1
|
Çınar H, Temizsoylu MD, İpek V. Comparative evaluation of platelet-rich plasma, autologous blood serum, and umbilical cord serum for corneal healing after penetrating keratoplasty in New Zealand rabbits. Exp Eye Res 2024; 240:109779. [PMID: 38176514 DOI: 10.1016/j.exer.2023.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
This study aimed to evaluate the effects of platelet-rich plasma (PRP), autologous blood serum (ABS), and umbilical cord serum (UCS) on corneal healing following penetrating keratoplasty (PK). A total of 120 New Zealand white rabbits, forty were designated as donors, while the remaining eighty rabbits were randomly divided into four groups after undergoing PRP Group (n = 20), ABS Group (n = 20), UCS Group (n = 20) and Control Group (n = 20). Corneal opacity score, corneal vascularization, corneal staining, histopathological analysis, and immunohistochemical analysis (including CD4+, CD8+, and major histocompatibility complex [MHC] II) were assessed at postoperative 1, 2, 3, and 12 weeks. The results showed that corneal opacity score and corneal vascularization did not differ significantly among the groups. However, corneal staining was found to be statistically higher in the PRP group (0.40 ± 0.60) compared to the other groups (p = 0.011). Immunohistochemical examination revealed no significant differences in CD4+, CD8+, and MHC II levels among the groups. Notably, in all groups, CD4+, CD8+, and MHC II levels were significantly higher at 12 weeks compared to other time points. PRP, ABS, and UCS demonstrated positive effects on corneal healing after PK. However, among the three products, PRP exhibited a superior healing effect compared to ABS and UCS crucial in the postoperative period following PK procedures, as they significantly impact visual quality, graft transparency, graft survival, and prevention of stromal resorption caused by infections. Despite the avascular nature of the cornea and its immune privilege, failure to resolve epithelial defects (ED) commonly observed after PK can result in irreversible scarring and ulceration, leading to graft rejection. While epithelial defects are observed in 14-100% of cases on the first postoperative day, approximately 3-7% of them persist as non-healing ED in subsequent periods. In conclusion, our study demonstrated that PRP, ABS, and UCS have a positive effect on corneal healing after PK.
Collapse
Affiliation(s)
- Harun Çınar
- Department of Surgery, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Mustafa Doğa Temizsoylu
- Department of Surgery, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Volkan İpek
- Department of Patology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
2
|
Polisetti N, Martin G, Ulrich E, Glegola M, Schlötzer-Schrehardt U, Schlunck G, Reinhard T. Influence of Organ Culture on the Characteristics of the Human Limbal Stem Cell Niche. Int J Mol Sci 2023; 24:16856. [PMID: 38069177 PMCID: PMC10706739 DOI: 10.3390/ijms242316856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Organ culture storage techniques for corneoscleral limbal (CSL) tissue have improved the quality of corneas for transplantation and allow for longer storage times. Cultured limbal tissue has been used for stem cell transplantation to treat limbal stem cell deficiency (LSCD) as well as for research purposes to assess homeostasis mechanisms in the limbal stem cell niche. However, the effects of organ culture storage conditions on the quality of limbal niche components are less well described. Therefore, in this study, the morphological and immunohistochemical characteristics of organ-cultured limbal tissue are investigated and compared to fresh limbal tissues by means of light and electron microscopy. Organ-cultured limbal tissues showed signs of deterioration, such as edema, less pronounced basement membranes, and loss of the most superficial layers of the epithelium. In comparison to the fresh limbal epithelium, organ-cultured limbal epithelium showed signs of ongoing proliferative activity (more Ki-67+ cells) and exhibited an altered limbal epithelial phenotype with a loss of N-cadherin and desmoglein expression as well as a lack of precise staining patterns for cytokeratin ((CK)14, CK17/19, CK15). The analyzed extracellular matrix composition was mainly intact (collagen IV, fibronectin, laminin chains) except for Tenascin-C, whose expression was increased in organ-cultured limbal tissue. Nonetheless, the expression patterns of cell-matrix adhesion proteins varied in organ-cultured limbal tissue compared to fresh limbal tissue. A decrease in the number of melanocytes (Melan-A+ cells) and Langerhans cells (HLA-DR+, CD1a+, CD18+) was observed in the organ-cultured limbal tissue. The organ culture-induced alterations of the limbal epithelial stem cell niche might hamper its use in the treatment of LSCD as well as in research studies. In contrast, reduced numbers of donor-derived Langerhans cells seem associated with better clinical outcomes. However, there is a need to consider the preferential use of fresh CSL for limbal transplants and to look at ways of improving the limbal stem cell properties of stored CSL tissue.
Collapse
Affiliation(s)
- Naresh Polisetti
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Eva Ulrich
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Mateusz Glegola
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Günther Schlunck
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
3
|
Makuloluwa AK, Hamill KJ, Rauz S, Bosworth L, Haneef A, Romano V, Williams RL, Dartt DA, Kaye SB. The conjunctival extracellular matrix, related disorders and development of substrates for conjunctival restoration. Ocul Surf 2023; 28:322-335. [PMID: 34102309 DOI: 10.1016/j.jtos.2021.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
The conjunctiva can be damaged by numerous diseases with scarring, loss of tissue and dysfunction. Depending on extent of damage, restoration of function may require a conjunctival graft. A wide variety of biological and synthetic substrates have been tested in the search for optimal conditions for ex vivo culture of conjunctival epithelial cells as a route toward tissue grafts. Each substrate has specific advantages but also disadvantages related to their unique physical and biological characteristics, and identification and development of an improved substrate remains a priority. To achieve the goal of mimicking and restoring a biological material, requires information from the material. Specifically, extracellular matrix (ECM) derived from conjunctival tissue. Knowledge of the composition and structure of native ECM and identifying contributions of individual components to its function would enable using or mimicking those components to develop improved biological substrates. ECM is comprised of two components: basement membrane secreted predominantly by epithelial cells containing laminins and type IV collagens, which directly support epithelial and goblet cell adhesion differentiation and growth and, interstitial matrix secreted by fibroblasts in lamina propria, which provides mechanical and structural support. This review presents current knowledge on anatomy, composition of conjunctival ECM and related conjunctival disorders. Requirements of potential substrates for conjunctival tissue engineering and transplantation are discussed. Biological and synthetic substrates and their components are described in an accompanying review.
Collapse
Affiliation(s)
- Aruni K Makuloluwa
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kevin J Hamill
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham and Birmingham and Midland Eye Centre, Dudley Road Birmingham, B18 7QU, UK
| | - Lucy Bosworth
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Atikah Haneef
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Vito Romano
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Darlene A Dartt
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Harvard Medical School, 20 Staniford St. Boston, MA, 02114, USA
| | - Stephen B Kaye
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
4
|
Li S, Ma X, Zhang Y, Qu Y, Wang L, Ye L. Applications of hydrogel materials in different types of corneal wounds. Surv Ophthalmol 2023:S0039-6257(23)00040-1. [PMID: 36854372 DOI: 10.1016/j.survophthal.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Severe corneal injury can lead to a decrease in light transmission and even blindness. Currently, corneal transplantation has been applied as the primary treatment for corneal blindness; however, the worldwide shortage of suitable corneal donor tissue means that a large proportion of patients have no access to corneal transplants. This situation has contributed to the rapid development of various corneal substitutes. The development and optimization of novel hydrogels that aim to replace partial or full-thickness pathological corneas have advanced in the last decade. Meanwhile, with the help of 3D bioprinting technology, hydrogel materials can be molded to a refined and controllable shape, attracting many scientists to the field of corneal reconstruction research. Although hydrogels are not yet available as a substitute for traditional clinical methods of corneal diseases, their rapid development makes us confident that they will be in the near future. We summarize the application of hydrogel materials for various types of corneal injuries frequently encountered in clinical practice, especially focusing on animal experiments and preclinical studies. Finally, we discuss the development and achievements of 3D bioprinting in the treatment of corneal injury.
Collapse
Affiliation(s)
- Shixu Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Xudai Ma
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Yongxin Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Yunhao Qu
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Ling Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China.
| | - Lin Ye
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
5
|
Hassan A, Balal S, Cook E, Dehbi HM, Pardhan S, Bourne R, Ahmad S, Sharma A. Finger-Prick Autologous Blood (FAB) Eye Drops for Dry Eye Disease: Single Masked Multi-Centre Randomised Controlled Trial. Clin Ophthalmol 2022; 16:3973-3979. [PMID: 36483187 PMCID: PMC9724572 DOI: 10.2147/opth.s384586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2024] Open
Abstract
PURPOSE To investigate the quantitative and qualitative efficacy of finger-prick autologous blood (FAB) eye drops versus conventional medical therapy for the treatment of severe dry eye disease (DED). METHODS Two centre, single masked, randomised controlled trial. Sixty patients in total were recruited with thirty patients (sixty eyes) treated with FAB eye drops four times per day in addition to their conventional DED treatment, and thirty patients (fifty-eight eyes) served as control subjects on conventional treatment alone. Ocular surface disease index (OSDI), Schirmer's test, fluorescein ocular staining grade (OCSG) Oxford schema and fluorescein tear film break-up time (TBUT), were performed at baseline, at 4 and 8 weeks. RESULTS OSDI scores significantly decreased in the FAB arm by greater than -17.68 (-37.67 to -2.96, p=0.02) compared to the control arm. There were greater improvements in OCSG and TBUT in the FAB arm but these were non-significant (p>0.05). CONCLUSION This feasibility study demonstrates adding FAB eye drops to conventional medical therapy for DED improves mean OSDI symptom score compared to conventional medical therapy alone. It may have particular use in settings where serum is unobtainable. An adequately powered and well-designed randomised trial is needed to further evaluate the long-term clinical benefit of FAB.
