1
|
Palazzo M, Concilio M, Ambrosone L, Rinaldi M, Tranfa F, Costagliola C. Effects of Laurus Nobilis Eye Drop on Selenite-Induced Cataract Formation and Oxidative Stress-Related Parameters in Rabbits: An Experimental Study. Curr Eye Res 2024; 49:1247-1252. [PMID: 39034665 DOI: 10.1080/02713683.2024.2380440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE To evaluate the protective role of Laurus Nobilis eye drops on selenite-induced cataracts in suckling rabbits. METHODS Fifteen male albino suckling rabbits with no signs of ocular inflammation were randomly assigned to three groups: controls (Group A), sodium-selenite group (Group B) and sodium-selenite plus Laurus Nobilis group (Group C). By selenite treatment, cataract formation was experimentally induced and then graded. The grade of oxidative stress was defined in the lens, measuring the concentration of malondialdehyde, alpha-tocopherol, oxidized glutathione, ascorbic acid and hydrogen peroxide, and in blood samples as levels of alpha-tocopherol and malondialdehyde. RESULTS Mean lens concentrations of GSSG, H2O2, and MDA levels in group B were significantly higher than in both group C and control. Ascorbic acid and alpha-tocopherol concentrations were lower in group B than in both group C and A. As plasma oxidative status markers, the level of MDA was higher in group B respected group C and A. The mean alpha-tocopherol levels in group B were significantly lower than in both group A and group C. CONCLUSIONS In animals treated with Laurus Nobilis-based eye drops, inflammation was inhibited, and lipid peroxidation was significantly reduced. Laurus nobilis leaves extract represents a good source of antioxidant components that may contrast sodium selenite-induced cataractogenesis in suckling rabbits.
Collapse
Affiliation(s)
- Marisa Palazzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Marina Concilio
- Department of Medicine and Health Science V. Tiberio, University of Molise, Campobasso, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Science V. Tiberio, University of Molise, Campobasso, Italy
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Zhang L, Qin Z, Lyu D, Lu B, Chen Z, Fu Q, Yao K. Postponement of the opacification of lentoid bodies derived from human induced pluripotent stem cells after lanosterol treatment-the first use of the lens aging model in vitro in cataract drug screening. Front Pharmacol 2022; 13:959978. [PMID: 36059984 PMCID: PMC9437520 DOI: 10.3389/fphar.2022.959978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: Our previous study observed that human induced pluripotent stem cell (HiPSC)-derived lentoid bodies (LBs) became cloudy with extended culture time, partially mimicking the progress of human age-related cataracts (ARCs) in a dish. In the present study, lanosterol, a potential anticataract drug, was used to further verify the value of this model in drug screening for cataract treatment. Methods: Mature LBs on day 25, which were differentiated from HiPSCs using the "fried egg" method, were continually cultured and treated with either dimethyl sulfoxide (control) or lanosterol. The LBs' shape and opacity alterations were examined using light microscopy and mean gray value evaluation. The soluble and insoluble proteins were examined through SDS-PAGE gel electrophoresis combined with Coomassie blue staining. The protein aggregations were examined with immunofluorescence. Results: The mature LBs became cloudy with an extended culture time, and the opacification of the LBs was partially prevented by lanosterol treatment. There was less increase in insoluble proteins in the lanosterol-treated LBs than in the control group. There were also fewer cells containing aggregated protein (αA-crystallin and αB-crystallin) puncta in the lanosterol-treated LBs than in the control LBs. Conclusion: It was found that the opacification of LBs could be delayed by lanosterol treatment, which could be achieved by reducing protein aggregation, suggesting a promising HiPSC-derived drug-screening model for Age-related cataract.
Collapse
Affiliation(s)
- Lifang Zhang
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Zhenwei Qin
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Danni Lyu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| |
Collapse
|
3
|
Rana S, Sarmah S, Singha Roy A, Ghosh KS. Elucidation of molecular interactions between human γD-crystallin and quercetin, an inhibitor against tryptophan oxidation. J Biomol Struct Dyn 2020; 39:1811-1818. [DOI: 10.1080/07391102.2020.1738960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shiwani Rana
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, India
| | - Sharat Sarmah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, India
| |
Collapse
|
4
|
Anbukkarasi M, Thomas PA, Teresa PA, Anand T, Geraldine P. Comparison of the efficacy of a Tabernaemontana divaricata extract and of biosynthesized silver nanoparticles in preventing cataract formation in an in-vivo system of selenite-induced cataractogenesis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Abstract
PURPOSE OF REVIEW Age-related cataract occurs when crystallin proteins in the lens partially unfold and subsequently aggregate. Physicians and traditional healers alike have been exploring pharmacologic cataract treatment for hundreds of years. Currently, surgery is the only effective treatment. However, there are an abundance of homeopathic and alternative remedies that have been suggested as treatment for cataract. This article reviews the current understanding of cataract development and discusses several homeopathic remedies purported to treat age-related cataract. Additionally, we will present an overview of evidence regarding the development of pharmacologic cataract reversal therapies. RECENT FINDINGS Some homeopathic therapies have been shown to prevent cataract development in experimental models. More studies are required to elucidate the potential medicinal and toxic properties of the various alternative therapies. However, in recent years, scientists have begun to investigate substances that address cataract by reversing lens protein aggregation. One such compound, lanosterol, was reported to reverse cataract opacity in vitro and in animal models. Subsequently, 25-hydroxycholesterol and rosmarinic acid were identified as having similar properties. SUMMARY Although challenges and uncertainties remain, further research has the potential to lead to the development of a nonsurgical therapeutic option for age-related cataract.
