1
|
Hararak B, Wijaranakul P, Wanmolee W, Kraithong W, Keeratipinit K, Kaewket S, Winotapun C, Rungseesantivanon W. Self-Formation of Lignin Particles Through Melt-Extrusion for Active Biodegradable Food Packaging. ACS OMEGA 2024; 9:24346-24355. [PMID: 38882124 PMCID: PMC11171092 DOI: 10.1021/acsomega.3c10113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
This study presents a method for the self-formation of lignin particles within a polylactic acid (PLA) matrix during melt-extrusion, eliminating the need for separation and drying steps typically associated with submicro-size lignin particles. This method effectively mitigates the problem of agglomeration often associated with the drying step. Softwood kraft lignin, guaiacyl lignin (GL-lignin), was dissolved in low-molecular-weight poly(ethylene glycol) (PEG) and was introduced into a twin-screw extruder using a liquid feeder. Lignin particles within a particle size range of 200-500 nm were observed in the extrudate of the PLA/PEG/GL-lignin composites. PLA/PEG/GL-lignin composite films were produced through blown film extrusion. These composite films demonstrated superior ultraviolet (UV)-barrier and antioxidant properties compared to neat PLA films, with optical and mechanical characteristics comparable to those of neat PLA. Moreover, migration values of the composite films in various food simulants were below regulatory limits, suggesting their potential for food packaging applications. This self-formation process offers a promising approach for utilizing lignin for PLA applications.
Collapse
Affiliation(s)
- Bongkot Hararak
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Pawarisa Wijaranakul
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Wasawat Kraithong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Kawin Keeratipinit
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Sanya Kaewket
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Charinee Winotapun
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Wuttipong Rungseesantivanon
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
2
|
Nansu W, Ross S, Waisarikit A, Ross GM, Charoensit P, Suphrom N, Mahasaranon S. Exploring the Potential of Roselle Calyx and Sappan Heartwood Extracts as Natural Colorants in Poly(butylene Succinate) for Biodegradable Packaging Films. Polymers (Basel) 2023; 15:4193. [PMID: 37896436 PMCID: PMC10610882 DOI: 10.3390/polym15204193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, there has been a growing concern among consumers regarding the safety of packaging products, particularly due to the presence of potentially harmful substances like synthetic pigments and inorganic dyes. These substances, which are often used to attract consumer attention, can migrate and contaminate products over extended shelf storage periods. To address this issue, the focus of this research was the development of a biodegradable packaging film using poly(butylene succinate) (PBS) incorporated with natural colorants extracted from roselle (RS) and sappan heartwood (SP). RS and SP serve as non-toxic and alternative pigments when compared to synthetic colorants. The biodegradable packaging films were prepared using blown film extrusion, encompassing different weight percentages of RS and SP (0.1%, 0.2%, and 0.3%). The films exhibited distinct colors, with RS films appearing pink to purple and SP films exhibiting an orange hue. The water vapor transmission rate slightly decreased with an increasing content of RS and SP extracts, indicating improved barrier properties. Additionally, the films showed reduced light transmittance, as evidenced by the UV-Vis light barrier results. The degree of crystallinity in the films was enhanced, as confirmed by X-ray diffraction and differential scanning calorimetry techniques. Regarding mechanical properties, the PBS/RS and PBS/SP films exhibited slight increases in tensile strength and elongation compared to neat PBS films. Moreover, the blended films demonstrated higher stability after undergoing an aging test, further highlighting their potential for use in biodegradable packaging applications. The key advantages of these films lie in their non-toxicity, biodegradability, and overall environmental friendliness.
