1
|
Marchianò V, Tricase A, Cimino A, Cassano B, Catacchio M, Macchia E, Torsi L, Bollella P. Inside out: Exploring edible biocatalytic biosensors for health monitoring. Bioelectrochemistry 2025; 161:108830. [PMID: 39362018 DOI: 10.1016/j.bioelechem.2024.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Edible biosensors can measure a wide range of physiological and biochemical parameters, including temperature, pH, gases, gastrointestinal biomarkers, enzymes, hormones, glucose, and drug levels, providing real-time data. Edible biocatalytic biosensors represent a new frontier within healthcare technology available for remote medical diagnosis. The main challenges to develop edible biosensors are: i) finding edible materials (i.e. redox mediators, conductive materials, binders and biorecognition elements such as enzymes) complying with Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and European Medicines Agency (EMEA) regulations; ii) developing bioelectronics able to operate in extreme working conditions such as low pH (∼pH 1.5 gastric fluids etc.), body temperature (between 37 °C and 40 °C) and highly viscous bodily fluids that may cause surface biofouling issues. Nowadays, advanced printing techniques can revolutionize the design and manufacturing of edible biocatalytic biosensors. This review outlines recent research on biomaterials suitable for creating edible biocatalytic biosensors, focusing on their electrochemical properties such as electrical conductivity and redox potential. It also examines biomaterials as substrates for printing and discusses various printing methods, highlighting challenges and perspectives for edible biocatalytic biosensors.
Collapse
Affiliation(s)
- Verdiana Marchianò
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Angelo Tricase
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Alessandra Cimino
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Blanca Cassano
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Michele Catacchio
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Eleonora Macchia
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Luisa Torsi
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy
| | - Paolo Bollella
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy; Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4 - 70125 Bari, Italy.
| |
Collapse
|
2
|
Iorio F, El Khatib M, Wöltinger N, Turriani M, Di Giacinto O, Mauro A, Russo V, Barboni B, Boccaccini AR. Electrospun poly(ε-caprolactone)/poly(glycerol sebacate) aligned fibers fabricated with benign solvents for tendon tissue engineering. J Biomed Mater Res A 2025; 113:e37794. [PMID: 39295227 DOI: 10.1002/jbm.a.37794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
The electrospinning technique is a commonly employed approach to fabricate fibers intended for various tissue engineering applications. The aim of this study is to develop a novel strategy for tendon repair through the use of aligned poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) fibers fabricated in benign solvents, and further explore the potential application of PGS in tendon tissue engineering (TTE). The fibers were characterized for their morphological and physicochemical properties; amniotic epithelial stem cells (AECs) were used to assess the fibers teno-inductive and immunomodulatory potential due to their ability to teno-differentiate undergoing first a stepwise epithelial to mesenchymal transition, and due to their documented therapeutic role in tendon regeneration. The addition of PGS to PCL improved the spinnability of the polymer solution, as well as the uniformity and directionality of the so-obtained fibers. The mechanical properties were in the range of most TTE applications, specifically in the case of PCL/PGS 4:1 and 2:1 ratios. Compared to PCL alone, the same ratios also allowed a better AECs infiltration and growth over 7 days of culture, and triggered the activation of tendon-related genes (SCX, COL1, TNMD) and the expression of tenomodulin (TNMD) at the protein level. Concerning the immunomodulatory properties, both PCL and PCL/PGS fibers negatively affected the immunomodulatory profile of AECs, up-regulating both anti-inflammatory (IL-10) and pro-inflammatory (IL-12) cytokines over 7 days of culture. Overall, PCL/PGS 2:1 fibers fabricated with benign solvents proved to be the most suitable composition for TTE application based on their topographical cues, mechanical properties, biocompatibility, and teno-inductive properties.
Collapse
Affiliation(s)
- Francesco Iorio
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Mohammad El Khatib
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Natalie Wöltinger
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Maura Turriani
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Oriana Di Giacinto
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
3
|
Kłusak A, Gazińska MA. Recent progress of poly(glycerol adipate)-based network materials toward tissue engineering applications. Front Bioeng Biotechnol 2024; 12:1447340. [PMID: 39355275 PMCID: PMC11442387 DOI: 10.3389/fbioe.2024.1447340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Poly(glycerol adipate) (PGA) is one of the aliphatic polyesters of glycerol. The most studied biomedical application of poly(glycerol adipate) is the use of its nanoparticles as drug delivery carriers. The PGA prepolymer can be crosslinked to network materials. The biomedical application of PGA-based network materials has largely remained unexplored till recently. The PGA-based network materials, such as poly(glycerol sebacate) elastomers, can be used in soft tissue regeneration due to their mechanical properties. The modulus of elasticity of PGA elastomers is within the range of MPa, which corresponds to the mechanical properties of human soft tissues. This short review aims at briefly summarizing the possible applications of PGA-based elastomers in tissue engineering, as indicated in recent years in research publications.