Collapse
Affiliation(s)
- Rebecca R Lian
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
6
|
Anand T, Anbukkarasi M, Teresa PA, Thomas PA, Geraldine P. Evaluation of the Putative Efficacy of a Methanolic Extract of Ocimum Basilicum in Preventing Disruption of Structural Proteins in an in Vitro System of Selenite-induced Cataractogenesis. Curr Eye Res 2019; 45:696-704. [PMID: 31770036 DOI: 10.1080/02713683.2019.1698054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To evaluate whether a methanolic extract of Ocimum basilicum (OB) leaves prevented lenticular protein alterations in an in-vitro model of selenite-induced cataractogenesis.Materials and Methods: Transparent lenses extirpated from Wistar rats were divided into three groups: control; selenite only; treated. Control lenses were cultured in Dulbecco's modified Eagle's medium (DMEM) alone, selenite only lenses were cultured in DMEM containing sodium selenite only (100 µM selenite/ml DMEM) and treated lenses were cultured in DMEM containing sodium selenite and the methanolic extract of OB leaves (200 µg of extract/ml DMEM); all lenses were cultured for 24 h and then processed. The parameters assessed in lenticular homogenates were lenticular protein sulfhydryl and carbonyl content, calcium level, insoluble to soluble protein ratio, sodium dodecyl sulphate-polyacrylamide gel electrophoretic (SDS-PAGE) patterns of lenticular proteins, and mRNA transcript and protein levels of αA-crystallin and βB1-crystallins.Results: Selenite only lenses exhibited alterations in all parameters assessed. Treated lenses exhibited values for these parameters that were comparable to those noted in normal control lenses.Conclusions: The methanolic extract of OB leaves prevented alterations in lenticular protein sulfhydryl and carbonyl content, calcium level, insoluble to soluble protein ratio, SDS-PAGE patterns of lenticular proteins, and expression of αA-crystallin and βB1-crystallin gene and proteins in cultured selenite-challenged lenses. OB may be further evaluated as a promising agent for the prevention of cataract.
Collapse
Affiliation(s)
- Thiraviyam Anand
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Muniyandi Anbukkarasi
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - P Archana Teresa
- Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli, India
| | | | - Pitchairaj Geraldine
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
7
|
Rana S, Ghosh KS. Protective role of hesperetin against posttranslational oxidation of tryptophan residue of human γD-crystallin: A molecular level study. Arch Biochem Biophys 2019; 679:108204. [PMID: 31758928 DOI: 10.1016/j.abb.2019.108204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/19/2019] [Indexed: 11/19/2022]
Abstract
Crystallin proteins undergo various posttranslational modifications with aging of eye lens. Oxidation of tryptophan (Trp) residues of a major γ-crystallin namely human γD-crystallin (HGD) was found to be inhibited by a naturally occurring flavonoid hesperetin at relatively low concentration mostly due to its antioxidant activity. Further the molecular interactions between HGD and hesperetin were elucidated on the basis of the quenching of Trp fluorescence of the protein by the flavonoid. Ground state complexation between HGD and hesperetin caused static quenching of the Trp fluorescence of HGD. Binding and quenching constants were in the order of (103- 104 M-1). Energy transfer from protein to hesperetin was suggested by FRET calculations. Thermodynamic parameters reveal significant hydrophobic association between the protein and hesperetin. Synchronous fluorescence and CD spectroscopic results had ruled out conformational changes in the protein due to binding of hesperetin. Docking studies suggested the proximity of hesperetin with Trp 42, which largely corroborates our experimental findings.
