1
|
Filipek K, Otulakowski Ł, Jelonek K, Utrata-Wesołek A. Degradable Nanogels Based on Poly[Oligo(Ethylene Glycol) Methacrylate] (POEGMA) Derivatives through Thermo-Induced Aggregation of Polymer Chain and Subsequent Chemical Crosslinking. Polymers (Basel) 2024; 16:1163. [PMID: 38675081 PMCID: PMC11054481 DOI: 10.3390/polym16081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Polymer nanogels-considered as nanoscale hydrogel particles-are attractive for biological and biomedical applications due to their unique physicochemical flexibility. However, the aggregation or accumulation of nanoparticles in the body or the occurrence of the body's defense reactions still pose a research challenge. Here, we demonstrate the fabrication of degradable nanogels using thermoresponsive, cytocompatible poly[oligo(ethylene glycol) methacrylate]s-based copolymers (POEGMA). The combination of POEGMA's beneficial properties (switchable affinity to water, nontoxicity, non-immunogenicity) along with the possibility of nanogel degradation constitute an important approach from a biological point of view. The copolymers of oligo(ethylene glycol) methacrylates were partially modified with short segments of degradable oligo(lactic acid) (OLA) terminated with the acrylate group. Under the influence of temperature, copolymers formed self-assembled nanoparticles, so-called mesoglobules, with sizes of 140-1000 nm. The thermoresponsive behavior of the obtained copolymers and the nanostructure sizes depended on the heating rate and the presence of salts in the aqueous media. The obtained mesoglobules were stabilized by chemical crosslinking via thiol-acrylate Michael addition, leading to nanogels that degraded over time in water, as indicated by the DLS, cryo-TEM, and AFM measurements. Combining these findings with the lack of toxicity of the obtained systems towards human fibroblasts indicates their application potential.
Collapse
Affiliation(s)
| | | | | | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| |
Collapse
|
2
|
Otulakowski Ł, Trzebicka B. Aggregation of Thermoresponsive Polymethacrylates in a Dulbecco's Modified Eagle Medium and Its Salts. Polymers (Basel) 2023; 15:3587. [PMID: 37688213 PMCID: PMC10489804 DOI: 10.3390/polym15173587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The thermal behavior and aggregation process of the poly(N-isopropyl acrylamide), poly[oligo(ethylene glycol) methyl ether methacrylate], and poly[(2-hydroxyethyl methacrylate)-co-oligo(ethylene glycol) methyl ether methacrylate] thermoresponsive polymers were studied in a commonly used Dulbecco's Modified Eagle Medium (DMEM) cell culture medium and solutions of its individual components in the same concentration as found in DMEM. All studied copolymers exhibited an unexpected transmittance profile in the DMEM. During heating above the cloud point temperature (TCP), the polymers additionally aggregated, which led to the formation of their precipitates. The behavior of the polymers was further studied to evaluate how individual salts affected the transition temperature, size (Dh), and stability of the polymer particles. Organic additives, such as amino acids and glucose, had a significantly lesser impact on the thermoresponsive aggregation of the polymers than inorganic ones. Changes to the TCP were small and the formation of precipitates was not observed. The presence of small amounts of amino acids caused a decrease in the polymer aggregate sizes. Obtained results are of utmost importance in thermoresponsive drug nanocarrier studies.