Collapse
Affiliation(s)
- Ali Hassan
- Department of External Eye Diseases, Moorfields Eye Hospital, London, UK
- Department of Ophthalmology, UCL Institute of Ophthalmology, London, UK
| | - Shafi Balal
- Department of External Eye Diseases, Moorfields Eye Hospital, London, UK
- Department of Ophthalmology, UCL Institute of Ophthalmology, London, UK
| | - Erica Cook
- Department of Healthcare, University of Bedfordshire, Luton, UK
| | | | - Shahina Pardhan
- Department of Eye Research, Vision and Eye Research Institute (VERI) Anglia Ruskin University, Cambridge, UK
| | - Rupert Bourne
- Department of Ophthalmology, Addenbrookes Hospital, Cambridge, UK
| | - Sajjad Ahmad
- Department of External Eye Diseases, Moorfields Eye Hospital, London, UK
- Department of Ophthalmology, UCL Institute of Ophthalmology, London, UK
| | - Anant Sharma
- Department of External Eye Diseases, Moorfields Eye Hospital, London, UK
- Department of Ophthalmology, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
6
|
Wang X, Hui Q, Jin Z, Rao F, Jin L, Yu B, Banda J, Li X. Roles of growth factors in eye development and ophthalmic diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:613-625. [PMID: 36581579 PMCID: PMC10264994 DOI: 10.3724/zdxbyxb-2022-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022]
Abstract
Growth factors are active substances secreted by a variety of cells, which act as messengers to regulate cell migration, proliferation and differentiation. Many growth factors are involved in the eye development or the pathophysiological processes of eye diseases. Growth factors such as vascular endothelial growth factor and basic fibroblast growth factor mediate the occurrence and development of diabetic retinopathy, choroidal neovascularization, cataract, diabetic macular edema, and other retinal diseases. On the other hand, growth factors like nerve growth factor, ciliary neurotrophic factor, glial cell line-derived neurotrophic factor, pigment epithelial-derived factor and granulocyte colony-stimulating factor are known to promote optic nerve injury repair. Growth factors are also related to the pathogenesis of myopia. Fibroblast growth factor, transforming growth factor-β, and insulin-like growth factor regulate scleral thickness and influence the occurrence and development of myopia. This article reviews growth factors involved in ocular development and ocular pathophysiology, discusses the relationship between growth factors and ocular diseases, to provide reference for the application of growth factors in ophthalmology.
Collapse
|
7
|
Alcalde I, Sánchez-Fernández C, Del Olmo-Aguado S, Martín C, Olmiere C, Artime E, Quirós LM, Merayo-Lloves J. Synthetic Heparan Sulfate Mimetic Polymer Enhances Corneal Nerve Regeneration and Wound Healing after Experimental Laser Ablation Injury in Mice. Polymers (Basel) 2022; 14:polym14224921. [PMID: 36433048 PMCID: PMC9694493 DOI: 10.3390/polym14224921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Abnormal corneal wound healing compromises visual acuity and can lead to neuropathic pain. Conventional treatments usually fail to restore the injured corneal tissue. In this study, we evaluated the effectiveness of a synthetic heparan sulfate mimetic polymer (HSmP) in a mouse model of corneal wound healing. (2) Methods: A surgical laser ablation affecting the central cornea and subbasal nerve plexus of mice was used as a model of the wound-healing assay. Topical treatment with HSmP was contrasted to its vehicle and a negative control (BSS). Corneal repair was studied using immunofluorescence to cell proliferation (Ki67), apoptosis (TUNEL assay), myofibroblast transformation (αSMA), assembly of epithelial cells (E-cadherin) and nerve regeneration (β-tubulin III). (3) Results: At the end of the treatment, normal epithelial cytoarchitecture and corneal thickness were achieved in HSmP-treated animals. HSmP treatment reduced myofibroblast occurrence compared to eyes irrigated with vehicle (p < 0.01) or BSS (p < 0.001). The HSmP group showed 50% more intraepithelial nerves than the BSS or vehicle groups. Only HSmP-treated corneas improved the visual quality to near transparent. (4) Conclusions: These results suggest that HSmP facilitates the regeneration of the corneal epithelium and innervation, as well as restoring transparency and reducing myofibroblast scarring after laser experimental injury.
Collapse
Affiliation(s)
- Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence:
| | - Cristina Sánchez-Fernández
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Susana Del Olmo-Aguado
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carla Martín
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Céline Olmiere
- Laboratoires Thea S.A.S., 63000 Clermont-Ferrand, France
| | - Enol Artime
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Luis M. Quirós
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
8
|
Guaiquil VH, Xiao C, Lara D, Dimailig G, Zhou Q. Expression of axon guidance ligands and their receptors in the cornea and trigeminal ganglia and their recovery after corneal epithelium injury. Exp Eye Res 2022; 219:109054. [PMID: 35427568 PMCID: PMC9133167 DOI: 10.1016/j.exer.2022.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Axon guidance proteins are essential for axonal pathfinding during development. In adulthood, they have been described as pleiotropic proteins with multiple roles in different organs and tissues. While most studies on the roles of these proteins in the cornea have been performed on the Semaphorin family members, with few reports on Netrins or Ephrins, their function in corneal epithelium wound healing and functional nerve regeneration is largely unknown. Here, we studied the expression of ligands belonging to three distinct axon guidance families (Semaphorins, Ephrins, and Netrins) and their most commonly associated receptors in the cornea and trigeminal ganglia (TG) using immunofluorescence staining and RT-qPCR. We also evaluated how their expression recovers after corneal epithelium injury. We found that all ligands studied (Sema3A, Sema3F, EphrinB1, EphrinB2, Netrin-1, and Netrin-4) are abundantly expressed in both the TG and corneal epithelium. Similarly, their receptors (Neuropilin-1, Neuropilin-2, PlexinA1, PlexinA3, EphB2, EphB4, Neogenin, UNC5H1 and DCC) are also expressed in both tissues. Upon corneal epithelium injury, quick recovery of both ligands and receptors was observed at the protein and gene expression levels. While the timing and expression levels vary among these proteins, in general, most of them remained upregulated for several weeks after injury. We propose that the initial protein expression recovery may be related to corneal epithelium recovery since Sema3A, EphrinB2 and Netrin-4 accelerated corneal epithelial cells wound healing. The sustained high expression levels may be functionally related to nerve regeneration and/or patterning. Whilst further studies are required to test this hypothesis, this work contributes to unraveling their function in normal and injured cornea.
Collapse
Affiliation(s)
- Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA.
| | - Cissy Xiao
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA
| | - Daniel Lara
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA
| | - Greigory Dimailig
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Toxicitatea oculară a terapiilor biologice în tumorile solide. ONCOLOG-HEMATOLOG.RO 2022. [DOI: 10.26416/onhe.61.4.2022.7416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Xu J, Zhao L, Liu X, Sun H, Liu X, Guo Z, Wang Y, Sun W. Aqueous humor proteomic analysis of acute angle-closure glaucoma with visual field loss. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1611. [PMID: 34926655 PMCID: PMC8640911 DOI: 10.21037/atm-21-457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022]
Abstract
Background Acute angle-closure glaucoma (AACG) is an ophthalmic emergency that occurs over the course of hours or days and may cause irreversible blindness if not treated immediately. In most cases, optic nerve damage is the cause of visual field (VF) loss in AACG. There has been no reliable biomarker found to evaluate optic nerve damage to date. Aqueous humor (AH) proteome analysis might reveal the proteomic alterations in AACG and provide helpful clues in the search for an AH biomarker of optic nerve damage and VF loss. Methods In this study, we used the AH proteome to explore the functions of differentially expressed proteins (DEPs) during disease progression. The AH proteins from the early-stage group and late-stage group were extracted and analyzed by the data-independent acquisition (DIA) method. The DEPs functions were annotated, and parallel reaction monitoring (PRM) was used to validate the key DEPs. Results A total of 87 DEPs were found. Gene Ontology analysis showed that most DEPs were enriched in immunology, hemodynamics, and apoptosis. Ingenuity pathway analysis found that vascular endothelial growth factor (VEGF) signaling, the production of reactive oxygen species (ROS) in macrophages, and the nuclear factor erythroid 2-related factor 2 (NRF2)-mediated oxidative stress response were active pathways in the late stage of AACG. The mechanism of retinal ganglion cell (RGC) death was hypothesized on the basis of DEP functional analysis. A total of 20 DEPs were validated by using PRM, and prostaglandin-H2 D-isomerase was found to have the potential to evaluate optic nerve damage. Conclusions This study showed that AH proteomic analysis could reveal the proteomic alterations in the pathogenesis of VF loss in AACG and help to provide objective protein biomarkers to evaluate VF loss. These findings will benefit the application of the AH proteome to clinical research.
Collapse
Affiliation(s)
- Jiyu Xu
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Liangliang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Xiang Liu
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Shanghai AB Sciex Analytical Instrument Trading Co., Ltd Beijing Branch Company, Beijing, China
| | - Haidan Sun
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ying Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Sun
- Core Facility of Instrument, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Napolitano P, Filippelli M, Davinelli S, Bartollino S, dell’Omo R, Costagliola C. Influence of gut microbiota on eye diseases: an overview. Ann Med 2021; 53:750-761. [PMID: 34042554 PMCID: PMC8168766 DOI: 10.1080/07853890.2021.1925150] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
The microbiota is a dynamic ecosystem that plays a major role in the host health. Numerous studies have reported that alterations in the intestinal microbiota (dysbiosis) may contribute to the pathogenesis of various common diseases such as diabetes, neuropsychiatric diseases, and cancer. However, emerging findings also suggest the existence of a gut-eye axis, wherein gut dysbiosis may be a crucial factor influencing the onset and progression of multiple ocular diseases, including uveitis, dry eye, macular degeneration, and glaucoma. Currently, supplementation with pre- and probiotics appears is the most feasible and cost-effective approach to restore the gut microbiota to a eubiotic state and prevent eye pathologies. In this review, we discuss the current knowledge on how gut microbiota may be linked to the pathogenesis of common eye diseases, providing therapeutic perspectives for future translational investigations within this promising research field.
Collapse
Affiliation(s)
- Pasquale Napolitano
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Roberto dell’Omo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| |
Collapse
|
12
|
Xue W, Li JJ, Zou Y, Zou B, Wei L. Microbiota and Ocular Diseases. Front Cell Infect Microbiol 2021; 11:759333. [PMID: 34746029 PMCID: PMC8566696 DOI: 10.3389/fcimb.2021.759333] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances have identified significant associations between the composition and function of the gut microbiota and various disorders in organ systems other than the digestive tract. Utilizing next-generation sequencing and multiomics approaches, the microbial community that possibly impacts ocular disease has been identified. This review provides an overview of the literature on approaches to microbiota analysis and the roles of commensal microbes in ophthalmic diseases, including autoimmune uveitis, age-related macular degeneration, glaucoma, and other ocular disorders. In addition, this review discusses the hypothesis of the "gut-eye axis" and evaluates the therapeutic potential of targeting commensal microbiota to alleviate ocular inflammation.