Collapse
Affiliation(s)
| | - Małgorzata Anna Gazińska
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
4
|
Ershad-Langroudi A, Babazadeh N, Alizadegan F, Mehdi Mousaei S, Moradi G. Polymers for implantable devices. J IND ENG CHEM 2024; 137:61-86. [DOI: 10.1016/j.jiec.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Heydari P, Zargar Kharazi A, Shariati L. Enhanced wound regeneration by PGS/PLA fiber dressing containing platelet-rich plasma: an in vitro study. Sci Rep 2024; 14:12019. [PMID: 38797743 PMCID: PMC11128439 DOI: 10.1038/s41598-024-62855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Novel wound dressings with therapeutic effects are being continually designed to improve the wound healing process. In this study, the structural, chemical, physical, and biological properties of an electrospun poly glycerol sebacate/poly lactide acid/platelet-rich plasma (PGS/PLA-PRP) nanofibers were evaluated to determine its impacts on in vitro wound healing. Results revealed desirable cell viability in the Fibroblast (L929) and macrophage (RAW-264.7) cell lines as well as human umbilical vein endothelial cells (HUVEC). Cell migration was evident in the scratch assay (L929 cell line) so that it promoted scratch contraction to accelerate in vitro wound healing. Moreover, addition of PRP to the fiber structure led to enhanced collagen deposition (~ 2 times) in comparison with PGS/PLA scaffolds. While by addition PRP to PGS/PLA fibers not only decreased the expression levels of pro-inflammatory cytokines (IL-6 and TNF-α) in RAW-264.7 cells but also led to significantly increased levels of cytokine (IL-10) and the growth factor (TGF-β), which are related to the anti-inflammatory phase (M2 phenotype). Finally, PGS/PLA-PRP was found to induce a significant level of angiogenesis by forming branching points, loops, and tubes. Based on the results obtained, the PGS/PLA-PRP dressing developed might be a promising evolution in skin tissue engineering ensuring improved wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Laleh Shariati
- Applied Physiology Research Center, Isfahan, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Sun L, Niu H, Wu Y, Dong S, Li X, Kim BY, Liu C, Ma Y, Jiang W, Yuan Y. Bio-integrated scaffold facilitates large bone regeneration dominated by endochondral ossification. Bioact Mater 2024; 35:208-227. [PMID: 38327823 PMCID: PMC10847751 DOI: 10.1016/j.bioactmat.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Repair of large bone defects caused by severe trauma, non-union fractures, or tumor resection remains challenging because of limited regenerative ability. Typically, these defects heal through mixed routines, including intramembranous ossification (IMO) and endochondral ossification (ECO), with ECO considered more efficient. Current strategies to promote large bone healing via ECO are unstable and require high-dose growth factors or complex cell therapy that cause side effects and raise expense while providing only limited benefit. Herein, we report a bio-integrated scaffold capable of initiating an early hypoxia microenvironment with controllable release of low-dose recombinant bone morphogenetic protein-2 (rhBMP-2), aiming to induce ECO-dominated repair. Specifically, we apply a mesoporous structure to accelerate iron chelation, this promoting early chondrogenesis via deferoxamine (DFO)-induced hypoxia-inducible factor-1α (HIF-1α). Through the delicate segmentation of click-crosslinked PEGylated Poly (glycerol sebacate) (PEGS) layers, we achieve programmed release of low-dose rhBMP-2, which can facilitate cartilage-to-bone transformation while reducing side effect risks. We demonstrate this system can strengthen the ECO healing and convert mixed or mixed or IMO-guided routes to ECO-dominated approach in large-size models with clinical relevance. Collectively, these findings demonstrate a biomaterial-based strategy for driving ECO-dominated healing, paving a promising pave towards its clinical use in addressing large bone defects.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haoyi Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuqiong Wu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Shiyan Dong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y.S. Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
7
|
Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA. Advances in guided bone regeneration membranes: a comprehensive review of materials and techniques. Biomed Phys Eng Express 2024; 10:032003. [PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Collapse
Affiliation(s)
- Mohammed Ali
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Hasmaliza Mohamad
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Faheem Ullah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
- Department of Biological Sciences, Biopolymer Research Centre (BRC), National University of Medical Sciences, 46000, Rawalpindi, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Butto Women University Peshawar, Charsadda Road Laramma, 25000, Peshawar, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Park S, Lee SJ, Park KM, Jung TG. Biomechanical and Biological Assessment of Polyglycelrolsebacate-Coupled Implant with Shape Memory Effect for Treating Osteoporotic Fractures. Bioengineering (Basel) 2023; 10:1413. [PMID: 38136004 PMCID: PMC10740735 DOI: 10.3390/bioengineering10121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Poly(glycerol sebacate) is a biocompatible elastomer that has gained increasing attention as a potential biomaterial for tissue engineering applications. In particular, PGS is capable of providing shape memory effects and allows for a free form, which can remember the original shape and obtain a temporary shape under melting point and then can recover its original shape at body temperature. Because these properties can easily produce customized shapes, PGS is being coupled with implants to offer improved fixation and maintenance of implants for fractures of osteoporosis bone. Herein, this study fabricated the OP implant with a PGS membrane and investigated the potential of this coupling. Material properties were characterized and compared with various PGS membranes to assess features such as control of curing temperature, curing time, and washing time. Based on the ISO 10993-5 standard, in vitro cell culture studies with C2C12 cells confirmed that the OP implant coupled with PGS membrane showed biocompatibility and biomechanical experiments indicated significantly increased pullout strength and maintenance. It is believed that this multifunctional OP implant will be useful for bone tissue engineering applications.
