all'Opera Pia 15, 16145 Genova, Italy.
| |
Collapse
|
38
|
Alberti C, Damps N, Meißner RRR, Enthaler S. Depolymerization of End‐of‐Life Poly(lactide) via 4‐Dimethylaminopyridine‐Catalyzed Methanolysis. ChemistrySelect 2019. [DOI: 10.1002/slct.201901316] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Christoph Alberti
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6, D– 20146 Hamburg Germany
| | - Nicole Damps
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6, D– 20146 Hamburg Germany
| | - Roderich R. R. Meißner
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6, D– 20146 Hamburg Germany
| | - Stephan Enthaler
- Institut für Anorganische und Angewandte ChemieUniversität Hamburg Martin-Luther-King-Platz 6, D– 20146 Hamburg Germany
| |
Collapse
|
39
|
Gil-Castell O, Badia JD, Bou J, Ribes-Greus A. Performance of Polyester-Based Electrospun Scaffolds under In Vitro Hydrolytic Conditions: From Short-Term to Long-Term Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E786. [PMID: 31121950 PMCID: PMC6566282 DOI: 10.3390/nano9050786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 °C. The scaffolds for short-time applications were PLGA and PDO, in which the molar mass diminished down to 20% in a 20-30 days lifespan. While PDO developed crystallinity that prevented the geometry of the fibres, those of PLGA coalesced and collapsed. The scaffolds for long-term applications were PCL and PHB, in which the molar mass followed a progressive decrease, reaching values of 10% for PCL and almost 50% for PHB after 650 days of immersion. This resistant pattern was mainly ascribed to the stability of the crystalline domains of the fibres, in which the diameters remained almost unaffected. From the perspective of an adequate balance between the durability and degradation, this study may serve technologists as a reference point to design polyester-based scaffolds for biomedical applications.
Collapse
Affiliation(s)
- Oscar Gil-Castell
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain.
| | - José David Badia
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain.
| | - Jordi Bou
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647 (ETSEIB), 08028 Barcelona, Spain.
| | - Amparo Ribes-Greus
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
40
|
Scaffaro R, Maio A, Sutera F, Gulino EF, Morreale M. Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers (Basel) 2019; 11:E651. [PMID: 30970659 PMCID: PMC6523205 DOI: 10.3390/polym11040651] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022] Open
Abstract
The environmental performance of biodegradable materials has attracted attention from the academic and the industrial research over the recent years. Currently, degradation behavior and possible recyclability features, as well as actual recycling paths of such systems, are crucial to give them both durability and eco-sustainability. This paper presents a review of the degradation behaviour of biodegradable polymers and related composites, with particular concern for multi-layer films. The processing of biodegradable polymeric films and the manufacturing and properties of multilayer films based on biodegradable polymers will be discussed. The results and data collected show that: poly-lactic acid (PLA), poly-butylene adipate-co-terephthalate (PBAT) and poly-caprolactone (PCL) are the most used biodegradable polymers, but are prone to hydrolytic degradation during processing; environmental degradation is favored by enzymes, and can take place within weeks, while in water it can take from months to years; thermal degradation during recycling basically follows a hydrolytic path, due to moisture and high temperatures (β-scissions and transesterification) which may compromise processing and recycling; ultraviolet (UV) and thermal stabilization can be adequately performed using suitable stabilizers.
Collapse
Affiliation(s)
- Roberto Scaffaro
- University of Palermo, Department of Engineering, Viale delle Scienze, 90128 Palermo, Italy.
| | - Andrea Maio
- University of Palermo, Department of Engineering, Viale delle Scienze, 90128 Palermo, Italy.
| | - Fiorenza Sutera
- University of Palermo, Department of Engineering, Viale delle Scienze, 90128 Palermo, Italy.
| | | | - Marco Morreale
- Kore University of Enna, Faculty of Engineering and Architecture, Cittadella Universitaria, 94100 Enna, Italy.
| |
Collapse
|
41
|
Beltrán FR, Barrio I, Lorenzo V, Del Río B, Martínez Urreaga J, de la Orden MU. Valorization of poly(lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:135-141. [PMID: 30204060 DOI: 10.1177/0734242x18798448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poly(lactic acid) (PLA) is a biobased polymer that represents one of the most interesting alternatives to fossil-fuel based polymers in food packaging applications. Most of the PLA used in food packaging is used only once and then discarded, even though the PLA types used in packaging have good properties and stability. Therefore, it seems reasonable to consider the possibility of recycling the used polymer through a mechanical recycling process. The main aims of this work are to study the effect of the mechanical recycling on the properties of PLA and the usefulness of different upgrading methods to obtain recycled PLA with improved properties. A commercial type of PLA was subjected to accelerated thermal, photochemical and hydrolytic aging and then reprocessed. During reprocessing, aged PLA was blended with virgin PLA and a commercial chain extender was added. Results point out that recycling causes the degradation of PLA, and negatively affects the thermal stability and mechanical properties. However, addition of virgin PLA, and the chain extender, led to an increase of up to 9% in the intrinsic viscosity and 8% in the Vickers hardness of the recycled material. These results suggest that mechanically recycled PLA with improved performance can be obtained, a fact which might improve the recyclability of PLA and thus the environmental impact of this material.
