1
|
Shiga Y, Rangel Olguin AG, El Hajji S, Belforte N, Quintero H, Dotigny F, Alarcon-Martinez L, Krishnaswamy A, Di Polo A. Endoplasmic reticulum stress-related deficits in calcium clearance promote neuronal dysfunction that is prevented by SERCA2 gene augmentation. Cell Rep Med 2024; 5:101839. [PMID: 39615485 DOI: 10.1016/j.xcrm.2024.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Disruption of calcium (Ca2+) homeostasis in neurons is a hallmark of neurodegenerative diseases. Here, we investigate the mechanisms leading to Ca2+ dysregulation and ask whether altered Ca2+ dynamics impinge on neuronal stress and circuit dysfunction. Using two-photon microscopy, we show that ocular hypertension, a major risk factor in glaucoma, and optic nerve crush injury disrupt the capacity of retinal neurons to clear cytosolic Ca2+ leading to impaired light-evoked responses. Gene- and protein expression analysis reveal the loss of the sarco-endoplasmic reticulum (ER) Ca2+-ATPase2 pump (SERCA2/ATP2A2) in injured retinal neurons from mice and patients with primary open-angle glaucoma. Pharmacological activation or neuron-specific gene delivery of SERCA2 is sufficient to rescue single-cell Ca2+ dynamics and promote robust survival of damaged neurons. Furthermore, SERCA2 gene supplementation reduces ER stress, reestablishes circuit balance, and restores visual behaviors. Our findings reveal that enhancing the Ca2+ clearance capacity of vulnerable neurons alleviates organelle stress and promotes neurorecovery.
Collapse
Affiliation(s)
- Yukihiro Shiga
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | | | - Sana El Hajji
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Arjun Krishnaswamy
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada.
| |
Collapse
|
2
|
Caminos E, López-López S, Martinez-Galan JR. Selective Assembly of TRPC Channels in the Rat Retina during Photoreceptor Degeneration. Int J Mol Sci 2024; 25:7251. [PMID: 39000357 PMCID: PMC11242081 DOI: 10.3390/ijms25137251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Transient receptor potential canonical (TRPC) channels are calcium channels with diverse expression profiles and physiological implications in the retina. Neurons and glial cells of rat retinas with photoreceptor degeneration caused by retinitis pigmentosa (RP) exhibit basal calcium levels that are above those detected in healthy retinas. Inner retinal cells are the last to degenerate and are responsible for maintaining the activity of the visual cortex, even after complete loss of photoreceptors. We considered the possibility that TRPC1 and TRPC5 channels might be associated with both the high calcium levels and the delay in inner retinal degeneration. TRPC1 is known to mediate protective effects in neurodegenerative processes while TRPC5 promotes cell death. In order to comprehend the implications of these channels in RP, the co-localization and subsequent physical interaction between TRPC1 and TRPC5 in healthy retina (Sprague-Dawley rats) and degenerating (P23H-1, a model of RP) retina were detected by immunofluorescence and proximity ligation assays. There was an overlapping signal in the innermost retina of all animals where TRPC1 and TRPC5 physically interacted. This interaction increased significantly as photoreceptor loss progressed. Both channels function as TRPC1/5 heteromers in the healthy and damaged retina, with a marked function of TRPC1 in response to retinal degenerative mechanisms. Furthermore, our findings support that TRPC5 channels also function in partnership with STIM1 in Müller and retinal ganglion cells. These results suggest that an increase in TRPC1/5 heteromers may contribute to the slowing of the degeneration of the inner retina during the outer retinal degeneration.