Collapse
Affiliation(s)
- Suzy Park
- Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si 28160, Chungbuk, Republic of Korea; (S.P.); (K.-M.P.)
| | - Su-Jeong Lee
- R&D Planning Team, Organoid Sciences Co., Ltd., 331, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Kwang-Min Park
- Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si 28160, Chungbuk, Republic of Korea; (S.P.); (K.-M.P.)
| | - Tae-Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si 28160, Chungbuk, Republic of Korea; (S.P.); (K.-M.P.)
| |
Collapse
|
9
|
Wu Z, Li Q, Wang L, Zhang Y, Liu W, Zhao S, Geng X, Fan Y. A novel biomimetic nanofibrous cardiac tissue engineering scaffold with adjustable mechanical and electrical properties based on poly(glycerol sebacate) and polyaniline. Mater Today Bio 2023; 23:100798. [PMID: 37753375 PMCID: PMC10518490 DOI: 10.1016/j.mtbio.2023.100798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Biomaterial tissue engineering scaffolds play a critical role in providing mechanical support, promoting cells growth and proliferation. However, due to the insulation and inappropriate stiffness of most biomaterials, there is an unmet need to engineer a biomimetic nanofibrous cardiac tissue engineering scaffold with tailorable mechanical and electrical properties. Here, we demonstrate for the first time the feasibility to generate a novel type of biocompatible fibrous scaffolds by blending elastic poly(glycerol sebacate) (PGS) and conductive polyaniline (PANI) with the help of a nontoxic carrier polymer, poly (vinyl alcohol) (PVA). Aligned and random PGS/PANI scaffolds are successfully obtained after electrospinning, cross-linking, water and ethanol wash. Incorporating of different concentrations of PANI into PGS fibers, the fibrous sheets show enhanced conductivity and slower degradation rates while maintaining the favorable hemocompatibility. The elastic modulus of the PGS/PANI scaffolds is in the range of 0.65-2.18 MPa under wet conditions, which is similar to that of natural myocardium. All of these fibrous mats show good cell viability and were able to promote adhesion and proliferation of H9c2 cells. Furthermore, the in vivo host responses of both random and aligned scaffolds confirm their good biocompatibility. Therefore, these PGS/PANI scaffolds have great potential for cardiac tissue engineering.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qiao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yang Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Wei Liu
- Department of Cardiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Shudong Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xuezheng Geng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
10
|
Fakhri V, Su CH, Tavakoli Dare M, Bazmi M, Jafari A, Pirouzfar V. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation. J Mater Chem B 2023; 11:9597-9629. [PMID: 37740402 DOI: 10.1039/d3tb01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Polyesters based on polyols have emerged as promising biomaterials for various biomedical applications, such as tissue engineering, drug delivery systems, and regenerative medicine, due to their biocompatibility, biodegradability, and versatile physicochemical properties. This review article provides an overview of the synthesis methods, performance, and biodegradation mechanisms of polyol-based polyesters, highlighting their potential for use in a wide range of biomedical applications. The synthesis techniques, such as simple polycondensation and enzymatic polymerization, allow for the fine-tuning of polyester structure and molecular weight, thereby enabling the tailoring of material properties to specific application requirements. The physicochemical properties of polyol-based polyesters, such as hydrophilicity, crystallinity, and mechanical properties, can be altered by incorporating different polyols. The article highlights the influence of various factors, such as molecular weight, crosslinking density, and degradation medium, on the biodegradation behavior of these materials, and the importance of understanding these factors for controlling degradation rates. Future research directions include the development of novel polyesters with improved properties, optimization of degradation rates, and exploration of advanced processing techniques for fabricating scaffolds and drug delivery systems. Overall, polyol-based polyesters hold significant potential in the field of biomedical applications, paving the way for groundbreaking advancements and innovative solutions that could revolutionize patient care and treatment outcomes.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Masoud Tavakoli Dare
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Maryam Bazmi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Vahid Pirouzfar
