1
|
Bernd J, Plastino F, Karayannis JJ, Kvanta A, Locri F, André H. Accelerated maturation of ARPE-19 cells for the translational assessment of gene therapy. FASEB J 2024; 38:e70020. [PMID: 39222301 DOI: 10.1096/fj.202301707rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The human retinal pigment epithelium (RPE) cell line ARPE-19 is widely used as an alternative to primary RPE despite losing many features of primary RPE. We aimed to determine whether a combination of RPE-specific laminin (LN) and nicotinamide (NAM) could improve ARPE-19 redifferentiation to resemble mature RPE and improve the assessment of RPE-specific gene therapy strategies. ARPE-19 cells were propagated on tissue culture plastic supplemented with NAM and human recombinant LN521-coating. RPE maturation was performed by immunocytochemistry and gene expression by qPCR. Viral transduction experiments with adeno-associated virus (AAV)1 or AAV2, carrying a VMD2-driven GFP, were assessed at 2- and 4-weeks post-plating in the different culturing conditions with a low multiplicity of infection. The combination of LN521 coating with NAM supplementation promoted cytoskeletal and tight junction protein reorganization. The expression of maturation markers bestrophin-1 and RPE 65 was promoted concomitantly with a reduction of several epithelial-mesenchymal transition markers, such as TNF-α, TGF-β, CDH2, and vimentin. Redifferentiated ARPE-19 transduced at low multiplicity of infection of both AAV1- and AAV2-VMD2-GFP. Expression of GFP was detected at 2 weeks and increased at 4 weeks post-plating. AAV1 exhibited a greater expression efficacy compared to AAV2 in maturated ARPE-19 cells already after 2 weeks with increased efficiency after 4 weeks. Our study demonstrates an improved maturation protocol for ARPE-19 cells in vitro, mimicking an in vivo phenotype with the expression of signature genes and improved morphology. Viral-mediated RPE-specific gene expression demonstrates that the combination cultures mimic in vivo AAV tropism essential to test new gene therapies for RPE-centered diseases.
Collapse
Affiliation(s)
- Jonathan Bernd
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Jackelin Karayannis
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Filippo Locri
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Rizwan S, Toothman B, Li B, Engel AJ, Lim RR, Niernberger S, Lu J, Ratliff C, Xiang Y, Eminhizer M, Chao JR, Du J. Metabolic Phenotyping of Healthy and Diseased Human RPE Cells. Invest Ophthalmol Vis Sci 2024; 65:5. [PMID: 39230994 PMCID: PMC11379083 DOI: 10.1167/iovs.65.11.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024] Open
Abstract
Purpose Metabolic defects in the retinal pigment epithelium (RPE) underlie many retinal degenerative diseases. This study aims to identify the nutrient requirements of healthy and diseased human RPE cells. Methods We profiled nutrient use of various human RPE cells, including differentiated and dedifferentiated fetal RPE (fRPE), induced pluripotent stem cell-derived RPE (iPSC RPE), Sorsby fundus dystrophy (SFD) patient-derived iPSC RPE, CRISPR-corrected isogenic SFD (cSFD) iPSC RPE, and ARPE-19 cell lines using Biolog Phenotype MicroArray Assays. Results Differentiated fRPE cells and healthy iPSC RPE cells can use 51 and 48 nutrients respectively, including sugars, intermediates from glycolysis and tricarboxylic acid (TCA) cycle, fatty acids, ketone bodies, amino acids, and dipeptides. However, when fRPE cells lose their epithelial phenotype through dedifferentiation, nutrient use becomes restricted to 17 nutrients, primarily sugar and glutamine-related amino acids. SFD RPE cells can use 37 nutrients; however, compared to cSFD RPE and healthy iPSC RPE, they are unable to use lactate, some TCA cycle intermediates, and short-chain fatty acids. Nonetheless, they show increased use of branch-chain amino acids (BCAAs) and BCAA-containing dipeptides. Dedifferentiated ARPE-19 cells grown in traditional culture media cannot use lactate and ketone bodies. In contrast, nicotinamide supplementation promotes differentiation toward an epithelial phenotype, restoring the ability to use these nutrients. Conclusions Epithelial phenotype confers metabolic flexibility to healthy RPE for using various nutrients. SFD RPE cells have reduced metabolic flexibility, relying on the oxidation of BCAAs. Our findings highlight the potentially important roles of nutrient availability and use in RPE differentiation and diseases.