Collapse
Affiliation(s)
- Elena Caminos
- Department of Medical Science, Medical School of Albacete, Instituto de Biomedicina (IB-UCLM), University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Susana López-López
- Department of Medical Science, Medical School of Albacete, Instituto de Biomedicina (IB-UCLM), University of Castilla-La Mancha, 02008 Albacete, Spain
- Consejo Superior de Investigaciones Científicas, and Research Unit, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
| | - Juan R Martinez-Galan
- Department of Medical Science, Medical School of Albacete, Instituto de Biomedicina (IB-UCLM), University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
3
|
Martín-Oliva D, Martín-Guerrero SM, Carrasco MC, Neubrand VE, Martín-Estebané M, Marín-Teva JL, Navascués J, Cuadros MA, Vangheluwe P, Sepúlveda MR. Distribution of intracellular Ca 2+-ATPases in the mouse retina and their involvement in light-induced cone degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119612. [PMID: 37884226 DOI: 10.1016/j.bbamcr.2023.119612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Calcium signalling is involved in many processes in mammalian retina, from development to mature functions and neurodegeneration. Although proteins involved in Ca2+ entry in retinal cells have been well studied, less is known about Ca2+-clearance. Among the Ca2+ pumps, plasma membrane Ca2+-ATPases (PMCAs) have been identified as key proteins extruding Ca2+ across the plasma membrane with specific distribution in developing and adult retina. However, the two main isoforms of intracellular Ca2+-ATPases in the central nervous system, the sarco(endo)plasmic reticulum (ER) Ca2+-ATPase 2b (SERCA2b) and the secretory pathway Ca2+-ATPase 1 (SPCA1), which remove cytosolic Ca2+ into intracellular stores, have been less or not at all analysed, respectively. In this study, we described for the first time the SPCA1 localisation in adult mouse retina and we report differential distributions of SERCA2b and SPCA1 transporters within various classes of retinal neurons and distinct subcellular localisations. In addition, we studied the expression and localisation of both Ca2+ pumps in 661W cells, a cone photoreceptor-derived cell line. Since continuous exposure to high light intensity induces photodegeneration, we analysed the effect of LED light exposure on these cells and SERCA2b and SPCA1 distribution. We found that continuous mild LED-light exposure compromised cell survival and produced stress in the ER and Golgi, the Ca2+ stores where the two pumps are localised. These effects were reversed after halting light exposure and washing. This study demonstrates that Ca2+ signalling may be involved in light-induced photoreceptor cell damage and points to previously unrecognised functions of intracellular Ca2+-ATPases in retina physiology.
Collapse
Affiliation(s)
- David Martín-Oliva
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | | | - M Carmen Carrasco
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - María Martín-Estebané
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - José L Marín-Teva
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Julio Navascués
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel A Cuadros
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
4
|
Glycine Release Is Potentiated by cAMP via EPAC2 and Ca 2+ Stores in a Retinal Interneuron. J Neurosci 2021; 41:9503-9520. [PMID: 34620721 PMCID: PMC8612479 DOI: 10.1523/jneurosci.0670-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Neuromodulation via the intracellular second messenger cAMP is ubiquitous at presynaptic nerve terminals. This modulation of synaptic transmission allows exocytosis to adapt to stimulus levels and reliably encode information. The AII amacrine cell (AII-AC) is a central hub for signal processing in the mammalian retina. The main apical dendrite of the AII-AC is connected to several lobular appendages that release glycine onto OFF cone bipolar cells and ganglion cells. However, the influence of cAMP on glycine release is not well understood. Using membrane capacitance measurements from mouse AII-ACs to directly measure exocytosis, we observe that intracellular dialysis of 1 mm cAMP enhances exocytosis without affecting the L-type Ca2+ current. Responses to depolarizing pulses of various durations show that the size of the readily releasable pool of vesicles nearly doubles with cAMP, while paired-pulse depression experiments suggest that release probability does not change. Specific agonists and antagonists for exchange protein activated by cAMP 2 (EPAC2) revealed that the cAMP-induced enhancement of exocytosis requires EPAC2 activation. Furthermore, intact Ca2+ stores were also necessary for the cAMP potentiation of exocytosis. Postsynaptic recordings from OFF cone bipolar cells showed that increasing cAMP with forskolin potentiated the frequency of glycinergic spontaneous IPSCs. We propose that cAMP elevations in the AII-AC lead to a robust enhancement of glycine release through an EPAC2 and Ca2+ store signaling pathway. Our results thus contribute to a better understanding of how AII-AC crossover inhibitory circuits adapt to changes in ambient luminance.SIGNIFICANCE STATEMENT The mammalian retina operates over a wide dynamic range of light intensities and contrast levels. To optimize the signal-to-noise ratio of processed visual information, both excitatory and inhibitory synapses within the retina must modulate their gain in synaptic transmission to adapt to different levels of ambient light. Here we show that increases of cAMP concentration within AII amacrine cells produce enhanced exocytosis from these glycinergic interneurons. Therefore, we propose that light-sensitive neuromodulators may change the output of glycine release from AII amacrine cells. This novel mechanism may fine-tune the amount of tonic and phasic synaptic inhibition received by bipolar cell terminals and, consequently, the spiking patterns that ganglion cells send to the upstream visual areas of the brain.