Collapse
Affiliation(s)
- Wei Xue
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Yanli Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Park SH, Park SH, Yu HS, Shin J, Kim SJ, Lee JE. Cytotoxicities and wound healing effects of contact lens multipurpose solution on human corneal epithelial cell. Clin Exp Optom 2021; 105:694-701. [PMID: 34751099 DOI: 10.1080/08164622.2021.1986353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
CLINICAL RELEVANCE Contact lens multipurpose solutions (MPSs) contain several components that have the potential to cause corneal epithelial cell toxicity. Evaluating the components and the toxic effect of MPS should be considered for effective eye care. BACKGROUND The cytotoxic and wound healing effects of five commercially available MPSs on human corneal epithelial cells (HCECs) are is investigated. METHODS The following commercially available MPSs were used: Queen's PLURISOL®, Frenz®, Boston SIMPLUS®, DL+PLUS EYE® (DL), and NEW YORK DEFINE® (NY). The proliferation of HCECs exposed to each MPS for 1, 6, and 24 h and the cytotoxicity of these solutions were analyzed using methyl thiazolyl tetrazolium-based colorimetric and lactate dehydrogenase leakage assays, respectively. The cellular morphology was evaluated by inverted phase-contrast and electron microscopy. A scratch-wound assay was performed to measure wound widths 24 h after confluent HCEC monolayers were scratch-wounded. RESULTS The tested MPS had a time-dependent inhibitory effect on HCEC proliferation and cytotoxicity, significantly at 24 h after exposure (p< 0.05 in all MPSs). HCECs exposed to MPS detached from the bottom of the culture dishes, showed degenerative changes such as loss of microvilli, cytoplasmic vacuole formation and nuclear condensation, and decreased wound healing, compared to the controls (p< 0.001 in Boston, DL and NY). Among the tested MPS, DL and NY were more cytotoxic and showed less wound healing. CONCLUSION MPS has a toxic effect on HCECs, which is dependent on the concentration of the disinfecting component. Since the components that constitute the MPS are absorbed and retained in the lens, cautious scrutiny of the concentration and attention to lens cleaning are warranted to mitigate the related cytotoxicity.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Sung Hee Park
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Jonghoon Shin
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Su Jin Kim
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Ji Eun Lee
- Department of Ophthalmology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea.,Department of Ophthalmology, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
14
|
Álvarez de Toledo Elizalde J, López García S, Benítez Del Castillo JM, Durán de la Colina J, Gris Castejón O, Celis Sánchez J, Herreras Cantalapiedra JM. Aniridia and the ocular surface: Medical and surgical problems and solutions. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96 Suppl 1:15-37. [PMID: 34836585 DOI: 10.1016/j.oftale.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Congenital aniridia is a multisystemic genetic disease due to a mutation in PAX6 gene which severely affects the development and functionality of the human eyes. In patients affected by the mutation, aside from the absence or defects of iris tissue formation, abnormalities in position or opacities of the crystalline lens, macular hypoplasia, ocular surface disease is the main cause of visual loss and the deterioration of the quality of life of most patients. Limbal stem cell deficiency combined with tear film instability and secondary dry eye cause aniridic keratopathy which, in advanced stages, ends up in corneal opacification. In this paper, the actual knowledge about congenital aniridia keratopathy physiopathology and medical and surgical treatment options and their efficacy are discussed. Indications and results of topical treatments with artificial tears and blood-derivatives in its initial stages, and different surgical techniques as limbal stem cell transplantation, keratoplasty and keratoprostheses are reviewed. Finally, recent advances and results in regenerative medicine techniques with ex vivo stem cell cultivation or other types of cultivated cells are presented.
Collapse
Affiliation(s)
| | - S López García
- Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - J M Benítez Del Castillo
- Cátedra de Oftalmología, Hospital Clínico San Carlos, Universidad Complutense, Clínica Rementería, Madrid, Spain
| | - J Durán de la Colina
- Cátedra de Oftalmología, Universidad del País Vasco, Instituto Clínico-Quirúrgico de Oftalmología, Bilbao, Spain
| | - O Gris Castejón
- Departamento de Córnea y Superficie Ocular, Instituto de Microcirugía Ocular de Barcelona (IMO), Barcelona, Spain
| | - J Celis Sánchez
- Unidad de Córnea y Superficie ocular, Hospital La Mancha-Centro, Alcázar de San Juan, Spain
| | - J M Herreras Cantalapiedra
- Instituto Universitario de Oftalmobiología Aplicada (IOBA) de la Universidad de Valladolid, Servicio de Oftalmología del Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
15
|
A Decellularized Human Limbal Scaffold for Limbal Stem Cell Niche Reconstruction. Int J Mol Sci 2021; 22:ijms221810067. [PMID: 34576227 PMCID: PMC8471675 DOI: 10.3390/ijms221810067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
The transplantation of ex vivo expanded limbal epithelial progenitor cells (LEPCs) on amniotic membrane or fibrin gel is an established therapeutic strategy to regenerate the damaged corneal surface in patients with limbal stem cell deficiency (LSCD), but the long-term success rate is restricted. A scaffold with niche-specific structure and extracellular matrix (ECM) composition might have the advantage to improve long-term clinical outcomes, in particular for patients with severe damage or complete loss of the limbal niche tissue structure. Therefore, we evaluated the decellularized human limbus (DHL) as a biomimetic scaffold for the transplantation of LEPCs. Corneoscleral tissue was decellularized by sodium deoxycholate and deoxyribonuclease I in the presence or absence of dextran. We evaluated the efficiency of decellularization and its effects on the ultrastructure and ECM composition of the human corneal limbus. The recellularization of these scaffolds was studied by plating cultured LEPCs and limbal melanocytes (LMs) or by allowing cells to migrate from the host tissue following a lamellar transplantation ex vivo. Our decellularization protocol rapidly and effectively removed cellular and nuclear material while preserving the native ECM composition. In vitro recellularization by LEPCs and LMs demonstrated the good biocompatibility of the DHL and intrastromal invasion of LEPCs. Ex vivo transplantation of DHL revealed complete epithelialization as well as melanocytic and stromal repopulation from the host tissue. Thus, the generated DHL scaffold could be a promising biological material as a carrier for the transplantation of LEPCs to treat LSCD.
Collapse
|
16
|
Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM. TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 2021; 11:biom11091360. [PMID: 34572573 PMCID: PMC8464756 DOI: 10.3390/biom11091360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Collapse
|
17
|
Galectin-3, IL-1A, IL-6, and EGF Levels in Corneal Epithelium of Patients With Recurrent Corneal Erosion Syndrome. Cornea 2021; 39:1354-1358. [PMID: 32732704 DOI: 10.1097/ico.0000000000002422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To determine the galectin-3 (Gal3), interleukin-1 (IL-1), interleukin-6 (IL-6), and epidermal growth factor (EGF) levels in corneal epithelium of patients with recurrent corneal erosion (RCE) syndrome and compare them with healthy controls. METHODS In this prospective interventional case control study, 32 eyes of 32 patients with RCE syndrome who had corneal epithelial erosions and 28 eyes of 28 healthy participants scheduled for photorefractive keratectomy (control group) were included. Exclusion criteria included corneal dystrophies, ectasia, dry eye, previous ocular surgery or topical medications, and systemic diseases. Epithelial samples were obtained during epithelial debridement in the study group and mechanical epithelial keratectomy in the control group. Galectin-3 levels were studied by the chemiluminescent microparticle immunoassay method. IL-1, IL-6, and EGF levels were determined using corresponding ELISA kits. RESULTS The median Gal3 levels were 132.25 ng/mL in the study group and 106.50 ng/mL in the control group. The median IL-1 and IL-6 levels were 6.24 pg/mL and 10.16 pg/mL, respectively, in the study group which were higher than that in the control group. The median EGF level in the study group was lower than that the control group with 1.30 pg/mL versus 2.67 pg/mL. In the control group, there was a significant positive correlation between EGF and IL-6 (r = 0.554; P = 0.040). A similar correlation was not observed in patients with RCE (r = -0.071; P = 0.794). CONCLUSIONS The lack of increased EGF expression and the imbalance between growth factors, adhesion molecules, and interleukins may be the reason for the impaired wound healing response in RCE syndrome.
Collapse
|
18
|
Anitua E, de la Sen-Corcuera B, Orive G, Sánchez-Ávila RM, Heredia P, Muruzabal F, Merayo-Lloves J. Progress in the use of plasma rich in growth factors in ophthalmology: from ocular surface to ocular fundus. Expert Opin Biol Ther 2021; 22:31-45. [PMID: 34275392 DOI: 10.1080/14712598.2021.1945030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The use of blood derivatives and especially Plasma rich in growth factors (PRGF), for regenerative purposes has been a common trend along the last decades in the field of oral surgery, dermatology, orthopedics, and more recently in ophthalmology.Areas covered: PRGF is a type of platelet-rich plasma that is being explored for the treatment of ocular injuries. The present review article highlights 50 ophthalmology-related publications about the application of PRGF in the treatment of acute and chronic pathologies in ophthalmology as well as most relevant challenges and future prospects.Expert opinion: PRGF technology provides a wide range of formulations that can be used therapeutically in many different acute and chronic ocular pathologies. In addition to eye drops enriched with autologous growth factors, PRGF enables the preparation of both immunologically safe and fibrin-based formulations. Recent advances in the field have promoted PRGF storage for 12 months under freezing conditions, its daily use for 7 days at room temperature and the freeze-dried formulation. The thermally treated immunosafe formulation has shown promising clinical results for the treatment of several diseases such as Sjögren syndrome, graft versus host disease or cicatrizing conjunctivitis. In addition, several fibrin formulations have been preclinically evaluated and clinically incorporated as an adjuvant to ocular surface or glaucoma surgeries, dermal fat graft procedures, limbal stem cell expansion and retinal surgeries. The present review explores the latest scientific and clinical data, current challenges, and main prospects of this technology for the treatment of several ocular injuries.
Collapse
Affiliation(s)
- E Anitua
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain.,Regenerative medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain
| | - B de la Sen-Corcuera
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain.,Regenerative medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain
| | - G Orive
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain.,Regenerative medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain.,NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Oviedo, Vitoria-Gasteiz, Spain
| | - R M Sánchez-Ávila
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain
| | - P Heredia
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain.,Regenerative medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain
| | - F Muruzabal
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain.,Regenerative medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain
| | - J Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Spain
| |
Collapse
|
19
|
Mrugacz M, Bryl A, Falkowski M, Zorena K. Integrins: An Important Link between Angiogenesis, Inflammation and Eye Diseases. Cells 2021; 10:1703. [PMID: 34359873 PMCID: PMC8305893 DOI: 10.3390/cells10071703] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Integrins belong to a group of cell adhesion molecules (CAMs) which is a large group of membrane-bound proteins. They are responsible for cell attachment to the extracellular matrix (ECM) and signal transduction from the ECM to the cells. Integrins take part in many other biological activities, such as extravasation, cell-to-cell adhesion, migration, cytokine activation and release, and act as receptors for some viruses, including severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). They play a pivotal role in cell proliferation, migration, apoptosis, tissue repair and are involved in the processes that are crucial to infection, inflammation and angiogenesis. Integrins have an important part in normal development and tissue homeostasis, and also in the development of pathological processes in the eye. This review presents the available evidence from human and animal research into integrin structure, classification, function and their role in inflammation, infection and angiogenesis in ocular diseases. Integrin receptors and ligands are clinically interesting and may be promising as new therapeutic targets in the treatment of some eye disorders.