Collapse
Affiliation(s)
- Saira Rizwan
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Beverly Toothman
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Bo Li
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
- Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Abbi J. Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Sheldon Niernberger
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jinyu Lu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Cloe Ratliff
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Yinxiao Xiang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Mark Eminhizer
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
3
|
Kim J, Jeon Y, Son J, Pagire HS, Pagire SH, Ahn JH, Uemura A, Lee IK, Park S, Park DH. PDK4-mediated metabolic reprogramming is a potential therapeutic target for neovascular age-related macular degeneration. Cell Death Dis 2024; 15:582. [PMID: 39122684 PMCID: PMC11316003 DOI: 10.1038/s41419-024-06968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Age-related macular degeneration (AMD) causes severe blindness in the elderly due to choroidal neovascularization (CNV), which results from the dysfunction of the retinal pigment epithelium (RPE). While normal RPE depends exclusively on mitochondrial oxidative phosphorylation for energy production, the inflammatory conditions associated with metabolic reprogramming of the RPE play a pivotal role in CNV. Although mitochondrial pyruvate dehydrogenase kinase (PDK) is a central node of energy metabolism, its role in the development of CNV in neovascular AMD has not been investigated. In the present study, we used a laser-induced CNV mouse model to evaluate the effects of Pdk4 gene ablation and treatment with pan-PDK or specific PDK4 inhibitors on fluorescein angiography and CNV lesion area. Among PDK isoforms, only PDK4 was upregulated in the RPE of laser-induced CNV mice, and Pdk4 gene ablation attenuated CNV. Next, we evaluated mitochondrial changes mediated by PDK1-4 inhibition using siRNA or PDK inhibitors in inflammatory cytokine mixture (ICM)-treated primary human RPE (hRPE) cells. PDK4 silencing only in ICM-treated hRPE cells restored mitochondrial respiration and reduced inflammatory cytokine secretion. Likewise, GM10395, a specific PDK4 inhibitor, restored oxidative phosphorylation and decreased ICM-induced upregulation of inflammatory cytokine secretion. In a laser-induced CNV mouse model, GM10395 significantly alleviated CNV. Taken together, we demonstrate that specific PDK4 inhibition could be a therapeutic strategy for neovascular AMD by preventing mitochondrial metabolic reprogramming in the RPE under inflammatory conditions.
Collapse
Affiliation(s)
- Juhee Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
- Kyungpook National University Cell & Matrix Research Institute, Daegu, Republic of Korea
| | - Yujin Jeon
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
- Kyungpook National University Cell & Matrix Research Institute, Daegu, Republic of Korea
| | - Jinyoung Son
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Daegu, Republic of Korea
| | - Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- R&D center, JD Bioscience Inc, Gwangju, Republic of Korea
| | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- R&D center, JD Bioscience Inc, Gwangju, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- R&D center, JD Bioscience Inc, Gwangju, Republic of Korea
| | - Akiyoshi Uemura
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sungmi Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
- Kyungpook National University Cell & Matrix Research Institute, Daegu, Republic of Korea.
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Gulette GA, Hass DT, Pandey K, Zhang Q, Han JYS, Engel A, Chao JR, Philp NJ, Hurley JB, Miller JML. Reassessing retinal pigment epithelial ketogenesis: Enzymatic assays for ketone body levels provide inaccurate results. Exp Eye Res 2024; 245:109966. [PMID: 38857822 DOI: 10.1016/j.exer.2024.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
The retinal pigment epithelium (RPE) is omnivorous and can utilize a wide range of substrates for oxidative phosphorylation. Certain tissues with high mitochondrial metabolic load are capable of ketogenesis, a biochemical pathway that consolidates acetyl-CoA into ketone bodies. Earlier work demonstrated that the RPE expresses the rate-limiting enzyme for ketogenesis, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), and that the RPE indeed produces ketone bodies, including beta-hydroxybutyrate (β-HB). Prior work, based on detecting β-HB via enzymatic assays, suggested that differentiated cultures of primary RPE preferentially export β-HB across the apical membrane. Here, we compare the accuracy of measuring β-HB by enzymatic assay kits to mass spectrometry analysis. We found that commercial kits lack the sensitivity to accurately measure the levels of β-HB in RPE cultures and are prone to artifact. Using mass spectrometry, we found that while RPE cultures secrete β-HB, they do so equally to both apical and basal sides. We also find RPE is capable of consuming β-HB as levels rise. Using isotopically labeled glucose, amino acid, and fatty acid tracers, we found that carbons from both fatty acids and ketogenic amino acids, but not from glucose, produce β-HB. Altogether, we substantiate β-HB secretion in RPE but find that the secretion is equal apically and basally, RPE β-HB can derive from ketogenic amino acids or fatty acids, and accurate β-HB assessment requires mass spectrometric analysis.
