1
|
Yoshida T, Yokoi T, Tanaka T, Matsuzaka E, Saida Y, Nishina S, Takada S, Shimizu S, Azuma N. Modeling of Retina and Optic Nerve Ischemia-Reperfusion Injury through Hypoxia-Reoxygenation in Human Induced Pluripotent Stem Cell-Derived Retinal Ganglion Cells. Cells 2024; 13:130. [PMID: 38247823 PMCID: PMC10814087 DOI: 10.3390/cells13020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Retinal ganglion cells (RGCs) are specialized projection neurons that constitute part of the retina, and the death of RGCs causes various eye diseases, but the mechanism of RGC death is still unclear. Here, we induced cell death in human induced pluripotent stem cell (hiPSC)-derived RGC-rich retinal tissues using hypoxia-reoxygenation in vitro. Flow cytometry, immunochemistry, and Western blotting showed the apoptosis and necrosis of RGCs under hypoxia-reoxygenation, and they were rescued by an apoptosis inhibitor but not by a necrosis inhibitor. This revealed that the cell death induced in our model was mainly due to apoptosis. To our knowledge, this is the first model to reproduce ischemia-reperfusion in hiPSC-derived RGCs. Thus, the efficacy of apoptosis inhibitors and neuroprotective agents can be evaluated using this model, bringing us closer to clinical applications.
Collapse
Affiliation(s)
- Tomoyo Yoshida
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of Pathological Cell Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan;
| | - Tadashi Yokoi
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of ophthalmology, Kyorin University, 6-20-2, Arakawa, Mitaka, Tokyo 1818611, Japan
| | - Taku Tanaka
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Emiko Matsuzaka
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Yuki Saida
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Sachiko Nishina
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Shuji Takada
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan;
| | - Noriyuki Azuma
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| |
Collapse
|
2
|
Du Y, Yan B. Ocular immune privilege and retinal pigment epithelial cells. J Leukoc Biol 2023; 113:288-304. [PMID: 36805720 DOI: 10.1093/jleuko/qiac016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 02/04/2023] Open
Abstract
The ocular tissue microenvironment is immune-privileged and uses multiple immunosuppressive mechanisms to prevent the induction of inflammation. The retinal pigment epithelium plays an essential role in ocular immune privilege. In addition to serving as a blood barrier separating the fenestrated choriocapillaris from the retina, the retinal pigment epithelium is a source of immunosuppressive cytokines and membrane-bound negative regulators that modulate the activity of immune cells within the retina. This article reviews the current understanding of how retinal pigment epithelium cells mediate immune regulation, focusing on the changes under pathologic conditions.
Collapse
Affiliation(s)
- Yuxiang Du
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| |
Collapse
|
3
|
Akki R, Siracusa R, Cordaro M, Remigante A, Morabito R, Errami M, Marino A. Adaptation to oxidative stress at cellular and tissue level. Arch Physiol Biochem 2022; 128:521-531. [PMID: 31835914 DOI: 10.1080/13813455.2019.1702059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several in vitro and in vivo investigations have already proved that cells and tissues, when pre-exposed to low oxidative stress by different stimuli such as chemical, physical agents and environmental factors, display more resistance against subsequent stronger ischaemic injuries, resulting in an adaptive response known as ischaemic preconditioning (IPC). The aim of this review is to report the most recent knowledge about the complex adaptive mechanisms, including signalling transduction pathways, antioxidant systems, apoptotic and inflammation pathways, underlying cell protection against oxidative damage. In addition, an update about in vivo adaptation strategies in response to ischaemic/reperfusion episodes and brain trauma is also given.
