1
|
Paredes J, Wang Z, Patel P, Rose KL, Schey KL. Dehydroalanine and dehydrobutyrine in aging and cataractous lenses reveal site-specific consequences of spontaneous protein degradation. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1241001. [PMID: 38983090 PMCID: PMC11182102 DOI: 10.3389/fopht.2023.1241001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 07/11/2024]
Abstract
Introduction Protein post-translational modifications (PTMs) have been associated with aging and age-related diseases. PTMs are particularly impactful in long-lived proteins, such as those found in the ocular lens, because they accumulate with age. Two PTMs that lead to protein-protein crosslinks in aged and cataractous lenses are dehydroalanine (DHA) and dehydrobutyrine (DHB); formed from cysteine/serine and threonine residues, respectively. The purpose of this study was to quantitate DHA and DHB in human lens proteins as a function of age and cataract status. Methods Human lenses of various ages were divided into five donor groups: transparent lenses (18-22-year-old, 48-64-year-old, and 70-93-year-old) and cataractous human lenses of two age groups (48-64-year-old lenses, and 70-93-year-old lenses) and were subjected to proteomic analysis. Relative DHA and DHB peptide levels were quantified and compared to their non-modified peptide counterparts. Results For most lens proteins containing DHA or DHB, higher amounts of DHA- and DHB-modified peptides were detected in aged and cataractous lenses. DHA-containing peptides were classified into three groups based on abundance changes with age and cataract: those that (1) increased only in age-related nuclear cataract (ARNC), (2) increased in aged and cataractous lenses, and (3) decreased in aged lenses and ARNC. There was no indication that DHA or DHB levels were dependent on lens region. In most donor groups, proteins with DHA and DHB were more likely to be found among urea-insoluble proteins rather than among water- or urea-soluble proteins. Discussion DHA and DHB formation may induce structural effects that make proteins less soluble in water that leads to age-related protein insolubility and possibly aggregation and light scattering.
Collapse
Affiliation(s)
- Jessica Paredes
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kristie L. Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kevin L. Schey
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
2
|
Dumitrescu DG, Hatzios SK. Emerging roles of low-molecular-weight thiols at the host-microbe interface. Curr Opin Chem Biol 2023; 75:102322. [PMID: 37201290 PMCID: PMC10524283 DOI: 10.1016/j.cbpa.2023.102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host-microbe interface. We begin by providing an overview of chemical and computational approaches to LMW-thiol discovery. Next, we highlight mechanisms of virulence regulation by LMW thiols in infected cells. Finally, we describe how microbial metabolism of these compounds may influence host physiology.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
3
|
Lee H, Wu C, Desormeaux EK, Sarksian R, van der Donk WA. Improved production of class I lanthipeptides in Escherichia coli. Chem Sci 2023; 14:2537-2546. [PMID: 36908960 PMCID: PMC9993889 DOI: 10.1039/d2sc06597e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Lanthipeptides are ribosomally synthesised and post-translationally modified peptides containing lanthionine (Lan) and methyllanthionine (MeLan) residues that are formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys to the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu as a co-substrate to glutamylate Ser/Thr followed by glutamate elimination. Here we report a new system to heterologously express class I lanthipeptides in Escherichia coli through co-expression of the producing organism's glutamyl-tRNA synthetase (GluRS) and tRNAGlu pair in the vector pEVOL. In contrast to the results in the absence of the pEVOL system, we observed the production of fully-dehydrated peptides, including epilancin 15X, and peptides from the Bacteroidota Chryseobacterium and Runella. A second common obstacle to production of lanthipeptides in E. coli is the formation of glutathione adducts. LanC-like (LanCL) enzymes were previously reported to add glutathione to dehydroamino-acid-containing proteins in Eukarya. Herein, we demonstrate that the LanCL enzymes can remove GSH adducts from C-glutathionylated peptides with dl- or ll-lanthionine stereochemistry. These two advances will aid synthetic biology-driven genome mining efforts to discover new lanthipeptides.
Collapse
Affiliation(s)
- Hyunji Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- College of Pharmacy, Kyungsung University Busan 48434 Republic of Korea
| | - Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Emily K Desormeaux
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Raymond Sarksian
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Wilfred A van der Donk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| |
Collapse
|
4
|
Paul A, Gaiani C, Cvetkovska L, Paris C, Alexander M, Ray C, Francius G, EL-Kirat-Chatel S, Burgain J. Deciphering the impact of whey protein powder storage on protein state and powder stability. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Friedrich MG, Wang Z, Schey KL, Truscott RJW. Spontaneous Cleavage at Glu and Gln Residues in Long-Lived Proteins. ACS Chem Biol 2021; 16:2244-2254. [PMID: 34677941 DOI: 10.1021/acschembio.1c00379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long-lived proteins (LLPs) are prone to deterioration with time, and one prominent breakdown process is the scission of peptide bonds. These cleavages can either be enzymatic or spontaneous. In this study, human lens proteins were examined and many were found to have been cleaved on the C-terminal side of Glu and Gln residues. Such cleavages could be reproduced experimentally by in vitro incubation of Glu- or Gln-containing peptides at physiological pHs. Spontaneous cleavage was dependent on pH and amino acid sequence. These model peptide studies suggested that the mechanism involves a cyclic intermediate and is therefore analogous to that characterized for cleavage of peptide bonds adjacent to Asp and Asn residues. An increased amount of some Glu/Gln cleaved peptides in the insoluble fraction of human lenses suggests that cleavage may act to destabilize proteins. Spontaneous cleavage at Glu and Gln, as well as recently described cross-linking at these residues, can therefore be added to the similar processes affecting long-lived proteins that have already been documented for Asn and Asp residues.
Collapse
Affiliation(s)
- Michael G. Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zhen Wang
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin L. Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Roger J. W. Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
6
|
Quan Y, Du Y, Tong Y, Gu S, Jiang JX. Connexin Gap Junctions and Hemichannels in Modulating Lens Redox Homeostasis and Oxidative Stress in Cataractogenesis. Antioxidants (Basel) 2021; 10:1374. [PMID: 34573006 PMCID: PMC8464761 DOI: 10.3390/antiox10091374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
The lens is continuously exposed to oxidative stress insults, such as ultraviolet radiation and other oxidative factors, during the aging process. The lens possesses powerful oxidative stress defense systems to maintain its redox homeostasis, one of which employs connexin channels. Connexins are a family of proteins that form: (1) Hemichannels that mediate the communication between the intracellular and extracellular environments, and (2) gap junction channels that mediate cell-cell communication between adjacent cells. The avascular lens transports nutrition and metabolites through an extensive network of connexin channels, which allows the passage of small molecules, including antioxidants and oxidized wastes. Oxidative stress-induced post-translational modifications of connexins, in turn, regulates gap junction and hemichannel permeability. Recent evidence suggests that dysfunction of connexins gap junction channels and hemichannels may induce cataract formation through impaired redox homeostasis. Here, we review the recent advances in the knowledge of connexin channels in lens redox homeostasis and their response to cataract-related oxidative stress by discussing two major aspects: (1) The role of lens connexins and channels in oxidative stress and cataractogenesis, and (2) the impact and underlying mechanism of oxidative stress in regulating connexin channels.
Collapse
Affiliation(s)
| | | | | | | | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (Y.Q.); (Y.D.); (Y.T.); (S.G.)
| |
Collapse
|
7
|
New insights into the mechanisms of age-related protein-protein crosslinking in the human lens. Exp Eye Res 2021; 209:108679. [PMID: 34147508 DOI: 10.1016/j.exer.2021.108679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Although protein crosslinking is often linked with aging as well as some age-related diseases, very few molecular details are available on the nature of the amino acids involved, or mechanisms that are responsible for crosslinking. Recent research has shown that several amino acids are able to generate reactive intermediates that ultimately lead to covalent crosslinking through multiple non-enzymatic mechanisms. This information has been derived from proteomic investigations on aged human lenses and the mechanisms of crosslinking, in each case, have been elucidated using model peptides. Residues involved in spontaneous protein-protein crosslinking include aspartic acid, asparagine, cysteine, lysine, phosphoserine, phosphothreonine, glutamic acid and glutamine. It has become clear, therefore, that several amino acids can act as potential sites for crosslinking in the long-lived proteins that are present in aged individuals. Moreover, the lens has been an invaluable model tissue and source of crosslinked proteins from which to determine crosslinking mechanisms that may lead to crosslinking in other human tissues.