Collapse
Affiliation(s)
- Shiwani Rana
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, 177005, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, 177005, India.
| |
Collapse
|
8
|
Tewari D, Samoilă O, Gocan D, Mocan A, Moldovan C, Devkota HP, Atanasov AG, Zengin G, Echeverría J, Vodnar D, Szabo B, Crişan G. Medicinal Plants and Natural Products Used in Cataract Management. Front Pharmacol 2019; 10:466. [PMID: 31263410 PMCID: PMC6585469 DOI: 10.3389/fphar.2019.00466] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023] Open
Abstract
Cataract is the leading reason of blindness worldwide and is defined by the presence of any lens opacities or loss of transparency. The most common symptoms of cataract are impaired vision, decreased contrast sensitivity, color disturbance, and glare. Oxidative stress is among the main mechanisms involved in the development of age-related cataract. Surgery through phacoemulsification and intraocular lens implantation is the most effective method for cataract treatment, however, there are chances of serious complications and irreversible loss of vision associated with the surgery. Natural compounds consisting of antioxidant or anti-inflammatory secondary metabolites can serve as potential leads for anticataract agents. In this review, we tried to document medicinal plants and plant-based natural products used for cataract treatment worldwide, which are gathered from available ethnopharmacological/ethnobotanical data. We have extensively explored a number of recognized databases like Scifinder, PubMed, Science Direct, Google Scholar, and Scopus by using keywords and phrases such as “cataract”, “blindness”, “traditional medicine”, “ethnopharmacology”, “ethnobotany”, “herbs”, “medicinal plants”, or other relevant terms, and summarized the plants/phytoconstituents that are evaluated in different models of cataract and also tabulated 44 plants that are traditionally used in cataract in various folklore medical practices. Moreover, we also categorized the plants according to scientific studies carried out in different cataract models with their mechanisms of action.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ovidiu Samoilă
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gocan
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cadmiel Moldovan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Dan Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bianca Szabo
- Department of Anatomy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Tsai CF, Wu JY, Hsu YW. Protective Effects of Rosmarinic Acid against Selenite-Induced Cataract and Oxidative Damage in Rats. Int J Med Sci 2019; 16:729-740. [PMID: 31217741 PMCID: PMC6566745 DOI: 10.7150/ijms.32222] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/29/2019] [Indexed: 11/23/2022] Open
Abstract
Cataracts are the major cause of blindness and are associated with oxidative damage of the lens. In the present study, the aim was to evaluate the protective effects of rosmarinic acid on selenite-induced cataractogenesis in Sprague-Dawley rat pups. The animals were randomly divided into five groups, each of which consisted of 10 rat pups. Group I served as normal control (vehicle administration). For testing cataract induction, animals of Groups II, III, IV, and V were administered a single subcutaneous injection of sodium selenite (2.46 mg/kg body weight) on postpartum day 12. After sodium selenite intoxication, Group II served as control selenite. From the 11th day through the 17th day, Groups III-V received rosmarinic acid intraperitoneally at doses of 5, 10, and 50 mg/kg, respectively. On postpartum day 24, the rat pups were examined for cataract formation, and the lenses were isolated for further analysis of proteins and oxidative damage indicators. Selenite caused significant (p < 0.05) cataract formation. Through the effects of selenite, the protein expressions of filensin and calpain 2 were reduced, and the calcium concentrations, the level of lipid peroxidation (TBARS), and inflammation indicators (iNOS, COX-2, and NFκB) were upregulated. Furthermore, the protein expression of the antioxidant status (Nrf2, SOD, HO-1, and NQO1), the antioxidant enzymes activities (GSH-Px, GSH-Rd, and catalase), and the GSH levels were downregulated. In contrast, treatment with rosmarinic acid could significantly (p < 0.05) ameliorate cataract formation and oxidative damage in the lens. Moreover, rosmarinic acid administration significantly increased the protein expressions of filensin, calpain 2, Nrf2, SOD, HO-1, and NQO1, the antioxidant enzymes activities, and the GSH level, in addition to reducing the calcium, lipid peroxidation, and inflammation indicators in the lens. Taken together, rosmarinic acid is a prospective anti-cataract agent that probably delays the onset and progression of cataracts induced by sodium selenite.