Collapse
Affiliation(s)
- Rachid Akki
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mohammed Errami
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Vörös I, Sághy É, Pohóczky K, Makkos A, Onódi Z, Brenner GB, Baranyai T, Ágg B, Váradi B, Kemény Á, Leszek P, Görbe A, Varga ZV, Giricz Z, Schulz R, Helyes Z, Ferdinandy P. Somatostatin and Its Receptors in Myocardial Ischemia/Reperfusion Injury and Cardioprotection. Front Pharmacol 2021; 12:663655. [PMID: 34803662 PMCID: PMC8602362 DOI: 10.3389/fphar.2021.663655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Little is known about the role of the neuropeptide somatostatin (SST) in myocardial ischemia/reperfusion injury and cardioprotection. Here, we investigated the direct cardiocytoprotective effect of SST on ischemia/reperfusion injury in cardiomyocyte cultures, as well as the expression of SST and its receptors in pig and human heart tissues. SST induced a bell-shaped, concentration-dependent cardiocytoprotection in both adult rat primary cardiomyocytes and H9C2 cells subjected to simulated ischemia/reperfusion injury. Furthermore, in a translational porcine closed-chest acute myocardial infarction model, ischemic preconditioning increased plasma SST-like immunoreactivity. Interestingly, SST expression was detectable at the protein, but not at the mRNA level in the pig left ventricles. SSTR1 and SSTR2, but not the other SST receptors, were detectable at the mRNA level by PCR and sequencing in the pig left ventricle. Moreover, remote ischemic conditioning upregulated SSTR1 mRNA. Similarly, SST expression was also detectable in healthy human interventricular septum samples at the protein level. Furthermore, SST-like immunoreactivity decreased in interventricular septum samples of patients with ischemic cardiomyopathy. SSTR1, SSTR2, and SSTR5 but not SST and the other SST receptors were detectable at the mRNA level by sequencing in healthy human left ventricles. In addition, in healthy human left ventricle samples, SSTR1 and SSTR2 mRNAs were expressed especially in vascular endothelial and some other cell types as detected by RNA Scope® in situ hybridization. This is the first demonstration that SST exerts a direct cardiocytoprotective effect against simulated ischemia/reperfusion injury. Moreover, SST is expressed in the heart tissue at the peptide level; however, it is likely to be of sensory neural origin since its mRNA is not detectable. SSTR1 and SSTR2 might be involved in the cardioprotective action of SST, but other mechanisms cannot be excluded.
Collapse
Affiliation(s)
- Imre Vörös
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Éva Sághy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Krisztina Pohóczky
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentágothai János Research Center, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - András Makkos
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zsófia Onódi
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Gábor B. Brenner
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tamás Baranyai
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Barnabás Váradi
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Ágnes Kemény
- Szentágothai János Research Center, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Medical Biology, University of Pécs, Pécs, Hungary
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński National Institute of Cardiology, Warszawa, Poland
| | - Anikó Görbe
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V. Varga
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Zsuzsanna Helyes
- Szentágothai János Research Center, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
5
|
Bisht R, Nirmal S, Agrawal R, Jain GK, Nirmal J. Injectable in-situ gel depot system for targeted delivery of biologics to the retina. J Drug Target 2020; 29:46-59. [PMID: 32729731 DOI: 10.1080/1061186x.2020.1803886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In current clinical settings, frequent intravitreal (IVT) injections of anti-vascular endothelial growth factors are used due to their short in-vivo half-life and rapid clearance from the back of the eye. The IVT injections are associated with pain, risk of infection, retinal detachment, and financial burden. Biologics molecules can undergo physical, chemical, and enzymatic degradation during formulation development and in the biological environment. Moreover, the complex ocular structures also act as a rate-limiting barrier for these biologics. Thus, delivering stable and clinically relevant biologics concentration to the back of the eye is still a challenge. Compare to other drug delivery platforms, injectable in-situ gelling depot systems (IISGDs) have emerged as an effective system for biologics delivery. In this review, we have discussed various biologics used in ocular therapeutics and their associated challenges. Different routes of delivery and associated tissue barriers are also discussed. Different types of IISGDs developed to date for biologics delivery to the back of the eye were also covered. To conclude, various critical parameters related to the formulation development process and injectable depot systems that need careful consideration and further investigations were highlighted.
