1
|
Okada H, Yoshida M, Takeuchi M, Okada E, Mizuki N. The relationship between contact lens ultraviolet light transmittance and myopia progression: a large-scale retrospective cohort study. PRECISION CLINICAL MEDICINE 2024; 7:pbae022. [PMID: 39444429 PMCID: PMC11497595 DOI: 10.1093/pcmedi/pbae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Background The prevalence of myopia is increasing dramatically around the world, and many studies have suggested the possibility that ultraviolet (UV) light is effective to prevent the onset and progression of myopia. However, UV is a risk factor for diseases that cause refractive errors such as cataract and pterygium. In this study, we evaluated the relationship between UV exposure and myopia progression. Methods The dataset consisted of a total of 337 396 eyes of patients in the 12-to-29-year age range, who were prescribed soft contact lenses (SCL) for refractive error at Okada Eye Clinic in Japan between 2002 and 2011. They were tracked over a five-year period and did not change the type of SCL. In this retrospective cohort study based on medical records, we divided patients into two groups, one prescribed SCL with UV protection (UV-SCL), and another prescribed SCL without UV protection (UV + SCL). Results Change in refractive power over five years was measured and results compared. It was -0.413 diopter (D) in the UV-SCL group and -0.462 D in the UV + SCL group. Thus, the progression of myopia was slower in the UV-SCL group. The results were also analyzed separately by gender and degree of myopia at the time of initial prescription, which all showed significant differences (P < 0.001). Conclusion Results suggest that UV exposure may advance myopia. Further research is needed to investigate the underlying mechanisms that could explain this.
Collapse
Affiliation(s)
- Hiroyuki Okada
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Okada Eye Clinic, Yokohama, Kanagawa 234-0054, Japan
| | - Masao Yoshida
- Department of Public Health, Kyorin University Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Eiichi Okada
- Okada Eye Clinic, Yokohama, Kanagawa 234-0054, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
2
|
Chakraborty R, Baranton K, Pic E, Didone J, Kim W, Lam K, Papandrea A, Kousa J, Bhasme T, Edmonds C, Trieu C, Chang E, Coleman A, Hussain A, Lacan P, Spiegel D, Barrau C. Axial length reduction and choroidal thickening with short-term exposure to cyan light in human subjects. Ophthalmic Physiol Opt 2024; 44:1414-1432. [PMID: 39244703 DOI: 10.1111/opo.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE Given the potential role of light and its wavelength on ocular growth, this study investigated the effect of short-term exposure to red, cyan and blue light on ocular biometry in humans. METHODS Forty-four young adults and 20 children, comprising emmetropes and myopes, underwent 2-h sessions of cyan (507 nm), red (638 nm) and broadband white light on three separate days via light-emitting glasses. Additionally, young adults were exposed to blue light (454 nm) on an additional day. Axial length (AL) and choroidal thickness (CT) were measured in the right eye before the light exposure (0 min), after 60 and 120 min of exposure and 30 min after light offset using an optical biometer and optical coherence tomographer, respectively. RESULTS Compared to broadband light, exposure to red light resulted in a significant increase in AL (mean difference between white and red light at 120 min, +0.007 mm [0.002]), but no significant change in CT, while cyan light caused a significant AL reduction (-0.010 mm [0.003]) and choroidal thickening (+0.008 mm [0.002]) in young adults (p < 0.05). Blue light caused a significant decrease of -0.007 mm (0.002) in young adult eyes at 60 min (p < 0.05). In children, cyan light led to a significant reduction in AL (-0.016 mm [0.004]) and strong sustained choroidal thickening (+0.014 mm [0.004]) compared to broadband light at 120 min (p < 0.05). The effects of cyan light on AL and CT were found to be stronger in myopic young adults and emmetropic children. The opposing effects of red and cyan light on ocular biometry were similar between the two age groups (p > 0.05). CONCLUSIONS Exposure to cyan light resulted in AL reduction and choroidal thickening in both young adults and children. Further research is needed to determine the application of these results in developing interventions for myopia control.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Konogan Baranton
- Essilor International, Centre of Innovation and Technologies Europe, Paris, France
| | - Eleonore Pic
- Essilor International, Centre of Innovation and Technologies Europe, Paris, France
| | - Julia Didone
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Wanki Kim
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Kevin Lam
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Alessandro Papandrea
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Jad Kousa
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Tiana Bhasme
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Chloe Edmonds
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Cindy Trieu
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Eunjong Chang
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Alexander Coleman
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Azfira Hussain
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Pascale Lacan
- Essilor International, Centre of Innovation and Technologies Europe, Paris, France
| | - Daniel Spiegel
- Essilor Asia Pacific Pte Ltd, Singapore City, Singapore, Singapore
| | - Coralie Barrau
- Essilor International, Centre of Innovation and Technologies Europe, Paris, France
| |
Collapse
|
3
|
Xiang A, He H, Li A, Meng X, Luo Y, Luo Y, Wang X, Yang J, Chen X, Zhong X. Changes in choroidal thickness and blood flow in response to form deprivation-induced myopia and repeated low-level red-light therapy in Guinea pigs. Ophthalmic Physiol Opt 2024. [PMID: 39367704 DOI: 10.1111/opo.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE To evaluate ocular refractive development, choroidal thickness (ChT) and changes in choroidal blood flow in form-deprived myopia (FDM) Guinea pigs treated with repeated low-level red-light (RLRL) therapy. METHODS Twenty-eight 3-week-old male tricolour Guinea pigs were randomised into three groups: normal controls (NC, n = 10), form-deprived (FD, n = 10) and red light treated with form-deprivation (RLFD, n = 8). Interocular refraction and axial length (AL) changes were monitored. Optical coherence tomography angiography (OCTA) measured choroidal thickness, vessel area density, vessel skeleton density and blood flow signal intensity (flux) in the choriocapillaris and medium-large vessel layers. The experimental intervention lasted 3 weeks. RESULTS At week 3, the FD group had higher myopia and longer axial length than the NC group (all p < 0.001). The RLFD group had higher hyperopia and shorter axial length than the FD group (all p < 0.001). At week 1, the NC group had a thicker choroidal thickness than the FD group (p < 0.05). At weeks 2 and 3, the RLFD group had a thicker choroidal thickness than the FD group (p = 0.002, p < 0.001, respectively). Additionally, the NC group had higher vessel area density, vessel skeleton density and flux in the choriocapillaris layer than the FD group at the three follow-up time points (all p < 0.05). At week 3, the vessel skeleton density and flux were higher in the RLFD group than in the FD group (all p < 0.05). Correlation analysis results showed that weekly changes in refraction and choroidal thickness were negatively correlated with changes in axial length (all p < 0.05). Choroidal thickness changes were positively correlated with alterations in the vessel area density, vessel skeleton density and flux in the choriocapillaris layer, as well as vessel skeleton density and flux changes in the medium-large vessel layers (all p < 0.05). CONCLUSIONS Repeated low-level red-light (RLRL) therapy retards FDM progression in Guinea pigs, potentially through increased choroidal blood flow in the choriocapillaris layer.
Collapse
Affiliation(s)
- Aiqun Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Hong He
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Haikou, China
| | - Anzhen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xuyun Meng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Yanting Luo
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Haikou, China
| | - Yuhan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xingxing Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Junming Yang
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Haikou, China
| | - Xiaolian Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Haikou, China
| | - Xingwu Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Haikou, China
| |
Collapse
|
4
|
Derelі Fіdan E, Yaygıngül R, Kaya M. Effects of intermittent lighting program and light colour on ocular health variables as welfare indicators in broiler chickens. Br Poult Sci 2024:1-9. [PMID: 39177037 DOI: 10.1080/00071668.2024.2383911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 08/24/2024]
Abstract
1. The objective of the present study was to examine the effect of lighting programs and light colour on ocular health variables as welfare indicators in Ross 308 broilers.2. A total of 384, male, one-d-old broiler chickens (Ross 308) were placed in a completely randomised design with a 2 × 2 factorial arrangement of lighting program (continuous or intermittent) and light colour (white and green LED light). Ross 308 broilers under restricted lighting had 18 h of light (18 L:6D), while those under intermittent lighting had cycles of 17 L:3D:1 L:3D throughout the experimental period, which lasted 42 d.3. At the end of the experiment, all eyes of birds (n = 96 birds) underwent a complete ophthalmic examination, which included the Schirmer tear test I, intraocular pressure and eye dimensions. In addition, 32 broilers (eight birds per trial groups) aged 42 d underwent ophthalmic examination to include assessment of ocular ultrasound biometry.4. Light colour had a significant influence on the mean intraocular pressure (p < 0.001). The Ross 308 broilers kept with intermittent lighting had lower eye weights (2.29 g; p < 0.05), palpebral fissure length (14.39 mm; p < 0.01), eye dorsoventral diameter (17.46 mm; p < 0.05), anteroposterior size (13.70 mm; p < 0.01) and corneal dorsoventral diameter (7.81 mm; p < 0.05) compared to those reared under restricted lighting.5. In conclusion, these values for Ross 308 broilers may be applied in poultry ophthalmology to detect early eye disease symptoms and to help the diagnosis of tear disorders that could cause economic losses and welfare issues. Intermittent lighting and green LED light may help reduce eye health problems thus contributing to improved welfare in broilers.
Collapse
Affiliation(s)
- E Derelі Fіdan
- Department of Animal Science, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - R Yaygıngül
- Department of Surgery, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - M Kaya
- Department of Animal Science, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
5
|
Ullah S, Umer MF, Chandran SP. Violet light transmission through eyeglasses and its effects on myopic children: A systematic review and meta-analysis. Saudi J Ophthalmol 2024; 38:235-242. [PMID: 39465017 PMCID: PMC11503971 DOI: 10.4103/sjopt.sjopt_146_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 10/22/2024] Open
Abstract
PURPOSE Myopia is a refractive error that impairs visual function and leads to visual blurring. This study aims to investigate the effect of violet light (VL) on controlling myopia, specifically in terms of axial length (AL), spherical equivalent refraction (SER), and visual acuity (VA). METHODS A systematic review was conducted to compare VL and single-vision spectacles (SVSs) for treating childhood myopia. The search terms used were "Myopia" and "Violet Light." Extensive searches were carried out in the PubMed, Embase, and Cochrane databases. The mean differences were evaluated. The effects of the therapy were examined. Publication bias was assessed with a funnel plot and further investigated through sensitivity analysis. Meta-analysis was performed using Bayesian statistics with Jeffery's Amazing Statistical Package. RESULTS The meta-analysis included 126 myopic children: 64 in the VL group and 62 in the SVS group. The pooled effect size for AL shortening was evaluated as 0.659 ± 0.184, with a 95% credible interval of 0.299-1.023. The pooled effect size for SER decrease was estimated as 0.669 ± 0.188, with a 95% credible interval of 0.303-1.036. Likewise, for VA in Log-MAR, after intervention (VL and SVS), the values were 0.082 ± 0.171 with a credible interval of 0.262-0.423. Publication bias was assessed with a funnel plot, which revealed no bias. Impact sizes for the fixed effect model were determined due to the similarity in study population, geography, type of intervention, and study design. CONCLUSION VL transmission glasses play a significant role in controlling myopia among children, resulting in axial shortening, reduction of SER, and improvement in VA. However, further investigation is required to examine the long-term rebound effect.