Collapse
Affiliation(s)
- Chia-Fang Tsai
- Department of Applied Cosmetology, National Tainan Junior College of Nursing, Tainan, Taiwan
- Department of Biotechnology, TransWorld University, Yunlin County, Taiwan
| | - Jia-Ying Wu
- Department of Biotechnology, TransWorld University, Yunlin County, Taiwan
| | - Yu-Wen Hsu
- Department of Optometry, Da-Yeh University, Changhua, Taiwan
| |
Collapse
|
10
|
Sreelakshmi V, Abraham A. Protective effects of Cassia tora leaves in experimental cataract by modulating intracellular communication, membrane co-transporters, energy metabolism and the ubiquitin-proteasome pathway. PHARMACEUTICAL BIOLOGY 2017; 55:1274-1282. [PMID: 28274170 PMCID: PMC6130452 DOI: 10.1080/13880209.2017.1299769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/18/2016] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Cataract is the clouding of eye lens which causes impairment in vision and accounts for the leading factor of global blindness. Functional food-based prevention of cataract finds application in vision research because of its availability and easy access to all classes of the society. Cassia tora Linn. (Caesalpinaceae) is an edible plant mentioned in the traditional systems of medicine for whole body health, especially to the eyes. OBJECTIVE The present study evaluates the potential of ethyl acetate fraction of Cassia tora leaves (ECT) on experimental cataract. MATERIALS AND METHODS Cataract was induced by a single subcutaneous injection of sodium selenite (4 μg/g body weight) on 10th day. ECT was supplemented orally from 8th day up to 12th day at a concentration of 5 μg/g body weight and marker parameters were evaluated after 30 days. RESULTS The production of MPO and the activation of calpain were reduced 52.17% and 36.67% by ECT in lens tissue, respectively. It modulated the energy status by significantly increasing the activity of CCO 1 (55.56%) and ATP production (41.88%). ECT maintained the ionic balance in the lens by reducing the level of sodium (50%) and increasing the level of potassium (42.5%). It also reduced cell junction modifications and preserved a functional ubiquitin-proteasome pathway. DISCUSSION AND CONCLUSION The results reinforce the growing attention on wild plant food resources for preventive protection against cataract. The data suggest the value of Cassia tora leaves as a functional food for ameliorating cataract pathology.
Collapse
Affiliation(s)
- V. Sreelakshmi
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Chaudhury S, Bag S, Bose M, Das AK, Ghosh AK, Dasgupta S. Protection of human γB-crystallin from UV-induced damage by epigallocatechin gallate: spectroscopic and docking studies. MOLECULAR BIOSYSTEMS 2017; 12:2901-9. [PMID: 27410057 DOI: 10.1039/c6mb00256k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transparency of the human eye lens depends on the solubility and stability of the structural proteins of the eye lens, the crystallins. Although the mechanism of cataract formation is still unclear, it is believed to involve protein misfolding and/or aggregation of proteins due to the influence of several external factors such as ultraviolet (UV) radiation, low pH, temperature and exposure to chemical agents. In this article, we report the study of UV induced photo-damage (under oxidative stress) of recombinant human γB-crystallin in vitro in the presence of the major green tea polyphenol, (-)-epigallocatechin gallate (EGCG). We have shown that EGCG has the ability to protect human γB-crystallin from oxidative stress-induced photo-damage.
Collapse
Affiliation(s)
| | - Sudipta Bag
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Madhuparna Bose
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ananta Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
12
|
Chaudhury S, Roy P, Dasgupta S. Green tea flavanols protect human γB-crystallin from oxidative photodamage. Biochimie 2017; 137:46-55. [PMID: 28285129 DOI: 10.1016/j.biochi.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
Age related cataract is a major cause of visual loss worldwide that is a result of opacification of the eye lens proteins. One of the major reasons behind this deterioration is UV induced oxidative damage. The study reported here is focused on an investigation of the oxidative stress induced damage to γB-crystallin under UV exposure. Human γB-crystallin has been expressed and purified from E. coli. We have found that epicatechin gallate (ECG) has a higher affinity towards the protein compared to epigallocatechin (EGC). The in vitro study of UV irradiation under oxidative damage to the protein in the presence of increasing concentrations of GTPs is indicative of their effective role as potent inhibitors of oxidative damage. Docking analyses show that the GTPs bind to the cleft between the domains of human γB-crystallin that may be associated with the protection of the protein from oxidative damage.