Collapse
|
8
|
Lai KY, Galan SRG, Zeng Y, Zhou TH, He C, Raj R, Riedl J, Liu S, Chooi KP, Garg N, Zeng M, Jones LH, Hutchings GJ, Mohammed S, Nair SK, Chen J, Davis BG, van der Donk WA. LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome. Cell 2021; 184:2680-2695.e26. [PMID: 33932340 DOI: 10.1016/j.cell.2021.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/22/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Enzyme-mediated damage repair or mitigation, while common for nucleic acids, is rare for proteins. Examples of protein damage are elimination of phosphorylated Ser/Thr to dehydroalanine/dehydrobutyrine (Dha/Dhb) in pathogenesis and aging. Bacterial LanC enzymes use Dha/Dhb to form carbon-sulfur linkages in antimicrobial peptides, but the functions of eukaryotic LanC-like (LanCL) counterparts are unknown. We show that LanCLs catalyze the addition of glutathione to Dha/Dhb in proteins, driving irreversible C-glutathionylation. Chemo-enzymatic methods were developed to site-selectively incorporate Dha/Dhb at phospho-regulated sites in kinases. In human MAPK-MEK1, such "elimination damage" generated aberrantly activated kinases, which were deactivated by LanCL-mediated C-glutathionylation. Surveys of endogenous proteins bearing damage from elimination (the eliminylome) also suggest it is a source of electrophilic reactivity. LanCLs thus remove these reactive electrophiles and their potentially dysregulatory effects from the proteome. As knockout of LanCL in mice can result in premature death, repair of this kind of protein damage appears important physiologically.
Collapse
Affiliation(s)
- Kuan-Yu Lai
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sébastien R G Galan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Yibo Zeng
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0FA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK
| | - Tianhui Hina Zhou
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang He
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ritu Raj
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Jitka Riedl
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Shi Liu
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - K Phin Chooi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Neha Garg
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Min Zeng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lyn H Jones
- Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02115, USA
| | - Graham J Hutchings
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0FA, UK; Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Shabaz Mohammed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Benjamin G Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK.
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Cantrell LS, Schey KL. Proteomic characterization of the human lens and Cataractogenesis. Expert Rev Proteomics 2021; 18:119-135. [PMID: 33849365 DOI: 10.1080/14789450.2021.1913062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The goal of this review is to highlight the triumphs and frontiers in measurement of the lens proteome as it relates to onset of age-related nuclear cataract. As global life expectancy increases, so too does the frequency of age-related nuclear cataracts. Molecular therapeutics do not exist for delay or relief of cataract onset in humans. Since lens fiber cells are incapable of protein synthesis after initial maturation, age-related changes in proteome composition and post-translational modification accumulation can be measured with various techniques. Several of these modifications have been associated with cataract onset. AREAS COVERED We discuss the impact of long-lived proteins on the lens proteome and lens homeostasis as well as proteomic techniques that may be used to measure proteomes at various levels of proteomic specificity and spatial resolution. EXPERT OPINION There is clear evidence that several proteome modifications are correlated with cataract formation. Past studies should be enhanced with cutting-edge, spatially resolved mass spectrometry techniques to enhance the specificity and sensitivity of modification detection as it relates to cataract formation.
Collapse
Affiliation(s)
- Lee S Cantrell
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
10
|
Jones LH. Dehydroamino acid chemical biology: an example of functional group interconversion on proteins. RSC Chem Biol 2020; 1:298-304. [PMID: 34458767 PMCID: PMC8341704 DOI: 10.1039/d0cb00174k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
In nature, dehydroalanine (Dha) and dehydrobutyrine (Dhb) residues are byproducts of protein aging, intermediates in the biosynthesis of lanthipeptides and products of bacterial phospholyases that inactivate host kinase immune responses. Recent chemical biology studies have demonstrated the possibility of mapping dehydroamino acids in complex proteomes in an unbiased manner that could further our understanding of the role of Dha and Dhb in biology and disease more broadly. From a synthetic perspective, chemical mutagenesis through site-selective formation of the unsaturated residue and subsequent addition chemistry has yielded homogeneous proteins bearing a variety of post-translational modifications (PTMs) which have assisted fundamental biological research. This Opinion discusses these recent advances and presents new opportunities for protein engineering and drug discovery. The chemical biology of dehydroalanine and dehydrobutyrine in proteins is summarized and new concepts are presented.![]()
Collapse
Affiliation(s)
- Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute 360 Longwood Avenue Boston MA 02215 USA
| |
Collapse
|
11
|
Poojary MM, Zhang W, Greco I, De Gobba C, Olsen K, Lund MN. Liquid chromatography quadrupole-Orbitrap mass spectrometry for the simultaneous analysis of advanced glycation end products and protein-derived cross-links in food and biological matrices. J Chromatogr A 2020; 1615:460767. [DOI: 10.1016/j.chroma.2019.460767] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
|
12
|
Truscott RJW, Friedrich MG. Molecular Processes Implicated in Human Age-Related Nuclear Cataract. Invest Ophthalmol Vis Sci 2020; 60:5007-5021. [PMID: 31791064 PMCID: PMC7043214 DOI: 10.1167/iovs.19-27535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human age-related nuclear cataract is commonly characterized by four biochemical features that involve modifications to the structural proteins that constitute the bulk of the lens: coloration, oxidation, insolubility, and covalent cross-linking. Each of these is progressive and increases as the cataract worsens. Significant progress has been made in understanding the origin of the factors that underpin the loss of lens transparency. Of these four hallmarks of cataract, it is protein-protein cross-linking that has been the most intransigent, and it is only recently, with the advent of proteomic methodology, that mechanisms are being elucidated. A diverse range of cross-linking processes involving several amino acids have been uncovered. Although other hypotheses for the etiology of cataract have been advanced, it is likely that spontaneous decomposition of the structural proteins of the lens, which do not turn over, is responsible for the age-related changes to the properties of the lens and, ultimately, for cataract. Cataract may represent the first and best characterized of a number of human age-related diseases where spontaneous protein modification leads to ongoing deterioration and, ultimately, a loss of tissue function.
Collapse
Affiliation(s)
- Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
13
|
Schey KL, Wang Z, Friedrich MG, Garland DL, Truscott RJW. Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins. Prog Retin Eye Res 2019; 76:100802. [PMID: 31704338 DOI: 10.1016/j.preteyeres.2019.100802] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
Abstract
The ocular lens is a unique tissue that contains an age gradient of cells and proteins ranging from newly differentiated cells containing newly synthesized proteins to cells and proteins that are as old as the organism. Thus, the ocular lens is an excellent model for studying long-lived proteins (LLPs) and the effects of aging and post-translational modifications on protein structure and function. Given the architecture of the lens, with young fiber cells in the outer cortex and the oldest cells in the lens nucleus, spatially-resolved studies provide information on age-specific protein changes. In this review, experimental strategies and proteomic methods that have been used to examine age-related and cataract-specific changes to the human lens proteome are described. Measured spatio-temporal changes in the human lens proteome are summarized and reveal a highly consistent, time-dependent set of modifications observed in transparent human lenses. Such measurements have led to the discovery of cataract-specific modifications and the realization that many animal systems are unsuitable to study many of these modifications. Mechanisms of protein modifications such as deamidation, racemization, truncation, and protein-protein crosslinking are presented and the implications of such mechanisms for other long-lived proteins in other tissues are discussed in the context of age-related neurological diseases. A comprehensive understanding of LLP modifications will enhance our ability to develop new therapies for the delay, prevention or reversal of age-related diseases.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University, USA.