Collapse
Affiliation(s)
- Saif Ullah
- Department of Health Sciences, Lincoln University College, Wisma Lincoln, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Muhammad F. Umer
- Department of Preventive Dental Sciences, College of Dentistry, King Faisal University, Hofuf, Al-Ahsa, Saudi Arabia
| | - Suriyakala P. Chandran
- Department of Biochemistry, Faculty of Medicines, Lincoln University College, Wisma Lincoln, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Zhou S, Niu Y, Li X, Yue J, Zhang H. The knowledge structure and research trends between light and myopia: A bibliometric analysis from 1981 to 2024. Medicine (Baltimore) 2024; 103:e38157. [PMID: 38758893 PMCID: PMC11098238 DOI: 10.1097/md.0000000000038157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND This bibliometric analysis explored the knowledge structure of and research trends in the relationship between light and myopia. METHODS Relevant literature published from 1981 to 2024 was collected from the Web of Science Core Collection database. Visual maps were generated using CiteSpace and VOSviewer. We analyzed the included studies in terms of the annual publication count, countries, institutional affiliations, prolific authors, source journals, top 10 most cited articles, keyword co-occurrence, and cocitations. RESULTS A total of 525 papers examining the relationship between light and myopia published between 1981 and 2024 were collected. The United States ranked first in terms of the number of publications and actively engaged in international cooperation with other countries. The New England College of Optometry, which is located in the United States, was the most active institution and ranked first in terms of the number of publications. Schaeffel Frank was the most prolific author. The most active journal in the field was Investigative Ophthalmology & Visual Science. The most frequently cited paper in the included studies was written by Saw, SM and was published in 2002. The most common keywords in basic research included "refractive error," "longitudinal chromatic aberration," and "compensation." The most common keywords in clinical research mainly included "light exposure," "school," and "outdoor activity." The current research hotspots in this field are "progression," "refractive development," and "light exposure." The cocitation analysis generated 17 clusters. CONCLUSION This study is the first to use bibliometric methods to analyze existing research on the relationship between light and myopia. In recent years, the intensity and wavelength of light have become research hotspots in the field. Further research on light of different intensities and wavelengths may provide new perspectives in the future for designing more effective treatments and interventions to reduce the incidence of myopia.
Collapse
Affiliation(s)
- Shuaibing Zhou
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou, China
| | - Yueyue Niu
- Henan University People’s Hospital, Henan Eye Hospital, Zhengzhou, China
| | - Xuejiao Li
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou, China
- Department of Ophthalmology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Juan Yue
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou, China
| | - Hongmin Zhang
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou, China
- Henan University People’s Hospital, Henan Eye Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Clement SP, Breher K, Domdei N, Dolata J, Wahl S. Influence of Aberration-Free, Narrowband Light on the Choroidal Thickness and Eye Length. Transl Vis Sci Technol 2024; 13:30. [PMID: 38662401 PMCID: PMC11055502 DOI: 10.1167/tvst.13.4.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Purpose To determine whether light chromaticity without defocus induced by longitudinal chromatic aberration (LCA) is sufficient to regulate eye growth. Methods An interferometric setup based on a spatial light modulator was used to illuminate the dominant eyes of 23 participants for 30 minutes with three aberration-free stimulation conditions: (1) short wavelength (450 nm), (2) long wavelength (638 nm), and (3) broadband light (450-700 nm), covering a retinal area of 12°. The non-dominant eye was occluded and remained as the control eye. Axial length and choroidal thickness were measured before and after the illumination period. Results Axial length increased significantly from baseline for short-wavelength (P < 0.01, 7.4 ± 2.2 µm) and long-wavelength (P = 0.01, 4.8 ± 1.7 µm) light. The broadband condition also showed an increase in axial length with no significance (P = 0.08, 5.1 ± 3.5 µm). The choroidal thickness significantly decreased in the case of long-wavelength light (P < 0.01, -5.7 ± 2.2 µm), but there was no significant change after short-wavelength and broadband illumination. The axial length and choroidal thickness did not differ significantly between the test and control eyes or between the illumination conditions (all P > 0.05). Also, the illuminated versus non-illuminated choroidal zone did not show a significant difference (all P > 0.05). Conclusions All stimulation conditions with short- and long-wavelength light and broadband light led to axial elongation and choroidal thinning. Therefore, light chromaticity without defocus induced by LCA is suggested to be insufficient to regulate eye growth. Translational Relevance This study helps in understanding if light chromaticity alone is a sufficient regulator of eye growth.
Collapse
Affiliation(s)
- Susanna P. Clement
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | - Niklas Domdei
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | | | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| |
Collapse
|
8
|
Chen YY, Tsai TH, Liu YL, Lin HJ, Wang IJ. The impact of light properties on ocular growth and myopia development. Taiwan J Ophthalmol 2024; 14:143-150. [PMID: 39027063 PMCID: PMC11253990 DOI: 10.4103/tjo.tjo-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
The objective of this article is to comprehensively review the effect of environmental lighting on ocular growth and refractive status in both animal and clinical studies, with an emphasis on the underlying mechanisms. This review was performed by searching research articles and reviews utilizing the terms "myopia," "light therapy," "axial length," "refractive error," and "emmetropization" in PubMed datasets. The review was finalized in December 2023. In the animal studies, high lighting brightness, illumination periods aligning with circadian rhythm, and color contrast signals including multiple wavelengths all help regulate ocular growth against myopia. Long wavelengths have been found to induce myopia in chicks, mice, fish, and guinea pigs, whereas shorter wavelengths lead to hyperopia. In contrast, red light has been observed to have a protective effect against myopia in tree shrews and rhesus monkeys. Apart from wavelength, flicker status also showed inconsistent effects on ocular growth, which could be attributed to differences in ocular refractive status, evolutionary disparities in retinal cone cells across species, and the selection of myopia induction models in experiments. In the clinical studies, current evidence suggests a control effect with red light therapy. Although the lighting conditions diverge from those in animal experiments, further reports are needed to assess the long-term effects. In conclusion, this review encompasses research related to the impact of light exposure on myopia and further explores the retinoscleral signaling pathway in refractive development. The aim is to establish a theoretical foundation for optimizing environmental factors in lighting design to address the epidemic of childhood myopia.
Collapse
Affiliation(s)
- Ying-Yi Chen
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Lin Liu
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Biswas S, El Kareh A, Qureshi M, Lee DMX, Sun CH, Lam JSH, Saw SM, Najjar RP. The influence of the environment and lifestyle on myopia. J Physiol Anthropol 2024; 43:7. [PMID: 38297353 PMCID: PMC10829372 DOI: 10.1186/s40101-024-00354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Myopia, commonly known as near-sightedness, has emerged as a global epidemic, impacting almost one in three individuals across the world. The increasing prevalence of myopia during early childhood has heightened the risk of developing high myopia and related sight-threatening eye conditions in adulthood. This surge in myopia rates, occurring within a relatively stable genetic framework, underscores the profound influence of environmental and lifestyle factors on this condition. In this comprehensive narrative review, we shed light on both established and potential environmental and lifestyle contributors that affect the development and progression of myopia. MAIN BODY Epidemiological and interventional research has consistently revealed a compelling connection between increased outdoor time and a decreased risk of myopia in children. This protective effect may primarily be attributed to exposure to the characteristics of natural light (i.e., sunlight) and the release of retinal dopamine. Conversely, irrespective of outdoor time, excessive engagement in near work can further worsen the onset of myopia. While the exact mechanisms behind this exacerbation are not fully comprehended, it appears to involve shifts in relative peripheral refraction, the overstimulation of accommodation, or a complex interplay of these factors, leading to issues like retinal image defocus, blur, and chromatic aberration. Other potential factors like the spatial frequency of the visual environment, circadian rhythm, sleep, nutrition, smoking, socio-economic status, and education have debatable independent influences on myopia development. CONCLUSION The environment exerts a significant influence on the development and progression of myopia. Improving the modifiable key environmental predictors like time spent outdoors and engagement in near work can prevent or slow the progression of myopia. The intricate connections between lifestyle and environmental factors often obscure research findings, making it challenging to disentangle their individual effects. This complexity underscores the necessity for prospective studies that employ objective assessments, such as quantifying light exposure and near work, among others. These studies are crucial for gaining a more comprehensive understanding of how various environmental factors can be modified to prevent or slow the progression of myopia.
Collapse
Affiliation(s)
- Sayantan Biswas
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Antonio El Kareh
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Mariyem Qureshi
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | | | - Chen-Hsin Sun
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Janice S H Lam
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Raymond P Najjar
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
- Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Salzano AD, Khanal S, Cheung NL, Weise KK, Jenewein EC, Horn DM, Mutti DO, Gawne TJ. Repeated Low-level Red-light Therapy: The Next Wave in Myopia Management? Optom Vis Sci 2023; 100:812-822. [PMID: 37890098 DOI: 10.1097/opx.0000000000002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
SIGNIFICANCE Exposure to long-wavelength light has been proposed as a potential intervention to slow myopia progression in children. This article provides an evidence-based review of the safety and myopia control efficacy of red light and discusses the potential mechanisms by which red light may work to slow childhood myopia progression.The spectral composition of the ambient light in the visual environment has powerful effects on eye growth and refractive development. Studies in mammalian and primate animal models (macaque monkeys and tree shrews) have shown that daily exposure to long-wavelength (red or amber) light promotes slower eye growth and hyperopia development and inhibits myopia induced by form deprivation or minus lens wear. Consistent with these results, several recent randomized controlled clinical trials in Chinese children have demonstrated that exposure to red light for 3 minutes twice a day significantly reduces myopia progression and axial elongation. These findings have collectively provided strong evidence for the potential of using red light as a myopia control intervention in clinical practice. However, several questions remain unanswered. In this article, we review the current evidence on the safety and efficacy of red light as a myopia control intervention, describe potential mechanisms, and discuss some key unresolved issues that require consideration before red light can be broadly translated into myopia control in children.
Collapse
Affiliation(s)
| | - Safal Khanal
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nathan L Cheung
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina
| | - Katherine K Weise
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Erin C Jenewein
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania
| | - Darryl M Horn
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania
| | - Donald O Mutti
- The Ohio State University College of Optometry, Columbus, Ohio
| | - Timothy J Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
Zhao C, Ni Y, Zeng J. Effect of red-light therapy on retinal and choroidal blood perfusion in myopic children. Ophthalmic Physiol Opt 2023; 43:1427-1437. [PMID: 37431143 DOI: 10.1111/opo.13202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVE To investigate the effect of repeated low-level red-light therapy (RLRLT) on retinal and choroidal blood perfusion in myopic children. METHODS Forty-seven myopic children (mean spherical equivalent refractive error [SE]: -2.31 ± 1.26 D; age range: 8.0-11.0 years) were enrolled and received RLRLT (power 2 mW, wavelength 650 nm) for 3 min twice a day, while 20 myopic children (SE: -2.75 ± 0.84 D; age range: 7.0-10.0 years) were included as a control group. All participants wore single-vision distance glasses. Refractive error, axial length (AL) and other biometric parameters were measured at baseline and during follow-up visits in the first, second and fourth weeks after initiation of treatment. Retinal thickness, subfoveal choroidal thickness (SFCT), total choroidal area (TCA), luminal area (LA), stromal area (SA) and choroidal vascularity index (CVI) were obtained using optical coherence tomography (OCT). The percentage retinal vascular density (VD%) and choriocapillaris flow voids (FV%) were measured using en-face OCT angiography. RESULTS After 4 weeks of treatment, a significant increase in SFCT was observed in the RLRLT group, with an average increase of 14.5 μm (95% confidence interval [CI]: 9.6-19.5 μm), compared with a decrease of -1.7 μm (95% CI: -9.1 to 5.7 μm) in the control group (p < 0.0001). However, no significant changes in retinal thickness or VD% were observed in either group (all p > 0.05). In the OCT images from the RLRLT group, no abnormal retinal morphology related to photodamage was observed. The horizontal scans revealed an increase in TCA, LA and CVI over time (all p < 0.05), while SA and FV% remained unchanged (both p > 0.05). CONCLUSIONS These findings indicate that RLRLT can enhance choroidal blood perfusion in myopic children, demonstrating a cumulative effect over time.
Collapse
Affiliation(s)
- Chang Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China
| | - Yao Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Wang X, Sun Y, Wang K, Yang S, Luan C, Wu B, Zhang W, Hao R. Effects of blue light exposure on ocular parameters and choroidal blood perfusion in Guinea pig. Exp Eye Res 2023; 235:109619. [PMID: 37633324 DOI: 10.1016/j.exer.2023.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/03/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
PURPOSE To investigate the impact of different duration of blue light exposure on ocular parameters and choroidal blood perfusion in guinea pigs with lens-induced myopia. METHOD Three-week-old Guinea pigs were randomly assigned to different light-environment groups. All groups were subjected to 12-h light/dark cycle. The control (NC) group was conditioned without intervention. While lens-induced myopia (LIM) groups had a -10D lens placed in the right eye and 0D in the left eye. The guinea pigs were exposed to increasing periods of blue-light (420 nm) environment for 3,6,9,12 h per day. Changes in refraction, axial length (AL), the radius of corneal curvature (CCR), choroidal thickness (ChT), and choroidal blood perfusion (ChBP)were measured in both LIM-eye and fellow-eye during the second and fourth week of LIM duration. RESULTS During the first two weeks of the experiment, blue light exposure raised ChBP and ChT, and the effect of suppressing myopia was proportional to the duration of blue light exposure. However, in the fourth week of the experiment, prolonged blue light (12BL) exposure led to a reduction in retinal thickness and the increase in ChT and ChBP ceased. Shorter blue light exposure had a better effect on myopia suppression, with all blue light groups statistically different from the LIM group. CONCLUSION Exposure to blue-light appears to have the potential to improve ChBP and ChT, thereby inhibiting the development of myopia. we speculate that blue-light inhibits the development of myopia for reasons other than longitudinal chromatic aberration (LCA). However,long-term exposure to blue-light may have adverse effects on ocular development. The next step is to investigate in depth the mechanisms by which the rational use of blue light regulates choroidal blood flow, offering new hope for the treatment of myopia.