Collapse
Affiliation(s)
- Łukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| |
Collapse
|
3
|
Synthesis and thermoresponsive properties of polymethacrylate molecular brushes with oligo(ethylene glycol)-block-oligo(propylene glycol) side chains. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Multifunctional PEG Carrier by Chemoenzymatic Synthesis for Drug Delivery Systems: In Memory of Professor Andrzej Dworak. Polymers (Basel) 2022; 14:polym14142900. [PMID: 35890676 PMCID: PMC9320990 DOI: 10.3390/polym14142900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
This paper describes the synthesis and characterization of new bivalent folate-targeted PEGylated doxorubicin (FA2-dPEG-DOX2) made by modular chemo-enzymatic processes using Candida antarctica lipase B (CALB) as a biocatalyst. Unique features are the use of monodisperse PEG (dPEG) and the synthesis of thiol-functionalized folic acid yielding exclusive γ-conjugation of folic acid (FA) to dPEG. The polymer-based drug conjugate is built up by a series of transesterification and Michael addition reactions all catalyzed be CALB. In comparison with other methods in the literature, the modular approach with enzyme catalysis leads to selectivity, full conversion and high yield, and no transition metal catalyst residues. The intermediate product with four acrylate groups is an excellent platform for Michael-addition-type reactions for a wide variety of biologically active molecules. The chemical structures were confirmed by nuclear magnetic resonance spectroscopy (NMR). Flow cytometry analysis showed that, at 10 µM concentration, both free DOX and FA2-dPEG-DOX2 were taken up by 99.9% of triple-negative breast cancer cells in 2 h. Fluorescence was detected for 5 days after injecting compound IV into mice. Preliminary results showed that intra-tumoral injection seemed to delay tumor growth more than intravenous delivery.
Collapse
|
5
|
Orekhov DV, Kazantsev OA, Orekhov SV, Sivokhin AP, Kamorin DM, Simagin AS, Savinova MV, Bolshakova EA, Korotaev MS. Synthesis of amphiphilic (meth)acrylates with oligo(ethylene glycol) and (or) oligo(propylene glycol) blocks by the esterification of (meth)acrylic acid. J Appl Polym Sci 2021. [DOI: 10.1002/app.50982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dmitry V. Orekhov
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Oleg A. Kazantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Sergey V. Orekhov
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Alexey P. Sivokhin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Denis M. Kamorin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
- Lobachevsky State University of Nizhni Novgorod Nizhny Novgorod Russian Federation
| | - Alexander S. Simagin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
- Lobachevsky State University of Nizhni Novgorod Nizhny Novgorod Russian Federation
| | - Maria V. Savinova
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Evgeniya A. Bolshakova
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Michail S. Korotaev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| |
Collapse
|
6
|
Davidovic T, Schimpf J, Sprenger-Mähr H, Abbassi-Nik A, Soleiman A, Zitt E, Lhotta K. Preparation and evaluation of reduction-responsive micelles based on disulfide-linked chondroitin sulfate A-tocopherol succinate for controlled antitumour drug release. J Pharm Pharmacol 2021; 73:1405-1417. [PMID: 34254648 PMCID: PMC8556126 DOI: 10.1093/jpp/rgab096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The study was to construct reduction-responsive chondroitin sulfate A (CSA)-conjugated TOS (CST) micelles with disulfide bond linkage, which was used for controlled doxorubicin (DOX) release and improved drug efficacy in vivo. METHODS CST and non-responsive CSA-conjugated TOS (CAT) were synthesized, and the chemical structure was confirmed by Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, fluorescence spectrophotometer and dynamic light scattering. Antitumour drug DOX was physically encapsulated into CST and CSA by dialysis method. Cell uptake of DOX-based formulations was investigated by confocal laser scanning microscopy. In vitro cytotoxicity was studied in A549 and AGS cells. Furthermore, antitumour activity was evaluated in A549-bearing mice. KEY FINDINGS CST and CAT can form self-assembled micelles, and have low value of critical micelle concentration. Notably, DOX-containing CST (D-CST) micelles demonstrated reduction-triggered drug release in glutathione-containing media. Further, reduction-responsive uptake of D-CST was observed in A549 cells. In addition, D-CST induced stronger cytotoxicity (P < 0.05) than DOX-loaded CAT (D-CAT) against A549 and AGS cells. Moreover, D-CST exhibited significantly stronger antitumour activity in A549-bearing nude mice than doxorubicin hydrochloride and D-CAT. CONCLUSIONS The reduction-responsive CST micelles enhanced the DOX effect at tumour site and controlled drug release.