Collapse
Affiliation(s)
- F R Beltrán
- 1 Departamento Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, Madrid, Spain
- 2 Polymers, Characterization and Applications Research Group
| | - I Barrio
- 1 Departamento Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, Madrid, Spain
| | - V Lorenzo
- 2 Polymers, Characterization and Applications Research Group
| | - B Del Río
- 3 E.T.S.I. Industriales, Universidad Politécnica de Madrid, Madrid, Spain
| | - J Martínez Urreaga
- 1 Departamento Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, Madrid, Spain
- 2 Polymers, Characterization and Applications Research Group
| | - M U de la Orden
- 2 Polymers, Characterization and Applications Research Group
- 4 Departamento de Química Orgánica I, Universidad Complutense de Madrid, Facultad de Óptica y Optometría, Madrid, Spain
| |
Collapse
|
42
|
Gil-Castell O, Badia J, Ingles-Mascaros S, Teruel-Juanes R, Serra A, Ribes-Greus A. Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Dhar P, M RK, Bhasney SM, Bhagabati P, Kumar A, Katiyar V. Sustainable Approach for Mechanical Recycling of Poly(lactic acid)/Cellulose Nanocrystal Films: Investigations on Structure–Property Relationship and Underlying Mechanism. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prodyut Dhar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, 0076, Aalto, Finland
| | - Rajesh Kumar M
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 638752, Tami Nadu, India
| | - Siddharth Mohan Bhasney
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Purabi Bhagabati
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amit Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
44
|
Botta L, Scaffaro R, Sutera F, Mistretta MC. Reprocessing of PLA/Graphene Nanoplatelets Nanocomposites. Polymers (Basel) 2017; 10:E18. [PMID: 30966053 PMCID: PMC6414878 DOI: 10.3390/polym10010018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/17/2022] Open
Abstract
This work reports a study on the effect of multiple reprocessing on the properties of poly(lactic acid) (PLA) filled with graphene nanoplatelets (GnP) compared to the melt reprocessed neat polymeric matrix. In particular, morphological, X-Ray Diffraction and Micro-Raman analyses, intrinsic viscosity measurements, thermal, rheological and mechanical tests were carried out on materials reprocessed up five times by means of a single screw extruder. The results indicated that the presence of GnP decreased the degradation rate as a function of the reprocessing cycles in comparison with the neat PLA that, on the contrary, showed a more drastic reduction of the molecular weight. Moreover, the reprocessing improved the particle dispersion and reduced the presence of GnP aggregates.
Collapse
Affiliation(s)
- Luigi Botta
- Department of Civil, Environmental, Aerospace and Materials Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Roberto Scaffaro
- Department of Civil, Environmental, Aerospace and Materials Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Fiorenza Sutera
- Department of Civil, Environmental, Aerospace and Materials Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Maria Chiara Mistretta
- Department of Civil, Environmental, Aerospace and Materials Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| |
Collapse
|
45
|
Moliner C, Badia JD, Bosio B, Arato E, Kittikorn T, Strömberg E, Teruel-Juanes R, Ek M, Karlsson S, Ribes-Greus A. Thermal and thermo-oxidative stability and kinetics of decomposition of PHBV/sisal composites. CHEM ENG COMMUN 2017. [DOI: 10.1080/00986445.2017.1384921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- C. Moliner
- Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi di Genova, Genova, Italy
- Instituto de Tecnología de los Materiales (ITM), Universidad Politècnica de València (UPV), Valencia, Spain
| | - J. D. Badia
- Instituto de Tecnología de los Materiales (ITM), Universidad Politècnica de València (UPV), Valencia, Spain
- Department of Chemical Engineering, School of Engineering, Universitat de València (UV), Burjassot, Spain
| | - B. Bosio
- Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi di Genova, Genova, Italy
| | - E. Arato
- Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi di Genova, Genova, Italy
| | - T. Kittikorn
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH – Royal Institute of Technology, Stockholm, Sweden
- Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - E. Strömberg
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - R. Teruel-Juanes
- Instituto de Tecnología de los Materiales (ITM), Universidad Politècnica de València (UPV), Valencia, Spain
| | - M. Ek
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - S. Karlsson
- School of Chemical Science and Engineering, Fibre and Polymer Technology, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - A. Ribes-Greus
- Instituto de Tecnología de los Materiales (ITM), Universidad Politècnica de València (UPV), Valencia, Spain
| |
Collapse
|
46
|
Santonja-Blasco L, Rodriguez I, Sanchez-Ballester S, Badia JD, Meseguer F, Ribes-Greus A. Protection of high-density polyethylene-silicon composites from ultraviolet-visible photodegradation. J Appl Polym Sci 2017. [DOI: 10.1002/app.45439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- L. Santonja-Blasco
- Instituto de Tecnología de los Materiales, Universitat Politècnica de València; Camí de Vera s/n 46022 València Spain
| | - I. Rodriguez
- Instituto de Tecnología Química, Centro Mixto Consejo Superior de Investigaciones Científicas/Universitat Politècnica de València; Avenida de Los Naranjos s/n 46022 València Spain
| | - S. Sanchez-Ballester
- Instituto de Tecnología de los Materiales, Universitat Politècnica de València; Camí de Vera s/n 46022 València Spain
| | - J. D. Badia
- Instituto de Tecnología de los Materiales, Universitat Politècnica de València; Camí de Vera s/n 46022 València Spain
- Departament d’Enginyeria Química, Escola Tècnica Superior d’Enginyeria; Universitat de València; Avenida de la Universitat s/n 46100 Burjassot Spain
| | - F. Meseguer
- Instituto de Tecnología Química, Centro Mixto Consejo Superior de Investigaciones Científicas/Universitat Politècnica de València; Avenida de Los Naranjos s/n 46022 València Spain
| | - A. Ribes-Greus
- Instituto de Tecnología de los Materiales, Universitat Politècnica de València; Camí de Vera s/n 46022 València Spain
| |
Collapse
|
47
|
Badia J, Strömberg E, Kittikorn T, Ek M, Karlsson S, Ribes-Greus A. Relevant factors for the eco-design of polylactide/sisal biocomposites to control biodegradation in soil in an end-of-life scenario. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Badia J, Gil-Castell O, Ribes-Greus A. Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|