Collapse
|
5
|
Liu G, Wu F, Wu H, Wang Y, Jiang X, Hu P, Tong X. Inactivation of cysteine 674 in the sarcoplasmic/endoplasmic reticulum calcium ATPase 2 causes retinopathy in the mouse. Exp Eye Res 2021; 207:108559. [PMID: 33848522 DOI: 10.1016/j.exer.2021.108559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy is a multifactorial microvascular complication, and its pathogenesis hasn't been fully elucidated. The irreversible oxidation of cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) was increased in the type 1 diabetic retinal vasculature. SERCA2 C674S knock-in (SKI) mouse line that half of C674 was replaced by serine 674 (S674) was used to study the effect of C674 inactivation on retinopathy. Compared with wild type (WT) mice, SKI mice had increased number of acellular capillaries and pericyte loss similar to those in type 1 diabetic WT mice. In the retina of SKI mice, pro-apoptotic proteins and intracellular Ca2+-dependent signaling pathways increased, while anti-apoptotic proteins and vessel density decreased. In endothelial cells, C674 inactivation increased the expression of pro-apoptotic proteins, damaged mitochondria, and induced cell apoptosis. These results suggest that a possible mechanism of retinopathy induced by type 1 diabetes is the interruption of calcium homeostasis in the retina by oxidation of C674. C674 is a key to maintain retinal health. Its inactivation can cause retinopathy similar to type 1 diabetes by promoting apoptosis. SERCA2 might be a potential target for the prevention and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China; Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Fuhua Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yaping Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
6
|
Angiotensin-Receptor-Associated Protein Modulates Ca 2+ Signals in Photoreceptor and Mossy Fiber cells. Sci Rep 2019; 9:19622. [PMID: 31873081 PMCID: PMC6928155 DOI: 10.1038/s41598-019-55380-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022] Open
Abstract
Fast, precise and sustained neurotransmission requires graded Ca2+ signals at the presynaptic terminal. Neurotransmitter release depends on a complex interplay of Ca2+ fluxes and Ca2+ buffering in the presynaptic terminal that is not fully understood. Here, we show that the angiotensin-receptor-associated protein (ATRAP) localizes to synaptic terminals throughout the central nervous system. In the retinal photoreceptor synapse and the cerebellar mossy fiber-granule cell synapse, we find that ATRAP is involved in the generation of depolarization-evoked synaptic Ca2+ transients. Compared to wild type, Ca2+ imaging in acutely isolated preparations of the retina and the cerebellum from ATRAP knockout mice reveals a significant reduction of the sarcoendoplasmic reticulum (SR) Ca2+-ATPase (SERCA) activity. Thus, in addition to its conventional role in angiotensin signaling, ATRAP also modulates presynaptic Ca2+ signaling within the central nervous system.