Collapse
Affiliation(s)
- Tamara Davidovic
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Judith Schimpf
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Hannelore Sprenger-Mähr
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Armin Abbassi-Nik
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Afschin Soleiman
- Pathology, Cytodiagnostics and Molecular Pathology, Hall in Tirol, Austria
| | - Emanuel Zitt
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| | - Karl Lhotta
- Department of Internal Medicine III (Nephrology and Dialysis), Feldkirch Academic Teaching Hospital, Feldkirch, Austria
| |
Collapse
|
7
|
Oleszko-Torbus N, Mendrek B, Kowalczuk A, Wałach W, Trzebicka B, Utrata-Wesołek A. The Role of Polymer Structure in Formation of Various Nano- and Microstructural Materials: 30 Years of Research in the Laboratory of Nano- and Microstructural Materials at the Centre of Polymer and Carbon Materials PAS. Polymers (Basel) 2021; 13:2892. [PMID: 34502932 PMCID: PMC8434041 DOI: 10.3390/polym13172892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The review summarizes the research carried out in the Laboratory of Nano- and Microstructural Materials at the Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAS). Studies carried out for many years under the guidance of Professor Andrzej Dworak led to the development and exploration of the mechanisms of oxirane and cyclic imine polymerization and controlled radical polymerization of methacrylate monomers. Based on that knowledge, within the last three decades, macromolecules with the desired composition, molar mass and topology were obtained and investigated. The ability to control the structure of the synthesized polymers turned out to be important, as it provided a way to tailor the physiochemical properties of the materials to their specific uses. Many linear polymers and copolymers as well as macromolecules with branched, star, dendritic and hyperbranched architectures were synthesized. Thanks to the applied controlled polymerization techniques, it was possible to obtain hydrophilic, hydrophobic, amphiphilic and stimulus-sensitive polymers. These tailor-made polymers with controlled properties were used for the construction of various types of materials, primarily on the micro- and nanoscales, with a wide range of possible applications, mainly in biomedicine. The diverse topology of polymers, and thus their properties, made it possible to obtain various types of polymeric nanostructures and use them as nanocarriers by encapsulation of biologically active substances. Additionally, polymer layers were obtained with features useful in medicine, particularly regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (N.O.-T.); (B.M.); (A.K.); (W.W.)
| | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (N.O.-T.); (B.M.); (A.K.); (W.W.)
| |
Collapse
|
8
|
Gallo E, Diaferia C, Rosa E, Smaldone G, Morelli G, Accardo A. Peptide-Based Hydrogels and Nanogels for Delivery of Doxorubicin. Int J Nanomedicine 2021; 16:1617-1630. [PMID: 33688182 PMCID: PMC7935351 DOI: 10.2147/ijn.s296272] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The clinical use of the antitumoral drug doxorubicin (Dox) is reduced by its dose-limiting toxicity, related to cardiotoxic side effects and myelosuppression. In order to overcome these drawbacks, here we describe the synthesis, the structural characterization and the in vitro cytotoxicity assays of hydrogels (HGs) and nanogels (NGs) based on short peptide sequences loaded with Dox or with its liposomal formulation, Doxil. METHODS Fmoc-FF alone or in combination with (FY)3 or PEG8-(FY)3 peptides, at two different ratios (1/1 and 2/1 v/v), were used for HGs and NGs formulations. HGs were prepared according to the "solvent-switch" method, whereas NGs were obtained through HG submicronition by the top-down methodology in presence of TWEEN®60 and SPAN®60 as stabilizing agents. HGs gelation kinetics were assessed by Circular Dichroism (CD). Stability and size of NGs were studied using Dynamic Light Scattering (DLS) measurements. Cell viability of empty and filled Dox HGs and NGs was evaluated on MDA-MB-231 breast cancer cells. Moreover, cell internalization of the drug was evaluated using immunofluorescence assays. RESULTS Dox filled hydrogels exhibit a high drug loading content (DLC=0.440), without syneresis after 10 days. Gelation kinetics (20-40 min) and the drug release (16-28%) over time of HGs were found dependent on relative peptide composition. Dox filled NGs exhibit a DLC of 0.137 and a low drug release (20-40%) after 72 h. Empty HGs and NGs show a high cell viability (>95%), whereas Dox loaded ones significantly reduce cell viability after 24 h (49-57%) and 72 h (7-25%) of incubation, respectively. Immunofluorescence assays evidenced a different cell localization for Dox delivered through HGs and NGs with respect to the free drug. DISCUSSION A modulation of the Dox release can be obtained by changing the ratios of the peptide components. The different cellular localization of the drug loaded into HGs and NGs suggests an alternative internalization mechanism. The high DLC, the low drug release and preliminary in vitro results suggest a potential employment of peptide-based HGs and NGs as drug delivery tools.