Collapse
Affiliation(s)
- Wordpools Nansu
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Sukunya Ross
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Amonrut Waisarikit
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Gareth M. Ross
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Pensri Charoensit
- Faculty of Pharmaceutical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Sararat Mahasaranon
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| |
Collapse
|
3
|
Madivoli ES, Wanakai SI, Kairigo PK, Odhiambo RS. Encapsulation of AgNPs in a Lignin Isocyanate Film: Characterization and Antimicrobial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4271. [PMID: 37374454 DOI: 10.3390/ma16124271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Lignin isolated from agricultural residues is a promising alternative for petroleum-based polymers as feedstocks in development of antimicrobial materials. A polymer blend based on silver nanoparticles and lignin-toluene diisocyanate film (AgNPs-Lg-TDIs) was generated from organosolv lignin and silver nanoparticles (AgNPs). Lignin was isolated from Parthenium hysterophorus using acidified methanol and used to synthesize lignin capped silver nanoparticles. Lignin-toluene diisocyanate film (Lg-TDI) was prepared by treating lignin (Lg) with toluene diisocyanate (TDI) followed by solvent casting to form films. Functional groups present and thermal properties of the films were evaluated using Fourier-transform infrared spectrophotometry (FT-IR), thermal gravimetry (TGA), and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM), UV-visible spectrophotometry (UV-Vis), and Powder X-ray diffractometry (XRD) were used to assess the morphology, optical properties, and crystallinity of the films. Embedding AgNPs in the Lg-TDI films increased the thermal stability and the residual ash during thermal analysis, and the presence of powder diffraction peaks at 2θ = 20, 38, 44, 55, and 58⁰ in the films correspond to lignin and silver crystal planes (111). SEM micrographs of the films revealed the presence of AgNPs in the TDI matrix with variable sizes of between 50 to 250 nm. The doped films had a UV radiation cut-off at 400 nm as compared to that of undoped films, but they did not exhibit significant antimicrobial activity against selected microorganisms.
Collapse
Affiliation(s)
- Edwin S Madivoli
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Sammy I Wanakai
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Pius K Kairigo
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
| | - Rechab S Odhiambo
- Department of Physical Science, University of Kabianga, Kericho P.O. Box 2030-20200, Kenya
| |
Collapse
|
4
|
Fully biobased poly(lactic acid)/lignin composites compatibilized by epoxidized natural rubber. Int J Biol Macromol 2023; 236:123960. [PMID: 36921823 DOI: 10.1016/j.ijbiomac.2023.123960] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 03/15/2023]
Abstract
Biobased poly(lactic acid)/lignin (PLA/lignin) composites are limited by poor mechanical properties resulted from poor compatibility and low interfacial adhesion. Herein, we reported a novel approach to improve compatibility and interfacial adhesion of PLA/lignin composites via reactive compatibilization with epoxidized natural rubber (ENR) as a compatibilizer. Interfacial tension calculation indicated that lignin tended to act as interfacial phase between PLA and ENR, but morphology analysis demonstrated lignin was wrapped with a layer of ENR and dispersed in PLA matrix, which was attributed to the interfacial reaction of ENR with both PLA and lignin. The interfacial reaction was confirmed by Fourier transform infrared spectroscopy. The compatibility and interfacial adhesion between PLA and lignin were improved significantly by incorporation and increase in the content of ENR, as evidenced by the reduced interfacial gaps, blurry phase boundaries, and enhanced elastic response. As such, the mechanical properties of PLA/lignin composites were enhanced significantly. The tensile strength and elongation at break of PLA/lignin (W/W, 80/20) were improved by 15 % and 77 %, respectively, with the incorporation of only 1 wt% ENR. We believe this approach to compatibilize PLA/lignin composites is promising because it would not require costly modification of lignin and would not compromise the sustainability of composites.