Collapse
Affiliation(s)
| | - Daniel T Hass
- Department of Biochemistry, University of Washington, United States
| | - Kriti Pandey
- Department of Biochemistry, University of Washington, United States
| | - Qitao Zhang
- Kellogg Eye Center, University of Michigan, United States
| | - John Y S Han
- Kellogg Eye Center, University of Michigan, United States
| | - Abbi Engel
- Center of Developmental Biology and Regenerative Medicine, Seattle Children's Research Hospital, United States
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, United States
| | - Nancy J Philp
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, United States
| | - James B Hurley
- Department of Biochemistry, University of Washington, United States
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, United States; Cellular and Molecular Biology Program, University of Michigan, United States.
| |
Collapse
|
5
|
Rizwan S, Toothman B, Li B, Engel AJ, Lim RR, Niernberger S, Lu J, Ratliff C, Xiang Y, Eminhizer M, Chao JR, Du J. Metabolic phenotyping of healthy and diseased human RPE cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582405. [PMID: 38464098 PMCID: PMC10925320 DOI: 10.1101/2024.02.28.582405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Purpose Metabolic defects in the retinal pigment epithelium (RPE) underlie many retinal degenerative diseases. This study aims to identify the nutrient requirements of healthy and diseased human RPE cells. Methods We profiled nutrient utilization of various human RPE cells, including differentiated and dedifferentiated fetal RPE (fRPE), induced pluripotent stem cell derived-RPE (iPSC RPE), Sorsby fundus dystrophy (SFD) patient-derived iPSC RPE, CRISPR-corrected isogenic SFD (cSFD) iPSC RPE, and ARPE-19 cell lines using Biolog Phenotype MicroArray Assays. Results Differentiated fRPE cells and healthy iPSC RPE cells can utilize 51 and 48 nutrients respectively, including sugars, intermediates from glycolysis and tricarboxylic acid (TCA) cycle, fatty acids, ketone bodies, amino acids, and dipeptides. However, when fRPE cells lose their epithelial phenotype through dedifferentiation, nutrient utilization becomes restricted to 17 nutrients, primarily sugar and glutamine-related amino acids. SFD RPE cells can utilize 37 nutrients; however, compared to cSFD RPE and healthy iPSC RPE, they are unable to utilize lactate, some TCA cycle intermediates, and short-chain fatty acids. Nonetheless, they show increased utilization of branch-chain amino acids (BCAAs) and BCAA-containing dipeptides. Dedifferentiated ARPE-19 cells grown in traditional culture media cannot utilize lactate and ketone bodies. In contrast, nicotinamide supplementation promotes differentiation towards an epithelial phenotype, restoring the ability to use these nutrients. Conclusions Epithelial phenotype confers metabolic flexibility to healthy RPE for utilizing various nutrients. SFD RPE cells have reduced metabolic flexibility, relying on the oxidation of BCAAs. Our findings highlight the potentially important roles of nutrient availability and utilization in RPE differentiation and diseases.
Collapse
|
6
|
Hass DT, Zhang Q, Autterson GA, Bryan RA, Hurley JB, Miller JML. Medium Depth Influences O2 Availability and Metabolism in Human RPE Cultures. Invest Ophthalmol Vis Sci 2023; 64:4. [PMID: 37922158 PMCID: PMC10629522 DOI: 10.1167/iovs.64.14.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2023] Open
Abstract
Purpose Retinal pigment epithelium (RPE) oxidative metabolism is critical for normal retinal function and is often studied in cell culture systems. Here, we show that conventional culture media volumes dramatically impact O2 availability, limiting oxidative metabolism. We suggest optimal conditions to ensure cultured RPE is in a normoxic environment permissive to oxidative metabolism. Methods We altered the availability of O2 to human primary and induced pluripotent stem cell-derived RPE cultures directly via a hypoxia chamber or indirectly via the amount of medium over cells. We measured oxygen consumption rates (OCRs), glucose consumption, lactate production, 13C6-glucose and 13C5-glutamine flux, hypoxia inducible factor 1α (HIF-1α) stability, intracellular lipid droplets after a lipid challenge, transepithelial electrical resistance, cell morphology, and pigmentation. Results Medium volumes commonly employed during RPE culture limit diffusion of O2 to cells, triggering hypoxia, activating HIF-1α, limiting OCR, and dramatically altering cell metabolism, with only minor effects on typical markers of RPE health. Media volume effects on O2 availability decrease acetyl-CoA utilization, increase glycolysis and reductive carboxylation, and alter the size and number of intracellular lipid droplets under lipid-rich conditions. Conclusions Despite having little impact on visible and typical markers of RPE culture health, media volume dramatically affects RPE physiology "under the hood." As RPE-centric diseases like age-related macular degeneration involve oxidative metabolism, RPE cultures need to be optimized to study such diseases. We provide guidelines for optimal RPE culture volumes that balance ample nutrient availability from larger media volumes with adequate O2 availability seen with smaller media volumes.