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Wu Z, Wang L, Fan Y. Effect of static tensile stress on enzymatic degradation of poly(glycerol sebacate). J Biomed Mater Res A 2023; 111:1513-1524. [PMID: 37070726 DOI: 10.1002/jbm.a.37550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Poly(glycerol sebacate) (PGS) is an excellent scaffold material in tissue engineering due to good biocompatibility and tunable mechanical properties. The degradation properties of PGS have been primarily explored in static phosphate buffer solution or enzyme solution. It is vital to understand how the tensile stress affect the degradation rate. In this study, PGS was synthetized by melt polycondensation and its properties were characterized. Then an in vitro degradation device which could provide different constant tensile stresses was carefully designed and established, and the enzymatic degradation of PGS was tested under 0-150 kPa at 37°C. It was found that holes of PGS surface arranged almost parallel to each other and perpendicular to the direction of tensile stresses at 100 kPa and 150 kPa after 2-4 days degradation. After 8 days degradation, the ultimate tensile strength (UTS) of PGS at 150 kPa was 0.28 MPa and the elastic modulus was 1.11 MPa, while the UTS of PGS was 0.44 MPa and the elastic modulus was 1.63 MPa before degradation, both of them have significant differences. Hence, the tensile stress and degradation time were proportional to the appear time and size of holes, leading to the decrease of mass loss, UTS and elastic modulus. The relationship between stress and PGS degradation rates was quantitatively described through our degradation experiments, providing guidance for suitable PGS applications in the future.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
12
|
Godinho B, Nogueira R, Gama N, Ferreira A. Synthesis of Prepolymers of Poly(glycerol- co-diacids) Based on Sebacic and Succinic Acid Mixtures. ACS OMEGA 2023; 8:16194-16205. [PMID: 37179609 PMCID: PMC10173435 DOI: 10.1021/acsomega.3c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
In this study, poly(glycerol-co-diacids) prepolymers were produced using different ratios of glycerol (G), sebacic acid (S), and succinic acid (Su) (molar ratios: GS 1:1, GSSu 1:0.9:0.1, GSSu 1:0.8:0.2, GSSu 1:0.5:0.5, GSSu 1:0.2:0.8, GSSu 1:0.1:0.9, GSu 1:1). All polycondensation reactions were performed at 150 °C until reaching a degree of polymerization of ≈55%, inferred by the water volume collected from a reactor. We concluded that the reaction time is correlated with the ratio of diacids used, that is, the increase in succinic acid is proportional to a decrease in the duration of the reaction. In fact, the reaction of poly(glycerol sebacate) (PGS 1:1) is twice as slow as the reaction of poly(glycerol succinate) (PGSu 1:1). The obtained prepolymers were analyzed by electrospray ionization mass spectrometry (ESI-MS) and 1H and 13C nuclear magnetic resonance (NMR). Besides its catalytic influence in poly(glycerol)/ether bond formation, the presence of succinic acid also contributes to a mass growth of ester oligomers, the formation of cyclic structures, a greater number of oligomers detected, and a difference in mass distribution. When compared with PGS (1:1), and even at lower ratios, the prepolymers produced with succinic acid presented mass peak characteristics of oligomer species with a glycerol unit as its end group in higher abundance. Generally, the most abundant oligomers have molecular weights between 400 and 800 g/mol.
Collapse
Affiliation(s)
- Bruno Godinho
- CICECO—Aveiro
Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Rosana Nogueira
- CICECO—Aveiro
Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Nuno Gama
- CICECO—Aveiro
Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Artur Ferreira
- CICECO—Aveiro
Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
- ESTGA—Águeda
School of Technology and Management, Águeda 3750-127, Portugal
| |
Collapse
|
13
|
Hevilla V, Sonseca Á, Echeverría C, Muñoz-Bonilla A, Fernández-García M. Photocured Poly(Mannitol Sebacate) with Functional Methacrylic Monomer: Analysis of Physical, Chemical, and Biological Properties. Polymers (Basel) 2023; 15:polym15061561. [PMID: 36987340 PMCID: PMC10054831 DOI: 10.3390/polym15061561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
In this work, we described the formation of polymeric networks with potential antimicrobial character based on an acrylate oligomer, poly(mannitol sebacate) (PMS), and an enzymatically synthesized methacrylic monomer with thiazole groups (MTA). Networks with different content of MTA were prepared, and further physico-chemically characterized by microhardness, water contact angle measurements, and differential scanning calorimetry. Monomer incorporation into the networks and subsequent quaternization to provide thiazolium moieties affected the mechanical behavior and the surface wettability of the networks. Moreover, the introduction of permanent cationic charges in the network surface could give antimicrobial activity to them. Therefore, the antibacterial behavior and the hemotoxicity were analyzed against Gram-positive and Gram-negative bacteria and red blood cells, respectively.