Collapse
|
5
|
Hararak B, Wanmolee W, Wijaranakul P, Prakymoramas N, Winotapun C, Kraithong W, Nakason K. Physicochemical properties of lignin nanoparticles from softwood and their potential application in sustainable pre-harvest bagging as transparent UV-shielding films. Int J Biol Macromol 2023; 229:575-588. [PMID: 36592857 DOI: 10.1016/j.ijbiomac.2022.12.270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
Technical lignin can be mainly obtained as a waste by-product from pulp industry, and it exhibits unique properties including ultraviolet adsorption, biodegradable, antibacterial, and antioxidant which can be utilized for bioplastic applications. However, common limitations of technical lignin for plastic applications are compatibility mainly due to poor interfacial adhesion, relatively large particle size and impurity. In this study lignin nanoparticles from softwood (S-LNPs) were successfully produced through a continuous-green-scalable antisolvent precipitation and the suitability of S-LNPs for fabrication of bio-composite polybutylene succinate (PBS) films using conventional blown film extrusion was examined. The attained S-LNPs showed lower ash content, higher phenolic content and higher lignin content compared to pristine softwood kraft lignin (S-lignin). Rheological property including shear viscosity and melt-flow index was determined. The obtained PBS/S-LNP composite films showed improved tensile modulus, higher water vapor transmission rate and excellent UV-shielding ability compared to neat PBS and PBS/S-lignin films. Accelerated weathering testing was conducted to replicate outdoor conditions. Degradation indices including carbonyl, vinyl and hydroxyl of the weathered PBS/lignin composites were evaluated for photo-oxidative stability. The S-LNPs as multifunctional bio-additives in biodegradable composite film exhibited superior performances of transparency, UV-absorption and stiffness with high photo-oxidative stability suitable for outdoor applications.
Collapse
Affiliation(s)
- Bongkot Hararak
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand.
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Pawarisa Wijaranakul
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Natcha Prakymoramas
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Charinee Winotapun
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Wasawat Kraithong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Kamonwat Nakason
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| |
Collapse
|
6
|
Wang L, Ji X, Cheng Y, Tao Y, Lu J, Du J, Wang H. All-biodegradable soy protein isolate/lignin composite cross-linked by oxidized sucrose as agricultural mulch films for green farming. Int J Biol Macromol 2022; 223:120-128. [PMID: 36374637 DOI: 10.1016/j.ijbiomac.2022.10.251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Microplastics produced from the discarded traditional non-degradable mulch film deteriorate the ecological environment and pose a great threat to human health. Developing eco-friendly and biodegradable materials to substitute traditional plastic mulch film highly contributed to the progress of green agriculture. Herein, a category of eco-friendly and all-biodegradable soy protein isolate (SPI)/oxidized sucrose (OS)/Lignin mulch film was innovatively proposed by employing OS as green cross-linker and lignin as nanofiller under chemical/physical interaction. The cross-linking effect and hydrogen bonds between biopolymers act as sacrificial bonds for energy dissipation and effectively reinforced the intermolecular interactions as well as tensile strength from 6.67 MPa of pristine SPI film to 8.45 MPa of SPI/OS/Lignin film. Moreover, the SPI/OS/Lignin mulch film also presented excellent UV-shielding, moisture retention, heat preservation effect and sustained urea release properties. Benefitting from the above-mentioned merits, higher germination rate of cabbage seed was achieved when the natural soil was covered by such multifunctional mulch film compared to traditional low-density PE film. Our findings paved a solid way in rational designing and fabricating eco-friendly, low-cost and all-biodegradable mulch film to facilitate the crops growth, boosting the development of green farming.
Collapse
Affiliation(s)
- Louyu Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Komisarz K, Majka TM, Pielichowski K. Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 16:16. [PMID: 36614353 PMCID: PMC9821536 DOI: 10.3390/ma16010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 06/15/2023]
Abstract
Lignin, a valuable polymer of natural origin, displays numerous desired intrinsic properties; however, modification processes leading to the value-added products suitable for composite materials' applications are in demand. Chemical modification routes involve mostly reactions with hydroxyl groups present in the structure of lignin, but other paths, such as copolymerization or grafting, are also utilized. On the other hand, physical techniques, such as irradiation, freeze-drying, and sorption, to enhance the surface properties of lignin and the resulting composite materials, are developed. Various kinds of chemically or physically modified lignin are discussed in this review and their effects on the properties of polymeric (bio)materials are presented. Lignin-induced enhancements in green polymer composites, such as better dimensional stability, improved hydrophobicity, and improved mechanical properties, along with biocompatibility and non-cytotoxicity, have been presented. This review addresses the challenges connected with the efficient modification of lignin, which depends on polymer origin and the modification conditions. Finally, future outlooks on modified lignins as useful materials on their own and as prospective biofillers for environmentally friendly polymeric materials are presented.