Collapse
Affiliation(s)
- Rohit Bisht
- Department of Pharmacy, Translational Pharmaceutics Research Laboratory, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, Telangana, India
| | - Sonali Nirmal
- School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Incozen Therapeutics Pvt. Ltd., Hyderabad, Telangana, India (Current affiliation)
| | - Rupesh Agrawal
- School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.,National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Gaurav K Jain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Jayabalan Nirmal
- Department of Pharmacy, Translational Pharmaceutics Research Laboratory, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
8
|
Wang J, Tian W, Wang S, Wei W, Wu D, Wang H, Wang L, Yang R, Ji A, Li Y. Anti-inflammatory and retinal protective effects of capsaicin on ischaemia-induced injuries through the release of endogenous somatostatin. Clin Exp Pharmacol Physiol 2017; 44:803-814. [PMID: 28429852 DOI: 10.1111/1440-1681.12769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/31/2017] [Accepted: 04/15/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jun Wang
- Henan University School of Medicine; Kaifeng China
| | - Wenke Tian
- Henan University School of Medicine; Kaifeng China
| | | | - Wenqiang Wei
- Henan University School of Medicine; Kaifeng China
| | - Dongdong Wu
- Henan University School of Medicine; Kaifeng China
| | | | - Li Wang
- The First Affiliated Hospital of Henan University; Kaifeng China
| | - Ruisheng Yang
- The First Affiliated Hospital of Henan University; Kaifeng China
| | - Ailing Ji
- Henan University School of Medicine; Kaifeng China
| | - Yanzhang Li
- Henan University School of Medicine; Kaifeng China
| |
Collapse
|
9
|
Bodmer D, Perkovic A, Sekulic-Jablanovic M, Wright MB, Petkovic V. Pasireotide prevents nuclear factor of activated T cells nuclear translocation and acts as a protective agent in aminoglycoside-induced auditory hair cell loss. J Neurochem 2016; 139:1113-1123. [PMID: 27787949 DOI: 10.1111/jnc.13880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022]
Abstract
Hearing impairment is a global health problem with a high socioeconomic impact. Damage to auditory hair cells (HCs) in the inner ear as a result of aging, disease, trauma, or toxicity, underlies the majority of cases of sensorineural hearing loss. Previously we demonstrated that the Ca2+ -sensitive neuropeptide, somatostatin (SST), and an analog, octreotide, protect HCs from gentamicin-induced cell death in vitro. Aminoglycosides such as gentamicin trigger a calcium ion influx (Ca2+ ) that activates pro-apoptotic signaling cascades in HCs. SST binding to the G-protein-coupled receptors (SSTR1-SSTR5) that are directly linked to voltage-dependent Ca2+ channels inhibits Ca2+ channel activity and associated downstream events. Here, we report that the SST analog pasireotide, a high affinity ligand to SSTRs 1-3, and 5, with a longer half-life than octreotide, prevents gentamicin-induced HC death in the mouse organ of Corti (OC). Explant experiments using OCs derived from SSTR1 and SSTR1and 2 knockout mice, revealed that SSTR2 mediates pasireotide's anti-apoptotic effects. Mechanistically, pasireotide prevented a nuclear translocation of the Ca2+ -sensitive transcription factor, nuclear factor of activated T cells (NFAT), which is ordinarily provoked by gentamicin in OC explants. Direct inhibition of NFAT with 11R-VIVIT also prevented the gentamicin-dependent nuclear translocation of NFAT and apoptosis. Both pasireotide and 11R-VIVIT partially reversed the effects of gentamicin on the expression of downstream survival targets (NMDA receptor and the regulatory subunit of phosphatidylinositol-4,5-bisphosphate 3-kinase, PI3K). These data suggest that SST analogs antagonize aminoglycoside-induced cell death in an NFAT-dependent fashion. SST analogs and NFAT inhibitors may therefore offer new therapeutic possibilities for the treatment of hearing loss.