Collapse
Affiliation(s)
- Xiao Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China
| | - Yifan Sun
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China
| | - Kailei Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China
| | - Shiqiao Yang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China
| | - Changlin Luan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China
| | - Bin Wu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, PR China
| | - Wei Zhang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, PR China.
| | - Rui Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, PR China.
| |
Collapse
|
13
|
Zhang X, Wang X, Zhu H, Zhang D, Chen J, Wen Y, Li Y, Jin L, Xie C, Guo D, Luo T, Tong J, Zhou Y, Shen Y. Short-wavelength artificial light affects visual neural pathway development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115282. [PMID: 37494734 DOI: 10.1016/j.ecoenv.2023.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Nearly all modern life depends on artificial light; however, it does cause health problems. With certain restrictions of artificial light emitting technology, the influence of the light spectrum is inevitable. The most remarkable problem is its overload in the short wavelength component. Short wavelength artificial light has a wide range of influences from ocular development to mental problems. The visual neuronal pathway, as the primary light-sensing structure, may contain the fundamental mechanism of all light-induced abnormalities. However, how the artificial light spectrum shapes the visual neuronal pathway during development in mammals is poorly understood. We placed C57BL/6 mice in three different spectrum environments (full-spectrum white light: 400-750 nm; violet light: 400 ± 20 nm; green light: 510 ± 20 nm) beginning at eye opening, with a fixed light time of 7:00-19:00. During development, we assessed the ocular axial dimension, visual function and retinal neurons. After two weeks under short wavelength conditions, the ocular axial length (AL), anterior chamber depth (ACD) and length of lens thickness, real vitreous chamber depth and retinal thickness (LLVR) were shorter, visual acuity (VA) decreased, and retinal electrical activity was impaired. The density of S-cones in the dorsal and ventral retinas both decreased after one week under short wavelength conditions. In the ventral retina, it increased after three weeks. Retinal ganglion cell (RGC) density and axon thickness were not influenced; however, the axonal terminals in the lateral geniculate nucleus (LGN) were less clustered and sparse. Amacrine cells (ACs) were significantly more activated. Green light has few effects. The KEGG and GO enrichment analyses showed that many genes related to neural circuitry, synaptic formation and neurotransmitter function were differentially expressed in the short wavelength light group. In conclusion, exposure to short wavelength artificial light in the early stage of vision-dependent development in mice delayed the development of the visual pathway. The axon terminus structure and neurotransmitter function may be the major suffering.
Collapse
Affiliation(s)
- Xuhong Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaoyu Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China; Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hong Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dongyan Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China; Department of Ophthalmology, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, China
| | - Jinbo Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yingying Wen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yanqing Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Le Jin
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chen Xie
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dongyu Guo
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ting Luo
- Zhejiang Academy of Agricultural Sciences, Institute of Agroproduct Safety and Nutrition, China
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Yudong Zhou
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China; Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
She Z, Ward AH, Gawne TJ. The effects of ambient narrowband long-wavelength light on lens-induced myopia and form-deprivation myopia in tree shrews. Exp Eye Res 2023; 234:109593. [PMID: 37482282 PMCID: PMC10529043 DOI: 10.1016/j.exer.2023.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Here we examine the effects of ambient red light on lens-induced myopia and diffuser-induced myopia in tree shrews, small diurnal mammals closely related to primates. Starting at 24 days of visual experience (DVE), seventeen tree shrews were reared in red light (624 ± 10 or 634 ± 10 nm, 527-749 human lux) for 12-14 days wearing either a -5D lens (RL-5D, n = 5) or a diffuser (RLFD, n = 5) monocularly, or without visual restriction (RL-Control, n = 7). Refractive errors and ocular dimensions were compared to those obtained from tree shrews raised in broad-spectrum white light (WL-5D, n = 5; WLFD, n = 10; WL Control, n = 7). The RL-5D tree shrews developed less myopia in their lens-treated eyes than WL-5D tree shrews at the end of the experiment (-1.1 ± 0.9D vs. -3.8 ± 0.3D, p = 0.007). The diffuser-treated eyes of the RLFD tree shrews were near-emmetropic (-0.3 ± 0.6D, vs. -5.4 ± 0.7D in the WLFD group). Red light induced hyperopia in control animals (RL-vs. WL-Control, +3.0 ± 0.7 vs. +1.0 ± 0.2D, p = 0.02), the no-lens eyes of the RL-5D animals, and the no-diffuser eyes of the RLFD animals (+2.5 ± 0.5D and +2.3 ± 0.3D, respectively). The refractive alterations were consistent with the alterations in vitreous chamber depth. The lens-induced myopia developed in red light suggests that a non-chromatic cue could signal defocus to a less accurate extent, although it could also be a result of "form-deprivation" caused by defocus blur. As with previous studies in rhesus monkeys, the ability of red light to promote hyperopia appears to correlate with its ability to retard lens-induced myopia and form-deprivation myopia, the latter of which might be related to non-visual ocular mechanisms.
Collapse
Affiliation(s)
- Zhihui She
- Department of Optometry and Vision Science, University of Alabama at Birmingham, 1716 University Blvd, HPB 528, Birmingham, AL, 35294, UK
| | - Alexander H Ward
- Georgia Cancer Center, Augusta University. Dr. Ward Contributed to This Work During His Graduate Training at the University of Alabama at Birmingham, UK
| | - Timothy J Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, 1716 University Blvd, HPB 528, Birmingham, AL, 35294, UK.
| |
Collapse
|
15
|
Gisbert S, Wahl S, Schaeffel F. L-opsin expression in chickens is similarly reduced with diffusers and negative lenses. Vision Res 2023; 210:108272. [PMID: 37269575 DOI: 10.1016/j.visres.2023.108272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Previous studies have shown that the expression of L- and M-opsins was reduced in chicken retina when eyes were covered with diffusers. The purpose of the current study was to find out whether this is a result of altered spatial processing during development of deprivation myopia or merely a consequence of light attenuation by the diffusers. Therefore, retinal luminances were matched by neutral density filters in fellow eyes that served as controls for diffuser-treated eyes. Furthermore, the effects of negative lenses on opsins expression were studied. Chickens wore diffusers or -7D lenses for a period of 7 days and refractive state and ocular biometry were measured at the beginning and at the end of the experiment. Retinal tissue was extracted from both eyes to quantify L-, M- and S-opsins expression by qRT-PCR. It was found that L-opsin expression was significantly lower in eyes wearing diffusers, compared to fellow eyes covered with neutral density filters. Interestingly, L-opsin was also reduced in eyes wearing negative lenses. In summary, this study shows that L-opsin expression is reduced due to the loss of high spatial frequencies and general contrast reduction in the retinal image, rather than by a decline in retinal luminance. Moreover, the fact that L-opsin was similarly reduced in eyes treated with negative lenses and diffusers suggests the existence of a common pathway for emmetropization, but it could also be just a consequence of reduced high spatial frequencies and lower contrast.
Collapse
Affiliation(s)
- Sandra Gisbert
- Carl Zeiss Vision International GmbH, Technology, and Innovation, Turnstrasse 27, 73430 Aalen, Germany; Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Strasse 7, 72076 Tuebingen, Germany.
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Technology, and Innovation, Turnstrasse 27, 73430 Aalen, Germany; Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Strasse 7, 72076 Tuebingen, Germany
| | - Frank Schaeffel
- Carl Zeiss Vision International GmbH, Technology, and Innovation, Turnstrasse 27, 73430 Aalen, Germany; Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Strasse 7, 72076 Tuebingen, Germany; Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, CH-4031 Basel, Switzerland
| |
Collapse
|
16
|
Sankaridurg P, Berntsen DA, Bullimore MA, Cho P, Flitcroft I, Gawne TJ, Gifford KL, Jong M, Kang P, Ostrin LA, Santodomingo-Rubido J, Wildsoet C, Wolffsohn JS. IMI 2023 Digest. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37126356 PMCID: PMC10155872 DOI: 10.1167/iovs.64.6.7] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Myopia is a dynamic and rapidly moving field, with ongoing research providing a better understanding of the etiology leading to novel myopia control strategies. In 2019, the International Myopia Institute (IMI) assembled and published a series of white papers across relevant topics and updated the evidence with a digest in 2021. Here, we summarize findings across key topics from the previous 2 years. Studies in animal models have continued to explore how wavelength and intensity of light influence eye growth and have examined new pharmacologic agents and scleral cross-linking as potential strategies for slowing myopia. In children, the term premyopia is gaining interest with increased attention to early implementation of myopia control. Most studies use the IMI definitions of ≤-0.5 diopters (D) for myopia and ≤-6.0 D for high myopia, although categorization and definitions for structural consequences of high myopia remain an issue. Clinical trials have demonstrated that newer spectacle lens designs incorporating multiple segments, lenslets, or diffusion optics exhibit good efficacy. Clinical considerations and factors influencing efficacy for soft multifocal contact lenses and orthokeratology are discussed. Topical atropine remains the only widely accessible pharmacologic treatment. Rebound observed with higher concentration of atropine is not evident with lower concentrations or optical interventions. Overall, myopia control treatments show little adverse effect on visual function and appear generally safe, with longer wear times and combination therapies maximizing outcomes. An emerging category of light-based therapies for children requires comprehensive safety data to enable risk versus benefit analysis. Given the success of myopia control strategies, the ethics of including a control arm in clinical trials is heavily debated. IMI recommendations for clinical trial protocols are discussed.
Collapse
Affiliation(s)
- Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - David A Berntsen
- University of Houston, College of Optometry, Houston, Texas, United States
| | - Mark A Bullimore
- University of Houston, College of Optometry, Houston, Texas, United States
| | - Pauline Cho
- West China Hospital, Sichuan University, Sichuan, China
- Eye & ENT Hospital of Fudan University, Shanghai, China
- Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ian Flitcroft
- Centre for Eye Research Ireland, School of Physics and Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
- Department of Ophthalmology, Children's Health Ireland at Temple Street Hospital, Dublin, Ireland
| | - Timothy J Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kate L Gifford
- Queensland University of Technology, Brisbane, Australia
| | - Monica Jong
- Johnson & Johnson Vision, Jacksonville, Florida, United States
| | - Pauline Kang
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Lisa A Ostrin
- University of Houston, College of Optometry, Houston, Texas, United States
| | | | - Christine Wildsoet
- UC Berkeley Wertheim School Optometry & Vision Science, Berkeley, California, United States
| | - James S Wolffsohn
- College of Health & Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
17
|
Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review. Ophthalmol Ther 2023; 12:755-788. [PMID: 36808601 PMCID: PMC9938358 DOI: 10.1007/s40123-023-00675-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
INTRODUCTION Exposure to blue light has seriously increased in our environment since the arrival of light emitting diodes (LEDs) and, in recent years, the proliferation of digital devices rich in blue light. This raises some questions about its potential deleterious effects on eye health. The aim of this narrative review is to provide an update on the ocular effects of blue light and to discuss the efficiency of methods of protection and prevention against potential blue light-induced ocular injury. METHODS The search of relevant English articles was conducted in PubMed, Medline, and Google Scholar databases until December 2022. RESULTS Blue light exposure provokes photochemical reactions in most eye tissues, in particular the cornea, the lens, and the retina. In vitro and in vivo studies have shown that certain exposures to blue light (depending on the wavelength or intensity) can cause temporary or permanent damage to some structures of the eye, especially the retina. However, currently, there is no evidence that screen use and LEDs in normal use are deleterious to the human retina. Regarding protection, there is currently no evidence of a beneficial effect of blue blocking lenses for the prevention of eye diseases, in particular age-related macular degeneration (AMD). In humans, macular pigments (composed of lutein and zeaxanthin) represent a natural protection by filtering blue light, and can be increased through increased intake from foods or food supplements. These nutrients are associated with lower risk for AMD and cataract. Antioxidants such as vitamins C, E, or zinc might also contribute to the prevention of photochemical ocular damage by preventing oxidative stress. CONCLUSION Currently, there is no evidence that LEDs in normal use at domestic intensity levels or in screen devices are retinotoxic to the human eye. However, the potential toxicity of long-term cumulative exposure and the dose-response effect are currently unknown.