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University, USA
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | | | - Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
14
|
Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 2019; 51:1409-1431. [DOI: 10.1007/s00726-019-02787-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
AbstractPeptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.
Collapse
|
15
|
Wang Z, Friedrich MG, Truscott RJW, Schey KL. Cleavage C-terminal to Asp leads to covalent crosslinking of long-lived human proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:831-839. [PMID: 31226490 DOI: 10.1016/j.bbapap.2019.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/29/2019] [Accepted: 06/16/2019] [Indexed: 01/27/2023]
Abstract
With age, long-lived proteins in the human body deteriorate, which can have consequences both for aging and disease. The aging process is often associated with the formation of covalently crosslinked proteins. Currently our knowledge of the mechanism of formation of these crosslinks is limited. In this study, proteomics was used to characterize sites of covalent protein-protein crosslinking and identify a novel mechanism of protein-protein crosslinking in the adult human lens. In this mechanism, Lys residues are crosslinked to C-terminal Asp residues that are formed by non-enzymatic protein truncation. Ten different crosslinks were identified in major lens proteins such as αA-crystallin, αB-crystallin and AQP0. Crosslinking in AQP0 increased significantly with age and also increased significantly in cataract lenses compared with normal lenses. Using model peptides, a mechanism of formation of the Lys-Asp crosslink was elucidated. The mechanism involves spontaneous peptide cleavage on the C-terminal side of Asp residues which can take place in the pH range 5-7.4. Cleavage appears to involve attack by the side chain carboxyl group on the adjacent peptide bond, resulting in the formation of a C-terminal Asp anhydride. This anhydride intermediate can then either react with water to form Asp, or with a nucleophile, such as a free amine group to form a crosslink. If an ε-amino group of Lys or an N-terminal amine group attacks the anhydride, a covalent protein-protein crosslink will be formed. This bi-phasic mechanism represents the first report to link two spontaneous events: protein cleavage and crosslinking that are characteristic of long-lived proteins.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Kevin L Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
16
|
Nakayoshi T, Kato K, Kurimoto E, Oda A. Possible Mechanisms of Nonenzymatic Formation of Dehydroalanine Residue Catalyzed by Dihydrogen Phosphate Ion. J Phys Chem B 2019; 123:3147-3155. [PMID: 30916562 DOI: 10.1021/acs.jpcb.8b10386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Uncommon crosslinked amino acids have been identified in several aging tissues and are suspected to trigger various age-related diseases. Several uncommon residues are formed when the dehydroalanine (Dha) residue undergoes a nucleophilic attack by surrounding residues. Dha residues are considered to be formed by posttranslational modification of serine (Ser) and cysteine residues. In the present study, we investigated the Dha residue formation mechanism catalyzed by dihydrogen phosphate ion (H2PO4-) using quantum chemical calculations. We obtained optimized geometries using the B3LYP density functional method and carried out single-point energy calculations using the second-order Møller-Plesset perturbation method. All calculations were performed using Ace-Ser-Nme (Ace = acetyl, Nme = methylamino) as a model compound. Results of the computational analysis suggest that the mechanism underlying the Dha residue formation from Ser consists of two steps: enolization and 1,3-elimination. The H2PO4- catalyzed both reactions as a proton-relay mediator. The calculated activation barrier for Dha residue formation was estimated as 30.4 kcal mol-1. In this pathway, the catalytic H2PO4- interacts with the Ser residue α-proton, carbonyl oxygen of Ser, and C-terminal side adjacent residues, and the calculated activation energy produced was the same as the experimentally reported value for nonenzymatic modifications of amino acid residues. Therefore, our calculation suggests that H2PO4--catalyzed Ser residue dehydration can proceed nonenzymatically.
Collapse
Affiliation(s)
- Tomoki Nakayoshi
- Graduate School of Pharmacy , Meijo University , 150 Yagotoyama , Tempaku-ku, Nagoya , Aichi 468-8503 , Japan.,Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kakuma-machi , Kanazawa , Ishikawa 920-1192 , Japan
| | - Koichi Kato
- Graduate School of Pharmacy , Meijo University , 150 Yagotoyama , Tempaku-ku, Nagoya , Aichi 468-8503 , Japan.,Department of Pharmacy , Kinjo Gakuin University , 2-1723 Omori , Moriyama-ku, Nagoya , Aichi 463-8521 , Japan
| | - Eiji Kurimoto
- Graduate School of Pharmacy , Meijo University , 150 Yagotoyama , Tempaku-ku, Nagoya , Aichi 468-8503 , Japan
| | - Akifumi Oda
- Graduate School of Pharmacy , Meijo University , 150 Yagotoyama , Tempaku-ku, Nagoya , Aichi 468-8503 , Japan.,Institute for Protein Research , Osaka University , 3-2 Yamadaoka, Suita , Osaka 565-0871 , Japan
| |
Collapse
|
17
|
Chen Z, Leinisch F, Greco I, Zhang W, Shu N, Chuang CY, Lund MN, Davies MJ. Characterisation and quantification of protein oxidative modifications and amino acid racemisation in powdered infant milk formula. Free Radic Res 2019; 53:68-81. [DOI: 10.1080/10715762.2018.1554250] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhifei Chen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Leinisch
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ines Greco
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wei Zhang
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nan Shu
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne N. Lund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Hägglund P, Mariotti M, Davies MJ. Identification and characterization of protein cross-links induced by oxidative reactions. Expert Rev Proteomics 2018; 15:665-681. [DOI: 10.1080/14789450.2018.1509710] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Quantification of thioether-linked glutathione modifications in human lens proteins. Exp Eye Res 2018; 175:83-89. [PMID: 29879394 DOI: 10.1016/j.exer.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/10/2018] [Accepted: 06/03/2018] [Indexed: 11/20/2022]
Abstract
Dehydroalanine (DHA) and dehydrobutyrine (DHB) intermediates, formed through β-elimination, induce protein irreversible glutathionylation and protein-protein crosslinking in human lens fiber cells. In total, irreversible glutathionylation was detected on 52 sites including cysteine, serine and threonine residues in 18 proteins in human lenses. In this study, the levels of GSH modification on three serine residues and four cysteine residues located in seven different lens proteins isolated from different regions and different aged lenses were quantified. The relative levels of modification (modified/nonmodified) were site-specific and age-related, ranging from less than 0.05% to about 500%. The levels of modification on all of the sites quantified in the lens cortex increased with age and GSH modification also increased from cortex to outer nucleus region suggesting an age-related increase of modification. The levels of modification on sites located in stable regions of the proteins such as Cys117 of βA3, Cys80 of βB1 and Cys27 of γS, continued increasing in inner nucleus, but modification on sites located in regions undergoing degradation with age decreased in the inner nucleus suggesting GSH modified proteins were more susceptible to further modification. Irreversible GSH modification in cataract lenses was typically higher than in age-matched normal lenses, but the difference did not reach statistical significance for a majority of sites, with the exception Cys117 of βA3 crystallin in WSF. Except for S59 of αA and αB crystallins, GSH modification did not induce protein insolubility suggesting a possible role for this modification in protection from protein-protein crosslinking.
Collapse
|
20
|
Maes E, Dyer JM, McKerchar HJ, Deb-Choudhury S, Clerens S. Protein-protein cross-linking and human health: the challenge of elucidating with mass spectrometry. Expert Rev Proteomics 2017; 14:917-929. [PMID: 28759730 DOI: 10.1080/14789450.2017.1362336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION In several biomedical research fields, the cross-linking of peptides and proteins has an important impact on health and wellbeing. It is therefore of crucial importance to study this class of post-translational modifications in detail. The huge potential of mass spectrometric technologies in the mapping of these protein-protein cross-links is however overshadowed by the challenges that the field has to overcome. Areas covered: In this review, we summarize the different pitfalls and challenges that the protein-protein cross-linking field is confronted with when using mass spectrometry approaches. We additionally focus on native disulfide bridges as an example and provide some examples of cross-links that are important in the biomedical field. Expert commentary: The current flow of methodological improvements, mainly from the chemical cross-linking field, has delivered a significant contribution to deciphering native and insult-induced cross-links. Although an automated data analysis of proteome-wide peptide cross-linking is currently only possible in chemical cross-linking experiments, the field is well on the way towards a more automated analysis of native and insult-induced cross-links in raw mass spectrometry data that will boost its potential in biomedical applications.