Collapse
Affiliation(s)
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| | - Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| | | | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| |
Collapse
|
9
|
Otulakowski Ł, Kasprów M, Strzelecka A, Dworak A, Trzebicka B. Thermal Behaviour of Common Thermoresponsive Polymers in Phosphate Buffer and in Its Salt Solutions. Polymers (Basel) 2020; 13:E90. [PMID: 33379398 PMCID: PMC7795651 DOI: 10.3390/polym13010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Thermoresponsive polymers are a promising material for drug nanocarrier preparation, which makes the study of their aggregation in physiological conditions very important. In this paper, the thermal behaviour of the thermoresponsive polymers poly(N-isopropylacrylamide), poly(2-isopropyl-2-oxazoline-co-2-n-propyl-2-oxazoline) and poly[(2-hydroxyethyl methacrylate)-co-oligo(ethylene glycol) methyl ether methacrylate] were studied in phosphate buffer (PBS) and solutions of its salts in concentration as in PBS. The thermal response of the polymers was measured using UV-Vis and dynamic light scattering (DLS). The salts shifted the cloud point temperature (TCP) of the (co)polymers to higher values compared to the TCP of aqueous polymer solutions. In PBS and NaCl solutions, all polymers exhibited an unexpected and previously unreported transmittance profile. During heating, an additional aggregation of polymers appeared above the TCP accompanied by the formation of a precipitate. In monosodium phosphate solutions and pure water, the studied polymers showed lower critical solution temperature (LCST-type) behaviour. DLS measurements showed that a salt influenced the size of the resulting polymer particles. The sizes and stability of particles depended on the heating rate. In PBS and NaCl solutions, the size of particles in the dispersion decreased above 60 °C, and the precipitate appeared on the bottom of the cuvette. The additional aggregation of polymer and its falling out of solution may hinder the removal of carriers from the body and has to be taken into account when preparing nanocarriers.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (Ł.O.); (M.K.); (A.S.); (A.D.)
| |
Collapse
|
10
|
Thermoresponsive Nanogels of Modified Poly((di(ethylene glycol) methyl ether methacrylate)- co-(2-aminoethyl methacrylate))s. Polymers (Basel) 2020; 12:polym12081645. [PMID: 32722035 PMCID: PMC7463910 DOI: 10.3390/polym12081645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
A series of copolymers of di(ethylene glycol) methyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) (P(D-co-A)) with variable ratios of comonomers were synthesized using atom transfer radical polymerization. Then, the amino groups of obtained copolymers were modified to clickable azide or prop-2-yn-1-yl carbamate groups. A thermoresponsive copolymers were obtained with the value of cloud point temperature (TCP) dependent on the type and number of functional groups in the copolymer and on the concentration of solutions. For P(D-co-A) copolymers, the TCP increased with increasing content of 2-aminoethyl methacrylate comonomer. The presence of azide and prop-2-yn-1-yl carbamate groups caused the changes of TCP of modified copolymers. All studied copolymers in dilute aqueous solutions aggregated above TCP to nanoparticles with sizes dependent on the solution concentration, heating procedures, and types and numbers of functional groups present in a copolymer chain. The presence of hydrophilic elements in the chain and the increase in the copolymer concentration led to the enlargement of the particle sizes. Aggregates were crosslinked using click reaction between an azide and prop-2-yn-1-yl carbamate groups that led to stable thermoresponsive nanogels. A systematic study of the behavior of copolymers allowed the determination of the chains useful for possible application in drug delivery.