Collapse
Affiliation(s)
- Daniel T. Hass
- Department of Biochemistry, The University of Washington, Seattle, Washington, United States
| | - Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | | | | | - James B. Hurley
- Department of Biochemistry, The University of Washington, Seattle, Washington, United States
| | - Jason M. L. Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic Changes Predict Metabolic Alterations in LC3 Associated Phagocytosis in Aged Mice. Int J Mol Sci 2023; 24:6716. [PMID: 37047689 PMCID: PMC10095460 DOI: 10.3390/ijms24076716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
LC3b (Map1lc3b) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b to promote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes, such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells, utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis, and neuroprotection. In a mouse model of retinal lipid steatosis-mice lacking LC3b (LC3b-/-), we observed increased lipid deposition, metabolic dysregulation, and enhanced inflammation. Herein, we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b-/- mice revealed 1533 DEGs, with ~73% upregulated and 27% downregulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism, and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with a potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy J. Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic changes predict metabolic alterations in LC3 associated phagocytosis in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532586. [PMID: 36993501 PMCID: PMC10054970 DOI: 10.1101/2023.03.14.532586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
LC3b ( Map1lc3b ) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b, to pro-mote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis and neuroprotection. In a mouse model of retinal lipid steatosis - mice lacking LC3b ( LC3b -/- ), we observed increased lipid deposition, metabolic dysregulation and enhanced inflammation. Herein we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b -/- mice revealed 1533 DEGs, with ~73% upregulated and 27% down-regulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
|
9
|
Hass DT, Zhang Q, Autterson G, Bryan R, Hurley JB, Miller JM. Medium depth influences O 2 availability and metabolism in cultured RPE cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530623. [PMID: 36909658 PMCID: PMC10002737 DOI: 10.1101/2023.03.01.530623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
PURPOSE RPE oxidative metabolism is critical for normal retinal function and is often studied in cell culture systems. Here, we show that conventional culture media volumes dramatically impact O 2 availability, limiting oxidative metabolism. We suggest optimal conditions to ensure cultured RPE is in a normoxic environment permissive to oxidative metabolism. METHODS We altered the availability of O 2 to human primary RPE cultures directly via a hypoxia chamber or indirectly via the amount of medium over cells. We measured oxygen consumption rates (OCR), glucose consumption, lactate production, 13 C-glucose flux, hypoxia inducible factor (HIF-1α) stability, intracellular lipid droplets after a lipid challenge, trans-epithelial electrical resistance, cell morphology, and pigmentation. RESULTS Medium volumes commonly employed during RPE culture limit diffusion of O 2 to cells, triggering hypoxia, activating HIF-1α, limiting OCR, and dramatically altering cell metabolism, with only minor effects on typical markers of RPE health. Media volume effects on O 2 availability decrease acetyl-CoA utilization, increase glycolysis, and alter the size and number of intracellular lipid droplets under lipid-rich conditions. CONCLUSIONS Despite having little impact on visible and typical markers of RPE culture health, media volume dramatically affects RPE physiology ″under the hood″. As RPE-centric diseases like age-related macular degeneration (AMD) involve oxidative metabolism, RPE cultures need to be optimized to study such diseases. We provide guidelines for optimal RPE culture volumes that balance ample nutrient availability from larger media volumes with adequate O 2 availability seen with smaller media volumes.