Collapse
Affiliation(s)
| | - Pritam Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
13
|
Sundararajan M, Thomas PA, Babyshalini K, Geraldine P. Identification of phytoconstituents and in-vitro evaluation of the putative anticataractogenic effect of an ethanolic root extract of Leucas aspera. Biomed Pharmacother 2016; 85:87-101. [PMID: 27930991 DOI: 10.1016/j.biopha.2016.11.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/19/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022] Open
Abstract
Modern herbal medicine has played a significant role in treating oxidative stress and related complications. In the present investigation, gas chromatography-mass spectrometric analysis of ethanolic extracts of the leaf and of the root of Leucas aspera (L. aspera) (Willd.) Link separately showed the presence of various phytoconstituents; major components have already been reported to possess various biological, including antioxidant, activities. Of the two extracts analyzed, the root extract exhibited more potential antioxidant activity than did the leaf extract. Since this finding correlated with more perceptible amounts of antioxidant components being detected in the ethanolic extract of L. aspera root, the root extract was evaluated for possible anticataractogenic potential in cultured Wistar rat lenses. Following incubation of Wistar rat lenses for 24h at 37°C in Dulbecco's modified Eagle's medium (DMEM), gross morphological examination revealed that none of the eight lenses incubated in DMEM alone (Group I) exhibited any opacification (Grade 0), whereas all eight lenses incubated in DMEM that contained sodium selenite (100μM selenite/ml of DMEM) (Group II) exhibited thick opacification (Grade +++). In contrast, only one out of eight lenses incubated in DMEM containing sodium selenite (100μM selenite/ml of DMEM) and simultaneously exposed to the L. aspera root extract (300μg/ml of DMEM) (Group III) exhibited a slight degree of opacification (Grade +) after 24h incubation, while the remaining seven lenses did not show any opacification (Grade 0). The mean activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase and the mean level of reduced glutathione were all significantly (p<0.05) higher in Group III lenses than the mean values in Group II lenses. The mean concentration of malondialdehyde in Group III lenses was significantly (p<0.05) lower than that in Group II lenses. Further, significantly (p<0.05) lower mean mRNA transcript levels of the genes encoding αA- and βB1-crystallins, as well as significantly lower mean levels of the αA- and βB1-crystallin proteins themselves, were observed in Group II lenses. However, in Group III lenses, the mean mRNA transcript levels of the crystallin genes, and the mean protein levels, were essentially similar to those noted in normal control (Group I) lenses. The results of the present study suggest that in selenite-challenged Wistar rat lenses simultaneously exposed to an ethanolic extract of L. aspera root, lenticular opacification was prevented by mean activities of enzymatic antioxidants, mean levels of reduced glutathione and malondialdehyde mean expression levels of genes encoding αA- and βB1-crystallins, and mean levels of the crystallin proteins themselves, being maintained at near normal levels. Further studies are required to confirm whether the ethanolic extract of the root of L. aspera can be developed for pharmacological management of cataract.
Collapse
Affiliation(s)
- Mahalingam Sundararajan
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Philip A Thomas
- Department of Ocular Microbiology, Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli 620 001, Tamil Nadu, India
| | - Karuppan Babyshalini
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Pitchairaj Geraldine
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
14
|
Sreelakshmi V, Abraham A. Cassia tora leaves modulates selenite cataract by enhancing antioxidant status and preventing cytoskeletal protein loss in lenses of Sprague Dawley rat pups. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:137-143. [PMID: 26692278 DOI: 10.1016/j.jep.2015.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/27/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cataract is the clouding or opacity that develops in the eye's lens and is considered to be an unavoidable consequence of aging due to irreversible lens damage. Free radicals and oxidant species are reported to be the major factor responsible for the onset and pathology of cataract. No pharmacological measures are formulated to treat cataract blindness and surgical removal of the opaque lens is the only remedy till date. Boosting of antioxidant potential of the lens is proved to prevent cataract and many indigenous plants have been screened for anticataractogenic potential in the last decades. The objective of the present study was to determine whether Cassia tora leaves; the plant employed in traditional medicine for eye rejuvenation and ailments, can prevent cataract in neonatal rats. MATERIALS AND METHODS Cataract was induced by a single subcutaneous injection of sodium selenite at a dose of 4 μg/g body weight on the 10th day and Cassia tora leaves was administered orally from 8th day upto 12th day at a concentration of 5 μg/g body weight. After 30 days; lens morphology, oxidant-antioxidant equilibrium, glutathione metabolism, cytoskeletal protein/gene expressions were monitored. RESULTS Lens morphology, biochemical analysis and expression studies supported the anticataractogenic effect of Cassia tora leaves. CONCLUSION In summary, it can be suggested that the consumption of these leaves afford protection to the lens with its antioxidant action and seems to be a new therapeutic approach against cataract by preventive protection.
Collapse
Affiliation(s)
- V Sreelakshmi
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, 695581 Kerala, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, 695581 Kerala, India.