Collapse
|
18
|
Lou L, Frishman LJ, Beach KM, Rajagopalan L, Hung LF, She Z, Smith EL, Ostrin LA. Long-term blue light rearing does not affect in vivo retinal function in young rhesus monkeys. Doc Ophthalmol 2023:10.1007/s10633-023-09931-0. [PMID: 36995437 DOI: 10.1007/s10633-023-09931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Exposure to blue light is thought to be harmful to the retina. The purpose of this study was to determine the effects of long-term exposure to narrowband blue light on retinal function in rhesus monkeys. METHODS Young rhesus monkeys were reared under short-wavelength "blue" light (n = 7; 465 nm, 183 ± 28 lx) on a 12-h light/dark cycle starting at 26 ± 2 days of age. Age-matched control monkeys were reared under broadband "white" light (n = 8; 504 ± 168 lx). Light- and dark-adapted full-field flash electroretinograms (ERGs) were recorded at 330 ± 9 days of age. Photopic stimuli were brief red flashes (0.044-5.68 cd.s/m2) on a rod-saturating blue background and the International Society for Clinical Electrophysiology of Vision (ISCEV) standard 3.0 white flash on a 30 cd/m2 white background. Monkeys were dark adapted for 20 min and scotopic stimuli were ISCEV standard white flashes of 0.01, 3.0, and 10 cd.s/m2. A-wave, b-wave, and photopic negative response (PhNR) amplitudes were measured. Light-adapted ERGs in young monkeys were compared to ERGs in adult monkeys reared in white light (n = 10; 4.91 ± 0.88 years of age). RESULTS For red flashes on a blue background, there were no significant differences in a-wave (P = 0.46), b-wave (P = 0.75), and PhNR amplitudes (P = 0.94) between white light and blue light reared monkeys for all stimulus energies. ISCEV standard light- and dark-adapted a- and b-wave amplitudes were not significantly different between groups (P > 0.05 for all). There were no significant differences in a- and b-wave implicit times between groups for all ISCEV standard stimuli (P > 0.05 for all). PhNR amplitudes of young monkeys were significantly smaller compared to adult monkeys for all stimulus energies (P < 0.05 for all). There were no significant differences in a-wave (P = 0.19) and b-wave (P = 0.17) amplitudes between young and adult white light reared monkeys. CONCLUSIONS Long-term exposure to narrowband blue light did not affect photopic or scotopic ERG responses in young monkeys. Findings suggest that exposure to 12 h of daily blue light for approximately 10 months does not result in altered retinal function.
Collapse
Affiliation(s)
- Linjiang Lou
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Krista M Beach
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, USA
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Zhihui She
- College of Optometry, University of Houston, Houston, TX, USA
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, TX, USA
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Lisa A Ostrin
- College of Optometry, University of Houston, Houston, TX, USA.
| |
Collapse
|
19
|
Gawne TJ, She Z, Norton TT. Comment on: "Polymer Co-Coating of Gold Nanoparticles Enables Their Integration Into Contact Lenses for Stable, Selective Ocular Light Filters". ADVANCED MATERIALS INTERFACES 2023; 10:2202267. [PMID: 37638139 PMCID: PMC10456985 DOI: 10.1002/admi.202202267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 08/29/2023]
Abstract
T. j. Gawne,* Z. She, T. T. Norton
Collapse
Affiliation(s)
- Timothy J. Gawne
- The University of Alabama at Birmingham (UAB), Dept. Optometry and Vision Science
| | - Zhihui She
- The University of Alabama at Birmingham (UAB), Dept. Optometry and Vision Science
| | - Thomas T. Norton
- The University of Alabama at Birmingham (UAB), Dept. Optometry and Vision Science
| |
Collapse
|
20
|
Quint WH, van Buuren R, Kokke NCCJ, Meester-Smoor MA, Willemsen R, Broersma R, Iglesias AI, Lucassen M, Klaver CCW. Exposure to cyan or red light inhibits the axial growth of zebrafish eyes. Exp Eye Res 2023; 230:109437. [PMID: 36924981 DOI: 10.1016/j.exer.2023.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Myopia, or nearsightedness, is the most common type of refractive error and is characterized by a mismatch between the optical power and ocular axial length. Light, and more specifically the spectral composition of light, has been known to influence myopic axial growth. In this pilot study, we exposed zebrafish to illuminations that vary in spectral composition and screened for changes in axial length. The illumination spectra included narrow band ultra-violet A (UVA) (peak wavelength 369 nm), violet (425 nm), cyan (483 nm), green/yellow (557 nm), and red (633 nm) light, as well as broad band white light (2700 K and 6500 K), dim white light and broad spectrum (day) light. We found that rearing zebrafish in cyan or red light leads to a reduction of the ocular axial length. The results of this pilot study may contribute to new perspectives on the role of light and lighting as an intervention strategy for myopia control.
Collapse
Affiliation(s)
- Wim H Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Renee van Buuren
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Nina C C J Kokke
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rémy Broersma
- Signify Research, Signify, Eindhoven, the Netherlands
| | - Adriana I Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Khanal S, Norton TT, Gawne TJ. Limited bandwidth short-wavelength light produces slowly-developing myopia in tree shrews similar to human juvenile-onset myopia. Vision Res 2023; 204:108161. [PMID: 36529048 PMCID: PMC9974583 DOI: 10.1016/j.visres.2022.108161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
During postnatal development, an emmetropization feedback mechanism uses visual cues to modulate the axial growth of eyes so that, with maturation, images of distant objects are in focus on the retina. If the visual cues indicate that the eye has become too long, it generates STOP signals that slow eye elongation. Myopia is a failure of this process where the eye becomes too long. The existing animal models of myopia have been essential in understanding the mechanics of emmetropization but use visual cues that lead to rapidly progressing myopia and don't match the stimuli that lead to human myopia. Form deprivation removes esssentially all spatial contrast. Minus lens wear accurately guides axial elongation to restore sharp focus: technically it is not a model of myopia! In contrast, childhood myopia involves a slow drift into myopia, even with the presence of clear images. We hypothesize that, in the modern visual environment, STOP signals are present but often are not quite strong enough to prevent myopic progression. Using tree shrews, small diurnal mammals closely related to primates, we have developed an animal model that we propose better represents this situation. We used limited bandwidth light to provide limited chromatic cues for emmetropization that are not quite enough to produce fully effective STOP signaling, resulting in a slow drift into myopia as seen in children. We hypothesize that this animal model of myopia may prove useful in evaluating anti-myopia therapies where form deprivation and minus lens wear would be too powerful.
Collapse
Affiliation(s)
- Safal Khanal
- Dept. of Optometry and Vision Science, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Thomas T Norton
- Dept. of Optometry and Vision Science, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Timothy J Gawne
- Dept. of Optometry and Vision Science, University of Alabama at Birmingham (UAB), Birmingham, AL, United States.
| |
Collapse
|
22
|
Dhakal R, Huntjens B, Shah R, Lawrenson JG, Verkicharla PK. Influence of location, season and time of day on the spectral composition of ambient light: Investigation for application in myopia. Ophthalmic Physiol Opt 2023; 43:220-230. [PMID: 36637143 DOI: 10.1111/opo.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE Given the possible role of spectral composition of light and myopia, this study aimed at investigating the variation in the spectral composition of ambient light in different (a) outdoor/indoor locations, (b) time of a day and (c) seasons. METHODS The spectral power distribution (SPD), categorised into short (380-500 nm), middle (505-565 nm) and long wavelengths (625-780 nm), was recorded using a handheld spectrometer at three outdoor locations ('open playground', 'under shade of tree' and 'canopy') and three indoor locations ('room with multiple windows', 'closed room' and 'closed corridor'). Readings were taken at five different time points (3-h intervals between 6:30 and 18:00 hours) on two days, each during the summer and monsoon seasons. RESULTS The overall median SPD (IQR [25th-75th percentile] W/nm/m2 ) across the three outdoor locations (0.11 [0.09, 0.12]) was 157 times higher than that of the indoor locations (0.0007 [0.0001, 0.001]). Considerable locational, diurnal and seasonal variation was observed in the distribution of the median SPD value, with the highest value being recorded in the 'open playground' (0.27 [0.21, 0.28]) followed by 'under shade of tree' (0.083 [0.074, 0.09]), 'canopy' (0.014 [0.012, 0.015]) and 'room with multiple windows' (0.023 [0.015, 0.028]). The relative percentage composition of short, middle and long wavelengths was similar in both the outdoor and indoor locations, with the proportion of middle wavelengths significantly higher (p < 0.01) than short and long wavelengths in all the locations, except 'canopy'. CONCLUSION Irrespective of variation in SPD values with location, time, day and season, outdoor locations always exhibited significantly higher spectral power than indoor locations. The relative percentage composition of short, middle and long wavelengths of light was similar across all locations. These findings establish a foundation for future research to understand the relationship between spectral power and the development of myopia.
Collapse
Affiliation(s)
- Rohit Dhakal
- Myopia Research Lab, Prof. Brien Holden Eye Research Centre, Infor Myopia Centre, L V Prasad Eye Institute, Hyderabad, India.,Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| | - Byki Huntjens
- Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| | - Rakhee Shah
- Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| | - John G Lawrenson
- Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| | - Pavan K Verkicharla
- Myopia Research Lab, Prof. Brien Holden Eye Research Centre, Infor Myopia Centre, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
23
|
Zhang C, Zhu Z, Zhao J, Li Y, Zhang Z, Zheng Y. Ubiquitous light-emitting diodes: Potential threats to retinal circadian rhythms and refractive development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160809. [PMID: 36502986 DOI: 10.1016/j.scitotenv.2022.160809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The use of light-emitting diodes (LEDs) has increased considerably in the 21st century with humans living in a modern photoperiod with brighter nights and dimmer days. Prolonged exposure to LEDs, especially at night, is considered a new source of pollution because it may affect the synthesis and secretion of retinal melatonin and dopamine, resulting in negative impacts on retinal circadian clocks and potentially disrupting retinal circadian rhythms. The control of ocular refraction is believed to be related to retinal circadian rhythms. Moreover, the global prevalence of myopia has increased at an alarming rate in recent decades. The widespread use of LEDs and the rapid increase in the prevalence of myopia overlap, which is unlikely to be a coincidence. The connection among LEDs, retinal circadian rhythms, and refractive development is both fascinating and confusing. In this review, we aim to develop a systematic framework that includes LEDs, retinal circadian rhythms and refractive development. This paper summarizes the possible mechanisms by which LEDs may disrupt retinal circadian rhythms. We propose that prolonged exposure to LEDs may induce myopia by disrupting retinal circadian rhythms. Finally, we suggest several possible countermeasures to prevent LED interference on retinal circadian rhythms, with the hope of reducing the onset and progression of myopia.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhe Zhu
- Department of Ophthalmology, Eye Hospital of Shandong First Medical University, Shandong Eye Institute, Jinan 250000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yanxia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhaoying Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
24
|
Rozema J, Dankert S, Iribarren R. Emmetropization and nonmyopic eye growth. Surv Ophthalmol 2023:S0039-6257(23)00037-1. [PMID: 36796457 DOI: 10.1016/j.survophthal.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
Most eyes start with a hypermetropic refractive error at birth, but the growth rates of the ocular components, guided by visual cues, will slow in such a way that this refractive error decreases during the first 2 years of life. Once reaching its target, the eye enters a period of stable refractive error as it continues to grow by balancing the loss in corneal and lens power with the axial elongation. Although these basic ideas were first proposed over a century ago by Straub, the exact details on the controlling mechanism and the growth process remained elusive. Thanks to the observations collected in the last 40 years in both animals and humans, we are now beginning to get an understanding how environmental and behavioral factors stabilize or disrupt ocular growth. We survey these efforts to present what is currently known regarding the regulation of ocular growth rates.