Collapse
|
10
|
Shao A, Lopez AJ, Chen J, Tham A, Javier S, Quiroz A, Frick S, Levine EM, Lloyd KCK, Leonard BC, Murphy CJ, Glaser TM, Moshiri A. Arap1 loss causes retinal pigment epithelium phagocytic dysfunction and subsequent photoreceptor death. Dis Model Mech 2022; 15:276063. [PMID: 35758026 PMCID: PMC9346516 DOI: 10.1242/dmm.049343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Retinitis pigmentosa (RP), a retinal degenerative disease, is the leading cause of heritable blindness. Previously, we described that Arap1−/− mice develop a similar pattern of photoreceptor degeneration. Arap1 is an Arf-directed GTPase-activating protein shown to modulate actin cytoskeletal dynamics. Curiously, Arap1 expression was detected in Müller glia and retinal pigment epithelium (RPE), but not the photoreceptors themselves. In this study, we generated conditional knockout mice for Müller glia/RPE, Müller glia and RPE via targeting Rlbp1, Glast and Vmd2 promoters, respectively, to drive Cre recombinase expression to knock out Arap1. Vmd2-Cre Arap1tm1c/tm1c and Rlbp1-Cre Arap1tm1c/tm1c mice, but not Glast-Cre Arap1tm1c/tm1c mice, recapitulated the phenotype originally observed in germline Arap1−/− mice. Mass spectrometry analysis of human ARAP1 co-immunoprecipitation identified candidate binding partners of ARAP1, revealing potential interactants involved in phagocytosis, cytoskeletal composition, intracellular trafficking and endocytosis. Quantification of outer segment phagocytosis in vivo demonstrated a clear phagocytic defect in Arap1−/− mice compared to Arap1+/+ controls. We conclude that Arap1 expression in RPE is necessary for photoreceptor survival due to its indispensable function in RPE phagocytosis. This article has an associated First Person interview with the first author of the paper. Summary: We provide evidence that Arap1 expression in retinal pigment epithelium (RPE) is essential for maintaining photoreceptor health due to its indispensable role in RPE phagocytosis.
Collapse
Affiliation(s)
- Andy Shao
- The University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Antonio Jacobo Lopez
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - JiaJia Chen
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - Addy Tham
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - Seanne Javier
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - Alejandra Quiroz
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - Sonia Frick
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, USA
| | - K C Kent Lloyd
- Mouse Biology Program, U.C. Davis, Davis, CA, USA.,Department of Surgery, School of Medicine, U.C. Davis, Sacramento, CA, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, U.C. Davis, Davis, CA, USA
| | - Christopher J Murphy
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA.,Department of Surgical and Radiological Sciences, School of Veterinary Medicine, U.C. Davis, Davis, CA, USA
| | - Thomas M Glaser
- Department of Cell Biology and Human Anatomy, School of Medicine, U.C. Davis, Davis, CA, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, USA
| |
Collapse
|
11
|
Baba K, Goyal V, Tosini G. Circadian Regulation of Retinal Pigment Epithelium Function. Int J Mol Sci 2022; 23:2699. [PMID: 35269840 PMCID: PMC8910459 DOI: 10.3390/ijms23052699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a single layer of cells located between the choriocapillaris vessels and the light-sensitive photoreceptors in the outer retina. The RPE performs physiological processes necessary for the maintenance and support of photoreceptors and visual function. Among the many functions performed by the RPE, the timing of the peak in phagocytic activity by the RPE of the photoreceptor outer segments that occurs 1-2 h. after the onset of light has captured the interest of many investigators and has thus been intensively studied. Several studies have shown that this burst in phagocytic activity by the RPE is under circadian control and is present in nocturnal and diurnal species and rod and cone photoreceptors. Previous investigations have demonstrated that a functional circadian clock exists within multiple retinal cell types and RPE cells. However, the anatomical location of the circadian controlling this activity is not clear. Experimental evidence indicates that the circadian clock, melatonin, dopamine, and integrin signaling play a key role in controlling this rhythm. A series of very recent studies report that the circadian clock in the RPE controls the daily peak in phagocytic activity. However, the loss of the burst in phagocytic activity after light onset does not result in photoreceptor or RPE deterioration during aging. In the current review, we summarized the current knowledge on the mechanism controlling this phenomenon and the physiological role of this peak.
Collapse
Affiliation(s)
| | | | - Gianluca Tosini
- Department of Pharmacology & Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA; (K.B.); (V.G.)