Collapse
Affiliation(s)
- Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Anna Bryl
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | | | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
20
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Tsai CY, Chen CT, Lin CH, Liao CC, Hua K, Hsu CH, Chen CF. Proteomic analysis of Exosomes derived from the Aqueous Humor of Myopia Patients. Int J Med Sci 2021; 18:2023-2029. [PMID: 33850473 PMCID: PMC8040407 DOI: 10.7150/ijms.51735] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives: Myopia is the most common refractive vision disorder. In recent years, several studies have suggested that the alteration of the exosomal protein levels in the aqueous humor (AH) is associated with the development of several eye diseases. Therefore, we aimed to explore the exosomal protein profile of the AH from myopia patients. Methods: Exosomes were isolated from the AH. The quality, concentration, and size distribution of exosomes for each patient were measured using nanoparticle tracking analysis system. Then, the exosomal proteins were purified and digested by trypsin for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: There was no significant difference observed between the myopia and control when comparing the concentration and size distribution of exosomes in the AH for each sample. Based on LC-MS/MS analysis, myopia patients had higher and more complex exosomal peptide content. We found two proteins that were common in AH exosomes and eight proteins that were highly expressed in the myopia group. Conclusions: Our results provide pioneering findings for the exploration of the exosomal protein profile in myopia development. Further studies may provide significant information for the diagnosis, clinical treatment, and prognosis of myopia.
Collapse
Affiliation(s)
- Ching-Yao Tsai
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan.,MS Program in Transdisciplinary Long Term Care, Fu Jen Catholic University, New Taipei City, Taiwan.,Community Medicine Research Center and Institution of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chueh-Tan Chen
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan.,Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Hui Lin
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Chung Liao
- Metabolomics-Proteomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kate Hua
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Chinese Medicine, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Taipei, Taiwan
| | - Chian-Feng Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
22
|
Ocular Adverse Effects of Infigratinib, a New Fibroblast Growth Factor Receptor Tyrosine Kinase Inhibitor. Ophthalmology 2020; 128:624-626. [PMID: 32888946 DOI: 10.1016/j.ophtha.2020.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
|
23
|
Autologous platelet-rich plasma in the treatment of refractory corneal ulcers: A case report. Am J Ophthalmol Case Rep 2020; 20:100838. [PMID: 32913920 PMCID: PMC7472805 DOI: 10.1016/j.ajoc.2020.100838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/25/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose To evaluate the efficacy of a low-cost preparation of platelet-rich plasma (PRP) eye drops in the treatment of persistent non-infectious corneal ulcer. Observations A 67-year-old female presented to our clinic with a wide corneal ulcer and severe paracentral corneal thinning refractory to medical therapy with antibiotics, lubricant and contact lens bandage. The patient received a novel preparation of PRP solution. After 15 days of therapy, we observed complete resolution of the corneal ulcer with regrowth of the epithelium and a reduction in corneal opacity. Conclusion and importance Although the low-cost PRP preparation gives a lower platelet concentration than standard procedures, our work shows this preparation to be effective in the treatment of refractory non-infectious corneal ulcer.
Collapse
|
24
|
Anitua E, de la Fuente M, Alcalde I, Sanchez C, Merayo-Lloves J, Muruzabal F. Development and Optimization of Freeze-Dried Eye Drops Derived From Plasma Rich in Growth Factors Technology. Transl Vis Sci Technol 2020; 9:35. [PMID: 32832240 PMCID: PMC7414653 DOI: 10.1167/tvst.9.7.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate whether plasma rich in growth factors (PRGF) eye drops maintain their biological potential after a freeze drying process. The addition of a lyoprotectant like trehalose was also evaluated. Methods Blood from three healthy donors was collected to obtain eye drops by PRGF technology. The resultant eye drops were divided in four groups: PRGF, freeze-dried PRGF (PRGF lyo), and PRGF lyophilized mixed with 2,5% trehalose (PRGF lyo+2.5T) or 5% trehalose (PRGF lyof+5T). Chemical and biological characteristics were evaluated. Photorefractive keratectomy was performed on C57BL/6 mice which were divided in three treatment groups: control, PRGF, and PRGF lyo. Corneal wound healing and haze formation were evaluated macroscopically. Eyes were collected at 1, 2, 3, and 7 days after surgery, and were processed for histologic studies. Results The pH values of PRGF samples increased significantly after the lyophilization process. Osmolarity levels increased significantly in PRGF samples mixed with trehalose in comparison with PRGF samples without protectants. The freeze drying process maintained growth factors levels as well as the biological properties of PRGF eye drops even without the use of lyoprotectants. PRGF lyo treatment significantly decreased the re-epithelialization time and haze formation in photorefractive keratectomy-treated corneas regarding PRGF and control groups. Furthermore, the PRGF lyo group significantly decreased the number of smooth muscle actin-positive cells in comparison with the control group at each time of the study and at days 2 and 3 in the PRGF group. Conclusions The freeze drying process preserves the protein and growth factor content as well as the biological properties of PRGF eye drops, even without the use of protectants. Freeze-dried PRGF eye drops accelerate corneal tissue regeneration after photorefractive keratectomy in comparison with the control group. Translational Relevance Our study shows the feasibility to preserve the biological capability of PRGF eye drops as freeze-dried formulation, avoiding the addition of protectants.
Collapse
Affiliation(s)
- Eduardo Anitua
- Biotechnology Institute (BTI), Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - María de la Fuente
- Biotechnology Institute (BTI), Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Ignacio Alcalde
- Instituto Oftalmológico Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Cristina Sanchez
- Instituto Oftalmológico Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Oftalmológico Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Francisco Muruzabal
- Biotechnology Institute (BTI), Vitoria, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
25
|
Mehdipour M, Skinner C, Wong N, Lieb M, Liu C, Etienne J, Kato C, Kiprov D, Conboy MJ, Conboy IM. Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. Aging (Albany NY) 2020; 12:8790-8819. [PMID: 32474458 PMCID: PMC7288913 DOI: 10.18632/aging.103418] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Heterochronic blood sharing rejuvenates old tissues, and most of the studies on how this works focus on young plasma, its fractions, and a few youthful systemic candidates. However, it was not formally established that young blood is necessary for this multi-tissue rejuvenation. Here, using our recently developed small animal blood exchange process, we replaced half of the plasma in mice with saline containing 5% albumin (terming it a "neutral" age blood exchange, NBE) thus diluting the plasma factors and replenishing the albumin that would be diminished if only saline was used. Our data demonstrate that a single NBE suffices to meet or exceed the rejuvenative effects of enhancing muscle repair, reducing liver adiposity and fibrosis, and increasing hippocampal neurogenesis in old mice, all the key outcomes seen after blood heterochronicity. Comparative proteomic analysis on serum from NBE, and from a similar human clinical procedure of therapeutic plasma exchange (TPE), revealed a molecular re-setting of the systemic signaling milieu, interestingly, elevating the levels of some proteins, which broadly coordinate tissue maintenance and repair and promote immune responses. Moreover, a single TPE yielded functional blood rejuvenation, abrogating the typical old serum inhibition of progenitor cell proliferation. Ectopically added albumin does not seem to be the sole determinant of such rejuvenation, and levels of albumin do not decrease with age nor are increased by NBE/TPE. A model of action (supported by a large body of published data) is that significant dilution of autoregulatory proteins that crosstalk to multiple signaling pathways (with their own feedback loops) would, through changes in gene expression, have long-lasting molecular and functional effects that are consistent with our observations. This work improves our understanding of the systemic paradigms of multi-tissue rejuvenation and suggest a novel and immediate use of the FDA approved TPE for improving the health and resilience of older people.
Collapse
Affiliation(s)
- Melod Mehdipour
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Colin Skinner
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Nathan Wong
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Michael Lieb
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Chao Liu
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Jessy Etienne
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Cameron Kato
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Dobri Kiprov
- California Pacific Medical Center, Apheresis Care Group, San-Francisco, CA 94115, USA
| | - Michael J. Conboy
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Irina M. Conboy
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Yildirim H, Aydemir O, Balbaba M, Özercan İH, İlhan N. Comparison of the effect of topical bevacizumab and sorafenib in experimental corneal neovascularization. Cutan Ocul Toxicol 2020; 39:223-228. [PMID: 32338080 DOI: 10.1080/15569527.2020.1760877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study was to compare the neovascularization inhibiting the effect of topical bevacizumab and sorafenib and to determine the effective dose of sorafenib. MATERIAL AND METHODS Forty-two healthy Wistar albino rats were randomly divided into six groups. The right corneas of all rats except group 1 were cauterised with silver nitrate. Group 2 received DMSO, group 3 received topical bevacizumab (5 mg/dL, 3 times a day) and group 4, 5 and 6 received topical sorafenib (2.5 mg/dl, 5 mg/dL, 7.5 mg/dL, 2 times a day respectively), between days 1 and 7. Corneal photographs were taken on day 8 and the corneal neovascular area percentage was calculated. Following decapitation, the corneas were removed to determine the levels of VEGF ELİSA and corneal immune staining. The Mann-Whitney U-test was used for statistical analysis. RESULTS The neovascular corneal area percentage was statistically significantly lower in the treatment groups than group 2 (p < 0.05). The intensity of VEGF immune staining was also lower in groups 3, 5 and 6 from the group 2. Group 3, 5 and 6 were no significant differences compared to group 1. The VEGF ELİSA levels were statistically significantly lower in group 3, 5 and 6 compared to group 2 (p < 0.05). There was no statistically difference between VEGF ELİSA levels of group 2 and 4 (p > 0.05). CONCLUSIONS Sorafenib was as effective as bevacizumab in the regression of corneal neovascularization. The effect of sorafenib seems to be dose-dependent. The low doses and twice a day administration are important advantages of sorafenib.