Collapse
Affiliation(s)
- Evelyne Maes
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand
| | - Jolon M Dyer
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand.,c Riddet Institute, Massey University , Palmerston North , New Zealand.,d Wine, Food & Molecular Biosciences , Lincoln University , Lincoln , New Zealand
| | - Hannah J McKerchar
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand
| | | | - Stefan Clerens
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand
| |
Collapse
|
21
|
Hotspots of age-related protein degradation: the importance of neighboring residues for the formation of non-disulfide crosslinks derived from cysteine. Biochem J 2017; 474:2475-2487. [PMID: 28592682 DOI: 10.1042/bcj20170268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022]
Abstract
Over time, the long-lived proteins that are present throughout the human body deteriorate. Typically, they become racemized, truncated, and covalently cross-linked. One reaction responsible for age-related protein cross-linking in the lens was elucidated recently and shown to involve spontaneous formation of dehydroalanine (DHA) intermediates from phosphoserine. Cys residues are another potential source of DHA, and evidence for this was found in many lens crystallins. In the human lens, some sites were more prone to forming non-disulfide covalent cross-links than others. Foremost among them was Cys5 in βA4 crystallin. The reason for this enhanced reactivity was investigated using peptides. Oxidation of Cys to cystine was a prerequisite for DHA formation, and DHA production was accelerated markedly by the presence of a Lys, one residue separated from Cys5. Modeling and direct investigation of the N-terminal sequence of βA4 crystallin, as well as a variety of homologous peptides, showed that the epsilon amino group of Lys can promote DHA production by nucleophilic attack on the alpha proton of cystine. Once a DHA residue was generated, it could form intermolecular cross-links with Lys and Cys. In the lens, the most abundant cross-link involved Cys5 of βA4 crystallin attached via a thioether bond to glutathione. These findings illustrate the potential of Cys and disulfide bonds to act as precursors for irreversible covalent cross-links and the role of nearby amino acids in creating 'hotpsots' for the spontaneous processes responsible for protein degradation in aged tissues.
Collapse
|
22
|
Meijer BM, Jang SM, Guerrera IC, Chhuon C, Lipecka J, Reisacher C, Baleux F, Sansonetti PJ, Muchardt C, Arbibe L. Threonine eliminylation by bacterial phosphothreonine lyases rapidly causes cross-linking of mitogen-activated protein kinase (MAPK) in live cells. J Biol Chem 2017; 292:7784-7794. [PMID: 28325837 DOI: 10.1074/jbc.m117.775940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/21/2017] [Indexed: 11/06/2022] Open
Abstract
Old long-lived proteins contain dehydroalanine (Dha) and dehydrobutyrine (Dhb), two amino acids engendered by dehydration of serines and threonines, respectively. Although these residues have a suspected role in protein cross-linking and aggregation, their direct implication has yet to be determined. Here, we have taken advantage of the ability of the enteropathogen Shigella to convert the phosphothreonine residue of the pT-X-pY consensus sequence of ERK and p38 into Dhb and followed the impact of dehydration on the fate of the two MAPKs. To that end, we have generated the first antibodies recognizing Dhb-modified proteins and allowing tracing them as they form. We showed that Dhb modifications accumulate in a long-lasting manner in Shigella-infected cells, causing subsequent formation of covalent cross-links of MAPKs. Moreover, the Dhb signal correlates precisely with the activation of the Shigella type III secretion apparatus, thus evidencing injectisome activity. This observation is the first to document a causal link between Dhb formation and protein cross-linking in live cells. Detection of eliminylation is a new avenue to phosphoproteome regulation in eukaryotes that will be instrumental for the development of type III secretion inhibitors.
Collapse
Affiliation(s)
- Benoit M Meijer
- From the Team genomic plasticity and infection, Department of Immunology, Infectiology and Hematology, Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, 75993 Paris CEDEX 14, France.,the Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur UPMC, 75724 Paris, France
| | - Suk Min Jang
- Institut Pasteur, Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, 75724 Paris CEDEX 15, France.,UMR3738 CNRS, 75732 Paris CEDEX 15, France
| | - Ida C Guerrera
- the Proteomic Platform Necker, PPN-3P5, Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France
| | - Cerina Chhuon
- the Proteomic Platform Necker, PPN-3P5, Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France
| | - Joanna Lipecka
- the Proteomic Platform Necker, PPN-3P5, Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France.,the CPN Proteomics Facility-3P5, Center of Psychiatry and Neuroscience, UMR INSERM 894, 75014 Paris, France
| | - Caroline Reisacher
- From the Team genomic plasticity and infection, Department of Immunology, Infectiology and Hematology, Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, 75993 Paris CEDEX 14, France
| | - Françoise Baleux
- the Unité de Chimie des Biomolécules, Institut Pasteur, 75015 Paris, France, and
| | - Philippe J Sansonetti
- the Unité de Pathogénie Microbienne Moléculaire, Unité INSERM U1202, Institut Pasteur, 75015 Paris, France
| | - Christian Muchardt
- Institut Pasteur, Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, 75724 Paris CEDEX 15, France.,UMR3738 CNRS, 75732 Paris CEDEX 15, France
| | - Laurence Arbibe
- From the Team genomic plasticity and infection, Department of Immunology, Infectiology and Hematology, Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, 75993 Paris CEDEX 14, France, .,Université Paris Descartes,75270 Paris CEDEX 06, France
| |
Collapse
|
23
|
LanCL proteins are not Involved in Lanthionine Synthesis in Mammals. Sci Rep 2017; 7:40980. [PMID: 28106097 PMCID: PMC5247676 DOI: 10.1038/srep40980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/13/2016] [Indexed: 11/08/2022] Open
Abstract
LanC-like (LanCL) proteins are mammalian homologs of bacterial LanC enzymes, which catalyze the addition of the thiol of Cys to dehydrated Ser residues during the biosynthesis of lanthipeptides, a class of natural products formed by post-translational modification of precursor peptides. The functions of LanCL proteins are currently unclear. A recent proposal suggested that LanCL1 catalyzes the addition of the Cys of glutathione to protein- or peptide-bound dehydroalanine (Dha) to form lanthionine, analogous to the reaction catalyzed by LanC in bacteria. Lanthionine has been detected in human brain as the downstream metabolite lanthionine ketimine (LK), which has been shown to have neuroprotective effects. In this study, we tested the proposal that LanCL1 is involved in lanthionine biosynthesis by constructing LanCL1 knock-out mice and measuring LK concentrations in their brains using a mass spectrometric detection method developed for this purpose. To investigate whether other LanCL proteins (LanCL2/3) may confer a compensatory effect, triple knock-out (TKO) mice were also generated and tested. Very similar concentrations of LK (0.5–2.5 nmol/g tissue) were found in LanCL1 knock-out, TKO and wild type (WT) mouse brains, suggesting that LanCL proteins are not involved in lanthionine biosynthesis.