| |
Collapse
|
12
|
Discovering the Potential of Natural Antioxidants in Age-Related Macular Degeneration: A Review. Pharmaceuticals (Basel) 2022; 15:ph15010101. [PMID: 35056157 PMCID: PMC8777838 DOI: 10.3390/ph15010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease associated with anatomical changes in the inner retina. Despite tremendous advances in clinical care, there is currently no cure for AMD. This review aims to evaluate the published literature on the therapeutic roles of natural antioxidants in AMD. A literature search of PubMed, Web of Science and Google Scholar for peer-reviewed articles published between 1 January 2011 and 31 October 2021 was undertaken. A total of 82 preclinical and 18 clinical studies were eligible for inclusion in this review. We identified active compounds, carotenoids, extracts and polysaccharides, flavonoids, formulations, vitamins and whole foods with potential therapeutic roles in AMD. We evaluated the integral cellular signaling pathways including the activation of antioxidant pathways and angiogenesis pathways orchestrating their mode of action. In conclusion, we examined the therapeutic roles of natural antioxidants in AMD which warrant further study for application in clinical practice. Our current understanding is that natural antioxidants have the potential to improve or halt the progression of AMD, and tailoring therapeutics to the specific disease stages may be the key to preventing irreversible vision loss.
Collapse
|
13
|
Miyagishima KJ, Sharma R, Nimmagadda M, Clore-Gronenborn K, Qureshy Z, Ortolan D, Bose D, Farnoodian M, Zhang C, Fausey A, Sergeev YV, Abu-Asab M, Jun B, Do KV, Kautzman Guerin MA, Calandria J, George A, Guan B, Wan Q, Sharp RC, Cukras C, Sieving PA, Hufnagel RB, Bazan NG, Boesze-Battaglia K, Miller S, Bharti K. AMPK modulation ameliorates dominant disease phenotypes of CTRP5 variant in retinal degeneration. Commun Biol 2021; 4:1360. [PMID: 34887495 PMCID: PMC8660775 DOI: 10.1038/s42003-021-02872-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Late-onset retinal degeneration (L-ORD) is an autosomal dominant disorder caused by a missense substitution in CTRP5. Distinctive clinical features include sub-retinal pigment epithelium (RPE) deposits, choroidal neovascularization, and RPE atrophy. In induced pluripotent stem cells-derived RPE from L-ORD patients (L-ORD-iRPE), we show that the dominant pathogenic CTRP5 variant leads to reduced CTRP5 secretion. In silico modeling suggests lower binding of mutant CTRP5 to adiponectin receptor 1 (ADIPOR1). Downstream of ADIPOR1 sustained activation of AMPK renders it insensitive to changes in AMP/ATP ratio resulting in defective lipid metabolism, reduced Neuroprotectin D1(NPD1) secretion, lower mitochondrial respiration, and reduced ATP production. These metabolic defects result in accumulation of sub-RPE deposits and leave L-ORD-iRPE susceptible to dedifferentiation. Gene augmentation of L-ORD-iRPE with WT CTRP5 or modulation of AMPK, by metformin, re-sensitize L-ORD-iRPE to changes in cellular energy status alleviating the disease cellular phenotypes. Our data suggests a mechanism for the dominant behavior of CTRP5 mutation and provides potential treatment strategies for L-ORD patients.
Collapse
Affiliation(s)
- Kiyoharu J. Miyagishima
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Ruchi Sharma
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Malika Nimmagadda
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Katharina Clore-Gronenborn
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Zoya Qureshy
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Davide Ortolan
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Devika Bose
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Mitra Farnoodian
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Congxiao Zhang
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Andrew Fausey
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Yuri V. Sergeev
- grid.280030.90000 0001 2150 6316Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD 20892 USA
| | - Mones Abu-Asab
- grid.280030.90000 0001 2150 6316Section of Histopathology, National Eye Institute, NIH, Bethesda, MD 20892 USA
| | - Bokkyoo Jun
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Khanh V. Do
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Marie-Audrey Kautzman Guerin
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Jorgelina Calandria
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Aman George
- grid.280030.90000 0001 2150 6316Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD 20892 USA
| | - Bin Guan
- grid.280030.90000 0001 2150 6316Medical Genetics and Ophthalmic Genomics Unit, NEI, NIH, Bethesda, MD 20892 USA
| | - Qin Wan
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Rachel C. Sharp
- grid.25879.310000 0004 1936 8972Department of Biochemistry University of Pennsylvania, 240 South 40th Street, Levy Building, Room 515, Philadelphia, PA 19104 USA
| | - Catherine Cukras
- grid.280030.90000 0001 2150 6316Division of Epidemiology and Clinical Applications and Ophthalmic Genetics and Visual Function Branch, NEI, NIH, Bethesda, MD 20892 USA
| | - Paul A. Sieving
- grid.280030.90000 0001 2150 6316Section for Translation Research in Retinal and Macular Degeneration, NEI, NIH, Bethesda, MD 20892 USA
| | - Robert B. Hufnagel
- grid.280030.90000 0001 2150 6316Medical Genetics and Ophthalmic Genomics Unit, NEI, NIH, Bethesda, MD 20892 USA
| | - Nicolas G. Bazan
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Kathleen Boesze-Battaglia
- grid.25879.310000 0004 1936 8972Department of Biochemistry University of Pennsylvania, 240 South 40th Street, Levy Building, Room 515, Philadelphia, PA 19104 USA
| | - Sheldon Miller