Collapse
Affiliation(s)
- Jos Rozema
- Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Leipzig University, Leipzig, Germany.
| | | | | |
Collapse
|
25
|
Xu X, Shi J, Zhang C, Shi L, Bai Y, Shi W, Wang Y. Effects of artificial light with different spectral composition on eye axial growth in juvenile guinea pigs. Eur J Histochem 2023; 67. [PMID: 36786079 DOI: 10.4081/ejh.2023.3634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of the study was to investigate the effect of artificial light with different spectral composition and distribution on axial growth in guinea pigs. Three-week-old guinea pigs were randomly assigned to groups exposed to natural light, low color temperature light-emitting diode (LED) light, two full spectrum artificial lights (E light and Julia light) and blue light filtered light with the same intensity. Axial lengths of guinea pigs' eyes were measured by A-scan ultrasonography prior to the experiment and every 2 weeks during the experiment. After light exposure for 12 weeks, retinal dopamine (DA), dihydroxy-phenylacetic acid (DOPAC) levels and DOPAC/DA ratio were analyzed by high-pressure liquid chromatography electrochemical detection and retinal histological structure was observed. Retinal melanopsin expression was detected using Western blot and immunohistochemistry. After exposed to different kinds of light with different spectrum for 4 weeks, the axial lengths of guinea pigs' eyes in LED group and Julia light group were significantly longer than those of natural light group. After 6 weeks, the axial lengths in LED light group were significantly longer than those of E light group and blue light filtered group. The difference between axial lengths in E light group and Julia light group showed statistical significance after 8 weeks (p<0.05). After 12 weeks of light exposure, the comparison of retinal DOPAC/DA ratio and melanopsin expression in each group was consistent with that of axial length. In guinea pigs, continuous full spectrum artificial light with no peak or valley can inhibit axial elongation via retinal dopaminergic and melanopsin system.
Collapse
Affiliation(s)
- Xinyu Xu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Jiayu Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Chuanwei Zhang
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Lixin Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Yujie Bai
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Wei Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Yuliang Wang
- Department of Ophthalmology, Affiliated hospital of Nanjing University of Chinese Medicine, Nanjing.
| |
Collapse
|
26
|
Wen Y, Dai B, Zhang X, Zhu H, Xie C, Xia J, Sun Y, Zhu M, Tong J, Shen Y. Retinal Transcriptomics Analysis Reveals the Underlying Mechanism of Disturbed Emmetropization Induced by Wavelength Defocus. Curr Eye Res 2022; 47:908-917. [PMID: 35225751 DOI: 10.1080/02713683.2022.2048395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/24/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE Wavelength signals play a vital role in refractive development. This study aimed to explore the retinal transcriptome signature in these processes. METHODS Guinea pigs were randomly divided into three groups exposed to white, blue, or green environmental light for eight weeks. Refraction and axial length were evaluated every 4 weeks, and the retinal transcriptome was profiled at 8 weeks. RESULTS Compared with the white group, ocular refraction significantly decreased and ocular axial length significantly extended in the green group whereas these parameters showed opposite trends in the blue group. RNA-sequencing showed that, compared with the white group, 184 and 171 differentially expressed genes (DEGs) were found in the blue and green groups, respectively. Among these DEGs, only 31 overlapped. These two sets of DEGs were enriched in distinct biological processes and pathways. There were 268 DEGs between the blue and green groups, which were primarily enriched in the extracellular matrix, and metabolism, receptor activity, and ion binding processes. In addition, nine human genes, including ECEL1, CHRND, SHBG, PRSS56, OVOL1, RDH5, WNT7B, PEBP4, CA12, were identified to be related to myopia development and wavelength response, indicating the potential role of these genes in human wavelength-induced myopia. CONCLUSIONS In this study, we identified retinal targets and pathways involved in the response to wavelength signals in emmetropization.
Collapse
Affiliation(s)
- Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Binbin Dai
- Department of Ophthalmology, Taizhou Hospital, Taizhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Xia
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Sun
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miaomiao Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Nickla DL, Rucker F, Taylor CP, Sarfare S, Chen W, Elin-Calcador J, Wang X. Effects of morning and evening exposures to blue light of varying illuminance on ocular growth rates and ocular rhythms in chicks. Exp Eye Res 2022; 217:108963. [PMID: 35093392 PMCID: PMC8957570 DOI: 10.1016/j.exer.2022.108963] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Recent evidence indicates that moderate levels of blue light are sufficient to suppress the nighttime rise in serum melatonin in humans, suggesting that luminous screens may be deleterious to sleep cycles and to other functions. Little is known however, about the effects of exposures to blue light on ocular physiology. We tested the effects of transient blue light exposures of various illuminances on ocular growth rates and ocular rhythms in chicks. 10-day old chicks were exposed to narrow band blue light (460 nm) of specific illuminance for 4 h in the evening (ZT8-ZT12) or the morning (ZT0-ZT4) for 9 days; for the remainder of the day they were in white light (588 lux). For the evening, four illuminances were tested: 0.15 lux (n = 15), 200 lux (radiometrically matched to white controls; n = 16), 600 lux (photometrically matched to white controls; n = 15) or 1000 lux (n = 8). The 600 lux condition was also tested using a 2-h duration (n = 8). The 200 and 600 lux conditions were extended to 14 and 21 days (n = 8 each). For morning exposures, 200 lux (n = 9), 600 lux (n = 9) and 1000 lux (n = 8) were tested. Controls remained in white light (n = 23). Ocular dimensions were measured by A-scan ultrasonography on days 1 and 9 to assess growth rates. On day 8 or 9, measurements were made at 6-h intervals over 24 h starting at noon to assess rhythm parameters. Evening exposure to blue light stimulated ocular growth rates relative to controls for all except the bright condition (0.15 lux, 200 lux, 600 lux vs bright and white respectively: 845 μm, 838 μm, 898 μm vs 733 μm and 766 μm; p < 0.05 for all comparisons). 2 h exposures to 600 lux were similarly effective (915 μm vs 766 μm; p < 0.05). Morning exposures only resulted in growth stimulation for the 200 lux condition (200 lux vs white: 884 μm vs 766 μm; p < 0.05). Furthermore, for this group only, growth of the anterior chamber had a significant contribution to the overall effect (vs white: p < 0.05), and choroids showed significant thickening. For evening exposures to 200 and 600 lux, the growth stimulatory effect lasted for 14 days (p = 0.01); by 21 days only the 600 lux group still differed (p < 0.0001). Evening exposures caused circadian disruptions in the choroidal thickness rhythms, and morning exposures disrupted both axial and choroidal rhythms. Exposure to 4 h of blue light at lower illuminances (less than 1000 lux) at transition times of lights-on and lights-off stimulates ocular growth rates and affects ocular rhythms in chicks, suggesting that such exposures may be deleterious to emmetropization in children.
Collapse
Affiliation(s)
- Debora L Nickla
- The New England College of Optometry, Dept of Biosciences and Disease, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Rucker F, Taylor C, Kaser-Eichberger A, Schroedl F. Parasympathetic innervation of emmetropization. Exp Eye Res 2022; 217:108964. [PMID: 35120871 PMCID: PMC8957574 DOI: 10.1016/j.exer.2022.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
Emmetropization is affected by the temporal parameters of visual stimulation and the spectral composition of light, as well as by autonomic innervation. The goal of the current experiments is to test the hypothesis that different types of visual stimulation interact with ocular innervation in the process of emmetropization. For that, selective lesions of the autonomic nervous system were performed in chickens: involving transection of parasympathetic input to the eye from either the ciliary ganglion, innervating accommodation and pupil responses (CGX; n = 32), or pterygopalatine ganglion, innervating choroidal blood vessels and cornea (PPGX; n = 26). After 1 week of recovery, chicks were exposed to sinusoidally modulated light (3 days, 2 Hz, 680 lux) that was either achromatic (black to white [RGB], or black to yellow [RG]), or chromatic (blue to yellow [B/Y] or red to green [R/G]). Exposure to light stimulation was followed by ocular biometry (Lenstar and a Hartinger refractometer). Surgical conditions revealed a small reduction in anterior chamber depth with CGX but no other significant changes in ocular biometry/refraction under standard light conditions. With RGB achromatic stimulation, CGX eyes produced an effect on ocular components, with a further reduction in anterior chamber depth and an increase in vitreous chamber depth, while RG stimulation showed no effect. No effect was detected in PPGX under both achromatic protocols. With chromatic stimulation, CGX with R/G modulation increased eye length, while PPGX with B/Y modulation decreased eye length. We conclude that the two different types of parasympathetic innervations have antagonistic effects on eye growth and the anterior eye when challenged with the appropriate stimulus, with possible implications for the role of choroidal blood flow in emmetropization.
Collapse
Affiliation(s)
- Frances Rucker
- New England College of Optometry, 424 Beacon St, Boston, MA, 02115, USA.
| | - Chris Taylor
- New England College of Optometry, 424 Beacon St, Boston, MA, 02115, USA
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg Paracelsus Medical University, Salzburg, Austria
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
29
|
Impact of cone abundancy ratios and light spectra on emmetropization in chickens. Exp Eye Res 2022; 219:109086. [DOI: 10.1016/j.exer.2022.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
|
30
|
Abstract
INTRODUCTION The aim of this article was to comprehensively review the relationship between light exposure and myopia with a focus on the effects of the light wavelength, illuminance, and contrast on the occurrence and progression of myopia. METHODS This review was performed by searching PubMed data sets including research articles and reviews utilizing the terms "light", "myopia", "refractive error", and "illuminance", and the review was concluded in November 2021. Myopia onset and progression were closely linked with emmetropization and hyperopia. To better elucidate the mechanism of myopia, some of the articles that focused on this topic were included. This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors. RESULTS The pathogenesis and prevention of myopia are not completely clear. Studies have provided evidence supporting the idea that light could affect eye growth in three ways. Changing the corresponding conditions will cause changes in the growth rate and mode of the eyes, and preliminary results have shown that FR/NIR (far red/near-infrared) light is effective for myopia in juveniles. CONCLUSION This review discusses the results of studies on the effects of light exposure on myopia with the aims of providing clues and a theoretical basis for the use of light to control the development of myopia and offering new ideas for subsequent studies.
Collapse
|
31
|
Remonato Franco B, Leis ML, Wong M, Shynkaruk T, Crowe T, Fancher B, French N, Gillingham S, Schwean-Lardner K. Light Color and the Commercial Broiler: Effect on Ocular Health and Visual Acuity. Front Physiol 2022; 13:855266. [PMID: 35360232 PMCID: PMC8960735 DOI: 10.3389/fphys.2022.855266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
Light is a critical management factor for broiler production, and the wavelength spectrum, one of its components, can affect bird physiology, behavior and production. Among all the senses, sight is important to birds, and their visual system possess several adaptations that allow them to perceive light differently from humans. Therefore, it is critical to consider whether the exposure to monochromatic light colors influences broiler visual ability, which could affect behavioral expression. The present study examined the effects of various light colors on the visual systems of broiler chickens. Ross 708 males were raised from 0 to 35 days under three wavelength programs [blue (dominant wavelengths near 455 nm), green (dominant wavelengths near 510 nm) or white]. Broilers were given a complete ophthalmic examination, including chromatic pupillary light reflex testing, rebound tonometry, anterior segment biomicroscopy and indirect ophthalmoscopy (n = 36, day 21). To assess ocular anatomy, broilers were euthanized, eyes were weighed, and dimensions were taken (n = 108, day 16 and day 24). An autorefractor was used to assess the refractive index and the corneal curvature (n = 18, day 26). To evaluate spatial vision, broilers underwent a grating acuity test at one of three distances–50, 75, or 100 cm (n = 24, day 29). Data were analyzed as a one-way ANOVA using the MIXED procedure or Proc Par1way for non-normally distributed data. Significant differences were observed for refractive index and spatial vision. Birds raised under blue light were slightly more hyperopic, or far-sighted, than birds raised under white light (P = 0.01). As for spatial vision, birds raised under blue light took less time to approach the stimulus at distances of 50 cm (P = 0.03) and 75 cm (P = 0.0006) and had a higher success rate (choosing the right feeder, P = 0.03) at 100 cm than birds raised under white light. Improvements in spatial vision for birds exposed to blue light can partially explain the behavioral differences resulting from rearing broilers under different wavelengths.