Collapse
Affiliation(s)
- Hakan Yildirim
- Faculty of Medicine, Department of Ophthalmology, Firat University, Elazig, Turkey
| | - Orhan Aydemir
- Faculty of Medicine, Department of Ophthalmology, Firat University, Elazig, Turkey
| | - Mehmet Balbaba
- Faculty of Medicine, Department of Ophthalmology, Firat University, Elazig, Turkey
| | | | - Nevin İlhan
- Faculty of Medicine, Department of Biochemistry, Firat University, Elazig, Turkey
| |
Collapse
|
27
|
Jiao X, Lu D, Pei X, Qi D, Huang S, Song Z, Gu J, Li Z. Type 1 diabetes mellitus impairs diurnal oscillations in murine extraorbital lacrimal glands. Ocul Surf 2020; 18:438-452. [PMID: 32360784 DOI: 10.1016/j.jtos.2020.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE People with diabetes are at high risk of lacrimal gland dysfunction, but the underlying mechanism is not well understood. In this study, we determined how type 1 diabetes mellitus (T1DM) influences circadian homeostasis of the murine extraorbital lacrimal glands (ELGs). METHODS A T1DM animal model was established by systemic streptozotocin injection in C57BL/6J mice. After 5 weeks, ELGs were collected at 3-h intervals over a 24-h circadian cycle. Total extracted RNA was subjected to high-throughput RNA sequencing, and rhythmic transcriptional data were evaluated using the Jonckheere-Terpstra-Kendall algorithm, Kyoto Encyclopedia of Genes and Genomes pathway analysis, Phase Set Enrichment Analysis, and time series cluster analysis to determine the phase, rhythmicity, and unique signature of the transcripts over temporally coordinated expression. Additionally, mass, cell size, histology, and tear secretion of the ELGs were evaluated. RESULTS T1DM globally altered the composition of the ELG transcriptome. Specifically, T1DM significantly reprogrammed the circadian transcriptomic profiles of normal ELGs and reorganized core clock machinery. Unique temporal and clustering enrichment pathways were also rewired by T1DM. Finally, normal daily rhythms of mass, cell size, and tear secretion of mouse ELGs were significantly impaired by streptozotocin-induced diabetes. CONCLUSIONS T1DM significantly reprograms the diurnal oscillations of the lacrimal glands and impairs their structure and tear secretion. This information may reveal potential targets for improving lacrimal gland dysfunction in patients with diabetes.
Collapse
Affiliation(s)
- Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zongming Song
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Jianqin Gu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|
28
|
Hyperlipidemia Affects Tight Junctions and Pump Function in the Corneal Endothelium. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:563-576. [PMID: 31945314 DOI: 10.1016/j.ajpath.2019.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/29/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Hyperlipidemia impacts on various diseases, such as atherosclerosis, hypertension, and diabetes mellitus. However, its influence, if any, on ocular tissues is largely unknown. Herein, we developed hyperlipidemic murine models by feeding 4-week-old male wild-type mice with a high-fat diet and apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet or standard diet to investigate the corneal endothelial change under hyperlipidemic conditions. Oil Red O staining showed an accumulation of lipid droplets in corneal endothelial cells (CECs) of hyperlipidemic mice. Other manifestations included a reduced cell density and distorted cell morphology, a disruption of the endothelial cell tight junctions and adhesion junctions, a reduced number of surface microvilli, down-regulation of Na+-K+-ATPase expression and function, activation of oxidative stress, changes in mitochondrial ultrastructure, and increased apoptosis. CEC recovery after injury, moreover, was diminished in hyperlipidemic mice; and high palmitate levels were found in the aqueous humor. In vitro hyperlipemia model, moreover, was found to be associated with dose-dependent CEC cytotoxicity, altered cell morphology, reduced pump function, and an induction of oxidative stress, leading to functional and pathologic changes in the corneal endothelium.
Collapse
|
29
|
Suárez-Barrio C, Etxebarria J, Hernáez-Moya R, Del Val-Alonso M, Rodriguez-Astigarraga M, Urkaregi A, Freire V, Morales MC, Durán JA, Vicario M, Molina I, Herrero-Vanrell R, Andollo N. Hyaluronic Acid Combined with Serum Rich in Growth Factors in Corneal Epithelial Defects. Int J Mol Sci 2019; 20:ijms20071655. [PMID: 30987108 PMCID: PMC6480555 DOI: 10.3390/ijms20071655] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/30/2022] Open
Abstract
The aim of this study is to assess if an adhesive biopolymer, sodium hyaluronate (NaHA), has synergistic effects with s-PRGF (a serum derived from plasma rich in growth factors and a blood derivative that has already shown efficacy in corneal epithelial wound healing), to reduce time of healing or posology. In vitro proliferation and migration studies, both in human corneal epithelial (HCE) cells and in rabbit primary corneal epithelial (RPCE) cultures, were carried out. In addition, we performed studies of corneal wound healing in vivo in rabbits treated with s-PRGF, NaHA, or the combination of both. We performed immunohistochemistry techniques (CK3, CK15, Ki67, ß4 integrin, ZO-1, α-SMA) in rabbit corneas 7 and 30 days after a surgically induced epithelial defect. In vitro results show that the combination of NaHA and s-PRGF offers the worst proliferation rates in both HCE and RPCE cells. Addition of NaHA to s-PRGF diminishes the re-epithelializing capability of s-PRGF. In vivo, all treatments, given twice a day, showed equivalent efficacy in corneal epithelial healing. We conclude that the combined use of s-PRGF and HaNA as an adhesive biopolymer does not improve the efficacy of s-PRGF alone in the wound healing of corneal epithelial defects.
Collapse
Affiliation(s)
- Carlota Suárez-Barrio
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Jaime Etxebarria
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
- Department of Ophthalmology, University Hospital of Cruces, BioCruces Health Research Institute, Begiker, 48903 Barakaldo, Spain.
| | - Raquel Hernáez-Moya
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Marina Del Val-Alonso
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Maddalen Rodriguez-Astigarraga
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Arantza Urkaregi
- Department of Applied Mathematics and Statistics and Operational Research, BioCruces Health Research Institute, 48940 Leioa, Spain.
| | - Vanesa Freire
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
- R & D Department, Instituto Clínico-Quirúrgico de Oftalmología, 48006 Bilbao, Spain.
| | - María-Celia Morales
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Juan Antonio Durán
- R & D Department, Instituto Clínico-Quirúrgico de Oftalmología, 48006 Bilbao, Spain.
- Department of Dermatology, Otorhinolaryngology and Ophthalmology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| | - Marta Vicario
- Pharmaceutical Innovation in Ophthalmology (InnOftal) UCM Research Group 920415. Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain.
| | - Irene Molina
- Pharmaceutical Innovation in Ophthalmology (InnOftal) UCM Research Group 920415. Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain.
| | - Rocío Herrero-Vanrell
- Pharmaceutical Innovation in Ophthalmology (InnOftal) UCM Research Group 920415. Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain.
| | - Noelia Andollo
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, BioCruces Health Research Institute, Begiker, 48940 Leioa, Spain.
| |
Collapse
|
30
|
Yazdani M, Shahdadfar A, Jackson CJ, Utheim TP. Hyaluronan-Based Hydrogel Scaffolds for Limbal Stem Cell Transplantation: A Review. Cells 2019; 8:E245. [PMID: 30875861 PMCID: PMC6468750 DOI: 10.3390/cells8030245] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan (HA), also termed hyaluronic acid or hyaluronate, is a major component of the extracellular matrix. This non-sulfated glycosaminoglycan plays a key role in cell proliferation, growth, survival, polarization, and differentiation. The diverse biological roles of HA are linked to the combination of HA's physicochemical properties and HA-binding proteins. These unique characteristics have encouraged the application of HA-based hydrogel scaffolds for stem cell-based therapy, a successful method in the treatment of limbal stem cell deficiency (LSCD). This condition occurs following direct damage to limbal stem cells and/or changes in the limbal stem cell niche microenvironment due to intrinsic and extrinsic insults. This paper reviews the physical properties, synthesis, and degradation of HA. In addition, the interaction of HA with other extracellular matrix (ECM) components and receptor proteins are discussed. Finally, studies employing HA-based hydrogel scaffolds in the treatment of LSCD are reviewed.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
- Department of Maxillofacial Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Department of Ophthalmology, Vestre Viken Hospital Trust, 3019 Drammen, Norway.
- Department of Ophthalmology, Stavanger University Hospital, 4011 Stavanger, Norway.
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway.
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4604 Arendal, Norway.
- National Centre for Optics, Vision and Eye Care, Faculty of Health Sciences, University of South Eastern Norway, 3603 Kongsberg, Norway.
| |
Collapse
|
31
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|
32
|
Effect of D-Panthenol on Corneal Epithelial Healing after Surface Laser Ablation. J Ophthalmol 2018; 2018:6537413. [PMID: 30538855 PMCID: PMC6260525 DOI: 10.1155/2018/6537413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose To study the effect of D-panthenol (provitamin B5) on corneal epithelial healing, in cases of surface laser ablation. Patients and Methods: 45 eyes, of 45 patients undergoing laser surface ablation, received D-panthenol 2% in one eye and artificial tear drops of similar composition not containing D-panthenol in the other eye, postoperatively, for 2 months. Patients were examined daily for 3 days after the procedure. They were then examined weekly for 1 month. An additional examination was made after 2 months. Visual acuity (Log MAR) was assessed at every visit. Rate of healing (% of covered area) and subjective sensation of discomfort (scale 0–5) were assessed in the 1st 3 visits. Residual manifest cylinder (D) (as a parameter of corneal irregularity) and corneal clarity (epithelial and stromal haze) were assessed from week 1 to month 2. Results During the first 3 days, both groups showed statistically nonsignificant (P > 0.05) results. From week 1 to month 2, eyes receiving D-panthenol showed better vision and less residual cylinder (P < 0.05) at week 1. For all other parameters, and at different examinations, both groups showed a statistically nonsignificant (P > 0.05) difference. Still, eyes receiving D-panthenol showed better values at the majority of the parameters tested. Conclusion D-Panthenol effect on corneal epithelial regeneration is of minimal clinical relevance. A different dosage and a larger sample of patients might reveal a statistical relevance. This trial is registered with https://doi.org/10.1186/ISRCTN81441126.