| |
Collapse
|
15
|
Ferlemi AV, Makri OE, Mermigki PG, Lamari FN, Georgakopoulos CD. Quercetin glycosides and chlorogenic acid in highbush blueberry leaf decoction prevent cataractogenesis in vivo and in vitro: Investigation of the effect on calpains, antioxidant and metal chelating properties. Exp Eye Res 2016; 145:258-268. [PMID: 26808488 DOI: 10.1016/j.exer.2016.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 01/09/2023]
Abstract
The present study investigates whether highbush blueberry leaf polyphenols prevent cataractogenesis and the underlying mechanisms. Chlorogenic acid, quercetin, rutin, isoquercetin and hyperoside were quantified in Vaccinium corymbosum leaf decoction (BBL) using HPLC-DAD. Wistar rats were injected subcutaneously with 20 μmol selenite (Na2SeO3)/kg body weight on postnatal (PN) day 10 (Se, n = 8-10/group) only or also intraperitoneally with 100 mg dry BBL/kg body weight on PN days 11 and 12 (SeBBL group, n = 10). Control group received only normal saline (C). Cataract evaluation revealed that BBL significantly prevented lens opacification. It, also, protected lens from selenite oxidative attack and prevented calpain activation, as well as protein loss and aggregation. In vitro studies showed that quercetin attenuated porcine lens turbidity caused by [Formula: see text] or Ca(2+) and interacted efficiently with those ions according to UV-Vis titration experiments. Finally, rutin, isoquercetin and hyperoside moderately inhibited pure human μ-calpain. Conclusively, blueberry leaf extract, a rich source of bioactive polyphenols, prevents cataractogenesis by their strong antioxidant, chelating properties and through direct/indirect inhibition of lens calpains.
Collapse
Affiliation(s)
- Anastasia-Varvara Ferlemi
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Olga E Makri
- Department of Ophthalmology, Medical School, University of Patras, 26504 Patras, Greece
| | - Penelope G Mermigki
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Fotini N Lamari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece.
| | | |
Collapse
|
16
|
Sreelakshmi V, Abraham A. Anthraquinones and flavonoids of Cassia tora leaves ameliorate sodium selenite induced cataractogenesis in neonatal rats. Food Funct 2016; 7:1087-95. [DOI: 10.1039/c5fo00905g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study was undertaken to evaluate the efficacy ofCassia toraleaves, an edible plant traditionally used for eye ailments, in preventing experimental cataractogenesis.
Collapse
Affiliation(s)
- V. Sreelakshmi
- Department of Biochemistry
- University of Kerala
- Thiruvananthapuram
- India
| | - Annie Abraham
- Department of Biochemistry
- University of Kerala
- Thiruvananthapuram
- India
| |
Collapse
|
17
|
Zheng CJ, Li HQ, Ren SC, Xu CL, Rahman K, Qin LP, Sun YH. Phytochemical and Pharmacological Profile of Vitex negundo. Phytother Res 2015; 29:633-47. [PMID: 25641408 DOI: 10.1002/ptr.5303] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng-Jian Zheng
- Department of Urology, Shanghai Changhai Hospital; Second Military Medical University; Shanghai 200433 PR China
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 PR China
| | - Hua-Qiang Li
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 PR China
| | - Shan-Cheng Ren
- Department of Urology, Shanghai Changhai Hospital; Second Military Medical University; Shanghai 200433 PR China
| | - Chuan-Liang Xu
- Department of Urology, Shanghai Changhai Hospital; Second Military Medical University; Shanghai 200433 PR China
| | - Khalid Rahman
- Faculty of Science, School of Biomolecular Sciences; Liverpool John Moores University; Byrom Street Liverpool L3 3AF England UK
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 PR China
| | - Ying-Hao Sun
- Department of Urology, Shanghai Changhai Hospital; Second Military Medical University; Shanghai 200433 PR China
| |
Collapse
|
18
|
Mohamed S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2013.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Virtual screening based on pharmacophoric features of known calpain inhibitors to identify potent inhibitors of calpain. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0842-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Rutin ameliorates free radical mediated cataract by enhancing the chaperone activity of α-crystallin. Graefes Arch Clin Exp Ophthalmol 2013; 251:1747-55. [PMID: 23412395 DOI: 10.1007/s00417-013-2281-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/24/2012] [Accepted: 01/29/2013] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Cataract, the leading cause of blindness, is associated with oxidative damage and protein modification in the lens. The present study was carried out to assess the efficacy of rutin on rat-lens crystallins in selenite-induced in-vivo cataract models. METHODS Eight-day-old Sprague-Dawley rat pups were grouped as control (G I), experimental (G II) and rutin-treated (G III). The rat pups in G II, and G III received a single subcutaneous injection of sodium selenite (4 μg/g body weight) and G I received a single subcutaneous injection of sterile water on the 10th day. The treatment groups (G III) were administered with rutin (1 μg/g body weight) respectively from the 8th to 15th day. Cataract was visualized from the 16th day. Lens crystallins (α, β, and γ) were isolated by size exclusion chromatography. Chaperone activity of isolated crystallins was measured by heat, DTT, and oxidation-induced aggregation and refolding assays. Concentration of total protein (soluble and insoluble) and SDS-PAGE analysis of soluble proteins were also done. RESULTS Treatment with rutin prevented the loss of α crystallin chaperone property, and protein insolubilization prevailed during selenite-induced cataract. CONCLUSIONS These results suggest the therapeutic potential of rutin, a bioflavonoid, against selenite-induced cataract, which has been reported in this paper for the first time. The work assumes significance, as this is a novel approach in modulating the chaperone activity of lens crystallins in selenite-induced cataract by a natural product.