Collapse
Affiliation(s)
- Bruna Remonato Franco
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Marina L. Leis
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Melody Wong
- Department of Ophthalmology, Saskatoon City Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tory Shynkaruk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Trever Crowe
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bryan Fancher
- Aviagen™ Inc., Cummings Research Park, Huntsville, AL, United States
| | - Nick French
- Aviagen™ Inc., Cummings Research Park, Huntsville, AL, United States
| | - Scot Gillingham
- Aviagen™ Inc., Cummings Research Park, Huntsville, AL, United States
| | - Karen Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Karen Schwean-Lardner,
| |
Collapse
|
32
|
Zhou L, Xing C, Qiang W, Hua C, Tong L. Low-intensity, long-wavelength red light slows the progression of myopia in children: an Eastern China-based cohort. Ophthalmic Physiol Opt 2022; 42:335-344. [PMID: 34981548 DOI: 10.1111/opo.12939] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE To determine the effect of low-intensity, long-wavelength red light therapy (LLRT) on the inhibition of myopia progression in children. METHODS A retrospective study was conducted. One hundred and five myopic children (spherical equivalent refractive error [SER] -3.09 ± 1.74 dioptres [D]; mean age, 9.19 ± 2.40 years) who underwent LLRT treatment (power 0.4 mW, wavelength 635 nm) twice per day for 3 min each session, with at least a 4-h interval between sessions, and a control group of 56 myopic children (SER -3.04 ± 1.66 D; mean age, 8.62 ± 2.45 years) were evaluated. Both groups wore single-vision distance spectacles. Each child returned for a follow-up examination every 3 months after the initial measurements for a total of 9 months. RESULTS At 9 months, the mean SER in the LLRT group was -2.87 ± 1.89 D, significantly greater than that of the control group (-3.57 ± 1.49 D, p < 0.001). Axial length (AL) changes were -0.06 ± 0.19 mm and 0.26 ± 0.15 mm in the LLRT group and control group (p < 0.001), respectively. The subfoveal choroidal thickness changed by 45.32 ± 30.88 μm for children treated with LLRT at the 9-month examination (p < 0.001). Specifically, a substantial hyperopic shift (0.31 ± 0.24 D and 0.20 ± 0.14 D, respectively, p = 0.02) was found in the 8-14 year olds compared with 4-7 year old children. The decrease in AL in subjects with baseline AL >24 mm was -0.08 ± 0.19 mm, significantly greater than those with a baseline AL ≤24 mm (-0.04 ± 0.18 mm, p = 0.03). CONCLUSIONS Repetitive exposure to LLRT therapy was associated with slower myopia progression and reduced axial growth after short durations of treatment. These results require further validation in randomised controlled trials.
Collapse
Affiliation(s)
- Lei Zhou
- Ningbo Eye Hospital, Ningbo, China
| | - Chao Xing
- Department of Laboratory Medicine, Yuying Children's Hospital, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | |
Collapse
|
33
|
Thakur S, Dhakal R, Verkicharla PK. Short-Term Exposure to Blue Light Shows an Inhibitory Effect on Axial Elongation in Human Eyes Independent of Defocus. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34935883 PMCID: PMC8711007 DOI: 10.1167/iovs.62.15.22] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Given the potential role of light and its wavelength on ocular growth, we investigated the effect of short-term exposure to the red, green, and blue light on ocular biometry in the presence and absence of lens-induced defocus in humans. Methods Twenty-five young adults were exposed to blue (460 nm), green (521 nm), red (623 nm), and white light conditions for 1-hour each on 4 separate experimental sessions conducted on 4 different days. In each light condition, hyperopic defocus (3D) was induced to the right eye with the fellow eye experiencing no defocus. Axial length and choroidal thickness were measured before and immediately after the light exposure with a non-contact biometer. Results Axial length increased from baseline after red light (mean difference ± standard error in the defocussed eye and non-defocussed eye = 11.2 ± 2 µm and 6.4 ± 2.3 µm, P < 0.001 and P < 0.01, respectively) and green light exposure (9.2 ± 3 µm and 7.0 ± 2.5 µm, P < 0.001 and P < 0.001) with a significant decrease in choroidal thickness (P < 0.05, both red and green light) after 1-hour of exposure. Blue light exposure resulted in a reduction in axial length in both the eyes (−8.0 ± 3 µm, P < 0.001 in the defocussed eye and −6.0 ± 3 µm, P = 0.11 in the non-defocused eye) with no significant changes in the choroidal thickness. Conclusions Exposure to red and green light resulted in axial elongation, and blue light resulted in inhibition of axial elongation in human eyes. Impact of such specific wavelength exposure on children and its application in myopia control need to be explored.
Collapse
Affiliation(s)
- Swapnil Thakur
- Myopia Research Lab - Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India and Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Hyderabad, India
| | - Rohit Dhakal
- Myopia Research Lab - Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India and Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Hyderabad, India
| | - Pavan K Verkicharla
- Myopia Research Lab - Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India and Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
34
|
Effect of Violet Light-Transmitting Eyeglasses on Axial Elongation in Myopic Children: A Randomized Controlled Trial. J Clin Med 2021; 10:jcm10225462. [PMID: 34830743 PMCID: PMC8624215 DOI: 10.3390/jcm10225462] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022] Open
Abstract
The fact that outdoor light environment is an important suppressive factor against myopia led us to invent violet light-transmitting eyeglasses (VL glasses) which can transmit violet light (VL), 360-400 nm in wavelength, for the suppression of myopia, and can meanwhile block harmful ultraviolet waves from sunlight. The current study is a double-blinded randomized clinical trial to investigate the myopia-suppressive effect of VL glasses compared to conventional eyeglasses (placebo glasses) that do not transmit VL. The subjects were children aged from 6 to 12 years old, the population in which myopia progression is generally accelerated, and the myopia suppressive effect was followed up for two years in a city in Japan. Periodical ophthalmic examinations, interviews, and measurements of reflection and axial length under mydriasis were performed at the initial visit (the baseline) and at 1, 6, 12, 18, and 24 months. The mean change in axial length in the VL glasses group was significantly smaller than in the placebo glasses group when time for near-work was less than 180 min and when the subjects were limited to those who had never used eyeglasses before this trial (p < 0.01); however, this change was not significant without subgrouping. The suppressive rate for axial elongation in the VL glasses group was 21.4% for two years.
Collapse
|
35
|
Tian T, Zou L, Wang S, Liu R, Liu H. The Role of Dopamine in Emmetropization Modulated by Wavelength and Temporal Frequency in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34546324 PMCID: PMC8458992 DOI: 10.1167/iovs.62.12.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Wavelength and temporal frequency have been found to influence refractive development. This study investigated whether retinal dopamine (DA) plays a role in these processes. Methods Guinea pigs were randomly divided into nine groups that received different lighting conditions for 4 weeks, as follows: white, green, or blue light at 0, 0.5, or 20.0 Hz. Refractions and axial lengths were measured using streak retinoscopy and A-scan ultrasound imaging. DA and its metabolites were measured by high-pressure liquid chromatography-electrochemical detection. Results At 0 Hz, green and blue light produced myopic and hyperopic shifts compared with that of white light. At 0.5 Hz, no significant changes were observed compared with those of green or blue light at 0 Hz, whereas white light at 0.5 Hz induced a myopic shift compared with white light at 0 or 20 Hz. At 20 Hz, green and blue light acted like white light. Among all levels of DA and its metabolites, only vitreous 3, 4-dihydroxyphenylacetic acid (DOPAC) levels and retinal DOPAC/DA ratios were dependent on wavelength, frequency, and their interaction. Specifically, retinal DOPAC/DA ratios were positively correlated with refractions in white and green light conditions. However, blue light (0, 0.5, and 20.0 Hz) produced hyperopic shifts but decreased vitreous DOPAC levels and retinal DOPAC/DA ratios. Conclusions The retinal DOPAC/DA ratio, indicating the metabolic efficiency of DA, is correlated with ocular growth. It may underlie myopic shifts from light exposure with a long wavelength and low temporal frequency. However, different biochemical pathways may contribute to the hyperopic shifts from short wavelength light.
Collapse
Affiliation(s)
- Tian Tian
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Leilei Zou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Shu Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Rui Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Hong Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Khanal S, Norton TT, Gawne TJ. Amber light treatment produces hyperopia in tree shrews. Ophthalmic Physiol Opt 2021; 41:1076-1086. [PMID: 34382245 DOI: 10.1111/opo.12853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Exposure to narrow-band red light, which stimulates only the long-wavelength sensitive (LWS) cones, slows axial eye growth and produces hyperopia in tree shrews and macaque monkeys. We asked whether exposure to amber light, which also stimulates only the LWS cones but with a greater effective illuminance than red light, has a similar hyperopia-inducing effect in tree shrews. METHODS Starting at 24 ± 1 days of visual experience, 15 tree shrews (dichromatic mammals closely related to primates) received light treatment through amber filters (BPI 500/550 dyed acrylic) either atop the cage (Filter group, n = 8, 300-400 human lux) or fitted into goggles in front of both eyes (Goggle group, n = 7). Non-cycloplegic refractive error and axial ocular dimensions were measured daily. Treatment groups were compared with age-matched animals (Colony group, n = 7) raised in standard colony fluorescent lighting (100-300 lux). RESULTS At the start of treatment, mean refractive errors were well-matched across the three groups (p = 0.35). During treatment, the Filter group became progressively more hyperopic with age (p < 0.001). By contrast, the Goggle and Colony groups showed continued normal emmetropization. When the treatment ended, the Filter group exhibited significantly greater hyperopia (mean [SE] = 3.5 [0.6] D) compared with the Goggle (0.2 [0.8] D, p = 0.01) and Colony groups (1.0 [0.2] D, p = 0.01). However, the refractive error in the Goggle group was not different from that in the Colony group (p = 0.35). Changes in the vitreous chamber were consistent with the refractive error changes. CONCLUSIONS Exposure to ambient amber light produced substantial hyperopia in the Filter group but had no effect on refractive error in the Goggle group. The lack of effect in the Goggle group could be due to the simultaneous activation of the short-wavelength sensitive (SWS) and LWS cones caused by the scattering of the broad-band light from the periphery of the goggles.
Collapse
Affiliation(s)
- Safal Khanal
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas T Norton
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timothy J Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
37
|
Riddell N, Crewther SG, Murphy MJ, Tani Y. Long-Wavelength-Filtered Light Transiently Inhibits Negative Lens-Induced Axial Eye Growth in the Chick Myopia Model. Transl Vis Sci Technol 2021; 10:38. [PMID: 34459859 PMCID: PMC8411858 DOI: 10.1167/tvst.10.9.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Eye growth and myopia development in chicks, and some other animal models, can be suppressed by rearing under near-monochromatic, short-wavelength blue light. We aimed to determine whether similar effects could be achieved using glass filters that transmit a broader range of short and middle wavelengths. Methods On day 6 or 7 post-hatch, 169 chicks were assigned to one of three monocular lens conditions (−10 D, +10 D, plano) and reared for 7 or 10 days under one of four 201-lux lighting conditions: (1) B410 long-wavelength–filtered light, (2) B460 long-wavelength–filtered light, (3) Y48 short-wavelength–filtered light, or (4) HA50 broadband light. Results At 7 days, B410 (but not B460) long-wavelength–filtered light had significantly inhibited negative lens induced axial growth relative to Y48 short-wavelength–filtered light (mean difference in experimental eye = −0.249 mm; P = 0.006) and HA50 broadband light (mean difference = −0.139 mm; P = 0.038). B410 filters also inhibited the negative lens-induced increase in vitreous chamber depth relative to all other filter conditions. Corresponding changes in refraction did not occur, and biometric measurements in a separate cohort of chicks suggested that the axial dimension changes were transient and not maintained at 10 days. Conclusions Chromatic effects on eye growth can be achieved using filters that transmit a broad range of wavelengths even in the presence of strong cues for myopia development. Translational Relevance Broad-wavelength filters that provide a more “naturalistic” visual experience relative to monochromatic light have potential to alter myopia development, although the effects shown here were modest and transient and require exploration in further species.