Collapse
|
33
|
Anitua E, de la Fuente M, Muruzabal F, Sánchez-Ávila RM, Merayo-Lloves J, Azkargorta M, Elortza F, Orive G. Differential profile of protein expression on human keratocytes treated with autologous serum and plasma rich in growth factors (PRGF). PLoS One 2018; 13:e0205073. [PMID: 30312303 PMCID: PMC6193583 DOI: 10.1371/journal.pone.0205073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022] Open
Abstract
Purpose The main objective of this study is to compare the protein expression of human keratocytes treated with Plasma rich in growth factors (PRGF) or autologous serum (AS) and previously induced to myofibroblast by TGF-β1 treatment. Methods Blood from healthy donor was collected and processed to obtain AS and PRGF eye drops. Blood derivates were aliquoted and stored at -80°C until use. Keratocyte cells were pretreated for 60 minutes with 2.5 ng/ml TGF-β1. After that, cells were treated with PRGF, AS or with TGF-β1 (control). To characterize the proteins deregulated after PRGF and AS treatment, a proteomic approach that combines 1D-SDS–PAGE approach followed by LC–MS/MS was carried out. Results Results show a catalogue of key proteins in close contact with a myofibroblastic differentiated phenotype in AS treated-cells, whereas PRGF-treated cells show attenuation on this phenotype. The number of proteins downregulated after PRGF treatment or upregulated in AS-treated cells suggest a close relationship between AS-treated cells and cytoskeletal functions. On the other hand, proteins upregulated after PRGF-treatment or downregulated in AS-treated cells reveal a greater association with processes such as protein synthesis, proliferation and cellular motility. Conclusion This proteomic analysis helps to understand the molecular events underlying AS and PRGF-driven tissue regeneration processes, providing new evidence that comes along with the modulation of TGF-β1 activity and the reversion of the myofibroblastic phenotype by PRGF.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI—Biotechnology Institute, Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- * E-mail: (GO); (EA)
| | - María de la Fuente
- BTI—Biotechnology Institute, Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
| | - Francisco Muruzabal
- BTI—Biotechnology Institute, Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
| | | | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Gorka Orive
- BTI—Biotechnology Institute, Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- * E-mail: (GO); (EA)
| |
Collapse
|
34
|
Zhang Y, Lu XY, Hu RJ, Fan FL, Jin XM. Evaluation of artificial tears on cornea epithelium healing. Int J Ophthalmol 2018; 11:1096-1101. [PMID: 30046523 DOI: 10.18240/ijo.2018.07.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/02/2018] [Indexed: 01/19/2023] Open
Abstract
AIM To observe the efficacy of different artificial eye drops on corneal epithelium healing in rabbit. METHODS Thirty-five rabbits with 6 mm diameter central corneal epithelium removed were randomly assigned to six groups: 0.9% normal saline (NS) group, 0.1% hyaluronate (HA) group, 0.3% HA group, Tears Naturale Free® (TNF) group, 0.4% polyethylene glycol (PEG) group, 0.5% carboxymethyl cellulose (CMC) group and blank control group. Treatments were administered topically four times daily. Corneal epithelium healing was evaluated by the percentage reduction in wound area at 24, 36, 48, 60, and 72h after removal of the corneal epithelium. Cornea re-epithelialization was also assessed by histological analysis and electron microscopy. RESULTS All corneal wounds completely re-epithelialized in less than 72h. The average re-epithelialization time was 47.61±4.25h in the 0.3% HA group and 49.72±1.05h in the 0.9% NS group, followed by 0.1% HA, TNF, 0.4% PEG, 0.5% CMC, and lastly by the control group. Compared to the control group, there were significant differences among 0.3% HA, 0.9% NS, PEG, and TNF (P<0.05) groups. At the first 24h, re-epithelialization at the 0.3% HA, TNF, and 0.9% NS treatment groups were significantly faster than the other groups. At 48h post-wounding, corneal epithelium is nearly completing re-epithelialization at 0.3% HA and 0.9% NS treatment groups. Electron microscopy revealed that there were a large number of vacuoles in the cells of the 0.9% NS group at 72h. CONCLUSION Artificial tears promote corneal re-epithelium varied in the efficacy. Obviously, all artificial eye drops better than blank group. In the process of corneal healing, corneal epithelium cells suffered from hypoxia caused by NS.
Collapse
Affiliation(s)
- Ying Zhang
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China.,Department of Ophthalmology, Zhejiang Xiaoshan Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Xiao-You Lu
- Department of Ophthalmology, Zhejiang Xiaoshan Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Ren-Jian Hu
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Fang-Li Fan
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xiu-Ming Jin
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
35
|
Fahmy HM, Saad EAEMS, Sabra NM, El-Gohary AA, Mohamed FF, Gaber MH. Treatment merits of Latanoprost/Thymoquinone - Encapsulated liposome for glaucomatus rabbits. Int J Pharm 2018; 548:597-608. [PMID: 29997042 DOI: 10.1016/j.ijpharm.2018.07.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023]
Abstract
Elevation of the intraocular pressure (IOP) is recognized as a risk factor for glaucoma development. Latanoprost (LAT) is a prostaglandin analog used to reduce the (IOP). Thymoquinone (TQ) is a major bioactive ingredient of Nigella sativa. The aim of this study was to develop novel liposomal drug carriers for ocular delivery of LAT, TQ and a mixture of them to investigate their IOP lowering efficacy upon subconjunctival injection in glaucoma-induced rabbit's eye. The aim of the present work extends also to study the effect of the different liposome formulations on the aqueous humor oxidative stress. Liposome samples were prepared using thin film hydration method. The physiochemical properties of the prepared drugs were characterized. The IOP was recorded for 70 rabbits using Schiotz-tonometer. Malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT) activities and total antioxidant activity of the aqueous humor were estimated. Fourier transform infrared and differential scanning calorimetric studies confirmed the interaction between the drug and the vesicles, which resulted in high drug encapsulation efficiency ≥88%. The size of the prepared liposomes was less than 10 μm which make them suitable in ophthalmic applications. The sustained effect was achieved by liposome samples of Lip (LAT) and Lip (LAT + TQ) which were able to reduce the IOP significantly up to 84 h. Morever, the treatment of glaucomatous rabbits with liposome formulations containing TQ in their preparation [Lip (TQ) and Lip (LAT + TQ)] greatly improved the ocular tissue-induced histopathological lesions. None of the prepared liposome formulations succeeded to improve the glaucoma-induced oxidative stress damage.
Collapse
Affiliation(s)
| | | | | | - Amal Ahmed El-Gohary
- Physiological Optics Department, Research Institute of Ophthalmology, Giza, Egypt
| | | | - Mohamed Hassaneen Gaber
- Biophysics Department, Faculty of Science, Cairo University, Egypt; Basic Science Department, Faculty of Engineering, British University in Egypt, El Shourouk City, Misr Ismalia Road, P.O. Box 43, Cairo 11837, Egypt
| |
Collapse
|
36
|
Tripathy K, Chawla R, Temkar S, Sagar P, Kashyap S, Pushker N, Sharma YR. Phthisis Bulbi-a Clinicopathological Perspective. Semin Ophthalmol 2018; 33:788-803. [PMID: 29902388 DOI: 10.1080/08820538.2018.1477966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phthisis bulbi denotes end-stage eye disease characterized by shrinkage and disorganization of the eye with the resultant functional loss. The major factors associated with the pathogenesis of phthisis are hypotony, deranged blood-ocular barriers, and inflammation. Common causes include trauma, surgery, infection, inflammation, malignancy, retinal detachment, and vascular lesions. A phthisical globe shows a small squared off shape, opaque and thickened cornea, thickened sclera, neovascularization of iris, cataract, cyclitic membrane, ciliochoroidal detachment, and retinal detachment. Microscopic features include internal disorganization, inflammatory reaction, a reactive proliferation of various cells, calcification, and ossification. Early treatment of the causative etiology is the best strategy available to avoid an eye from going into phthisis. A phthisical eye has no visual potential and cosmetic rehabilitation or symptomatic relief of pain remains the mainstay in the management. The authors present a comprehensive review of the etiopathogenesis, pathology, clinical features, and management of the end-stage ocular disease.
Collapse
Affiliation(s)
- Koushik Tripathy
- a Department of Ophthalmology, Dr. Rajendra Prasad Centre for ophthalmic sciences , All India Institute of Medical Sciences , New Delhi , India
| | - Rohan Chawla
- a Department of Ophthalmology, Dr. Rajendra Prasad Centre for ophthalmic sciences , All India Institute of Medical Sciences , New Delhi , India
| | - Shreyas Temkar
- a Department of Ophthalmology, Dr. Rajendra Prasad Centre for ophthalmic sciences , All India Institute of Medical Sciences , New Delhi , India
| | - Pradeep Sagar
- a Department of Ophthalmology, Dr. Rajendra Prasad Centre for ophthalmic sciences , All India Institute of Medical Sciences , New Delhi , India
| | - Seema Kashyap
- b Department of Ophthalmic Pathology, Dr. Rajendra Prasad Centre for ophthalmic sciences , All India Institute of Medical Sciences , New Delhi , India
| | - Neelam Pushker
- a Department of Ophthalmology, Dr. Rajendra Prasad Centre for ophthalmic sciences , All India Institute of Medical Sciences , New Delhi , India
| | - Yog Raj Sharma
- a Department of Ophthalmology, Dr. Rajendra Prasad Centre for ophthalmic sciences , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
37
|
Karamanou K, Perrot G, Maquart FX, Brézillon S. Lumican as a multivalent effector in wound healing. Adv Drug Deliv Rev 2018; 129:344-351. [PMID: 29501701 DOI: 10.1016/j.addr.2018.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/31/2018] [Accepted: 02/26/2018] [Indexed: 12/14/2022]
Abstract
Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing.
Collapse
Affiliation(s)
- Konstantina Karamanou
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
| | - Gwenn Perrot
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
| | - Francois-Xavier Maquart
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; CHU Reims, Laboratoire Central de Biochimie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France.
| |
Collapse
|
38
|
Generation and characterisation of decellularised human corneal limbus. Graefes Arch Clin Exp Ophthalmol 2018; 256:547-557. [PMID: 29392398 DOI: 10.1007/s00417-018-3904-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Limbal epithelial stem cells (LESC) reside in a niche in the corneo-scleral transition zone. Deficiency leads to pain, corneal opacity, and eventually blindness. LESC transplantation of ex-vivo expanded human LESC on a carrier such as human amniotic membrane is a current treatment option. We evaluated decellularised human limbus (DHL) as a potential carrier matrix for the transplantation of LESC. METHODS Human corneas were obtained from the local eye bank. The limbal tissue was decellularised by sodium desoxychelate and DNase solution and sterilised by γ-irradiation. Native limbus- and DHL-surface structures were assessed by scanning electron microscopy and collagen ultrastructure using transmission electron microscopy. Presence and preservation of limbal basement membrane proteins in native limbus and DHL were analysed immunohistochemically. Absence of DNA after decellularisation was assessed by Feulgen staining and DNA quantification. Presence of immune cells was explored by CD45 staining, and potential cytotoxicity was tested using a cell viability assay. RESULTS In the DHL, the DNA content was reduced from 1.5 ± 0.3 μg/mg to 0.15 ± 0.01 μg/mg; the three-dimensional structure and the arrangement of the collagen fibrils were preserved. Main basement membrane proteins such as collagen IV, laminin, and fibronectin were still present after decellularisation and γ-irradiation. CD45-expressing cells were evident neither in the native limbus nor in the DHL. DHL did not convey cytotoxicity. CONCLUSIONS The extracellular matrix (ECM) of the limbus provides a tissue specific morphology and three-dimensionality consisting of particular ECM proteins. It therefore represents a substantial component of the stem cell niche. The DHL provides a specific limbal niche surrounding, and might serve as an easily producible carrier matrix for LESC transplantation.