Collapse
|
24
|
Carroll L, Davies MJ, Pattison DI. Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants. Free Radic Res 2015; 49:750-67. [PMID: 25854915 DOI: 10.3109/10715762.2015.1018247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is an essential trace element in mammals, with the majority specifically encoded as seleno-L-cysteine into a range of selenoproteins. Many of these proteins play a key role in modulating oxidative stress, via either direct detoxification of biological oxidants, or repair of oxidised residues. Both selenium- and sulphur-containing residues react readily with the wide range of oxidants (including hydrogen peroxide, radicals, singlet oxygen and hypochlorous, hypobromous, hypothiocyanous and peroxynitrous acids) that are produced during inflammation and have been implicated in the development of a range of inflammatory diseases. Whilst selenium has similar properties to sulphur, it typically exhibits greater reactivity with most oxidants, and there are considerable differences in the subsequent reactivity and ease of repair of the oxidised species that are formed. This review discusses the chemistry of low-molecular-mass organoselenium compounds (e.g. selenoethers, diselenides and selenols) with inflammatory oxidants, with a particular focus on the reaction kinetics and product studies, with the differences in reactivity between selenium and sulphur analogues described in the selected examples. These data provide insight into the therapeutic potential of low-molecular-mass selenium-containing compounds to modulate the activity of both radical and molecular oxidants and provide protection against inflammation-induced damage. Progress in their therapeutic development (including modulation of potential selenium toxicity by strategic design) is demonstrated by a brief summary of some recent studies where novel organoselenium compounds have been used as wound healing or radioprotection agents and in the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- L Carroll
- The Heart Research Institute , Newtown, Sydney , Australia
| | | | | |
Collapse
|
25
|
Townsend DM, Lushchak VI, Cooper AJL. A comparison of reversible versus irreversible protein glutathionylation. Adv Cancer Res 2015; 122:177-98. [PMID: 24974182 DOI: 10.1016/b978-0-12-420117-0.00005-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutathionylation is generally a reversible posttranslational modification that occurs to cysteine residues that have been exposed to reactive oxygen species (P-SSG). This cyclical process can regulate various clusters of proteins, including those involved in critical cellular signaling functions. However, certain conditions can favor the formation of dehydroamino acids, such as 2,3-didehydroalanine (2,3-dehydroalanine, DHA) and 2,3-didehydrobutyrine (2,3-dehydrobutyrine), which can act as Michael acceptors. In turn, these can form Michael adducts with glutathione (GSH), resulting in the formation of a stable thioether conjugate, an irreversible process referred to as nonreducible glutathionylation. This is predicted to be prevalent in nature, particularly in more slowly turning over proteins. Such nonreducible glutathionylation can be distinguished from the more facile cycling signaling processes and is predicted to be of gerontological, toxicological, pharmacological, and oncological relevance. Here, we compare reversible and irreversible glutathionylation.
Collapse
Affiliation(s)
- Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA.
| |
Collapse
|
26
|
Khater S, Mohanty D. Genome-wide search for eliminylating domains reveals novel function for BLES03-like proteins. Genome Biol Evol 2014; 6:2017-33. [PMID: 25062915 PMCID: PMC4159009 DOI: 10.1093/gbe/evu161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial phosphothreonine lyases catalyze a novel posttranslational modification involving formation of dehydrobutyrine/dehyroalanine by β elimination of the phosphate group of phosphothreonine or phosphoserine residues in their substrate proteins. Though there is experimental evidence for presence of dehydro amino acids in human proteins, no eukaryotic homologs of these lyases have been identified as of today. A comprehensive genome-wide search for identifying phosphothreonine lyase homologs in eukaryotes was carried out. Our fold-based search revealed structural and catalytic site similarity between bacterial phosphothreonine lyases and BLES03 (basophilic leukemia-expressed protein 03), a human protein with unknown function. Ligand induced conformational changes similar to bacterial phosphothreonine lyases, and movement of crucial arginines in the loop region to the catalytic pocket upon binding of phosphothreonine-containing peptides was seen during docking and molecular dynamics studies. Genome-wide search for BLES03 homologs using sensitive profile-based methods revealed their presence not only in eukaryotic classes such as chordata and fungi but also in bacterial and archaebacterial classes. The synteny of these archaebacterial BLES03-like proteins was remarkably similar to that of type IV lantibiotic synthetases which harbor LanL-like phosphothreonine lyase domains. Hence, context-based analysis reinforced our earlier sequence/structure-based prediction of phosphothreonine lyase catalytic function for BLES03. Our in silico analysis has revealed that BLES03-like proteins with previously unknown function are novel eukaryotic phosphothreonine lyases involved in biosynthesis of dehydro amino acids, whereas their bacterial and archaebacterial counterparts might be involved in biosynthesis of natural products similar to lantibiotics.
Collapse
Affiliation(s)
- Shradha Khater
- Bioinformatics Center, National Institute of Immunology, New Delhi, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, New Delhi, India
| |
Collapse
|
27
|
Wang Z, Lyons B, Truscott RJW, Schey KL. Human protein aging: modification and crosslinking through dehydroalanine and dehydrobutyrine intermediates. Aging Cell 2014; 13:226-34. [PMID: 24134651 PMCID: PMC4114717 DOI: 10.1111/acel.12164] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2013] [Indexed: 11/29/2022] Open
Abstract
Nonenzymatic post-translational modification (PTM) of proteins is a fundamental molecular process of aging. The combination of various modifications and their accumulation with age not only affects function, but leads to crosslinking and protein aggregation. In this study, aged human lens proteins were examined using HPLC–tandem mass spectrometry and a blind PTM search strategy. Multiple thioether modifications of Ser and Thr residues by glutathione (GSH) and its metabolites were unambiguously identified. Thirty-four of 36 sites identified on 15 proteins were found on known phosphorylation sites, supporting a mechanism involving dehydroalanine (DHA) and dehydrobutyrine (DHB) formation through β-elimination of phosphoric acid from phosphoserine and phosphothreonine with subsequent nucleophilic attack by GSH. In vitro incubations of phosphopeptides demonstrated that this process can occur spontaneously under physiological conditions. Evidence that this mechanism can also lead to protein–protein crosslinks within cells is provided where five crosslinked peptides were detected in a human cataractous lens. Nondisulfide crosslinks were identified for the first time in lens tissue between βB2- & βB2-, βA4- & βA3-, γS- & βB1-, and βA4- & βA4-crystallins and provide detailed structural information on in vivo crystallin complexes. These data suggest that phosphoserine and phosphothreonine residues represent susceptible sites for spontaneous breakdown in long-lived proteins and that DHA- and DHB-mediated protein crosslinking may be the source of the long-sought after nondisulfide protein aggregates believed to scatter light in cataractous lenses. Furthermore, this mechanism may be a common aging process that occurs in long-lived proteins of other tissues leading to protein aggregation diseases.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry and Mass Spectrometry Research Center Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Brian Lyons
- Save Sight Institute University of Sydney Sydney NSW 2000 Australia
| | - Roger J. W. Truscott
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
| | - Kevin L. Schey
- Department of Biochemistry and Mass Spectrometry Research Center Vanderbilt University School of Medicine Nashville TN 37232 USA
| |
Collapse
|
28
|
Abstract
Under basic pH conditions, the heavy chain 220-light chain 214 (H220-L214) disulfide bond, found in the flexible hinge region of an IgG1, can convert to a thioether. Similar conditions also result in racemization of the H220 cysteine. Here, we report that racemization occurs on both H220 and L214 on an IgG1 with a λ light chain (IgG1λ) but almost entirely on H220 of an IgGl with a κ light chain (IgG1κ) under similar conditions. Likewise, racemization was detected at significant levels on H220 and L214 on endogenous human IgG1λ but only at the H220 position on IgG1κ. Low but measurable levels of D-cysteines were found on IgG2 cysteines in the hinge region, both with monoclonal antibodies incubated under basic pH conditions and on antibodies isolated from human serum. A simplified reaction mechanism involving reversible β-elimination on the cysteine is presented that accounts for both base-catalyzed racemization and thioether formation at the hinge disulfide.