Collapse
Affiliation(s)
- Nina Riddell
- Department of Psychology and Counselling, La Trobe University, Melbourne, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, La Trobe University, Melbourne, Australia
| | - Melanie J Murphy
- Department of Psychology and Counselling, La Trobe University, Melbourne, Australia
| | - Yuki Tani
- Technical Research & Development Department, Vision Care Section, HOYA Corporation, Tokyo, Japan
| |
Collapse
|
38
|
Neumann A, Breher K, Wahl S. Effects of screen-based retinal light stimulation measured with a novel contrast sensitivity test. PLoS One 2021; 16:e0254877. [PMID: 34324537 PMCID: PMC8320929 DOI: 10.1371/journal.pone.0254877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023] Open
Abstract
Myopia is increasing worldwide hence it exists a pressing demand to find effective myopia control strategies. Previous studies have shown that light, spectral composition, spatial frequencies, and contrasts play a critical role in refractive development. The effects of light on multiple retinal processes include growth regulation, but also visual performance and perception. Changes in subjective visual performance can be examined by contrast sensitivity (CS). This study was conducted to investigate whether retinal light stimulation of different wavelength ranges is able to elicit changes in CS and, therefore, may be used for myopia control purposes. In total, 30 right eyes were stimulated with the light of different wavelength ranges, including dominant wavelengths of ∼480 nm, ∼530 nm, ∼630 nm and polychromatic light via a commercial liquid crystal display (LCD) screen. Stimulation was performed screen full-field and on the optic nerve head only. CS was measured before any stimulation and after each stimulation condition using a novel and time-efficient CS test. Post-stimulation CS changes were analyzed by ANOVA regarding the influencing factors spatial frequency, stimulation wavelength and stimulation location. A priorly conducted verification study on a subset of five participants compared the newly developed CS test to a validated CS test. The novel CS test exhibited good reliability of 0.94 logCS and repeatability of 0.13 logCS with a duration of 92 sec ± 17 sec. No clinically critical change between pre- and post-stimulation CS was detected (all p>0.05). However, the results showed that post-stimulation CS differed significantly at 18 cpd after stimulation with polychromatic light from short-wavelength light (p<0.0001). Location of illumination (screen full-field vs. optic nerve head) or any interactions with other factors did not reveal significant influences (all p>0.05). To summarize, a novel CS test measures the relationship between retinal light stimulation and CS. However, using retinal illumination via LCD screens to increase CS is inconclusive.
Collapse
Affiliation(s)
- Antonia Neumann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katharina Breher
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Siegfried Wahl
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| |
Collapse
|
39
|
Ji S, Mao X, Zhang Y, Ye L, Dai J. Contribution of M-opsin-based color vision to refractive development in mice. Exp Eye Res 2021; 209:108669. [PMID: 34126082 DOI: 10.1016/j.exer.2021.108669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022]
Abstract
M-opsin, encoded by opn1mw gene, is involved in green-light perception of mice. The role of M-opsin in emmetropization of mice remains uncertain. To answer the above question, 4-week-old wild-type (WT) mice were exposed to white light or green light (460-600 nm, a peak at 510 nm) for 12 weeks. Refractive development was estimated biweekly. After treatment, retinal function was assessed using electroretinogram (ERG). Dopamine (DA) in the retina was evaluated by high-performance liquid chromatography, M-opsin and S-opsin protein levels by Western blot and ELISA, and mRNA expressions of opn1mw and opn1sw by RT-PCR. Effects of M-opsin were further verified in Opn1mw-/- and WT mice raised in white light for 4 weeks. Refractive development was examined at 4, 6, and 8 weeks after birth. The retinal structure was estimated through hematoxylin and eosin staining (H&E) and transmission electron microscopy (TEM). Retinal wholemounts from WT and Opn1mw-/- mice were co-immunolabeled with M-opsin and S-opsin, their distribution and quantity were then assayed by immunofluorescence staining (IF). Expression of S-opsin protein and opn1sw mRNA were determined by Western blot, ELISA, or RT-PCR. Retinal function and DA content were analyzed by ERG and liquid chromatography tandem-mass spectrometry (LC-MS/MS), respectively. Lastly, visual cliff test was used to evaluate the depth perception of the Opn1mw-/- mice. We found that green light-treated WT mice were more myopic with increased M-opsin expression and decreased DA content than white light-treated WT mice after 12-week illumination. No electrophysiologic abnormalities were recorded in mice exposed to green light compared to those exposed to white light. A more hyperopic shift was further observed in 8-week-old Opn1mw-/- mice in white light with lower DA level and weakened cone function than the WT mice under white light. Neither obvious structural disruption of the retina nor abnormal depth perception was found in Opn1mw-/- mice. Together, these results suggested that the M-opsin-based color vision participated in the refractive development of mice. Overexposure to green light caused myopia, but less perception of the middle-wavelength components in white light promoted hyperopia in mice. Furthermore, possible dopaminergic signaling pathway was suggested in myopia induced by green light.
Collapse
Affiliation(s)
- Shunmei Ji
- Department of Ophthalmology, Eye & ENT Hospital Affiliated to Fudan University, Shanghai, China; Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Xiuyu Mao
- Department of Ophthalmology, Eye & ENT Hospital Affiliated to Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Yifan Zhang
- Department of Ophthalmology, Eye & ENT Hospital Affiliated to Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Lin Ye
- Department of Ophthalmology, Eye & ENT Hospital Affiliated to Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Eye & ENT Hospital Affiliated to Fudan University, Shanghai, China; Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Yu M, Liu W, Wang B, Dai J. Short Wavelength (Blue) Light Is Protective for Lens-Induced Myopia in Guinea Pigs Potentially Through a Retinoic Acid-Related Mechanism. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 33475690 PMCID: PMC7817876 DOI: 10.1167/iovs.62.1.21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose To investigate the effect of short-wavelength light (SL) on guinea pigs with lens-induced myopia (LIM) and the possible retinoic acid (RA)–related mechanisms. Methods Two-week-old guinea pigs (n = 60) with monocular −5D lenses were reared under white light (WL, 580 lux) or SL (440 nm, 500 lux). The left eyes were uncovered as control. Refractive error (RE) and axial length (AL) were measured at baseline, one week, two weeks, and four weeks after intervention. Retinal RA was measured from four guinea pigs after two and four weeks of treatment with HPLC. Two-week-old guinea pigs (n = 52) with monocular −5D lens were fed with either RA or its synthesis inhibitor citral every third day in the morning, and half from each group were reared under WL or SL conditions. RE and AL were recorded at baseline and two and four weeks after intervention. Retinal RA was measured after four weeks of intervention. Results At the end of treatment, guinea pigs exposed to SL were less myopic than to WL (2.06 ± 1.69D vs. −1.00 ± 1.88D), accompanied with shorter AL (P = 0.01) and less retinal RA (P = 0.02). SL reduced retinal RA even after exogenous RA supplementation (P = 0.02) and decelerated LIM compared to WL (1.66 ± 1.03D vs. −3.53 ± 0.90D). Citral slowed ocular growth, leading to similar RE in W+CI and S+CI groups (3.39 ± 1.65D vs. 5.25 ± 0.80D). Conclusions Overall, SL reduced LIM in guinea pigs, even in those supplemented with oral RA, accompanied by reduced retinal RA levels. Oral RA accelerated eye elongation, but citral equally decelerated eye elongation under SL and WL with no significant retinal RA reduction.
Collapse
Affiliation(s)
- Manrong Yu
- Department of Ophthalmology, Eye and ENT Hospital Affiliated to Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Wangyuan Liu
- Department of Ophthalmology, Eye and ENT Hospital Affiliated to Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | | | - Jinhui Dai
- Department of Ophthalmology, Eye and ENT Hospital Affiliated to Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| |
Collapse
|
41
|
Abstract
The increasing prevalence of myopia is a significant public health concern. Unfortunately, the mechanisms driving myopia remain elusive, limiting effective treatment options. This report identifies a refractive development pathway that requires Opn5-expressing retinal ganglion cells (RGCs). Stimulation of Opn5 RGCs with short-wavelength violet light prevented experimental myopia in mice. Furthermore, this effect was dependent on the time of day, with evening exposure being sufficient to protect against experimental myopia. Thus, these studies suggest Opn5 RGCs may contribute to the mechanisms of emmetropization and identify the OPN5 pathway as a potential target for the treatment of myopia. Myopia has become a major public health concern, particularly across much of Asia. It has been shown in multiple studies that outdoor activity has a protective effect on myopia. Recent reports have shown that short-wavelength visible violet light is the component of sunlight that appears to play an important role in preventing myopia progression in mice, chicks, and humans. The mechanism underlying this effect has not been understood. Here, we show that violet light prevents lens defocus–induced myopia in mice. This violet light effect was dependent on both time of day and retinal expression of the violet light sensitive atypical opsin, neuropsin (OPN5). These findings identify Opn5-expressing retinal ganglion cells as crucial for emmetropization in mice and suggest a strategy for myopia prevention in humans.
Collapse
|
42
|
Wen Y, Jin L, Zhang D, Zhang L, Xie C, Guo D, Wang Y, Wang L, Zhu M, Tong J, Shen Y. Quantitative proteomic analysis of scleras in guinea pig exposed to wavelength defocus. J Proteomics 2021; 243:104248. [PMID: 33964483 DOI: 10.1016/j.jprot.2021.104248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Myopia is the most common optical disorder in the world, and wavelength defocus induced ametropia and myopia have attracted great attention. The objective was to identify and quantify scleral proteins involved in the response to the wavelength defocus. Guinea pigs were randomly divided into 3 groups that received different lighting conditions for 8 weeks: white light, short wavelength light, and long wavelength light. Refraction and axial length were measured, Hematoxylin-Eosin staining and transmission electron microscope were adopted to observe the scleral structure, and scleral proteome was also detected to analyze protein abundance by employing TMT labeling method. After light stimulation, the long- and short -wavelength light induced myopic and hyperopic effect on the guinea pig's eye and induced distinct protein signature, respectively. 186 dyregulated proteins between the short- and long-wavelength group were identified, which were mainly located in extracellular region and involved in metabolic process. We also found that 5 proteins in the guinea pigs scleras in response to wavelength defocus were also human myopic candidate targets, suggesting functional overlap between dyregulated proteins in scleral upon exposure to wavelength defocus and genes causing myopia in humans. SIGNIFICANCE: Wavelength defocus induces refractive errors and leads to myopia or hyperopia. However, sclera proteomics respond to wavelength defocus is lacking, which is crucial to understanding how wavelength defocus influences refractive development and induces myopia. In this proteome analysis, we identified unique protein signatures response to wavelength defocus in sclera of guinea pigs, identified potential mechanisms contributing to myopia formation, and found that several human myopia-related genes may involve in response to wavelength defocus. The results of this study provide a foundation to understand the mechanisms of myopia and wavelength defocus induced ametropia.
Collapse
Affiliation(s)
- Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Le Jin
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Dongyan Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Dongyu Guo
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yang Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liyin Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Miaomiao Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
43
|
Yoon H, Taylor CP, Rucker F. Spectral composition of artificial illuminants and their effect on eye growth in chicks. Exp Eye Res 2021; 207:108602. [PMID: 33930397 DOI: 10.1016/j.exer.2021.108602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023]
Abstract
In broadband light, longitudinal chromatic aberration (LCA) provides emmetropization signals from both wavelength defocus and the resulting chromatic cues. Indoor illuminants vary in their spectral output, potentially limiting the signals from LCA. Our aim is to investigate the effect that artificial illuminants with different spectral outputs have on chick emmetropization with and without low temporal frequency modulation. In Experiment 1, two-week-old chicks were exposed to 0.2 Hz, square-wave luminance modulation for 3 days. There were 4 spectral conditions: LED strips that simulated General Electric (GE) LED "Soft" (n = 13), GE LED "Daylight" (n = 12), a novel "Equal" condition (n = 12), and a novel "High S" condition (n = 10). These conditions were all tested at a mean level of 985 lux. In Experiment 2, the effect of intensity on the "Equal" condition was tested at two other light levels (70 lux: n = 10; 680 lux: n = 7). In Experiment 3, the effect of temporal modulation on the "Equal" condition was tested by comparing the 0.2 Hz condition with 0 Hz (steady). Significant differences were found in axial growth across lighting conditions. At 985 lux, birds exposed to the "Equal" condition showed a greater reduction in axial growth (both p < 0.01) and a greater hyperopic shift compared to "Soft" and "Daylight" (both p < 0.01). The "High S" birds experienced more axial growth compared to "Equal" (p < 0.01) but less than in "Soft" and "Daylight" (p < 0.01). Axial changes in "Equal" were only observed at 985 lux with 0.2 Hz temporal modulation, and not with lower light levels or steady light. We conclude that axial growth and refraction were dependent on the lighting condition in a manner predicted by wavelength defocus signals arising from LCA.