Collapse
Affiliation(s)
- Víctor Hevilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Águeda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| |
Collapse
|
14
|
Bhattacharya S, Prajapati BG, Singh S. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Crit Rev Oncol Hematol 2023; 185:103961. [PMID: 36921781 DOI: 10.1016/j.critrevonc.2023.103961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Stimuli-responsive nanocarriers have the potential to revolutionize cancer treatment by allowing precise delivery of drugs to the site of disease. The use of polymeric nanocarriers with surfaces that respond to triggers such as pH, light, temperature, and redox potential enables targeted drug distribution. pH is a particularly useful tool, as the lower pH in tumour microenvironments can trigger changes in drug release. Recent advances in the development of pH-responsive polymer nanoparticles have shown great promise for improved in vivo drug delivery, reduced negative drug responses, and more precise drug distribution. A deeper understanding of these nanocarriers will allow us to overcome the challenges of targeted cancer treatment and create a better drug delivery system.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Bhuphendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, 22 Kherva, 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Wierzchowski K, Kawka M, Wrzecionek M, Urbanek J, Pietrosiuk A, Sykłowska-Baranek K, Gadomska-Gajadhur A, Pilarek M. Stress-Induced Intensification of Deoxyshikonin Production in Rindera graeca Hairy Root Cultures with Ester-Based Scaffolds. PLANTS (BASEL, SWITZERLAND) 2022; 11:3462. [PMID: 36559574 PMCID: PMC9784104 DOI: 10.3390/plants11243462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
In vitro plant cell and tissue culture systems allow for controlling a wide range of culture environmental factors selectively influencing biomass growth and the yield of secondary metabolites. Among the most efficient methods, complex supplementation of the culture medium with elicitors, precursors, and other functional substances may significantly enhance valuable metabolite productivity through a stress induction mechanism. In the search for novel techniques in plant experimental biotechnology, the goal of the study was to evaluate stress-inducing properties of novel biodegradable ester-based scaffolds made of poly(glycerol sebacate) (PGS) and poly(lactic acid) (PLA) influencing on the growth and deoxyshikonin productivity of Rindera graeca hairy roots immobilized on the experimental constructs. Rindera graeca hairy roots were maintained under the dark condition for 28 days in three independent systems, i.e., (i) non-immobilized biomass (a reference system), (ii) biomass immobilized on PGS scaffolds, and (iii) biomass immobilized on PLA scaffolds. The stress-inducing properties of the applied polymerized esters selectively impacted R. graeca hairy roots. The PGS scaffolds caused the production of deoxyshikonin, which does not occur in other culture systems, and PLA promoted biomass proliferation by doubling its increase compared to the reference system.