Collapse
Affiliation(s)
| | - Tomasz M. Majka
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | | |
Collapse
|
8
|
Fabrication of high-performance lignin/PHBH biocomposites with excellent thermal, barrier and UV-shielding properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Compatibility and interphase properties of poly(butylene succinate-co-adipate) (PBSA)/Kraft lignin films assessed by nanomechanical analyses. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
A Review of Nonbiodegradable and Biodegradable Composites for Food Packaging Application. J CHEM-NY 2022. [DOI: 10.1155/2022/7670819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The dependency on nonbiodegradable-based food packaging, increase in population growth, and persistent environmental problems are some of the driving forces in considering the development of biodegradable food packaging. This effort of green packaging has the potential to solve issues on plastic wastes through the combination of biodegradable composite-based food packaging with plant extracts, nanomaterials, or other types of polymer. Modified biodegradable materials have provided numerous alternatives for producing green packaging with mechanical strength, thermal stability, and barrier performance that are comparable to the conventional food packaging. To the best of our knowledge, the performance of nonbiodegradable and biodegradable composites as food packaging in terms of the above properties has not yet been reviewed. In this context, the capability of biodegradable polymers to substitute the nonbiodegradable polymers was emphasized to enhance the packaging biodegradation while retaining the mechanical strength, thermal stability, barrier properties, and antioxidant and antimicrobial or antibacterial activity. These are the ultimate goal in the food industry. This review will impart useful information on the properties of food packaging developed from different polymers and future outlook toward the development of green food packaging.
Collapse
|
11
|
Developing highly transparent yet ultraviolet blocking fully biocomposite films based on chitin and lignin using ethanol/water as processing solvents. Int J Biol Macromol 2022; 201:308-317. [PMID: 35026219 DOI: 10.1016/j.ijbiomac.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/28/2021] [Accepted: 01/01/2022] [Indexed: 11/21/2022]
Abstract
Developing fully biobased products with functionality in a green fashion is highly desirable to meet the increasing demand for environmental sustainability and mitigate "white pollution" by petroleum-based counterparts. Here, chitin from shrimp shells was propionylated to obtain chitin propionate (CP) with significantly improved solubility in organic solvents, organosolv lignin (OSL) was extracted from the forest harvest residuals. The fully biobased composite consisting of CP as a matrix and OSL as a UV-blocker were successfully prepared using acidic ethanol/water as a green processing solvent. The results indicated that the 5% OSL addition enabled the CP film to block approximately 98% UV light while allowing 71% visible light transmittance; tensile and thermal properties were also retained. Nearly 100% UV light was blocked with 20% OSL addition, but visible light transmittance was moderately sacrificed. This study provides an alternative solution to produce novel fully biobased films with high transparency yet excellent UV protection for potential packaging applications.