Collapse
Affiliation(s)
- Qingchun Zhang
- From the Department of Process and Product Development, Amgen, Inc., Thousand Oaks, California 91320
| | | |
Collapse
|
29
|
Nika H, Nieves E, Hawke DH, Angeletti RH. Phosphopeptide enrichment by covalent chromatography after derivatization of protein digests immobilized on reversed-phase supports. J Biomol Tech 2013; 24:154-77. [PMID: 23997662 PMCID: PMC3750845 DOI: 10.7171/jbt.13-2403-004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O-GlcNAc)-modified counterparts. Solid-phase enzymatic dephosphorylation proved to be a viable tool to condition O-GlcNAcylated peptide in mixtures with phosphopeptides for selective affinity purification. Acetylation, as an integral step of the sample-preparation method, precluded reduction in recovery of the thiolation substrate caused by intrapeptide lysine-dehydroalanine cross-link formation. The solid-phase analytical platform provides robustness and simplicity of operation using equipment readily available in most biological laboratories and is expected to accommodate additional chemistries to expand the scope of solid-phase serial derivatization for protein structural characterization.
Collapse
Affiliation(s)
- Heinz Nika
- Laboratory for Macromolecular Analysis and Proteomics and
- Department for Molecular and Developmental Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| | - Edward Nieves
- Laboratory for Macromolecular Analysis and Proteomics and
| | - David H. Hawke
- Department of Pathology, University of Texas, M.D. Anderson Cancer Center Houston, Texas 77030, USA
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis and Proteomics and
- Department for Molecular and Developmental Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| |
Collapse
|
30
|
Zhang Q, Schenauer MR, McCarter JD, Flynn GC. IgG1 thioether bond formation in vivo. J Biol Chem 2013; 288:16371-16382. [PMID: 23625924 PMCID: PMC3675574 DOI: 10.1074/jbc.m113.468397] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/22/2013] [Indexed: 12/18/2022] Open
Abstract
During either production or storage, the LC214-HC220 disulfide in therapeutic antibodies can convert to a thioether bond. Here we report that a thioether forms at the same position on antibodies in vivo. An IgG1κ therapeutic antibody dosed in humans formed a thioether at this position at a rate of about 0.1%/day while circulating in blood. Thioether modifications were also found at this position in endogenous antibodies isolated from healthy human subjects, at levels consistent with this conversion rate. For both endogenous antibodies and recombinant antibodies studied in vivo, thioether conversion rates were faster for IgG1 antibodies containing λ light chains than those containing κ light chains. These light chain reaction rate differences were replicated in vitro. Additional mechanistic studies showed that base-catalyzed thioether formation through the light chain dehydrogenation was more preferred on antibodies with λ light chains, which may help explain the observed reaction rate differences.
Collapse
Affiliation(s)
- Qingchun Zhang
- Departments of Process and Product Development, Thousand Oaks, California 91320
| | - Matthew R Schenauer
- Departments of Process and Product Development, Thousand Oaks, California 91320
| | - John D McCarter
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, California 91320
| | - Gregory C Flynn
- Departments of Process and Product Development, Thousand Oaks, California 91320.
| |
Collapse
|
31
|
Yin S, Pastuskovas CV, Khawli LA, Stults JT. Characterization of therapeutic monoclonal antibodies reveals differences between in vitro and in vivo time-course studies. Pharm Res 2012; 30:167-78. [PMID: 22956170 DOI: 10.1007/s11095-012-0860-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/08/2012] [Indexed: 01/18/2023]
Abstract
PURPOSE To examine and determine the sites and the kinetics of IgG1 mAb modifications from both in vitro (rat plasma and PBS) and in vivo (rat model) time-course studies. METHODS A comprehensive set of protein characterization methods, including RPLC/MS, LC-MS/MS, iCIEF, capSEC, and CE-SDS were performed in this report. RESULTS We demonstrate that plasma incubation and in vivo circulation increase the rate of C-terminal lysine removal, and the levels of deamidation, pyroglutamic acid (pyroE), and thioether-linked (lanthionine) heavy chain and light chain (HC-S-LC). In contrast, incubation in PBS shows no C-terminal lysine removal, and slower rates of deamidation, pyroE, and HC-S-LC formation. Other potential modifications such as oxidation, aggregation, and peptide bonds hydrolysis are not enhanced. CONCLUSION This study demonstrates that in vivo mAb modifications are not fully represented by in vitro PBS or plasma incubation. The differences in modifications and their rates reflect the dissimilarities of matrices and the impact of enzymes. These observations provide valuable evidence and knowledge in evaluating the criticality of modifications that occur naturally in vivo that might impact formulation design, therapeutic outcome, and critical quality attribute assessments for therapeutic mAb manufacturing and quality control.
Collapse
Affiliation(s)
- Sheng Yin
- Protein Analytical Chemistry, Genentech, Inc, South San Francisco, California, USA
| | | | | | | |
Collapse
|
32
|
Rombouts I, Lagrain B, Brijs K, Delcour JA. Cross-linking of wheat gluten proteins during production of hard pretzels. Amino Acids 2011; 42:2429-38. [DOI: 10.1007/s00726-011-1048-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/18/2011] [Indexed: 11/24/2022]
|
33
|
Hooi MYS, Truscott RJW. Racemisation and human cataract. D-Ser, D-Asp/Asn and D-Thr are higher in the lifelong proteins of cataract lenses than in age-matched normal lenses. AGE (DORDRECHT, NETHERLANDS) 2011; 33:131-41. [PMID: 20686926 PMCID: PMC3127471 DOI: 10.1007/s11357-010-9171-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/19/2010] [Indexed: 05/03/2023]
Abstract
ASTRACT: Several amino acids were found to undergo progressive age-dependent racemisation in the lifelong proteins of normal human lenses. The two most highly racemised were Ser and Asx. By age 70, 4.5% of all Ser residues had been racemised, along with >9% of Asx residues. Such a high level of inversion, equivalent to between 2 and 3 D- amino acids per polypeptide chain, is likely to induce significant denaturation of the crystallins in aged lenses. Thr, Glx and Phe underwent age-dependent racemisation to a smaller degree. In model experiments, D- amino acid content could be increased simply by exposing intact lenses to elevated temperature. In cataract lenses, the extent of racemisation of Ser, Asx and Thr residues was significantly greater than for age-matched normal lenses. This was true, even for cataract lenses removed from patients at the earliest ages where age-related cataract is observed clinically. Racemisation of amino acids in crystallins may arise due to prolonged exposure of these proteins to ocular temperatures and increased levels of racemisation may play a significant role in the opacification of human lenses.
Collapse
Affiliation(s)
- Michelle Yu Sung Hooi
- Save Sight Institute, Sydney Eye Hospital, University of Sydney, 8 Macquarie Street, Sydney, NSW 2000 Australia
| | - Roger J. W. Truscott
- Save Sight Institute, Sydney Eye Hospital, University of Sydney, 8 Macquarie Street, Sydney, NSW 2000 Australia
| |
Collapse
|
34
|
Cooper AJ, Pinto JT, Callery PS. Reversible and irreversible protein glutathionylation: biological and clinical aspects. Expert Opin Drug Metab Toxicol 2011; 7:891-910. [PMID: 21557709 DOI: 10.1517/17425255.2011.577738] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Depending in part on the glutathione:glutathione disulfide ratio, reversible protein glutathionylation to a mixed disulfide may occur. Reversible glutathionylation is important in protecting proteins against oxidative stress, guiding correct protein folding, regulating protein activity and modulating proteins critical to redox signaling. The potential also exists for irreversible protein glutathionylation via Michael addition of an -SH group to a dehydroalanyl residue, resulting in formation of a stable, non-reducible thioether linkage. AREAS COVERED This article reviews factors contributing to reversible and irreversible protein glutathionylation and their biomedical implications. It also examines the possibility that certain drugs such as busulfan may be toxic by promoting irreversible glutathionylation. The reader will gain an appreciation of the protective nature and control of function resulting from reversible protein glutathionylation. The reader is also introduced to the recently identified phenomenon of irreversible protein glutathionylation and its possible deleterious effects. EXPERT OPINION The process of reversible protein glutathionylation is now well established but these findings need to be substantiated at the tissue and organ levels, and also with disease state. That being said, irreversible protein glutathionylation can also occur and this has implications in disease and aging. Toxicologists should consider this when evaluating the possible side effects of certain drugs such as busulfan that may generate a glutathionylating species in vivo.