Collapse
|
39
|
Zhang M, Zhou Q, Luo Y, Nguyen T, Rosenblatt MI, Guaiquil VH. Semaphorin3A induces nerve regeneration in the adult cornea-a switch from its repulsive role in development. PLoS One 2018; 13:e0191962. [PMID: 29370308 PMCID: PMC5785010 DOI: 10.1371/journal.pone.0191962] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022] Open
Abstract
The peripheral sensory nerves that innervate the cornea can be easily damaged by trauma, surgery, infection or diabetes. Several growth factors and axon guidance molecules, such as Semaphorin3A (Sema3A) are upregulated upon cornea injury. Nerves can regenerate after injury but do not recover their original density and patterning. Sema3A is a well known axon guidance and growth cone repellent protein during development, however its role in adult cornea nerve regeneration remains undetermined. Here we investigated the neuro-regenerative potential of Sema3A on adult peripheral nervous system neurons such as those that innervate the cornea. First, we examined the gene expression profile of the Semaphorin class 3 family members and found that all are expressed in the cornea. However, upon cornea injury there is a fast increase in Sema3A expression. We then corroborated that Sema3A totally abolished the growth promoting effect of nerve growth factor (NGF) on embryonic neurons and observed signs of growth cone collapse and axonal retraction after 30 min of Sema3A addition. However, in adult isolated trigeminal ganglia or dorsal root ganglia neurons, Sema3A did not inhibited the NGF-induced neuronal growth. Furthermore, adult neurons treated with Sema3A alone produced similar neuronal growth to cells treated with NGF and the length of the neurites and branching was comparable between both treatments. These effects were replicated in vivo, where thy1-YFP neurofluorescent mice subjected to cornea epithelium debridement and receiving intrastromal pellet implantation containing Sema3A showed increased corneal nerve regeneration than those receiving pellets with vehicle. In adult PNS neurons, Sema3A is a potent inducer of neuronal growth in vitro and cornea nerve regeneration in vivo. Our data indicates a functional switch for the role of Sema3A in PNS neurons where the well-described repulsive role during development changes to a growth promoting effect during adulthood. The high expression of Sema3A in the normal and injured adult corneas could be related to its role as a growth factor.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Etxebarria J, Sanz-Lázaro S, Hernáez-Moya R, Freire V, Durán JA, Morales MC, Andollo N. Serum from plasma rich in growth factors regenerates rabbit corneas by promoting cell proliferation, migration, differentiation, adhesion and limbal stemness. Acta Ophthalmol 2017; 95:e693-e705. [PMID: 28266180 DOI: 10.1111/aos.13371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the regenerating potential and the mechanisms through which the autologous serum derived from plasma rich in growth factors (s-PRGF) favours corneal wound healing in vitro and in vivo. METHODS We compared the effect of various concentrations of s-PRGF versus fetal bovine serum (FBS) and control treatment in rabbit primary corneal epithelial and stromal cells and wounded rabbit corneas. Cell proliferation was measured using an enzymatic colorimetric assay. In vitro and in vivo wound-healing progression was assessed by image-analysis software. Migration and invasion were evaluated using transfilter assays. Histological structure was analysed in stained sections. Protein expression was evaluated by immunohistochemistry. RESULTS s-PRGF promoted the robust proliferation of epithelial cultures at any concentration, similar to FBS. Likewise, s-PRGF and FBS produced similar re-epithelialization rates in in vitro wound-healing assays. In vivo, s-PRGF treatment accelerated corneal wound healing in comparison with control treatment. This difference was significant only for 100% s-PRGF treatment in our healthy rabbit model. Histological analysis confirmed normal epithelialization in all cases. Immunohistochemistry showed a higher expression of cytokeratins 3/76 and 15, zonula occludens-1 and alpha-smooth muscle actin proteins as a function of s-PRGF concentration. Notably, keratocyte density in the anterior third of the stroma increased with increase in s-PRGF concentration, suggesting an in vivo chemotactic effect of s-PRGF on keratocytes that was further confirmed in vitro. CONCLUSION s-PRGF promotes proliferation and migration and influences limbal stemness, adhesion and fibrosis during corneal healing.
Collapse
Affiliation(s)
- Jaime Etxebarria
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
- Department of Ophthalmology; BioCruces Health Research Institute; University Hospital of Cruces; Begiker; Barakaldo Spain
| | - Sara Sanz-Lázaro
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - Raquel Hernáez-Moya
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - Vanesa Freire
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
- R & D Department; Instituto Clínico-Quirúrgico de Oftalmología; Bilbao Spain
| | - Juan A. Durán
- R & D Department; Instituto Clínico-Quirúrgico de Oftalmología; Bilbao Spain
- Department of Ophthalmology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - María-Celia Morales
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology; School of Medicine and Nursing; BioCruces Health Research Institute; University of the Basque Country; Begiker; Leioa Spain
| |
Collapse
|
41
|
Kliuchnikova AA, Samokhina NI, Ilina IY, Karpov DS, Pyatnitskiy MA, Kuznetsova KG, Toropygin IY, Kochergin SA, Alekseev IB, Zgoda VG, Archakov AI, Moshkovskii SA. Human aqueous humor proteome in cataract, glaucoma, and pseudoexfoliation syndrome. Proteomics 2017; 16:1938-46. [PMID: 27193151 DOI: 10.1002/pmic.201500423] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022]
Abstract
Twenty-nine human aqueous humor samples from patients with eye diseases such as cataract and glaucoma with and without pseudoexfoliation syndrome were characterized by LC-high resolution MS analysis. In total, 269 protein groups were identified with 1% false discovery rate including 32 groups that were not reported previously for this biological fluid. Since the samples were analyzed individually, but not pooled, 36 proteins were identified in all samples, comprising the constitutive proteome of the fluid. The most dominant molecular function of aqueous humor proteins as determined by GO analysis is endopeptidase inhibitor activity. Label-free protein quantification showed no significant difference between glaucoma and cataract aqueous humor proteomes. At the same time, we found decrease in the level of apolipoprotein D as a marker of the pseudoexfoliation syndrome. The data are available from ProteomeXchange repository (PXD002623).
Collapse
Affiliation(s)
| | - Nadezhda I Samokhina
- Institute of Biomedical Chemistry, Moscow, Russia.,Russian Medical Academy of Postgraduate Education, Moscow, Russia
| | | | - Dmitry S Karpov
- Institute of Biomedical Chemistry, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Pyatnitskiy
- Institute of Biomedical Chemistry, Moscow, Russia.,Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | | | | | - Igor B Alekseev
- Russian Medical Academy of Postgraduate Education, Moscow, Russia
| | | | | | - Sergei A Moshkovskii
- Institute of Biomedical Chemistry, Moscow, Russia.,Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
42
|
Brunette I, Roberts CJ, Vidal F, Harissi-Dagher M, Lachaine J, Sheardown H, Durr GM, Proulx S, Griffith M. Alternatives to eye bank native tissue for corneal stromal replacement. Prog Retin Eye Res 2017; 59:97-130. [DOI: 10.1016/j.preteyeres.2017.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/15/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
|
43
|
Diabetic complications in the cornea. Vision Res 2017; 139:138-152. [PMID: 28404521 DOI: 10.1016/j.visres.2017.03.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
Diabetic corneal alterations, such as delayed epithelial wound healing, edema, recurrent erosions, neuropathy/loss of sensitivity, and tear film changes are frequent but underdiagnosed complications of both type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus. The disease affects corneal epithelium, corneal nerves, tear film, and to a lesser extent, endothelium, and also conjunctiva. These abnormalities may appear or become exacerbated following trauma, as well as various surgeries including retinal, cataract or refractive. The focus of the review is on mechanisms of diabetic corneal abnormalities, available animal, tissue and organ culture models, and emerging treatments. Changes of basement membrane structure and wound healing rates, the role of various proteinases, advanced glycation end products (AGEs), abnormal growth and motility factors (including opioid, epidermal, and hepatocyte growth factors) are analyzed. Experimental therapeutics under development, including topical naltrexone, insulin, inhibitors of aldose reductase, and AGEs, as well as emerging gene and cell therapies are discussed in detail.
Collapse
|
44
|
Hendijani F. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif 2017; 50:e12334. [PMID: 28144997 PMCID: PMC6529062 DOI: 10.1111/cpr.12334] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC) research progressively moves towards clinical phases. Accordingly, a wide range of different procedures were presented in the literature for MSC isolation from human tissues; however, there is not yet any close focus on the details to offer precise information for best method selection. Choosing a proper isolation method is a critical step in obtaining cells with optimal quality and yield in companion with clinical and economical considerations. In this concern, current review widely discusses advantages of omitting proteolysis step in isolation process and presence of tissue pieces in primary culture of MSCs, including removal of lytic stress on cells, reduction of in vivo to in vitro transition stress for migrated/isolated cells, reduction of price, processing time and labour, removal of viral contamination risk, and addition of supporting functions of extracellular matrix and released growth factors from tissue explant. In next sections, it provides an overall report of technical highlights and molecular events of explant culture method for isolation of MSCs from human tissues including adipose tissue, bone marrow, dental pulp, hair follicle, cornea, umbilical cord and placenta. Focusing on informative collection of molecular and methodological data about explant methods can make it easy for researchers to choose an optimal method for their experiments/clinical studies and also stimulate them to investigate and optimize more efficient procedures according to clinical and economical benefits.