Collapse
Affiliation(s)
- Daniel Bodmer
- Department of Biomedicine and the Clinic for Otorhinolaryngology, University Hospital Basel, Basel, Switzerland
| | - Adrijana Perkovic
- Department of Biomedicine and the Clinic for Otorhinolaryngology, University Hospital Basel, Basel, Switzerland
| | - Marijana Sekulic-Jablanovic
- Department of Biomedicine and the Clinic for Otorhinolaryngology, University Hospital Basel, Basel, Switzerland
| | | | - Vesna Petkovic
- Department of Biomedicine and the Clinic for Otorhinolaryngology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
10
|
Vogler S, Hollborn M, Berk BA, Pannicke T, Seeger J, Wiedemann P, Reichenbach A, Bringmann A. Ischemic regulation of brain-derived neurotrophic factor-mediated cell volume and TrkB expression in glial (Müller) and bipolar cells of the rat retina. Graefes Arch Clin Exp Ophthalmol 2016; 254:497-503. [PMID: 26743749 DOI: 10.1007/s00417-015-3250-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/13/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Osmotic swelling of neurons and glial cells contributes to retinal edema and neurodegeneration. BDNF, a major neuroprotectant in the retina, was shown to inhibit osmotic swelling of glial (Müller) and bipolar cells in the rat retina; the effect of BDNF on the bipolar cell swelling is mediated by inducing a release of neuroprotective cytokines from Müller cells (Berk et al., Neuroscience 295:175-186, 2015). We determined whether BDNF-mediated cell volume regulation was altered after transient retinal ischemia. METHODS Retinal slices from the eyes of rats that underwent a 1-h pressure-induced retinal ischemia and from control eyes were superfused with a hypoosmotic solution. RESULTS Exogenous BDNF prevented osmotic swelling of Müller cells in both control and post-ischemic retinal slices. BDNF also prevented osmotic swelling of bipolar cells in the control retina, but not in the ischemic retina. On the other hand, exogenous bFGF prevented the swelling of both Müller and bipolar cells in the ischemic retina. Freshly isolated Müller cells of control retinas displayed immunoreactivity of truncated but not full-length TrkB. In contrast, Müller cells of post-ischemic retinas displayed immunoreactivity of both TrkB isoforms. Bipolar cells isolated from control and post-ischemic retinas were immunolabeled for both TrkB isoforms. CONCLUSIONS The data may suggest that the ischemic abrogation of the BDNF effect in bipolar cells is related to altered BDNF receptor expression in Müller cells. Glial upregulation of full-length TrkB may support the survival of Müller cells in the ischemic retina, but may impair the BDNF-induced release of neuroprotective cytokines such as bFGF from Müller cells.
Collapse
Affiliation(s)
- Stefanie Vogler
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, Medical Faculty, University of Leipzig, Liebigstrasse 10-14, D-04103, Leipzig, Germany
| | - Benjamin-Andreas Berk
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany.,Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Johannes Seeger
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, Medical Faculty, University of Leipzig, Liebigstrasse 10-14, D-04103, Leipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Medical Faculty, University of Leipzig, Liebigstrasse 10-14, D-04103, Leipzig, Germany.
| |
Collapse
|
11
|
Perianes-Cachero A, Canelles S, Aguado-Llera D, Frago LM, Toledo-Lobo MV, Carrera I, Cacabelos R, Chowen JA, Argente J, Arilla-Ferreiro E, Barrios V. Reduction in Aβ-induced cell death in the hippocampus of 17β-estradiol-treated female rats is associated with an increase in IGF-I signaling and somatostatinergic tone. J Neurochem 2015; 135:1257-71. [DOI: 10.1111/jnc.13381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Aránzazu Perianes-Cachero
- Neurobiochemistry Group; Unit of Biochemistry and Molecular Biology; Facultad de Medicina; Universidad de Alcalá; Alcalá de Henares Spain
| | - Sandra Canelles
- Department of Endocrinology; Hospital Infantil Universitario Niño Jesús; Instituto de Investigación La Princesa; Madrid Spain
- Centro de Investigación Biomédica en Red de Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| | - David Aguado-Llera
- Neurobiochemistry Group; Unit of Biochemistry and Molecular Biology; Facultad de Medicina; Universidad de Alcalá; Alcalá de Henares Spain
| | - Laura M. Frago
- Department of Endocrinology; Hospital Infantil Universitario Niño Jesús; Instituto de Investigación La Princesa; Madrid Spain
- Centro de Investigación Biomédica en Red de Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| | - María Val Toledo-Lobo
- Department of Biomedicine and Biotechnology; Universidad de Alcalá; Alcalá de Henares and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS); Madrid Spain
| | - Iván Carrera