Collapse
Affiliation(s)
- Arthur Jl Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
35
|
Su SP, McArthur JD, Truscott RJW, Aquilina JA. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:647-56. [PMID: 21447408 DOI: 10.1016/j.bbapap.2011.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/14/2011] [Accepted: 03/22/2011] [Indexed: 11/30/2022]
Abstract
The optical properties of the lens are dependent upon the integrity of proteins within the fiber cells. During aging, crystallins, the major intra-cellular structural proteins of the lens, aggregate and become water-insoluble. Modifications to crystallins and the lens intermediate filaments have been implicated in this phenomenon. In this study, we examined changes to, and interactions between, human lens crystallins and intermediate filament proteins in lenses from a variety of age groups (0-86years). Among the lens-specific intermediate filament proteins, filensin was extensively cleaved in all postnatal lenses, with truncated products of various sizes being found in both the lens cortical and nuclear extracts. Phakinin was also truncated and was not detected in the lens nucleus. The third major intermediate filament protein, vimentin, remained intact in lens cortical fiber cells across the age range except for an 86year lens, where a single ~49kDa breakdown product was observed. An αB-crystallin fusion protein (maltose-binding protein-αB-crystallin) was found to readily exchange subunits with endogenous α-crystallin, and following mild heat stress, to bind to filensin, phakinin and vimentin and to several of their truncated products. Tryptic digestion of a truncated form of filensin suggested that the binding site for α-crystallin may be in the N-terminal region. The presence of significant amounts of small peptides derived from γS- and βB1-crystallins in the water-insoluble fraction of the lens indicates that these interact tightly with cytoskeletal or membrane components. Interestingly, water-soluble complexes (~40kDa) contained predominantly γS- and βB1-crystallins, suggesting that cross-linking is an alternative pathway for modified β- and γ-crystallins in the lens.
Collapse
Affiliation(s)
- Shih-Ping Su
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | |
Collapse
|
36
|
Franey H, Brych SR, Kolvenbach CG, Rajan RS. Increased aggregation propensity of IgG2 subclass over IgG1: role of conformational changes and covalent character in isolated aggregates. Protein Sci 2011; 19:1601-15. [PMID: 20556807 DOI: 10.1002/pro.434] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aggregation of human therapeutic antibodies represents a significant hurdle to product development. In a test across multiple antibodies, it was observed that IgG1 antibodies aggregated less, on average, than IgG2 antibodies under physiological pH and mildly elevated temperature. This phenomenon was also observed for IgG1 and IgG2 subclasses of anti-streptavidin, which shared 95% sequence identity but varied in interchain disulfide connectivity. To investigate the structural and covalent changes associated with greater aggregation in IgG2 subclasses, soluble aggregates from the two forms of anti-streptavidin were isolated and characterized. Sedimentation velocity analytical ultracentrifugation (SV-AUC) measurements confirmed that the aggregates were present in solution, and revealed that the IgG1 aggregate was composed of a predominant species, whereas the IgG2 aggregate was heterogeneous. Tertiary structural changes accompanied antibody aggregation as evidenced by greater ANS (8-Anilino-1-naphthalene sulfonic acid) binding to the aggregates over monomer, and differences in disulfide character and tryptophan environments between monomer, oligomer and aggregate species, as observed by near-UV circular dichroism (CD). Differences between subclasses were observed in the secondary structural changes that accompanied aggregation, particularly in the intermolecular β-sheet and turn structures between the monomer and aggregate species. Free thiol determination showed ∼2.4-fold lower quantity of free cysteines in the IgG1 subclass, consistent with the 2.4-fold reduction in aggregation of the IgG1 form when compared with IgG2 under these conditions. These observations suggested an important role for disulfide bond formation, as well as secondary and tertiary structural transitions, during antibody aggregation. Such degradations may be minimized using appropriate formulation conditions.
Collapse
Affiliation(s)
- Heather Franey
- Process and Product Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | | | | | | |
Collapse
|
37
|
Rombouts I, Lagrain B, Brijs K, Delcour JA. β-Elimination reactions and formation of covalent cross-links in gliadin during heating at alkaline pH. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Hensley K, Venkova K, Christov A. Emerging biological importance of central nervous system lanthionines. Molecules 2010; 15:5581-94. [PMID: 20714314 PMCID: PMC6257760 DOI: 10.3390/molecules15085581] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 11/17/2022] Open
Abstract
Lanthionine (Lan), the thioether analog of cystine, is a natural but nonproteogenic amino acid thought to form naturally in mammals through promiscuous reactivity of the transsulfuration enzyme cystathionine-beta-synthase (CbetaS). Lanthionine exists at appreciable concentrations in mammalian brain, where it undergoes aminotransferase conversion to yield an unusual cyclic thioether, lanthionine ketimine (LK; 2H-1,4-thiazine-5,6-dihydro-3,5-dicarboxylic acid). Recently, LK was discovered to possess neuroprotective, neuritigenic and anti-inflammatory activities. Moreover, both LK and the ubiquitous redox regulator glutathione (gamma-glutamyl-cysteine-glycine) bind to mammalian lanthionine synthetase-like protein-1 (LanCL1) protein which, along with its homolog LanCL2, has been associated with important physiological processes including signal transduction and insulin sensitization. These findings begin to suggest that Lan and its downstream metabolites may be physiologically important substances rather than mere metabolic waste. This review summarizes the current state of knowledge about lanthionyl metabolites with emphasis on their possible relationships to LanCL1/2 proteins and glutathione. The potential significance of lanthionines in paracrine signaling is discussed with reference to opportunities for utilizing bioavailable pro-drug derivatives of these compounds as novel pharmacophores.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA.
| | | | | |
Collapse
|
39
|
Moll GN, Kuipers A, Rink R. Microbial engineering of dehydro-amino acids and lanthionines in non-lantibiotic peptides. Antonie van Leeuwenhoek 2010; 97:319-33. [PMID: 20140513 DOI: 10.1007/s10482-010-9418-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
This minireview focuses on the use of bacteria to introduce dehydroresidues and (methyl)lanthionines in (poly)peptides. It mainly describes the broad exploitation of bacteria containing lantibiotic enzymes for the engineering of these residues in a wide variety of peptides in particular in peptides unrelated to lantibiotics. Lantibiotic dehydratases dehydrate serines and threonines present in peptides preceded by a lantibiotic leader peptide thus forming dehydroalanine and dehydrobutyrine, respectively. These dehydroresidues can be coupled to cysteines thus forming (methyl)lanthionines. This coupling is catalysed by lantibiotic cyclases. The design, synthesis, and export of microbially engineered dehydroresidue and or lanthionine-containing peptides in non-lantibiotic peptides are reviewed, illustrated by some examples which demonstrate the high relevance of these special residues. This minireview is the first with special focus on the microbial engineering of nonlantibiotic peptides by exploiting lantibiotic enzymes.