Collapse
|
7
|
Butler MR, Ma H, Yang F, Belcher J, Le YZ, Mikoshiba K, Biel M, Michalakis S, Iuso A, Križaj D, Ding XQ. Endoplasmic reticulum (ER) Ca 2+-channel activity contributes to ER stress and cone death in cyclic nucleotide-gated channel deficiency. J Biol Chem 2017; 292:11189-11205. [PMID: 28495882 DOI: 10.1074/jbc.m117.782326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/01/2017] [Indexed: 02/05/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and mislocalization of improperly folded proteins have been shown to contribute to photoreceptor death in models of inherited retinal degenerative diseases. In particular, mice with cone cyclic nucleotide-gated (CNG) channel deficiency, a model for achromatopsia, display both early-onset ER stress and opsin mistrafficking. By 2 weeks of age, these mice show elevated signaling from all three arms of the ER-stress pathway, and by 1 month, cone opsin is improperly distributed away from its normal outer segment location to other retinal layers. This work investigated the role of Ca2+-release channels in ER stress, protein mislocalization, and cone death in a mouse model of CNG-channel deficiency. We examined whether preservation of luminal Ca2+ stores through pharmacological and genetic suppression of ER Ca2+ efflux protects cones by attenuating ER stress. We demonstrated that the inhibition of ER Ca2+-efflux channels reduced all three arms of ER-stress signaling while improving opsin trafficking to cone outer segments and decreasing cone death by 20-35%. Cone-specific gene deletion of the inositol-1,4,5-trisphosphate receptor type I (IP3R1) also significantly increased cone density in the CNG-channel-deficient mice, suggesting that IP3R1 signaling contributes to Ca2+ homeostasis and cone survival. Consistent with the important contribution of organellar Ca2+ signaling in this achromatopsia mouse model, significant differences in dynamic intraorganellar Ca2+ levels were detected in CNG-channel-deficient cones. These results thus identify a novel molecular link between Ca2+ homeostasis and cone degeneration, thereby revealing novel therapeutic targets to preserve cones in inherited retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | - Fan Yang
- From the Departments of Cell Biology
| | | | - Yun-Zheng Le
- From the Departments of Cell Biology.,Internal Medicine, and.,Ophthalmology and.,the Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Katsuhiko Mikoshiba
- the Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Hirosawa Wako-shi, Saitama 351-0198, Japan
| | - Martin Biel
- the Center for Integrated Protein Science Munich (CIPSM) and Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany, and
| | - Stylianos Michalakis
- the Center for Integrated Protein Science Munich (CIPSM) and Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany, and
| | - Anthony Iuso
- the John A. Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | - David Križaj
- the John A. Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | | |
Collapse
|
8
|
Rueda EM, Johnson JE, Giddabasappa A, Swaroop A, Brooks MJ, Sigel I, Chaney SY, Fox DA. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases. Mol Vis 2016; 22:847-85. [PMID: 27499608 PMCID: PMC4961465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/21/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. METHODS mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. RESULTS The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The combined results indicate that glycolysis is regulated by the compartmental expression of hexokinase 2, pyruvate kinase M1, and pyruvate kinase M2 in photoreceptors, whereas the inner retinal neurons exhibit a lower capacity for glycolysis and aerobic glycolysis. Expression of nucleoside diphosphate kinase, mitochondria-associated adenylate kinase, and several mitochondria-associated creatine kinase isozymes was highest in the outer retina, whereas expression of cytosolic adenylate kinase and brain creatine kinase was higher in the cones, horizontal cells, and amacrine cells indicating the diversity of ATP-buffering strategies among retinal neurons. Based on the antibody intensities and the COX and LDH activity, Müller glial cells (MGCs) had the lowest capacity for glycolysis, aerobic glycolysis, and OXPHOS. However, they showed high expression of glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate thiokinase, GABA transaminase, and ~P transferring kinases. This suggests that MGCs utilize TCA cycle anaplerosis and cataplerosis to generate GTP and ~P transferring kinases to produce ATP that supports MGC energy requirements. CONCLUSIONS Our comprehensive and integrated results reveal that the adult mouse retina expresses numerous isoforms of ATP synthesizing, regulating, and buffering genes; expresses differential cellular and compartmental levels of glycolytic, OXPHOS, TCA cycle, and ~P transferring kinase proteins; and exhibits differential layer-by-layer LDH and COX activity. New insights into cell-specific and compartmental ATP and GTP production, as well as utilization and buffering strategies and their relationship with known retinal and cellular functions, are discussed. Developing therapeutic strategies for neuroprotection and treating retinal deficits and degeneration in a cell-specific manner will require such knowledge. This work provides a platform for future research directed at identifying the molecular targets and proteins that regulate these processes.