Collapse
|
12
|
Zeng Q, Xiao N, Zhang X, Luo W, Xiao G, Zhai W, Zhong L, Lan B. Preparation and Characterization of Chinese Leek Extract Incorporated Cellulose Composite Films. Front Bioeng Biotechnol 2021; 9:731749. [PMID: 34869251 PMCID: PMC8634590 DOI: 10.3389/fbioe.2021.731749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to prepare microcrystalline cellulose (MCC) films with good mechanical properties via plasticization using a Chinese leek (CL, Allium tuberosum) extract. The microstructure, crystal structure, mechanical properties, barrier ability, and thermal properties of the films were investigated. The chemical structure analysis of CL extract showed the existence of cellulose, lignin, and low-molecular-weight substances, such as polysaccharides, pectins, and waxes, which could act as plasticizers to enhance the properties of MCC:CL biocomposite films. The results of scanning electron microscopy and atomic force microscopy analyses indicated the good compatibility between MCC and CL extract. When the volume ratio of MCC:CL was 7:3, the MCC:CL biocomposite film exhibited the best comprehensive performance in terms of water vapor permeability (2.11 × 10-10 g/m·s·Pa), elongation at break (13.2 ± 1.8%), and tensile strength (24.7 ± 2.5 MPa). The results of a UV absorption analysis demonstrated that the addition of CL extract improved the UV-shielding performance of the films. Therefore, this work not only proposes a facile method to prepare MCC films with excellent mechanical properties via plasticization using CL extract but also broadens the potential applications of MCC films in the packaging area.
Collapse
Affiliation(s)
- Qiying Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Naiyu Xiao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueqin Zhang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenhan Luo
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengshen Xiao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wanjing Zhai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Le Zhong
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Bifeng Lan
- Guangzhou Furui High Energy Technology Co., Ltd, Guangzhou, China
| |
Collapse
|
13
|
Lignin/Carbohydrate Complex Isolated from Posidonia oceanica Sea Balls (Egagropili): Characterization and Antioxidant Reinforcement of Protein-Based Films. Int J Mol Sci 2021; 22:ijms22179147. [PMID: 34502058 PMCID: PMC8431013 DOI: 10.3390/ijms22179147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/29/2023] Open
Abstract
A lignin fraction (LF) was extracted from the sea balls of Posidonia oceanica (egagropili) and extensively dialyzed and characterized by FT-IR and NMR analyses. LF resulted water soluble and exhibited a brownish-to-black color with the highest absorbance in the range of 250-400 nm, attributed to the chromophore functional groups present in the phenylpropane-based polymer. LF high-performance size exclusion chromatography analysis showed a highly represented (98.77%) species of 34.75 kDa molecular weight with a polydispersity index of 1.10 and an intrinsic viscosity of 0.15. Quantitative analysis of carbohydrates indicated that they represented 28.3% of the dry weight of the untreated egagropili fibers and 72.5% of that of LF. In particular, eight different monosaccharides were detected (fucose, arabinose, rhamnose, galactose, glucose, xylose, glucosamine and glucuronic acid), glucuronic acid (46.6%) and rhamnose (29.6%) being the most present monosaccharides in the LF. Almost all the phenol content of LF (113.85 ± 5.87 mg gallic acid eq/g of extract) was water soluble, whereas around 22% of it consisted of flavonoids and only 10% of the flavonoids consisted of anthocyanins. Therefore, LF isolated from egagropili lignocellulosic material could be defined as a water-soluble lignin/carbohydrate complex (LCC) formed by a phenol polymeric chain covalently bound to hemicellulose fragments. LCC exhibited a remarkable antioxidant activity that remained quite stable during 6 months and could be easily incorporated into a protein-based film and released from the latter overtime. These findings suggest egagropili LCC as a suitable candidate as an antioxidant additive for the reinforcement of packaging of foods with high susceptibility to be deteriorated in aerobic conditions.
Collapse
|
14
|
Iritani K, Nakanishi A, Ota A, Yamashita T. Fabrication of Novel Functional Cell-Plastic Using Polyvinyl Alcohol: Effects of Cross-Linking Structure and Mixing Ratio of Components on the Mechanical and Thermal Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100026. [PMID: 34377533 PMCID: PMC8335826 DOI: 10.1002/gch2.202100026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/03/2021] [Indexed: 05/11/2023]
Abstract
The current system of disposal of plastic materials fabricated from petroleum-based resources causes serious environmental pollution. To solve the problem, a bioplastic called "cell-plastic" is developed, in which unicellular green algal cells serve as a fundamental resource. This approach converts CO2 in the atmosphere directly into plastic products by exploiting the photosynthetic-driven proliferation of algal cells. Herein, cell-plastic films are fabricated using biodegradable and water-soluble polyvinyl alcohol (PVA) as a matrix, in which the effects of a cell-to-matrix mixing ratio and the chemical structure of the matrix on the mechanical and thermal properties are investigated. As a method of the chemical structural change, a cross-linking structure is introduced to the matrix by connecting hydroxy groups of PVA using aldehyde. The tensile tests reveal that the PVA-cell-plastic film maintains the mechanical properties of PVA film. Moreover, a cross-linked cell-plastic film exhibits high water absorption, making it suitable as a functional cell-plastic material.