Collapse
Affiliation(s)
- Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Mateusz Kawka
- Department of Biology and Pharmacognosy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Michał Wrzecionek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Julia Urbanek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Agnieszka Pietrosiuk
- Department of Biology and Pharmacognosy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Katarzyna Sykłowska-Baranek
- Department of Biology and Pharmacognosy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | | | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
16
|
Yu L, Zeng G, Xu J, Han M, Wang Z, Li T, Long M, Wang L, Huang W, Wu Y. Development of Poly(Glycerol Sebacate) and Its Derivatives: A Review of the Progress over the past Two Decades. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Asgharnejad-Laskoukalayeh M, Golbaten-Mofrad H, Jafari SH, Seyfikar S, Yousefi Talouki P, Jafari A, Goodarzi V, Zamanlui S. Preparation and characterization of a new sustainable bio-based elastomer nanocomposites containing poly(glycerol sebacate citrate)/chitosan/n-hydroxyapatite for promising tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2385-2405. [PMID: 35876727 DOI: 10.1080/09205063.2022.2104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poly (glycerol sebacate citrate) (PGSC) has potential applications in tissue engineering due to its biodegradability and suitable elasticity. However, its applications are restricted owing to its acidity and high degradation rate. In this study, a new bio-nanocomposite based on PGSC has been synthesized by incorporating chitosan (CS) and various concentrations of hydroxyapatite nanoparticles (n-HA). It is assumed that the basicity of a CS and hydroxyl groups of n-HA will reduce the acidity of PGSC and control the rate of degradation. Also, the biocompatibility of n-HA and inherent hydrophilicity of CS can improve cell adhesion and proliferation of PGSC-based scaffolds. FTIR, XRD, FESEM, and EDX tests confirmed the synthesis of these nanocomposites and the interaction between each of the components. The results of the DMTA test also indicated the elastic behavior of the samples embedded with n-HA. The hydrophilicity assay demonstrated that the water contact angle of the scaffolds decreased as the concentration of n-HA augmented, and it reached the value of 44 ± 0.9° for nanocomposite containing 5 wt.% n-HA. The degradation rate of all PGSC nanocomposites was reduced due to the anionic groups of n-HA and CS. TGA assay indicated that the incorporation of n-HA led to the enhancement of scaffolds' thermal stability. Furthermore, the synergistic effect of CS and n-HA on the enhancement of protein adsorption and cell proliferation was confirmed through protein adhesion and MTT assay, respectively. Consequently, the addition of n-HA and CS perform the new bio-nanocomposites scaffolds based on PGSC with sufficient hydrophilicity, flexibility, and thermal stability in tissue engineering applications.
Collapse
Affiliation(s)
| | - Hooman Golbaten-Mofrad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saba Seyfikar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Aliakbar Jafari
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Soheila Zamanlui
- Department of Biomedical Engineering, Islamic Azad University, Tehran, Iran.,Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Godinho B, Gama N, Ferreira A. Different methods of synthesizing poly(glycerol sebacate) (PGS): A review. Front Bioeng Biotechnol 2022; 10:1033827. [PMID: 36532580 PMCID: PMC9748623 DOI: 10.3389/fbioe.2022.1033827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 08/24/2023] Open
Abstract
Poly(glycerol sebacate) (PGS) is a biodegradable elastomer that has attracted increasing attention as a potential material for applications in biological tissue engineering. The conventional method of synthesis, first described in 2002, is based on the polycondensation of glycerol and sebacic acid, but it is a time-consuming and energy-intensive process. In recent years, new approaches for producing PGS, PGS blends, and PGS copolymers have been reported to not only reduce the time and energy required to obtain the final material but also to adjust the properties and processability of the PGS-based materials based on the desired applications. This review compiles more than 20 years of PGS synthesis reports, reported inconsistencies, and proposed alternatives to more rapidly produce PGS polymer structures or PGS derivatives with tailor-made properties. Synthesis conditions such as temperature, reaction time, reagent ratio, atmosphere, catalysts, microwave-assisted synthesis, and PGS modifications (urethane and acrylate groups, blends, and copolymers) were revisited to present and discuss the diverse alternatives to produce and adapt PGS.
Collapse
Affiliation(s)
- Bruno Godinho
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Nuno Gama
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Artur Ferreira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- ESTGA-Águeda School of Technology and Management, Águeda, Portugal
| |
Collapse
|
19
|
Lv X, Lin H, Wang Z, Niu R, Liu Y, Wei Y, Zheng L. Synthesis of Biodegradable Polyester-Polyether with Enhanced Hydrophilicity, Thermal Stability, Toughness, and Degradation Rate. Polymers (Basel) 2022; 14:polym14224895. [PMID: 36433022 PMCID: PMC9698034 DOI: 10.3390/polym14224895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Novel poly(butylene succinate-butylene furandicarboxylate/polyethylene glycol succinate) (PBSF-PEG) was synthesized using two-step transesterification and polycondensation in the melt. There are characterized by intrinsic viscosity, GPC, 1H NMR, DSC, TGA, tensile, water absorption tests, and water degradation at different pH. GPC analysis showed that PBSF-PEG had high molecular weight with average molecular weight (Mw) up to 13.68 × 104 g/mol. Tensile tests showed that these polymers possessed good mechanical properties with a tensile strength as high as 30 MPa and elongation at break reaching 1500%. It should be noted that the increase of PEG units improved the toughness of the polyester material. In addition, the introduction of PEG promoted the water degradation properties of PBSF, and the copolymer showed a significantly faster water degradation rate when the PEG unit content was 20%. This suggests that the amount of PEG introduced could be applied to regulate the water degradation rate of the copolymers. Hence, these new polymers have great potential for application as environmentally friendly and sustainable plastic packaging materials.