Collapse
Affiliation(s)
- Elda M. Rueda
- College of Optometry, University of Houston, Houston TX
| | - Jerry E. Johnson
- Department of Natural Sciences, University of Houston-Downtown, Houston TX
- Department of Biology and Biochemistry, University of Houston, Houston TX
| | - Anand Giddabasappa
- Department of Biology and Biochemistry, University of Houston, Houston TX
| | | | | | - Irena Sigel
- College of Optometry, University of Houston, Houston TX
| | - Shawnta Y. Chaney
- Department of Biology and Biochemistry, University of Houston, Houston TX
| | - Donald A. Fox
- College of Optometry, University of Houston, Houston TX
- Department of Biology and Biochemistry, University of Houston, Houston TX
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston TX
| |
Collapse
|
9
|
Ca2+ Diffusion through Endoplasmic Reticulum Supports Elevated Intraterminal Ca2+ Levels Needed to Sustain Synaptic Release from Rods in Darkness. J Neurosci 2015; 35:11364-73. [PMID: 26269643 DOI: 10.1523/jneurosci.0754-15.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In addition to vesicle release at synaptic ribbons, rod photoreceptors are capable of substantial slow release at non-ribbon release sites triggered by Ca(2+)-induced Ca(2+) release (CICR) from intracellular stores. To maintain CICR as rods remain depolarized in darkness, we hypothesized that Ca(2+) released into the cytoplasm from terminal endoplasmic reticulum (ER) can be replenished continuously by ions diffusing within the ER from the soma. We measured [Ca(2+)] changes in cytoplasm and ER of rods from Ambystoma tigrinum retina using various dyes. ER [Ca(2+)] changes were measured by loading ER with fluo-5N and then washing dye from the cytoplasm with a dye-free patch pipette solution. Small dye molecules diffused within ER between soma and terminal showing a single continuous ER compartment. Depolarization of rods to -40 mV depleted Ca(2+) from terminal ER, followed by a decline in somatic ER [Ca(2+)]. Local activation of ryanodine receptors in terminals with a spatially confined puff of ryanodine caused a decline in terminal ER [Ca(2+)], followed by a secondary decrease in somatic ER. Localized photolytic uncaging of Ca(2+) from o-nitrophenyl-EGTA in somatic ER caused an abrupt Ca(2+) increase in somatic ER, followed by a slower Ca(2+) increase in terminal ER. These data suggest that, during maintained depolarization, a soma-to-terminal [Ca(2+)] gradient develops within the ER that promotes diffusion of Ca(2+) ions to resupply intraterminal ER Ca(2+) stores and thus sustain CICR-mediated synaptic release. The ability of Ca(2+) to move freely through the ER may also promote bidirectional communication of Ca(2+) changes between soma and terminal. SIGNIFICANCE STATEMENT Vertebrate rod and cone photoreceptors both release vesicles at synaptic ribbons, but rods also exhibit substantial slow release at non-ribbon sites triggered by Ca(2+)-induced Ca(2+) release (CICR). Blocking CICR inhibits >50% of release from rods in darkness. How do rods maintain sufficiently high [Ca(2+)] in terminal endoplasmic reticulum (ER) to support sustained CICR-driven synaptic transmission? We show that maintained depolarization creates a [Ca(2+)] gradient within the rod ER lumen that promotes soma-to-terminal diffusion of Ca(2+) to replenish intraterminal ER stores. This mechanism allows CICR-triggered synaptic release to be sustained indefinitely while rods remain depolarized in darkness. Free diffusion of Ca(2+) within the ER may also communicate synaptic Ca(2+) changes back to the soma to influence other critical cell processes.
Collapse
|
10
|
Chen M, Križaj D, Thoreson WB. Intracellular calcium stores drive slow non-ribbon vesicle release from rod photoreceptors. Front Cell Neurosci 2014; 8:20. [PMID: 24550779 PMCID: PMC3910126 DOI: 10.3389/fncel.2014.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/13/2014] [Indexed: 01/26/2023] Open
Abstract
Rods are capable of greater slow release than cones contributing to overall slower release kinetics. Slow release in rods involves Ca2+-induced Ca2+ release (CICR). By impairing release from ribbons, we found that unlike cones where release occurs entirely at ribbon-style active zones, slow release from rods occurs mostly at ectopic, non-ribbon sites. To investigate the role of CICR in ribbon and non-ribbon release from rods, we used total internal reflection fluorescence microscopy as a tool for visualizing terminals of isolated rods loaded with fluorescent Ca2+ indicator dyes and synaptic vesicles loaded with dextran-conjugated pH-sensitive rhodamine. We found that rather than simply facilitating release, activation of CICR by ryanodine triggered release directly in rods, independent of plasma membrane Ca2+ channel activation. Ryanodine-evoked release occurred mostly at non-ribbon sites and release evoked by sustained depolarization at non-ribbon sites was mostly due to CICR. Unlike release at ribbon-style active zones, non-ribbon release did not occur at fixed locations. Fluorescence recovery after photobleaching of endoplasmic reticulum (ER)-tracker dye in rod terminals showed that ER extends continuously from synapse to soma. Release of Ca2+ from terminal ER by lengthy depolarization did not significantly deplete Ca2+ from ER in the perikaryon. Collectively, these results indicate that CICR-triggered release at non-ribbon sites is a major mechanism for maintaining vesicle release from rods and that CICR in terminals may be sustained by diffusion of Ca2+ through ER from other parts of the cell.