Collapse
Affiliation(s)
- Kohei Iritani
- Department of Applied ChemistrySchool of EngineeringTokyo University of TechnologyTokyo192‐0982Japan
| | - Akihito Nakanishi
- School of Bioscience and BiotechnologyTokyo University of TechnologyTokyo192‐0982Japan
- Graduate School of BionicsTokyo University of TechnologyTokyo192‐0982Japan
| | - Ayami Ota
- Department of Applied ChemistrySchool of EngineeringTokyo University of TechnologyTokyo192‐0982Japan
| | - Takashi Yamashita
- Department of Applied ChemistrySchool of EngineeringTokyo University of TechnologyTokyo192‐0982Japan
| |
Collapse
|
15
|
Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH. Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 2020; 162:985-1024. [DOI: 10.1016/j.ijbiomac.2020.06.168] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
|
16
|
Enzymatic synthesis and tailoring lignin properties: A systematic study on the effects of plasticizers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Yang X, Zhong S. Properties of maleic anhydride‐modified lignin nanoparticles/polybutylene adipate‐co‐terephthalate composites. J Appl Polym Sci 2020. [DOI: 10.1002/app.49025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuping Yang
- School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang Sichuan China
- Engineering Research Center for Biomass Materials (Ministry of Education) Mianyang Sichuan China
| | - Shengyuan Zhong
- School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang Sichuan China
- Engineering Research Center for Biomass Materials (Ministry of Education) Mianyang Sichuan China
| |
Collapse
|
18
|
Cusola O, Rojas OJ, Roncero MB. Lignin Particles for Multifunctional Membranes, Antioxidative Microfiltration, Patterning, and 3D Structuring. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45226-45236. [PMID: 31702895 DOI: 10.1021/acsami.9b16931] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We introduce a new type of particle-based membrane based on the combination of lignin particles (LPs) and cellulose nanofibrils (CNF), the latter of which are introduced in small volume fractions to act as networking and adhesive agents. The synergies that are inherent to lignin and cellulose in plants are re-engineered to render materials with low surface energy (contact angle measurements) and can be rendered water-resistant with the aid of wet-strength agents (WSAs). Importantly, they are most suitable for antioxidative separation (ABTS•+ radical inhibition): membranes with uniform porous structures (air permeability and capillary flow porosimetry) allow effluent oxidation at 95 mL/cm2, demonstrating, for the first time, the use of unmodified lignin particles in flexible membranes for active microfiltration. Moreover, the membranes are found to be nonfouling (protein adhesion and activity rate). The inherent properties of lignin, including UV radiation blocking capacity (UV transmittance analysis) and reduced surface energy, are further exploited in the development of tailorable and self-standing architectures that are almost entirely comprised of nonbonding LP (solids content as high as 92 w/w%). Despite such composition, the materials develop high toughness (oscillatory dynamic mechanical analysis), owing to the addition of minor amounts of CNF. Multifunctional materials based on thin films (casting), 3D structures (molding), and patterned geometries (extrusion deposition) are developed as a demonstration of the potential use of lignin particles as precursors of new material generation. Remarkably, our observations hold for spherical LPs since a much poorer performance was observed after using amorphous powder, indicating the role of size and shape in related applications.