- Department of Neuroscience; EuroEspes Biotechnology; Polígono de Bergondo; A Coruña Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center; Institute for CNS Disorders and Chair of Genomic Medicine; University of Camilo José Cela; Villanueva de la Cañada Spain
| | - Julie A Chowen
- Department of Endocrinology; Hospital Infantil Universitario Niño Jesús; Instituto de Investigación La Princesa; Madrid Spain
- Centro de Investigación Biomédica en Red de Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| | - Jesús Argente
- Department of Endocrinology; Hospital Infantil Universitario Niño Jesús; Instituto de Investigación La Princesa; Madrid Spain
- Centro de Investigación Biomédica en Red de Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| | - Eduardo Arilla-Ferreiro
- Neurobiochemistry Group; Unit of Biochemistry and Molecular Biology; Facultad de Medicina; Universidad de Alcalá; Alcalá de Henares Spain
| | - Vicente Barrios
- Department of Endocrinology; Hospital Infantil Universitario Niño Jesús; Instituto de Investigación La Princesa; Madrid Spain
- Centro de Investigación Biomédica en Red de Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
12
|
Therapeutic uses of somatostatin and its analogues: Current view and potential applications. Pharmacol Ther 2015; 152:98-110. [PMID: 25956467 DOI: 10.1016/j.pharmthera.2015.05.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/28/2015] [Indexed: 01/22/2023]
Abstract
Somatostatin is an endogeneous cyclic tetradecapeptide hormone that exerts multiple biological activities via five ubiquitously distributed receptor subtypes. Classified as a broad inhibitory neuropeptide, somatostatin has anti-secretory, anti-proliferative and anti-angiogenic effects. The clinical use of native somatostatin is limited by a very short half-life (1 to 3min) and the broad spectrum of biological responses. Thus stable, receptor-selective agonists have been developed. The majority of these somatostatin therapeutic agonists bind strongly to two of the five receptor subtypes, although recently an agonist of wider affinity has been introduced. Somatostatin agonists are established in the treatment of acromegaly with recently approved indications in the therapy of neuroendocrine tumours. Potential therapeutic uses for somatostatin analogues include diabetic complications like retinopathy, nephropathy and obesity, due to inhibition of IGF-1, VEGF together with insulin secretion and effects upon the renin-angiotensin-aldosterone system. Wider uses in anti-neoplastic therapy may also be considered and recent studies have further revealed anti-inflammatory and anti-nociceptive effects. This review provides a comprehensive, current view of the biological functions of somatostatin and potential therapeutic uses, informed by the wide range of pharmacological advances reported since the last published review in 2004 by P. Dasgupta. The pharmacology of somatostatin receptors is explained, the current uses of somatostatin agonists are discussed, and the potential future of therapeutic applications is explored.
Collapse
|
13
|
Hernández C, Simó-Servat O, Simó R. Somatostatin and diabetic retinopathy: current concepts and new therapeutic perspectives. Endocrine 2014; 46:209-14. [PMID: 24627166 DOI: 10.1007/s12020-014-0232-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/28/2014] [Indexed: 12/15/2022]
Abstract
Somatostatin (SST) is abundantly produced by the human retina, and the main source is the retinal pigment epithelium (RPE). SST exerts relevant functions in the retina (neuromodulation, angiostatic, and anti-permeability actions) by interacting with SST receptors (SSTR) that are also expressed in the retina. In the diabetic retina, a downregulation of SST production does exist. In this article, we give an overview of the mechanisms by which this deficit of SST participates in the main pathogenic mechanisms involved in diabetic retinopathy (DR): neurodegeneration, neovascularization, and vascular leakage. In view of the relevant SST functions in the retina and the reduction of SST production in the diabetic eye, SST replacement has been proposed as a new target for treatment of DR. This could be implemented by intravitreous injections of SST analogs or gene therapy, but this is an aggressive route for the early stages of DR. Since topical administration of SST has been effective in preventing retinal neurodegeneration in STZ-induced diabetic rats, it seems reasonable to test this new approach in humans. In this regard, the results of the ongoing clinical trial EUROCONDOR will provide useful information. In conclusion, SST is a natural neuroprotective and antiangiogenic factor synthesized by the retina which is downregulated in the diabetic eye and, therefore, its replacement seems a rational approach for treating DR. However, clinical trials will be needed to establish the exact position of targeting SST in the treatment of this disabling complication of diabetes.