Collapse
Affiliation(s)
- Hannah Yoon
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, MA, United States
| | - Christopher P Taylor
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, MA, United States
| | - Frances Rucker
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, MA, United States.
| |
Collapse
|
44
|
Yang X, Yang Y, Wang Y, Wei Q, Ding H, Zhong X. Protective effects of sunlight exposure against PRK-induced myopia in infant rhesus monkeys. Ophthalmic Physiol Opt 2021; 41:911-921. [PMID: 33878199 DOI: 10.1111/opo.12826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Extensive clinical evidence suggests that time spent outdoors might reduce the risk of myopia. This study aimed to determine whether increasing sunlight exposure has a protective effect on hyperopic-defocus induced myopia in a non-human primate. METHODS Twelve 2-month-old rhesus monkeys were treated monocularly with photorefractive keratectomy (PRK) (4.0 D) and divided randomly into two groups: artificial light (AL; n = 6) and natural light (NL; n = 6). Monkeys in the AL group were reared under artificial (indoor) lighting (08:00-20:00 h). Monkeys in the NL group were exposed to natural (outdoor) lighting for 4 h (09:00-11:00 and 15:00-17:00 h). Ocular refraction, corneal power and axial dimensions were measured before sunlight exposure and every 10 days after PRK. At day 180, retinal histology and apoptosis activity were evaluated by hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase biotin (dUTP) nick end labelling (TUNEL) assay. RESULTS Mean (±SD) PRK induced anisometropia was +3.11 (0.33) D. At the end of the experiment, both eyes of the NL monkeys exhibited significantly more hyperopia and shorter vitreous chamber depths (VCD), compared with AL monkeys (p < 0.05). The NL group exhibited a significantly slower rate of compensation to the induced anisometropia than the AL group (p < 0.05). The retinas of both groups exhibited normal histology and levels of apoptosis. CONCLUSIONS Moderate sunlight exposure exerts protective effects against the myopic shift resulting from PRK-induced defocus in monkeys. These results are consistent with current clinical findings that increased outdoor exposure protects against myopia development. Sunlight exposure should serve as an independent positive factor in human myopia control.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yifang Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qi Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Ding
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | - Xingwu Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| |
Collapse
|
45
|
Dai X, Tang Z, Ju Y, Ni N, Gao H, Wang J, Yin L, Liu A, Weng S, Zhang J, Zhang J, Gu P. Effects of blue light-exposed retinal pigment epithelial cells on the process of ametropia. Biochem Biophys Res Commun 2021; 549:14-20. [PMID: 33652205 DOI: 10.1016/j.bbrc.2021.02.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Ametropia is one of the most common ocular disorders worldwide, to which almost half of visual impairments are attributed. Growing evidence has linked the development of ametropia with ambient light, including blue light, which is ubiquitous in our surroundings and has the highest photonic energy among the visible spectrum. However, the underlying mechanism of blue light-mediated ametropia remains controversial and unclear. In the present study, our data demonstrated that exposure of the retinal pigment epithelium (RPE) to blue light elevated the levels of the vital ametropia-related factor type Ⅰ collagen (COL1) via β-catenin inhibition in scleral fibroblasts, leading to axial ametropia (hyperopic shift). Herein, our study provides evidence for the vital role of blue light-induced RPE dysfunction in the process of blue light-mediated ametropia, providing intriguing insights into ametropic aetiology and pathology by proposing a link among blue light, RPE dysfunction and ametropia.
Collapse
Affiliation(s)
- Xiaochan Dai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Jiajing Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Luqiao Yin
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Ailin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology and Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, China.
| | - Jing Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
46
|
Ramamurthy D, Lin chua SY, Saw S. A review of environmental risk factors for myopia during early life, childhood and adolescence. Clin Exp Optom 2021; 98:497-506. [DOI: 10.1111/cxo.12346] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 01/01/2023] Open
Affiliation(s)
- Dharani Ramamurthy
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore,
| | | | - Seang‐mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore,
- Myopia Unit, Singapore Eye Research Institute, Singapore,
| |
Collapse
|
47
|
Najjar RP, Chao De La Barca JM, Barathi VA, Ho CEH, Lock JZ, Muralidharan AR, Tan RKY, Dhand C, Lakshminarayanan R, Reynier P, Milea D. Ocular growth and metabolomics are dependent upon the spectral content of ambient white light. Sci Rep 2021; 11:7586. [PMID: 33828194 PMCID: PMC8026599 DOI: 10.1038/s41598-021-87201-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Myopia results from an excessive axial growth of the eye, causing abnormal projection of remote images in front of the retina. Without adequate interventions, myopia is forecasted to affect 50% of the world population by 2050. Exposure to outdoor light plays a critical role in preventing myopia in children, possibly through the brightness and blue-shifted spectral composition of sunlight, which lacks in artificial indoor lighting. Here, we evaluated the impact of moderate levels of ambient standard white (SW: 233.1 lux, 3900 K) and blue-enriched white (BEW: 223.8 lux, 9700 K) lights on ocular growth and metabolomics in a chicken-model of form-deprivation myopia. Compared to SW light, BEW light decreased aberrant ocular axial elongation and accelerated recovery from form-deprivation. Furthermore, the metabolomic profiles in the vitreous and retinas of recovering form-deprived eyes were distinct from control eyes and were dependent on the spectral content of ambient light. For instance, exposure to BEW light was associated with deep lipid remodeling and metabolic changes related to energy production, cell proliferation, collagen turnover and nitric oxide metabolism. This study provides new insight on light-dependent modulations in ocular growth and metabolomics. If replicable in humans, our findings open new potential avenues for spectrally-tailored light-therapy strategies for myopia.
Collapse
Affiliation(s)
- Raymond P Najjar
- Singapore Eye Research Institute, Singapore, Singapore.
- The Ophthalmology and Visual Sciences ACP, Duke-NUS Medical School, Singapore, Singapore.
| | - Juan Manuel Chao De La Barca
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
- Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - Veluchamy A Barathi
- Singapore Eye Research Institute, Singapore, Singapore
- The Ophthalmology and Visual Sciences ACP, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | - Royston K Y Tan
- Department of Ocular Bio-Engineering, National University of Singapore, Singapore, Singapore
| | - Chetna Dhand
- Singapore Eye Research Institute, Singapore, Singapore
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | | | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
- Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - Dan Milea
- Singapore Eye Research Institute, Singapore, Singapore.
- The Ophthalmology and Visual Sciences ACP, Duke-NUS Medical School, Singapore, Singapore.
- Singapore National Eye Center, Singapore, Singapore.
| |
Collapse
|
48
|
Tree shrews do not maintain emmetropia in initially-focused narrow-band cyan light. Exp Eye Res 2021; 206:108525. [PMID: 33711339 DOI: 10.1016/j.exer.2021.108525] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/07/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
We asked if emmetropia, achieved in broadband colony lighting, is maintained in narrow-band cyan light that is well focused in the emmetropic eye, but does not allow for guidance from longitudinal chromatic aberrations (LCA) and offers minimal perceptual color cues. In addition, we examined the response to a -5 D lens in this lighting. Seven tree shrews from different litters were initially housed in broad-spectrum colony lighting. At 24 ± 1 days after eye opening (Days of Visual Experience, DVE) they were housed for 11 days in ambient narrow-band cyan light (peak wavelength 505 ± 17 nm) selected because it is in focus in an emmetropic eye. Perceptually, monochromatic light at 505 nm cannot be distinguished from white by tree shrews. While in cyan light, each animal wore a monocular -5 D lens (Cyan -5 D eyes). The fellow eye was the Cyan no-lens eye. Daily awake non-cycloplegic measures were taken with an autorefractor (refractive state) and with optical low-coherence optical interferometry (axial component dimensions). These measures were compared with the values of animals raised in standard colony fluorescent lighting: an untreated group (n = 7), groups with monocular form deprivation (n = 7) or monocular -5 D lens treatment (n = 5), or that experienced 10 days in total darkness (n = 5). Refractive state at the onset of cyan light treatment was low hyperopia, (mean ± SEM) 1.4 ± 0.4 diopters. During treatment, the Cyan no-lens eyes became myopic (-2.9 ± 0.3 D) whereas colony lighting animals remained slightly hyperopic (1.0 ± 0.2 D). Initially, refractions of the Cyan -5 D eyes paralleled the Cyan no-lens eyes. After six days, they gradually became more myopic than the Cyan no-lens eyes; at the end of treatment, the refractions were -5.4 ± 0.3 D, a difference of -2.5 D from the Cyan no-lens eyes. When returned to colony lighting at 35 ± 1 DVE, the no-lens eye refractions rapidly recovered towards emmetropia but, as expected, the refraction of the -5 D eyes remained near -5 D. Vitreous chamber depth in both eyes was consistent with the refractive changes. In narrow-band cyan lighting the emmetropization mechanism did not maintain emmetropia even though the light initially was well focused. We suggest that, as the eyes diverged from emmetropia, there were insufficient LCA cues for the emmetropization mechanism to utilize the developing myopic refractive error in order to guide the eyes back to emmetropia. However, the increased myopia in the Cyan -5 D eyes in the narrow-band light indicates that the emmetropization mechanism nonetheless detected the presence of the lens-induced refractive error and responded with increased axial elongation that partly compensated for the negative-power lens. These data support the conclusion that the emmetropization mechanism cannot maintain emmetropia in narrow-band lighting. The additional myopia produced in eyes with the -5 D lens shows that the emmetropization mechanism responds to multiple defocus-related cues, even under conditions where it is unable to use them to maintain emmetropia.
Collapse
|
49
|
Influence of Circadian Rhythm in the Eye: Significance of Melatonin in Glaucoma. Biomolecules 2021; 11:biom11030340. [PMID: 33668357 PMCID: PMC7996162 DOI: 10.3390/biom11030340] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythm and the molecules involved in it, such as melanopsin and melatonin, play an important role in the eye to regulate the homeostasis and even to treat some ocular conditions. As a result, many ocular pathologies like dry eye, corneal wound healing, cataracts, myopia, retinal diseases, and glaucoma are affected by this cycle. This review will summarize the current scientific literature about the influence of circadian patterns on the eye, focusing on its relationship with increased intraocular pressure (IOP) fluctuations and glaucoma. Regarding treatments, two ways should be studied: the first one, to analyze if some treatments could improve their effect on the ocular disease when their posology is established in function of circadian patterns, and the second one, to evaluate new drugs to treat eye pathologies related to the circadian rhythm, as it has been stated with melatonin or its analogs, that not only could be used as the main treatment but as coadjutant, improving the circadian pattern or its antioxidant and antiangiogenic properties.
Collapse
|
50
|
Muralidharan AR, Lança C, Biswas S, Barathi VA, Wan Yu Shermaine L, Seang-Mei S, Milea D, Najjar RP. Light and myopia: from epidemiological studies to neurobiological mechanisms. Ther Adv Ophthalmol 2021; 13:25158414211059246. [PMID: 34988370 PMCID: PMC8721425 DOI: 10.1177/25158414211059246] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Myopia is far beyond its inconvenience and represents a true, highly prevalent, sight-threatening ocular condition, especially in Asia. Without adequate interventions, the current epidemic of myopia is projected to affect 50% of the world population by 2050, becoming the leading cause of irreversible blindness. Although blurred vision, the predominant symptom of myopia, can be improved by contact lenses, glasses or refractive surgery, corrected myopia, particularly high myopia, still carries the risk of secondary blinding complications such as glaucoma, myopic maculopathy and retinal detachment, prompting the need for prevention. Epidemiological studies have reported an association between outdoor time and myopia prevention in children. The protective effect of time spent outdoors could be due to the unique characteristics (intensity, spectral distribution, temporal pattern, etc.) of sunlight that are lacking in artificial lighting. Concomitantly, studies in animal models have highlighted the efficacy of light and its components in delaying or even stopping the development of myopia and endeavoured to elucidate possible mechanisms involved in this process. In this narrative review, we (1) summarize the current knowledge concerning light modulation of ocular growth and refractive error development based on studies in human and animal models, (2) summarize potential neurobiological mechanisms involved in the effects of light on ocular growth and emmetropization and (3) highlight a potential pathway for the translational development of noninvasive light-therapy strategies for myopia prevention in children.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dan Milea
- Singapore Eye Research Institute, Singapore
| | - Raymond P Najjar
- Visual Neurosciences Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
| |
Collapse
|