Collapse
Affiliation(s)
- Fatemeh Hendijani
- Faculty of PharmacyHormozgan University of Medical SciencesBandar AbbasIran
| |
Collapse
|
45
|
Abdul-Rahman AM, Molteno A. Late-Onset Inadvertent Bleb Formation following Pars Plana M3 Molteno Implant Tube Obstruction. Case Rep Ophthalmol 2017; 8:73-80. [PMID: 28203200 PMCID: PMC5301095 DOI: 10.1159/000456536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/13/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose To report a case of inadvertent bleb formation presenting 18 months after pars plana M3 Molteno implant tube obstruction in a patient with mixed mechanism glaucoma. Materials and Methods An 84-year-old Caucasian male with mixed mechanism glaucoma underwent slit-lamp examination, gonioscopy, colour anterior segment photography and anterior segment optical coherence tomography (AS-OCT). Results An inadvertent bleb developed 18 months after pars plana implant tube re-positioning with a 6/0 Vicryl tie ligature. The bleb was located in the area anterior to the implant plate; it was characterised by a thin, transparent, avascular and multi-cystic wall, with a visible stoma at the posterior edge of the bleb. The bleb was functioning as demonstrated by an intraocular pressure of 6 mm Hg at presentation and a punctate fluorescein uptake pattern of the bleb wall. The bleb over the plate of the Molteno implant was non-functioning, likely secondary to tube obstruction by vitreous in the early postoperative period. AS-OCT showed a tract from the anterior chamber commencing at an entry wound through a corneal tunnel to the posterior stoma at the base of the inadvertent bleb. Conclusions We hypothesise that the pathophysiologic factors resulting in an inadvertent bleb are a result of a combination of apoptosis, late-onset wound dehiscence and internal gaping of a centrally placed corneal wound. In addition, aqueous hydrodynamic factors may play a role.
Collapse
Affiliation(s)
| | - Anthony Molteno
- Ophthalmology Section, University of Otago Dunedin School of Medicine, Dunedin, New Zealand
| |
Collapse
|
46
|
Riestra AC, Alonso-Herreros JM, Merayo-Lloves J. Platelet rich plasma in ocular surface. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2016; 91:475-490. [PMID: 27062018 DOI: 10.1016/j.oftal.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
The use of platelet-rich preparations has experienced a significant increase in recent years due to its role in tissue-repair and regeneration. The aim of this study is to examine the available evidence regarding the application of plasma rich in growth factors, and its variations, on the ocular surface. A review is also presented on the effects of platelet-derived growth factors, the implications of the preparation methods, and the existing literature on the safety and efficacy of these therapies in ocular surface diseases. Despite the widespread use of platelet preparations there is no consensus on the most appropriate preparation method, and growth factors concentration vary with different systems. These preparations have been used in the treatment of ocular surface diseases, such as dry eye or persistent epithelial defects, among others, with good safety and efficacy profiles, but further studies are needed to compare to the currently available alternatives.
Collapse
Affiliation(s)
- A C Riestra
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, España.
| | | | - J Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, España
| |
Collapse
|
47
|
Frikeche J, Maiti G, Chakravarti S. Small leucine-rich repeat proteoglycans in corneal inflammation and wound healing. Exp Eye Res 2016; 151:142-9. [PMID: 27569372 DOI: 10.1016/j.exer.2016.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
The small leucine rich repeat proteoglycans are major components of the cornea. Lumican, keratocan, decorin, biglycan and osteoglycin are present throughout the adult corneal stroma, and fibromodulin in the peripheral limbal area. In the cornea literature these proteoglycan have been reviewed as structural, collagen fibril-regulating proteins of the cornea. However, these proteoglycans are members of the leucine-rich-repeat superfamily, and share structural similarities with pathogen recognition toll-like receptors. Emerging studies are showing that these have a range of interactions with cell surface receptors, chemokines, growth factors and pathogen associated molecular patterns and are able to regulate host immune response, inflammation and wound healing. This review discusses what is known about their innate immune-related role directly in the cornea, and studies outside the field that find interesting links with innate immune and wound healing responses that are likely to be relevant to the ocular surface. In addition, the review discusses phenotypes of mice with targeted deletion of proteoglycan genes and genetic variants associated with human pathologies.
Collapse
Affiliation(s)
- Jihane Frikeche
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA
| | - George Maiti
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA; Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, USA; Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, USA.
| |
Collapse
|
48
|
Luo WJ, Liu M, Zhao GQ, Wang CF, Hu LT, Liu XP. Human β-NGF gene transferred to cat corneal endothelial cells. Int J Ophthalmol 2016; 9:937-42. [PMID: 27500097 DOI: 10.18240/ijo.2016.07.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 02/03/2016] [Indexed: 12/20/2022] Open
Abstract
AIM To transfect the cat corneal endothelial cells (CECs) with recombinant human β-nerve growth factor gene adeno-associated virus (AAV-β-NGF) and to observe the effect of the expressed β-NGF protein on the proliferation activity of cat CECs. METHODS The endothelium of cat cornea was torn under the microscope and rapidly cultivated in Dulbecco's modified Eagle's medium (DMEM) to form single layer CECs and the passage 2 endothelial cells were used in this experiment. The recombinant human AAV-β-NGF was constructed. The recombinant human AAV-β-NGF was transferred into cat CECs directly. Three groups were as following: normal CEC control group, CEC-AAV control group and recombinant CEC-AAV-β-NGF group. Forty-eight hours after transfection, the total RNA was extracted from the CEC by Trizol. The expression of the β-NGF target gene detected by fluorescence quantitative polymerase chain reaction; proliferation activity of the transfected CEC detected at 48h by MTT assay; the percentage of G1 cells among CECs after transfect was detected by flow cytometry method (FCM); cell morphology was observed under inverted phase contrast microscope. RESULTS The torn endothelium culture technique rapidly cultivated single layer cat corneal endothelial cells. The self-designed primers for the target gene and reference gene were efficient and special confirmed through electrophoresis analysis and DNA sequencing. Forty-eight hours after transfect, the human β-NGF gene mRNA detected by fluorescence quantitative polymerase chain reaction showed that there was no significant difference between normal CEC control group and CEC-AAV control group (P>0.05); there was significant difference between two control groups and recombinant CEC-AAV-β-NGF group (P<0.05). MTT assay showed that transfect of recombinant AAV-β-NGF promoted the proliferation activity of cat CEC, while there was no significant difference between normal CEC control group and CEC-AAV control group (P>0.05). FCM result showed that the percentage of G1cells in CEC-AAV-NGF group was 76.8% while that in normal CEC control group and CEC-AAV control group was 46.6% and 49.8%. CONCLUSION Recombinant AAV-β-NGF promotes proliferation in cat CECs by expressing bioactive β-NGF protein in high efficiency and suggests that its modulation can be used to treat vision loss secondary to corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Wen-Juan Luo
- Department of Ophthalmology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Min Liu
- Department of Ophthalmology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Chuan-Fu Wang
- Department of Ophthalmology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Ting Hu
- Department of Ophthalmology, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xiang-Ping Liu
- Central Laboratory of the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
49
|
Nakamachi T, Ohtaki H, Seki T, Yofu S, Kagami N, Hashimoto H, Shintani N, Baba A, Mark L, Lanekoff I, Kiss P, Farkas J, Reglodi D, Shioda S. PACAP suppresses dry eye signs by stimulating tear secretion. Nat Commun 2016; 7:12034. [PMID: 27345595 PMCID: PMC4931240 DOI: 10.1038/ncomms12034] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/22/2016] [Indexed: 01/05/2023] Open
Abstract
Dry eye syndrome is caused by a reduction in the volume or quality of tears. Here, we show that pituitary adenylate cyclase-activating polypeptide (PACAP)-null mice develop dry eye-like symptoms such as corneal keratinization and tear reduction. PACAP immunoreactivity is co-localized with a neuronal marker, and PACAP receptor (PAC1-R) immunoreactivity is observed in mouse infraorbital lacrimal gland acinar cells. PACAP eye drops stimulate tear secretion and increase cAMP and phosphorylated (p)-protein kinase A levels in the infraorbital lacrimal glands that could be inhibited by pre-treatment with a PAC1-R antagonist or an adenylate cyclase inhibitor. Moreover, these eye drops suppress corneal keratinization in PACAP-null mice. PACAP eye drops increase aquaporin 5 (AQP5) levels in the membrane and pAQP5 levels in the infraorbital lacrimal glands. AQP5 siRNA treatment of the infraorbital lacrimal gland attenuates PACAP-induced tear secretion. Based on these results, PACAP might be clinically useful to treat dry eye disorder.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama-shi, Toyama 930-8555, Japan.,Department of Anatomy, Showa University School of Medicine, Shinagawa-Ku, Tokyo 142-8555, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, Shinagawa-Ku, Tokyo 142-8555, Japan
| | - Tamotsu Seki
- Department of Anatomy, Showa University School of Medicine, Shinagawa-Ku, Tokyo 142-8555, Japan
| | - Sachiko Yofu
- Department of Anatomy, Showa University School of Medicine, Shinagawa-Ku, Tokyo 142-8555, Japan
| | - Nobuyuki Kagami
- Department of Anatomy, Showa University School of Medicine, Shinagawa-Ku, Tokyo 142-8555, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akemichi Baba
- Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Laszlo Mark
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti u 12, Pécs 7624, Hungary.,Imaging Center for Life and Material Sciences, University of Pécs, Szigeti u 12, Pécs 7624, Hungary.,János Szentágothai Research Center, University of Pécs, Szigeti u 12, Pécs 7624, Hungary.,PTE-MTA Human Reproduction Research Group, Szigeti u 12, Pécs 7624, Hungary
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, PO Box 599, Uppsala 751 24, Sweden
| | - Peter Kiss
- Department of Anatomy, MTA-PTE PACAP Lendulet Research Group, Centre for Neuroscience, University of Pécs, Szigeti u 12, Pécs 7624, Hungary
| | - Jozsef Farkas
- Department of Anatomy, Showa University School of Medicine, Shinagawa-Ku, Tokyo 142-8555, Japan.,Department of Anatomy, MTA-PTE PACAP Lendulet Research Group, Centre for Neuroscience, University of Pécs, Szigeti u 12, Pécs 7624, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Lendulet Research Group, Centre for Neuroscience, University of Pécs, Szigeti u 12, Pécs 7624, Hungary
| | - Seiji Shioda
- Innovative Drug Discovery, Global Research Center for Innovative Life Science, Hoshi University, 4-41 Ebara 2-chome, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
50
|
Zhuravleva ZN, Hutsyan SS, Zhuravlev GI. Phenotypic differentiation of neurons in intraocular transplants. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416030085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|