Collapse
Affiliation(s)
- Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129.08035, Barcelona, Spain
| | | | | |
Collapse
|
14
|
D'Alessandro A, Cervia D, Catalani E, Gevi F, Zolla L, Casini G. Protective effects of the neuropeptides PACAP, substance P and the somatostatin analogue octreotide in retinal ischemia: a metabolomic analysis. MOLECULAR BIOSYSTEMS 2014; 10:1290-304. [PMID: 24514073 DOI: 10.1039/c3mb70362b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ischemia is a primary cause of neuronal death in retinal diseases and the somatostatin subtype receptor 2 agonist octreotide (OCT) is known to decrease ischemia-induced retinal cell death. Using a recently optimized ex vivo mouse model of retinal ischemia, we tested the anti-ischemic potential of two additional neuropeptides, pituitary adenylate cyclase activating peptide (PACAP) and substance P (SP), and monitored the major changes occurring at the metabolic level. Metabolomics analyses were performed via fast HPLC online using a microTOF-Q MS instrument, a workflow that is increasingly becoming the gold standard in the field of metabolomics. The metabolomic approach allowed detection of the most significant alterations induced in the retina by ischemia and of the significance of the protective effects exerted by OCT, PACAP or SP. All treatments were shown to reduce ischemia-induced cell death, vascular endothelial growth factor over-expression and glutamate release. The metabolomic analysis showed that OCT and, to a lesser extent, also PACAP or SP, were able to counteract the ischemia-induced oxidative stress and to promote, with various efficacies, (i) decreased accumulation of glutamate and normalization of glutathione homeostasis; (ii) reduced build-up of α-ketoglutarate, which might serve as a substrate for the enhanced biosynthesis of glutamate in response to ischemia; (iii) reduced accumulation of peroxidized lipids and inflammatory mediators; (iv) the normalization of glycolytic fluxes and thus preventing the over-accumulation of lactate or either promoting the down-regulation of the glyoxalate anti-oxidant system; (v) a reduced metabolic shift from glycolysis towards the PPP or either a blockade at the non-oxidative phase of the PPP; and (vi) tuning down of purine metabolism. In addition, OCT seemed to stimulate nitric oxide production. None of the treatments was able to restore ATP production, although ATP reservoirs were partly replenished by OCT, PACAP or SP. These data indicate that, in addition to that of somatostatin, peptidergic systems such as those of PACAP and SP deserve attention in view of peptide-based therapies to treat ischemic retinal disorders.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, L.go dell'Università snc, I-01100 Viterbo, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Martel G, Dutar P, Epelbaum J, Viollet C. Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol (Lausanne) 2012; 3:154. [PMID: 23230430 PMCID: PMC3515867 DOI: 10.3389/fendo.2012.00154] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022] Open
Abstract
Somatostatin is highly expressed in mammalian brain and is involved in many brain functions such as motor activity, sleep, sensory, and cognitive processes. Five somatostatin receptors have been described: sst(1), sst(2) (A and B), sst(3), sst(4), and sst(5), all belonging to the G-protein-coupled receptor family. During the recent years, numerous studies contributed to clarify the role of somatostatin systems, especially long-range somatostatinergic interneurons, in several functions they have been previously involved in. New advances have also been made on the alterations of somatostatinergic systems in several brain diseases and on the potential therapeutic target they represent in these pathologies.
Collapse
Affiliation(s)
| | | | | | - Cécile Viollet
- *Correspondence: Cécile Viollet, Inserm UMR894 - Center for Psychiatry and Neuroscience, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d’Alésia, 75014 Paris, France. e-mail:
| |
Collapse
|