Collapse
Affiliation(s)
- Gert N Moll
- BiOMaDe Technology Foundation, Nijenborgh 4, Groningen, The Netherlands.
| | | | | |
Collapse
|
40
|
Calabrese MG, Mamone G, Caira S, Ferranti P, Addeo F. Quantitation of lysinoalanine in dairy products by liquid chromatography–mass spectrometry with selective ion monitoring. Food Chem 2009. [DOI: 10.1016/j.foodchem.2009.03.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Brennan DF, Barford D. Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases. Trends Biochem Sci 2009; 34:108-14. [DOI: 10.1016/j.tibs.2008.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/09/2008] [Accepted: 11/12/2008] [Indexed: 12/23/2022]
|
42
|
Zhu Y, Li H, Long C, Hu L, Xu H, Liu L, Chen S, Wang DC, Shao F. Structural Insights into the Enzymatic Mechanism of the Pathogenic MAPK Phosphothreonine Lyase. Mol Cell 2007; 28:899-913. [DOI: 10.1016/j.molcel.2007.11.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/04/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
|
43
|
|
44
|
Cohen SL, Price C, Vlasak J. β-Elimination and Peptide Bond Hydrolysis: Two Distinct Mechanisms of Human IgG1 Hinge Fragmentation upon Storage. J Am Chem Soc 2007; 129:6976-7. [PMID: 17500521 DOI: 10.1021/ja0705994] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven L Cohen
- Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | |
Collapse
|
45
|
Cheng R, Feng Q, Ortwerth BJ. LC-MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro. Biochim Biophys Acta Mol Basis Dis 2006; 1762:533-43. [PMID: 16540295 DOI: 10.1016/j.bbadis.2006.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 01/22/2006] [Accepted: 01/23/2006] [Indexed: 10/25/2022]
Abstract
We previously reported chromatographic evidence supporting the similarity of yellow chromophores isolated from aged human lens proteins, early brunescent cataract lens proteins and calf lens proteins ascorbylated in vitro [Cheng, R. et al. Biochimica et Biophysica Acta 1537, 14-26, 2001]. In this paper, new evidence supporting the chemical identity of the modified amino acids in these protein populations were collected by using a newly developed two-dimensional LC-MS mapping technique supported by tandem mass analysis of the major species. The pooled water-insoluble proteins from aged normal human lenses, early stage brunescent cataract lenses and calf lens proteins reacted with or without 20 mM ascorbic acid in air for 4 weeks were digested with a battery of proteolytic enzymes under argon to release the modified amino acids. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column and four major A330nm-absorbing peaks were collected. Peaks 1, 2 and 3, which contained most of the modified amino acids were concentrated and subjected to RP-HPLC/ESI-MS, and the mass elution maps were determined. The samples were again analyzed and those peaks with a 10(4) - 10(6) response factor were subjected to MS/MS analysis to identify the daughter ions of each modification. Mass spectrometric maps of peaks 1, 2 and 3 from cataract lenses showed 58, 40 and 55 mass values, respectively, ranging from 150 to 600 Da. Similar analyses of the peaks from digests of the ascorbylated calf lens proteins gave 81, 70 and 67 mass values, respectively, of which 100 were identical to the peaks in the cataract lens proteins. A total of 40 of the major species from each digest were analyzed by LC-MS/MS and 36 were shown to be identical. Calf lens proteins incubated without ascorbic acid showed several similar mass values, but the response factors were 100 to 1000-fold less for every modification. Based upon these data, we conclude that the majority of the major modified amino acids present in early stage brunescent Indian cataract lens proteins appear to arise as a result of ascorbic acid modification, and are presumably advanced glycation end-products.
Collapse
Affiliation(s)
- Rongzhu Cheng
- Mason Eye Institute, University of Missouri-Columbia, 404 Portland St. Columbia, MO 65201, USA.
| | | | | |
Collapse
|
46
|
Linetsky M, LeGrand RD. Glutathionylation of lens proteins through the formation of thioether bond. Mol Cell Biochem 2005; 272:133-44. [PMID: 16010980 DOI: 10.1007/s11010-005-6908-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formation of lanthionine, a dehydroalanine crosslink, is associated with aging of the human lens and cataractogenesis. In this study we investigated whether modification of lens proteins by glutathione could proceed through an alternative pathway: that is, by the formation of a nonreducible thioether bond between protein and glutathione. Direct ELISA of the reduced water-soluble and water-insoluble lens proteins from human cataractous, aged and bovine lenses showed a concentration-dependent immunoreactivity toward human nonreducible glutathionyl-lens proteins only. The reduced water-insoluble cataractous lens proteins showed the highest immunoreactivity, while bovine lens protein exhibited no reaction. These data were confirmed by dot-blot analysis. The level of this modification ranged from 0.7 to 1.6 nmol/mg protein in water-insoluble proteins from aged and cataractous lenses. N-terminal amino acid determination in the reduced and alkylated lens proteins, performed by derivatization of these preparations with dansyl chloride followed by an exhaustive dialysis, acid hydrolysis and fluorescence detection of dansylated amino acids by RP-HPLC, showed that N-terminal glutamic acid was present in concentration of approximately 0.2 nmol/mg of lens protein. This evidence points out that at least some of the N-terminal amino groups of nonreducible glutathione in the reduced human lens proteins are not involved in a covalent bond formation. Since disulfides were not detected in the reduced and alkylated human lens proteins, GSH is most likely attached to lens proteins through thioether bonds. These results provide, for the first time, evidence that glutathiolation of human lens proteins can occur through the formation of nonreducible thioether bonds.
Collapse
Affiliation(s)
- Mikhail Linetsky
- Mason Eye Institute, University of Missouri, Columbia, MO 65201, USA.
| | | |
Collapse
|
47
|
Abstract
Beta-elimination procedures often precede mass spectrometric analyses of phosphorylated peptides. Unfortunately, the commonly employed reaction conditions facilitate the deamidation of amide-containing residues. In addition to being 1 Da heavier than their amide counterparts, the newly created acidic residues greatly influence peptide tandem mass spectra. The effects of deamidation are investigated for five different amide-containing synthetic peptides exposed to beta-elimination conditions. MALDI-generated ions are analyzed with a tandem TOF mass analyzer. Methodologies for estimating the degree of deamidation from peptide mass spectra are presented, the influence that adjacent residues exert on the rate of deamidation is catalogued, and the impact that deamidation can have on peptide tandem mass spectra is demonstrated. The complications this side reaction can cause for automated data interpretation are also noted.
Collapse
Affiliation(s)
- Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
48
|
Truscott RJW. Age-related nuclear cataract—oxidation is the key. Exp Eye Res 2005; 80:709-25. [PMID: 15862178 DOI: 10.1016/j.exer.2004.12.007] [Citation(s) in RCA: 561] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/22/2004] [Accepted: 12/03/2004] [Indexed: 11/26/2022]
Abstract
Age is by far the biggest risk factor for cataract, and it is sometimes assumed that cataract is simply an amplification of this aging process. This appears not to be the case, since the lens changes associated with aging and cataract are distinct. Oxidation is the hallmark of age-related nuclear (ARN) cataract. Loss of protein sulfhydryl groups, and the oxidation of methionine residues, are progressive and increase as the cataract worsens until >90% of cysteine and half the methionine residues are oxidised in the most advanced form. By contrast, there may be no significant oxidation of proteins in the centre of the lens with advancing age, even past age 80. The key factor in preventing oxidation seems to be the concentration of nuclear glutathione (GSH). Provided that nuclear GSH levels can be maintained above 2 mm, it appears that significant protein oxidation and posttranslational modification by reactive small molecules, such as ascorbate or UV filter degradation products, is not observed. Adequate coupling of the metabolically-active cortex, the source of antioxidants such as GSH, to the quiescent nucleus, is crucial especially since it would appear that the cortex remains viable in old lenses, and even possibly in ARN cataract lenses. Therefore it is vital to understand the reason for the onset of the lens barrier. This barrier, which becomes apparent in middle age, acts to impede the flow of small molecules between the cortex and the nucleus. The barrier, rather than nuclear compaction (which is not observed in human lenses), may contribute to the lowered concentration of GSH in the lens nucleus after middle age. By extending the residence time within the lens centre, the barrier also facilitates the decomposition of intrinsically unstable metabolites and may exacerbate the formation of H(2)O(2) in the nucleus. This hypothesis, which is based on the generation of reactive oxygen species and reactive molecules within the nucleus itself, shifts the focus away from theories for cataract that postulated a primary role for oxidants generated outside of the lens. Unfortunately, due to marked variability in the lenses of different species, there appears at present to be no ideal animal model system for studying human ARN cataract.
Collapse
Affiliation(s)
- Roger J W Truscott
- Australian Cataract Research Foundation, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia.
| |
Collapse
|