Collapse
Affiliation(s)
- Minghui Chen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA ; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center Omaha, NE, USA
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine Salt Lake City, UT, USA
| | - Wallace B Thoreson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA ; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
11
|
Vila A, Satoh H, Rangel C, Mills SL, Hoshi H, O'Brien J, Marshak DR, Macleish PR, Marshak DW. Histamine receptors of cones and horizontal cells in Old World monkey retinas. J Comp Neurol 2012; 520:528-43. [PMID: 21800315 DOI: 10.1002/cne.22731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In primates the retina receives input from histaminergic neurons in the posterior hypothalamus that are active during the day. In order to understand how this input contributes to information processing in Old World monkey retinas, we have been localizing histamine receptors (HR) and studying the effects of histamine on the neurons that express them. Previously, we localized HR3 to the tips of ON bipolar cell dendrites and showed that histamine hyperpolarizes the cells via this receptor. We raised antisera against synthetic peptides corresponding to an extracellular domain of HR1 between the 4th and 5th transmembrane domains and to an intracellular domain near the carboxyl terminus of HR2. Using these, we localized HR1 to horizontal cells and a small number of amacrine cells and localized HR2 to puncta closely associated with synaptic ribbons inside cone pedicles. Consistent with this, HR1 mRNA was detected in horizontal cell perikarya and primary dendrites and HR2 mRNA was found in cone inner segments. We studied the effect of 5 μM exogenous histamine on primate cones in macaque retinal slices. Histamine reduced I(h) at moderately hyperpolarized potentials, but not the maximal current. This would be expected to increase the operating range of cones and conserve ATP in bright, ambient light. Thus, all three major targets of histamine are in the outer plexiform layer, but the retinopetal axons containing histamine terminate in the inner plexiform layer. Taken together, the findings in these three studies suggest that histamine acts primarily via volume transmission in primate retina.
Collapse
Affiliation(s)
- Alejandro Vila
- Department of Neurobiology and Anatomy, Medical School, University of Texas at Health Science Center at Houston, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
This review lays out the emerging evidence for the fundamental role of Ca(2+) stores and store-operated channels in the Ca(2+) homeostasis of rods and cones. Calcium-induced calcium release (CICR) is a major contributor to steady-state and light-evoked photoreceptor Ca(2+) homeostasis in the darkness whereas store-operated Ca(2+) channels play a more significant role under sustained illumination conditions. The homeostatic response includes dynamic interactions between the plasma membrane, endoplasmic reticulum (ER), mitochondria and/or outer segment disk organelles which dynamically sequester, accumulate and release Ca(2+). Coordinated activation of SERCA transporters, ryanodine receptors (RyR), inositol triphosphate receptors (IP3Rs) and TRPC channels amplifies cytosolic voltage-operated signals but also provides a memory trace of previous exposures to light. Store-operated channels, activated by the STIM1 sensor, prevent pathological decrease in [Ca(2+)]i mediated by excessive activation of PMCA transporters in saturating light. CICR and SOCE may also modulate the transmission of afferent and efferent signals in the outer retina. Thus, Ca(2+) stores provide additional complexity, adaptability, tuneability and speed to photoreceptor signaling.