Collapse
|
21
|
Radha A, Devi Rukhmini S, Sasikala V, Sakunthala PR, Sreedharan B, Velayudhan MP, Abraham A. Bioactive derivatives of curcumin attenuate cataract formation in vitro. Chem Biol Drug Des 2012; 80:887-92. [PMID: 22883304 DOI: 10.1111/cbdd.12021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, curcumin derivatives salicylidenecurcumin (CD1) and benzalidenecurcumin (CD2)] were prepared, and their biological activity was compared in in vitro selenite-induced cataract model. The antioxidant activity was studied using DPPH radical scavenging assay. Knoevenagel condensates of curcumin exhibited higher DPPH radical scavenging activity compared with curcumin. The anticataractogenic potential of curcumin derivatives was analyzed using lens organ culture method. The activity of antioxidant enzymes and calcium homeostasis was reversed to near normal levels following treatment in organ cultured rat lenses. These results indicated that curcumin and its derivatives--CD1 and CD2--are beneficial against selenite-induced cataract in vitro. Of these, CD1 is having higher bioactive potential compared with curcumin and CD2.
Collapse
Affiliation(s)
- Asha Radha
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 2012; 18:273-82. [PMID: 22520268 DOI: 10.1016/j.molmed.2012.03.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/01/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022]
Abstract
The transparency of the eye lens depends on maintaining the native tertiary structures and solubility of the lens crystallin proteins over a lifetime. Cataract, the leading cause of blindness worldwide, is caused by protein aggregation within the protected lens environment. With age, covalent protein damage accumulates through pathways thought to include UV radiation, oxidation, deamidation, and truncations. Experiments suggest that the resulting protein destabilization leads to partially unfolded, aggregation-prone intermediates and the formation of insoluble, light-scattering protein aggregates. These aggregates either include or overwhelm the protein chaperone content of the lens. Here, we review the causes of cataract and nonsurgical methods being investigated to inhibit or delay cataract development, including natural product-based therapies, modulators of oxidation, and protein aggregation inhibitors.
Collapse
Affiliation(s)
- Kate L Moreau
- Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, 68-330, Cambridge, MA 02139, USA
| | | |
Collapse
|
23
|
Rooban B, Sasikala V, Gayathri Devi V, Sahasranamam V, Abraham A. Prevention of selenite induced oxidative stress and cataractogenesis by luteolin isolated from Vitex negundo. Chem Biol Interact 2012; 196:30-8. [DOI: 10.1016/j.cbi.2012.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/17/2012] [Accepted: 01/22/2012] [Indexed: 12/01/2022]
|
24
|
Effect of hydroalcoholic extract of Vitex negundo Linn. leaves on learning and memory in normal and cognitive deficit mice. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60138-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Stefek M, Karasu C. Eye Lens in Aging and Diabetes: Effect of Quercetin. Rejuvenation Res 2011; 14:525-34. [DOI: 10.1089/rej.2011.1170] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Cimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
26
|
Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract. Interdiscip Toxicol 2011; 4:69-77. [PMID: 21753902 PMCID: PMC3131677 DOI: 10.2478/v10102-011-0013-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 02/02/2023] Open
Abstract
Cataract is one of the earliest secondary complications of diabetes mellitus. The lens is a closed system with limited capability to repair or regenerate itself. Current evidence supports the view that cataractogenesis is a multifactorial process. Mechanisms related to glucose toxicity, namely oxidative stress, processes of non-enzymatic glycation and enhanced polyol pathway significantly contribute to the development of eye lens opacity under conditions of diabetes. There is an urgent need for inexpensive, non-surgical approaches to the treatment of cataract. Recently, considerable attention has been devoted to the search for phytochemical therapeutics. Several pharmacological actions of natural flavonoids may operate in the prevention of cataract since flavonoids are capable of affecting multiple mechanisms or etiological factors responsible for the development of diabetic cataract. In the present paper, natural flavonoids are reviewed as potential agents that could reduce the risk of cataract formation via affecting multiple pathways pertinent to eye lens opacification. In addition, the bioavailability of flavonoids for the lens is considered.