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
15
|
Goenka S, Simon SR. Effects of E-Cigarette Refill Liquid Flavorings with and without Nicotine on Human Retinal Pigment Epithelial Cells: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11655. [PMID: 34770169 PMCID: PMC8582700 DOI: 10.3390/ijerph182111655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Smoking is an etiologic factor for age-related macular degeneration (AMD). Although cigarette smoke has been extensively researched for retinal pigment epithelial (RPE) cell degeneration, the potential for adverse effects on the retinal epithelium following exposure to flavored e-cigarette refill liquid has never been explored. In this preliminary study, we have examined the effects of 20 e-liquids (10 different flavored nicotine-free and 10 nicotine-rich e-liquids) used in e-cigarettes on the metabolic activity, membrane integrity, and mitochondrial membrane potential of RPE cells. Our results showed that of the flavors studied over the concentration range: 0.5, 1, and 2% v/v for a duration of 48 h, cinnamon was the most toxic and menthol was the second most toxic, while other flavors showed lesser or no cytotoxicity. The presence of nicotine augmented cytotoxicity for cinnamon, menthol, strawberry, vanilla, and banana while for other flavors there was no synergism. Together, our results demonstrate that exposure of RPE to flavored e-cigarette refill liquids caused significant cytotoxicity and may be a risk factor for the development of retinal pathogenesis, although further in-depth studies are necessary.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sanford R. Simon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
16
|
Alfonsetti M, Castelli V, d’Angelo M, Benedetti E, Allegretti M, Barboni B, Cimini A. Looking for In Vitro Models for Retinal Diseases. Int J Mol Sci 2021; 22:10334. [PMID: 34638674 PMCID: PMC8508697 DOI: 10.3390/ijms221910334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Retina is a layered structure of the eye, composed of different cellular components working together to produce a complex visual output. Because of its important role in visual function, retinal pathologies commonly represent the main causes of visual injury and blindness in the industrialized world. It is important to develop in vitro models of retinal diseases to use them in first screenings before translating in in vivo experiments and clinics. For this reason, it is important to develop bidimensional (2D) models that are more suitable for drug screening and toxicological studies and tridimensional (3D) models, which can replicate physiological conditions, for investigating pathological mechanisms leading to visual loss. This review provides an overview of the most common retinal diseases, relating to in vivo models, with a specific focus on alternative 2D and 3D in vitro models that can replicate the different cellular and matrix components of retinal layers, as well as injury insults that induce retinal disease and loss of the visual function.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | | | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
17
|
Xu HJ, Li QY, Zou T, Yin ZQ. Development-related mitochondrial properties of retinal pigment epithelium cells derived from hEROs. Int J Ophthalmol 2021; 14:1138-1150. [PMID: 34414076 DOI: 10.18240/ijo.2021.08.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the temporal mitochondrial characteristics of retinal pigment epithelium (RPE) cells obtained from human embryonic stem cells (hESC)-derived retinal organoids (hEROs-RPE), to verify the optimal period for using hEROs-RPE as donor cells from the aspect of mitochondria and to optimize RPE cell-based therapeutic strategies for age-related macular degeneration (AMD). METHODS RPE cells were obtained from hEROs and from spontaneous differentiation (SD-RPE). The mitochondrial characteristics were analyzed every 20d from day 60 to 160. Mitochondrial quantity was measured by MitoTracker Green staining. Transmission electron microscopy (TEM) was adopted to assess the morphological features of the mitochondria, including their distribution, length, and cristae. Mitochondrial membrane potentials (MMPs) were determined by JC-1 staining and evaluated by flow cytometry, reactive oxygen species (ROS) levels were evaluated by flow cytometry, and adenosine triphosphate (ATP) levels were measured by a luminometer. Differences between two groups were analyzed by the independent-samples t-test, and comparisons among multiple groups were made using one-way ANOVA or Kruskal-Wallis H test when equal variance was not assumed. RESULTS hEROs-RPE and SD-RPE cells from day 60 to 160 were successfully differentiated from hESCs and expressed RPE markers (Pax6, MITF, Bestrophin-1, RPE65, Cralbp). RPE features, including a cobblestone-like morphology with tight junctions (ZO-1), pigments and microvilli, were also observed in both hEROs-RPE and SD-RPE cells. The mitochondrial quantities of hEROs-RPE and SD-RPE cells both peaked at day 80. However, the cristae of hEROs-RPE mitochondria were less mature and abundant than those of SD-RPE mitochondria at day 80, with hEROs-RPE mitochondria becoming mature at day 100. Both hEROs-RPE and SD-RPE cells showed low ROS levels from day 100 to 140 and maintained a normal MMP during this period. However, hEROs-RPE mitochondria maintained a longer time to produce high levels of ATP (from day 120 to 140) than SD-RPE cells (only day 120). CONCLUSION hEROs-RPE mitochondria develop more slowly and maintain a longer time to supply high-level energy than SD-RPE mitochondria. From the mitochondrial perspective, hEROs-RPE cells from day 100 to 140 are an optimal cell source for treating AMD.