Collapse
Affiliation(s)
- David Križaj
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
13
|
Chandrasekera PC, Kargacin ME, Deans JP, Lytton J. Determination of apparent calcium affinity for endogenously expressed human sarco(endo)plasmic reticulum calcium-ATPase isoform SERCA3. Am J Physiol Cell Physiol 2009; 296:C1105-14. [DOI: 10.1152/ajpcell.00650.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) play a crucial role in regulating free cytosolic Ca2+ concentration in diverse cell types. It has been shown that recombinant SERCA3, when measured in heterologous systems, exhibits low apparent affinity for Ca2+; however, Ca2+ affinity of native SERCA3 in an endogenous setting has not been examined. Such a measurement is complicated, because SERCA3 is always coexpressed with the housekeeping isoform SERCA2b. We used a fluorescence-based assay for monitoring continuous Ca2+ uptake into microsomes to examine the properties of endogenous human SERCA3 and SERCA2b. The kinetic parameters were derived using a cooperative two-component uptake model for Ca2+ activation, and the values assigned to SERCA3 were confirmed using the highly specific human SERCA3 inhibitory antibody PL/IM430. First, using recombinant human SERCA3 and SERCA2b proteins transiently expressed in HEK-293 cells, we confirmed the previously observed low apparent Ca2+ affinity for SERCA3 compared with SERCA2b (1.10 ± 0.04 vs. 0.26 ± 0.01 μM), and using mixtures of recombinant protein isoforms, we validated the two-component uptake model. Then we determined apparent Ca2+ affinity for SERCA proteins present endogenously in cultured Jurkat T lymphocytes and freshly isolated human tonsil lymphocytes. The apparent Ca2+ affinity in these two preparations was 1.04 ± 0.07 and 1.1 ± 0.2 μM for SERCA3 and 0.27 ± 0.02 and 0.26 ± 0.01 μM for SERCA2b, respectively. Our data demonstrate, for the first time, that affinity for Ca2+ is inherently lower for SERCA3 expressed in situ than for other SERCA isoforms.
Collapse
|
14
|
Zanazzi G, Matthews G. The molecular architecture of ribbon presynaptic terminals. Mol Neurobiol 2009; 39:130-48. [PMID: 19253034 PMCID: PMC2701268 DOI: 10.1007/s12035-009-8058-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/04/2009] [Indexed: 12/24/2022]
Abstract
The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy.
Collapse
Affiliation(s)
- George Zanazzi
- Department of Neurobiology & Behavior, State Universtiy of New York, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
15
|
Shoshan-Barmatz V, Zakar M, Shmuelivich F, Nahon E, Vardi N. Retina expresses a novel variant of the ryanodine receptor. Eur J Neurosci 2007; 26:3113-25. [PMID: 18005065 DOI: 10.1111/j.1460-9568.2007.05931.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcium released from intracellular stores via the ryanodine receptor (RyR) mediates a variety of signalling processes. We previously showed that retina expresses the three known types of RyR, but retinal membrane preparations exhibit unique characteristics such as Ca2+-independent [3H]ryanodine-binding and inhibition by caffeine. We have heretofore suggested that the major retinal RyR isoform is novel. The present study aimed to identify this receptor isoform and to localize RyR in mammalian retina. Immunoblotting with specific and pan-antibodies showed that the major retinal RyR has a mobility similar to that of RyR2 or RyR3. Real-time PCR revealed that the major type is RyR2, and RT-PCR followed by sequencing showed a transcript that encodes a protein with approximately 99% identity to RyR2, yet lacking two regions of seven and 12 amino acids and including an additional insertion of eight amino acids. An antibody against RyR2 localized this type to somas and primary dendrites of most retinal neurons. An antibody against RyR1 localized RyR to most somas but also revealed staining in photoreceptor outer segments, concentrated on the disk membranes at their rim. The ryanodine-binding properties and the electrophoretic mobility of RyR from the outer segments were similar to those of the whole retinal preparation. The results thus identify a novel variant of RyR2 which can contribute to regulating photoreceptor Ca2+ concentrations. The restricted localization of the outer segment RyR to the disk rim suggests that its activation mechanism involves a coupling between retinal RyR and the cGMP-gated channel.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel.