Collapse
Affiliation(s)
- Oriol Cusola
- CELBIOTECH Research Group , Escola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa , 08222 Terrassa , Spain
- Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , FI-00076 Aalto , Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , FI-00076 Aalto , Finland
- Department of Chemical and Biological Engineering , University of British Columbia , Vancouver , British Columbia V6T 1Z4 , Canada
| | - M Blanca Roncero
- CELBIOTECH Research Group , Escola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa , 08222 Terrassa , Spain
| |
Collapse
|
19
|
Wang X, Wang S, Liu W, Wang S, Zhang L, Sang R, Hou Q, Li J. Facile fabrication of cellulose composite films with excellent UV resistance and antibacterial activity. Carbohydr Polym 2019; 225:115213. [DOI: 10.1016/j.carbpol.2019.115213] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
|
20
|
Al-Salem SM, Al-Hazza'a A, Karam HJ, Al-Wadi MH, Al-Dhafeeri AT, Al-Rowaih AA. Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene (PE) thin films. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109475. [PMID: 31491716 DOI: 10.1016/j.jenvman.2019.109475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 05/16/2023]
Abstract
In this study, commercial products formulated from polyethylene (PE) with pro-oxidant additives, were subjected to abiotic and biotic environments. The materials were presumed to be oxo-biodegradable plastics with thicknesses varying between 30 and 70 μm, and calcium carbonate (CaCO3) filler content reaching up to 11 wt%. Accelerated (aging) weathering tests conducted revealed that UV radiation triggered the biodegradation mechanism. Weight loss reached 50% after exposure to weathering which was attributed to triggering the fragmentation of the plastic films. Furthermore, some 83% of weight loss was estimated after 12 months of soil burial. Fluctuation of weight in mid exposure time spans was related to the cross-linking reaction within the polymeric matrix. The mechanical properties investigated along with the thermal stability profile determined for the materials showed that weathering was more severe than soil burial. Thermogravimetry revealed that onset temperature (Tos) was lower than conventional PO products by 25 °C. This could be attributed to the thermal response of the materials due to presence of ion salts and sterates within their composition. The claims by the manufacturing companies which provided the original specimens under an environmentally friendly pretence is disputed due to the fact that none of the products actually showed evidence of major fragmentation or deterioration after exposure to harsh environments. The work also paves the way in standardising assessment methodology for examining biodegradable plastics.
Collapse
Affiliation(s)
- S M Al-Salem
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, Kuwait.
| | - A Al-Hazza'a
- Energy & Building Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, Kuwait
| | - H J Karam
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, Kuwait
| | - M H Al-Wadi
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, Kuwait
| | - A T Al-Dhafeeri
- Water Research Centre, Kuwait Institute for Scie Research, P.O. Box: 24885, Safat, 13109, Kuwait
| | - A A Al-Rowaih
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, Kuwait
| |
Collapse
|
21
|
Yurchenko A, Golub N, Zhu Y. Lignin as the Basis for Obtaining Bioplastics. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2019. [DOI: 10.20535/ibb.2019.3.3.173421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
22
|
Avelino F, Marques F, Soares AKL, Silva KT, Leitão RC, Mazzetto SE, Lomonaco D. Microwave-Assisted Organosolv Delignification: A Potential Eco-Designed Process for Scalable Valorization of Agroindustrial Wastes. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Francisco Avelino
- Federal Institute of Education, Science and Technology of Ceará, Iguatu, Ceara 63503-790, Brazil
| | - Francisco Marques
- Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, Planalto do Pici, Fortaleza, Ceara 60511-110, Brazil
| | - Amanda K. L. Soares
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kássia T. Silva
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, Ceara 60440-900, Brazil
| | - Renato C. Leitão
- Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, Planalto do Pici, Fortaleza, Ceara 60511-110, Brazil
| | - Selma E. Mazzetto
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, Ceara 60440-900, Brazil
| | - Diego Lomonaco
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, Ceara 60440-900, Brazil
| |
Collapse
|