Collapse
|
11
|
Saravanakumar K, Hu X, Ali DM, Wang MH. Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy. Curr Pharm Des 2020; 25:2609-2625. [PMID: 31603055 DOI: 10.2174/1381612825666190709221141] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
The conventional Drug Delivery System (DDS) has limitations such as leakage of the drug, toxicity to normal cells and loss of drug efficiency, while the stimuli-responsive DDS is non-toxic to cells, avoiding the leakage and degradation of the drug because of its targeted drug delivery to the pathological site. Thus nanomaterial chemistry enables - the development of smart stimuli-responsive DDS over the conventional DDS. Stimuliresponsive DDS ensures spatial or temporal, on-demand drug delivery to the targeted cancer cells. The DDS is engineered by using the organic (synthetic polymers, liposomes, peptides, aptamer, micelles, dendrimers) and inorganic (zinc oxide, gold, magnetic, quantum dots, metal oxides) materials. Principally, these nanocarriers release the drug at the targeted cells in response to external and internal stimuli such as temperature, light, ultrasound and magnetic field, pH value, redox potential (glutathione), and enzyme. The multi-stimuli responsive DDS is more promising than the single stimuli-responsive DDS in cancer therapy, and it extensively increases drug release and accumulation in the targeted cancer cells, resulting in better tumor cell ablation. In this regard, a handful of multi-stimuli responsive DDS is in clinical trials for further approval. A comprehensive review is crucial for addressing the existing knowledge about multi-stimuli responsive DDS, and hence, we summarized the emerging strategies in tailored ligand functionalized stimuli-responsive nanocarriers as the DDS for cancer therapies.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Davoodbasha M Ali
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai - 600048, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| |
Collapse
|
12
|
Baliś A, Wolski K, Zapotoczny S. Thermoresponsive Polymer Gating System on Mesoporous Shells of Silica Particles Serving as Smart Nanocontainers. Polymers (Basel) 2020; 12:E888. [PMID: 32290489 PMCID: PMC7240617 DOI: 10.3390/polym12040888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/12/2023] Open
Abstract
Spherical silica nanoparticles with solid cores and mesoporous shells (SCMS) were decorated with thermoresponsive polymer brushes that were shown to serve as macromolecular valves to control loading and unloading of a model dye within the mesopores. Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brushes were grafted from the surfaces of both solid core (SC) and SCMS particles of similar size using surface-initiated atom transfer radical polymerization. Both systems based on porous (SCMS-PNIPAM) and nonporous (SC-PNIPAM) particles were characterized using cryo-TEM, thermogravimetry and elemental analysis to determine the structure and composition of the decorated nanoparticles. The grafted PNIPAM brushes were found to be responsive to temperature changes enabling temperature-controlled gating of the pores. The processes of loading and unloading in the obtained systems were examined using a model fluorescent dye-rhodamine 6G. Polymer brushes in SCMS-PNIPAM systems were shown to serve as molecular valves enabling significant adsorption (loading) of the dye inside the pores with respect to the SC-PNIPAM (no pores) and SCMS (no valves) systems. The effective unloading of the fluorescent cargo molecules from the decorated nanoparticles was achieved in a water/methanol solution. The obtained SCMS-PNIPAM particles may be used as smart nanocontainers or nanoreactors offering also facile isolation from the suspension due to the presence of dense cores.