| | | | | | | | | |
Collapse
|
16
|
Bette S, Zimmermann U, Wissinger B, Knipper M. OPA1, the disease gene for optic atrophy type Kjer, is expressed in the inner ear. Histochem Cell Biol 2007; 128:421-30. [PMID: 17828551 DOI: 10.1007/s00418-007-0321-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2007] [Indexed: 11/26/2022]
Abstract
Autosomal dominant optic atrophy (adOA) is the most common form of hereditary optic neuropathy. The majority of cases are associated with mutations in the OPA1 gene. A few cases of adOA are known to be associated with moderate progressive hearing loss. To gain insight into the pathogenesis of this hearing loss, we performed expression analyses of OPA1 in the rat auditory and vestibular organ. In cochlear tissue, several splice variants of OPA1 were detected, which are also expressed in retinal tissue. OPA1 mRNA and protein was found in the hair cells and ganglion cells of the cochlea and vestibular organ. In ganglion cells, OPA1 mRNA and protein was already detectable at birth, whereas in the organ of Corti OPA1 mRNA and protein was up-regulated after birth and reached mature-like expression level during the onset of hearing. Comparison of an antibody directed to the mitochondrial marker protein HSP60 with antibodies directed to different amino acid stretches of OPA1 revealed a sub-cellular distribution of OPA1 in areas of significant density of mitochondria. The data suggest that defects in OPA1 cause hearing disorders due to a progressing metabolic disturbance of hair and ganglion cells in the inner ear.
Collapse
Affiliation(s)
- Stefanie Bette
- Molecular Genetics Laboratory, University Eye Hospital, Röntgenweg 11, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
17
|
Johnson JE, Perkins GA, Giddabasappa A, Chaney S, Xiao W, White AD, Brown JM, Waggoner J, Ellisman MH, Fox DA. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses. Mol Vis 2007; 13:887-919. [PMID: 17653034 PMCID: PMC2774461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. METHODS Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. RESULTS Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. CONCLUSIONS These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations.
Collapse
Affiliation(s)
- Jerry E. Johnson
- Department of Natural Sciences, University of Houston-Downtown, Houston, TX
- College of Optometry, University of Houston, Houston, TX
| | - Guy A. Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA
| | - Anand Giddabasappa
- College of Optometry, University of Houston, Houston, TX
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Shawntay Chaney
- College of Optometry, University of Houston, Houston, TX
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Weimin Xiao
- College of Optometry, University of Houston, Houston, TX
| | - Andrew D. White
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA
| | - Joshua M. Brown
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA
| | - Jenna Waggoner
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA
- Department of Neurosciences, University of California San Diego, La Jolla, CA
| | - Donald A. Fox
- College of Optometry, University of Houston, Houston, TX
- Department of Biology and Biochemistry, University of Houston, Houston, TX
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX
| |
Collapse
|
18
|
Yang J, Pawlyk B, Wen XH, Adamian M, Soloviev M, Michaud N, Zhao Y, Sandberg MA, Makino CL, Li T. Mpp4 is required for proper localization of plasma membrane calcium ATPases and maintenance of calcium homeostasis at the rod photoreceptor synaptic terminals. Hum Mol Genet 2007; 16:1017-29. [PMID: 17341488 DOI: 10.1093/hmg/ddm047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Membrane palmitoylated protein 4 (Mpp4) is a member of the membrane-associated guanylate kinase family. We show that Mpp4 localizes specifically to the plasma membrane of photoreceptor synaptic terminals. Plasma membrane Ca(2+) ATPases (PMCAs), the Ca(2+) extrusion pumps, interact with an Mpp4-dependent presynaptic membrane protein complex that includes Veli3 and PSD95. In mice lacking Mpp4, PMCAs were lost from rod photoreceptor presynaptic membranes. Synaptic ribbons were enlarged, a phenomenon known to correlate with higher Ca(2+). SERCA2 (sarcoplasmic-endoplasmic reticulum Ca(2+) ATPase, type 2), which pumps cytosolic Ca(2+) into intracellular Ca(2+) stores and localizes next to the ribbons, was increased. The distribution of IP(3)RII (InsP(3) receptor, type 2), which releases Ca(2+) from the stores, was shifted away from the synaptic terminals. Synaptic transmission to second-order neurons was maintained but was reduced in amplitude. These data suggest that loss of Mpp4 disrupts a Ca(2+) extrusion mechanism at the presynaptic membranes, with ensuing adaptive responses by the photoreceptor to restore Ca(2+) homeostasis. We propose that Mpp4 organizes a presynaptic protein complex that includes PMCAs and has a role in modulating Ca(2+) homeostasis and synaptic transmission in rod photoreceptors.
Collapse
Affiliation(s)
- Jun Yang
- The Berman-Gund Laboratory for Study of Retinal Degenerations, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|