Collapse
Affiliation(s)
- Xuedong Lv
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haitao Lin
- China Huanqiu Contracting & Engineering Corp, Beijing 100029, China
| | - Zhengxiang Wang
- School of 2011, Nanjing Tech University, Nanjing 211816, China
| | - Ruixue Niu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yi Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Correspondence: (Y.W.); (L.Z.)
| | - Liuchun Zheng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Correspondence: (Y.W.); (L.Z.)
| |
Collapse
|
20
|
Massironi A, Marzorati S, Marinelli A, Toccaceli M, Gazzotti S, Ortenzi MA, Maggioni D, Petroni K, Verotta L. Synthesis and Characterization of Curcumin-Loaded Nanoparticles of Poly(Glycerol Sebacate): A Novel Highly Stable Anticancer System. Molecules 2022; 27:molecules27206997. [PMID: 36296595 PMCID: PMC9606863 DOI: 10.3390/molecules27206997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The research for alternative administration methods for anticancer drugs, towards enhanced effectiveness and selectivity, represents a major challenge for the scientific community. In the last decade, polymeric nanostructured delivery systems represented a promising alternative to conventional drug administration since they ensure secure transport to the selected target, providing active compounds protection against elimination, while minimizing drug toxicity to non-target cells. In the present research, poly(glycerol sebacate), a biocompatible polymer, was synthesized and then nanostructured to allow curcumin encapsulation, a naturally occurring polyphenolic phytochemical isolated from the powdered rhizome of Curcuma longa L. Curcumin was selected as an anticancer agent in virtue of its strong chemotherapeutic activity against different cancer types combined with good cytocompatibility within healthy cells. Despite its strong and fascinating biological activity, its possible exploitation as a novel chemotherapeutic has been hampered by its low water solubility, which results in poor absorption and low bioavailability upon oral administration. Hence, its encapsulation within nanoparticles may overcome such issues. Nanoparticles obtained through nanoprecipitation, an easy and scalable technique, were characterized in terms of size and stability over time using dynamic light scattering and transmission electron microscopy, confirming their nanosized dimensions and spherical shape. Finally, biological investigation demonstrated an enhanced cytotoxic effect of curcumin-loaded PGS-NPs on human cervical cancer cells compared to free curcumin.
Collapse
Affiliation(s)
- Alessio Massironi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
- Correspondence: (A.M.); (K.P.)
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Alessandra Marinelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marta Toccaceli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Stefano Gazzotti
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniela Maggioni
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Katia Petroni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Correspondence: (A.M.); (K.P.)
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
21
|
Vaillard VA, Trentino AI, Navarro L, Vaillard SE.
Fumarate‐
co
‐PEG
‐
co
‐sebacate photopolymer and its evaluation as a drug release system. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Victoria A. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| | - Alesandro I. Trentino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| | - Lucila Navarro
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| | - Santiago E. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| |
Collapse
|
22
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
23
|
Tzagiollari A, McCarthy HO, Levingstone TJ, Dunne NJ. Biodegradable and Biocompatible Adhesives for the Effective Stabilisation, Repair and Regeneration of Bone. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060250. [PMID: 35735493 PMCID: PMC9219717 DOI: 10.3390/bioengineering9060250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
Bone defects and complex fractures present significant challenges for orthopaedic surgeons. Current surgical procedures involve the reconstruction and mechanical stabilisation of complex fractures using metal hardware (i.e., wires, plates and screws). However, these procedures often result in poor healing. An injectable, biocompatible, biodegradable bone adhesive that could glue bone fragments back together would present a highly attractive solution. A bone adhesive that meets the many clinical requirements for such an application has yet to be developed. While synthetic and biological polymer-based adhesives (e.g., cyanoacrylates, PMMA, fibrin, etc.) have been used effectively as bone void fillers, these materials lack biomechanical integrity and demonstrate poor injectability, which limits the clinical effectiveness and potential for minimally invasive delivery. This systematic review summarises conventional approaches and recent developments in the area of bone adhesives for orthopaedic applications. The required properties for successful bone repair adhesives, which include suitable injectability, setting characteristics, mechanical properties, biocompatibility and an ability to promote new bone formation, are highlighted. Finally, the potential to achieve repair of challenging bone voids and fractures as well as the potential of new bioinspired adhesives and the future directions relating to their clinical development are discussed.
Collapse
Affiliation(s)
- Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (A.T.); (T.J.L.)
- Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK;
- School of Chemical Sciences, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (A.T.); (T.J.L.)
- Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (A.T.); (T.J.L.)
- Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence: ; Tel.: +353-(0)1-7005712
| |
Collapse
|
24
|
Dukle A, Murugan D, Nathanael AJ, Rangasamy L, Oh TH. Can 3D-Printed Bioactive Glasses Be the Future of Bone Tissue Engineering? Polymers (Basel) 2022; 14:1627. [PMID: 35458377 PMCID: PMC9027654 DOI: 10.3390/polym14081627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
According to the Global Burden of Diseases, Injuries, and Risk Factors Study, cases of bone fracture or injury have increased to 33.4% in the past two decades. Bone-related injuries affect both physical and mental health and increase the morbidity rate. Biopolymers, metals, ceramics, and various biomaterials have been used to synthesize bone implants. Among these, bioactive glasses are one of the most biomimetic materials for human bones. They provide good mechanical properties, biocompatibility, and osteointegrative properties. Owing to these properties, various composites of bioactive glasses have been FDA-approved for diverse bone-related and other applications. However, bone defects and bone injuries require customized designs and replacements. Thus, the three-dimensional (3D) printing of bioactive glass composites has the potential to provide customized bone implants. This review highlights the bottlenecks in 3D printing bioactive glass and provides an overview of different types of 3D printing methods for bioactive glass. Furthermore, this review discusses synthetic and natural bioactive glass composites. This review aims to provide information on bioactive glass biomaterials and their potential in bone tissue engineering.
Collapse
Affiliation(s)
- Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dhanashree Murugan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Loganathan Rangasamy
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
25
|
Polymer Composites Based on Glycol-Modified Poly(Ethylene Terephthalate) Applied to Additive Manufacturing Using Melted and Extruded Manufacturing Technology. Polymers (Basel) 2022; 14:polym14081605. [PMID: 35458355 PMCID: PMC9033097 DOI: 10.3390/polym14081605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
As part of the work, innovative polymer composites dedicated to 3D printing applications were developed. For this purpose, the influence of modified fillers, such as silica modified with alumina, bentonite modified with quaternary ammonium salt, and hybrid filler lignin/silicon dioxide, on the functional properties of composites based on glycol-modified poly(ethylene terephthalate) (PET-G) was investigated. In the first part of the work, using the proprietary technological line, filaments from unfilled polymer and its composites were obtained, which contained modified fillers in an amount from 1.5% to 3.0% by weight. The fittings for the testing of functional properties were obtained using the 3D printing technique in the Melted and Extruded Manufacturing (MEM) technology and the injection molding technique. In a later part of the work, rheological properties such as mass melt flow rate (MFR) and viscosity, and mechanical properties such as Rockwell hardness, Charpy impact strength, and static tensile strength with Young's modulus were presented. The structure of the obtained composites was also described and determined using scanning electron microscopy with an attachment for the microanalysis of chemical composition (SEM/EDS) and the atomic force microscope (AFM). The correct dispersion of the fillers in the polymer matrix was confirmed by wide-angle X-ray scattering analysis (WAXS). In turn, the physicochemical properties were presented on the basis of the research results: thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR). On the basis of the obtained results, it was found that both the amount and the type of fillers used significantly affected the functional properties of the tested composites.
Collapse
|
26
|
Tevlek A, Topuz B, Akbay E, Aydin HM. Surface channel patterned and endothelialized poly(glycerol sebacate) based elastomers. J Biomater Appl 2022; 37:287-302. [DOI: 10.1177/08853282221085798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prevascularization of tissue equivalents is critical for fulfilling the need for sufficient vascular organization for nutrient and gas transport. Hence, endothelial cell culture on biomaterials is of great importance for researchers. Numerous alternate strategies have been suggested in this sense, with cell-based methods being the most commonly employed. In this study, poly (glycerol sebacate) (PGS) elastomers with varying crosslinking ratios were synthesized and their surfaces were patterned with channels by using laser ablation technique. In order to determine an ideal material for cell culture studies, the elastomers were subsequently mechanically, chemically, and biologically characterized. Following that, human umbilical vein endothelial cells (HUVECs) were seeded into the channels established on the PGS membranes and cultured under various culture conditions to establish the optimal culture parameters. Lastly, the endothelial cell responses to the synthesized PGS elastomers were evaluated. Remarkable cell proliferation and impressive cellular organizations were noticed on the constructs created as part of the investigation. On the concrete output of this research, arrangements in various geometries can be created by laser ablation method and the effects of various molecules, drugs or agents on endothelial cells can be evaluated. The platforms produced can be employed as an intermediate biomaterial layer containing endothelial cells for vascularization of tissue-engineered structures, particularly in layer-by-layer tissue engineering approaches.
Collapse
Affiliation(s)
- Atakan Tevlek
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Bengisu Topuz
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Esin Akbay
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
- Centre for Bioengineering, Hacettepe University, Ankara, Turkey§Current Affiliation: METU MEMS Center, Ankara, Turkey
| |
Collapse
|