Collapse
Affiliation(s)
| | | | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.B.); (K.W.)
| |
Collapse
|
13
|
Kasprów M, Machnik J, Otulakowski Ł, Dworak A, Trzebicka B. Thermoresponsive P(HEMA- co-OEGMA) copolymers: synthesis, characteristics and solution behavior. RSC Adv 2019; 9:40966-40974. [PMID: 35540067 PMCID: PMC9076357 DOI: 10.1039/c9ra09668j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Random, thermoresponsive copolymers of 2-hydroxyethyl methacrylate (HEMA) and oligo(ethylene glycol) methyl ether methacrylate M n = 300 (OEGMA) were synthesized via atom transfer radical polymerization (ATRP) in a DMSO/H2O solvent mixture. Reactivity ratios were determined by the extended Kelen-Tudos method and found to be close to 1. Studies confirmed the randomness of the obtained copolymers. The thermoresponsiveness in water and in phosphate buffer (PBS) solutions and the influence of copolymer composition and solution concentration on the cloud point temperature (T cp) were investigated. Phase transitions in water solutions were reversible and narrow. The response of P(HEMA-co-OEGMA) to temperature could be adjusted in the range from 66.5 °C to 21.5 °C by changing the HEMA content. In PBS solutions, significant differences in the heating/cooling cycle were observed for all investigated concentrations. The presence of kosmotropic salts in PBS decreased the T cp value and caused thermal aggregation of chains to form a macroscopic aggregate at temperatures above the T cp.
Collapse
Affiliation(s)
- Maciej Kasprów
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences M. Curie-Skłodowskiej 34 Zabrze 41-819 Poland
| | - Justyna Machnik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences M. Curie-Skłodowskiej 34 Zabrze 41-819 Poland
| | - Łukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences M. Curie-Skłodowskiej 34 Zabrze 41-819 Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences M. Curie-Skłodowskiej 34 Zabrze 41-819 Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences M. Curie-Skłodowskiej 34 Zabrze 41-819 Poland
| |
Collapse
|
14
|
Li J, Li X, Liu P. Doxorubicin-doxorubicin conjugate prodrug as drug self-delivery system for intracellular pH-triggered slow release. Colloids Surf B Biointerfaces 2019; 185:110608. [PMID: 31707225 DOI: 10.1016/j.colsurfb.2019.110608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/20/2019] [Indexed: 10/25/2022]
Abstract
Drug content and releasing rate are the main determining factors for the drug delivery systems (DDSs). Here, doxorubicin dimer (D-DOXcar) was synthesized as drug-drug conjugate prodrug with high drug content of 86%, via an acid-triggered hydrolysable carbamate linker. The prodrug nanoparticles (D-DOXcar-NP) with different diameters were prepared as drug self-delivery system (DSDS) for intracellular pH-triggered slow release. They showed size- and concentration-dependent pH-triggered slow DOX release. For the D-DOXcar-sNP with smaller diameter, the cumulative release ratio reached 25.6% at pH 5.0 within 60 h. The MTT results demonstrated that the proposed DSDS showed similar tumor inhibition regardless of carboxylesterases, and an enhanced anti-tumor efficacy on the HepG2 cells in comparison with the free DOX.
Collapse
Affiliation(s)
- Jiagen Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
15
|
Abstract
Synthetic polymers, biopolymers, and their nanocomposites are being studied, and some of them are already used in different medical areas. Among the synthetic ones that can be mentioned are polyolefins, fluorinated polymers, polyesters, silicones, and others. Biopolymers such as polysaccharides (chitosan, hyaluronic acid, starch, cellulose, alginates) and proteins (silk, fibroin) have also become widely used and investigated for applications in medicine. Besides synthetic polymers and biopolymers, their nanocomposites, which are hybrids formed by a macromolecular matrix and a nanofiller (mineral or organic), have attracted great attention in the last decades in medicine and in other fields due to their outstanding properties. This review covers studies done recently using the polymers, biopolymers, nanocomposites, polymer micelles, nanomicelles, polymer hydrogels, nanogels, polymersomes, and liposomes used in medicine as drugs or drug carriers for cancer therapy and underlines their responses to internal and external stimuli able to make them more active and efficient. They are able to replace conventional cancer drug carriers, with better results.
Collapse
|