Collapse
|
27
|
Li N, Zhu Y, Deng X, Gao Y, Zhu Y, He M. Protective effects and mechanism of tetramethylpyrazine against lens opacification induced by sodium selenite in rats. Exp Eye Res 2011; 93:98-102. [PMID: 21635889 DOI: 10.1016/j.exer.2011.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
Tetramethylpyrazine (TMP), extracted from the Chinese herbal medicine Ligusticum wallichii franchat (chuan xiong in Chinese), is a potent anti-free radical and calcium antagonist. Correspondingly, two important hypotheses in the causation of cataracts are free radical toxicity and calcium ion overload. In this study we investigated the effect of TMP on lens opacification induced by sodium selenite in rats, addressing the potential of TMP eye drops to prevent and treat cataracts. Results showed that the extent of lens opacification in the untreated Normal Control group (NC group) was significantly less than that of selenite-injected untreated rats (MC group) on days 3, 5, 7 and 10 (p < 0.001), while TMP treated selenite-injected rats (TMP group) had less lens opacification than the MC group on days 3, 5, 7 and 10 (p < 0.05). Compared with the NC group, the MC group had significantly decreased activity of super-oxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) and significantly elevated malondialdehyde (MDA) and calcium ion content (p < 0.001). Compared with the MC group, the activity of (SOD), (GSH-PX) and (CAT) were significantly higher while (MDA) and calcium ion levels were significantly lower in the TMP group at all time points (p < 0.01). The findings demonstrate that the selenite-induced cataract rat models were successfully built and the TMP eye drops can delay lens opacification induced by sodium selenite in rats. The mechanism by which TMP preserves lens transparency from selenite treated animals is associated with the lenses' ability to maintain normal levels of activity of SOD, GSH-PX and CAT and normal concentrations of MDA and calcium ion.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road South, Guangzhou 510060, China
| | | | | | | | | | | |
Collapse
|
28
|
Amelioration of selenite toxicity and cataractogenesis in cultured rat lenses by Vitex negundo. Graefes Arch Clin Exp Ophthalmol 2011; 249:685-92. [DOI: 10.1007/s00417-010-1598-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/01/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022] Open
|
29
|
Sasikala V, Rooban B, Priya SS, Sahasranamam V, Abraham A. Moringa oleifera Prevents Selenite-Induced Cataractogenesis in Rat Pups. J Ocul Pharmacol Ther 2010; 26:441-7. [DOI: 10.1089/jop.2010.0049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- V. Sasikala
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - B.N. Rooban
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - S.G. Siva Priya
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - V. Sahasranamam
- Regional Institute of Ophthalmology, Thiruvananthapuram, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
30
|
Gayathri Devi V, Rooban B, Sasikala V, Sahasranamam V, Abraham A. Isorhamnetin-3-glucoside alleviates oxidative stress and opacification in selenite cataract in vitro. Toxicol In Vitro 2010; 24:1662-9. [DOI: 10.1016/j.tiv.2010.05.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 04/19/2010] [Accepted: 05/30/2010] [Indexed: 11/16/2022]
|
31
|
Different experimental approaches in modelling cataractogenesis: An overview of selenite-induced nuclear cataract in rats. Interdiscip Toxicol 2010; 3:3-14. [PMID: 21217865 PMCID: PMC2984119 DOI: 10.2478/v10102-010-0005-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 11/24/2022] Open
Abstract
Cataract, the opacification of eye lens, is the leading cause of blindness worldwide. At present, the only remedy is surgical removal of the cataractous lens and substitution with a lens made of synthetic polymers. However, besides significant costs of operation and possible complications, an artificial lens just does not have the overall optical qualities of a normal one. Hence it remains a significant public health problem, and biochemical solutions or pharmacological interventions that will maintain the transparency of the lens are highly required. Naturally, there is a persistent demand for suitable biological models. The ocular lens would appear to be an ideal organ for maintaining culture conditions because of lacking blood vessels and nerves. The lens in vivo obtains its nutrients and eliminates waste products via diffusion with the surrounding fluids. Lens opacification observed in vivo can be mimicked in vitro by addition of the cataractogenic agent sodium selenite (Na2SeO3) to the culture medium. Moreover, since an overdose of sodium selenite induces also cataract in young rats, it became an extremely rapid and convenient model of nuclear cataract in vivo. The main focus of this review will be on selenium (Se) and its salt sodium selenite, their toxicological characteristics and safety data in relevance of modelling cataractogenesis, either under in vivo or in vitro conditions. The studies revealing the mechanisms of lens opacification induced by selenite are highlighted, the representatives from screening for potential anti-cataract agents are listed.
Collapse
|
32
|
Current world literature. Curr Opin Ophthalmol 2009; 21:81-90. [PMID: 19996895 DOI: 10.1097/icu.0b013e3283350158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|