Collapse
Affiliation(s)
- Hao-Jue Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qi-You Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zheng-Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
18
|
Du J, Zhu S, Lim RR, Chao JR. Proline metabolism and transport in retinal health and disease. Amino Acids 2021; 53:1789-1806. [PMID: 33871679 PMCID: PMC8054134 DOI: 10.1007/s00726-021-02981-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blindness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration (AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal metabolism and health.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,One Medical Center Dr, WVU Eye Institute, PO Box 9193, Morgantown, WV, 26505, USA.
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
19
|
de Jong S, Gagliardi G, Garanto A, de Breuk A, Lechanteur YTE, Katti S, van den Heuvel LP, Volokhina EB, den Hollander AI. Implications of genetic variation in the complement system in age-related macular degeneration. Prog Retin Eye Res 2021; 84:100952. [PMID: 33610747 DOI: 10.1016/j.preteyeres.2021.100952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
Age-related macular degeneration (AMD) is the main cause of vision loss among the elderly in the Western world. While AMD is a multifactorial disease, the complement system was identified as one of the main pathways contributing to disease risk. The strong link between the complement system and AMD was demonstrated by genetic associations, and by elevated complement activation in local eye tissue and in the systemic circulation of AMD patients. Several complement inhibitors have been and are being explored in clinical trials, but thus far with limited success, leaving the majority of AMD patients without treatment options to date. This indicates that there is still a gap of knowledge regarding the functional implications of the complement system in AMD pathogenesis and how to bring these towards clinical translation. Many different experimental set-ups and disease models have been used to study complement activation in vivo and in vitro, and recently emerging patient-derived induced pluripotent stem cells and genome-editing techniques open new opportunities to study AMD disease mechanisms and test new therapeutic strategies in the future. In this review we provide an extensive overview of methods employed to understand the molecular processes of complement activation in AMD pathogenesis. We discuss the findings, advantages and challenges of each approach and conclude with an outlook on how recent, exciting developments can fill in current knowledge gaps and can aid in the development of effective complement-targeting therapeutic strategies in AMD.
Collapse
Affiliation(s)
- Sarah de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Giuliana Gagliardi
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Pediatrics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Yara T E Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Suresh Katti
- Gemini Therapeutics Inc., Cambridge, MA, 02139, USA
| | - Lambert P van den Heuvel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Elena B Volokhina
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands.
| |
Collapse
|
20
|
Zhang F, Liu L, Zhang H, Liu ZL. Effect of Platelet-Activating Factor on Barrier Function of ARPE-19 Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4205-4214. [PMID: 33116408 PMCID: PMC7567541 DOI: 10.2147/dddt.s251941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Aim To examine the effects of platelet-activating factor (PAF) on the barrier functions of cultured retinal pigment epithelial (RPE) cells. Methods A human RPE cell line (ARPE-19) was cultured on microporous filter supports and treated with PAF and WEB 2086, a specific PAF-receptor (PAF-R) antagonist. The permeability of the RPE monolayer was measured using transepithelial electrical resistance (TER) and sodium fluorescein flux. The expression of the tight junction protein zonula occludens (ZO)-1 and the adherens junction protein N-cadherin was assessed using immunohistochemistry and Western blotting. We also measured the vascular endothelial growth factor (VEGF) concentrations in PAF-treated cultures and re-measured RPE monolayer permeability in the presence of VEGF-neutralizing antibodies. Results PAF significantly decreased the TER and enhanced the sodium fluorescein flux of the RPE monolayer and downregulated the expression of ZO-1 and N-cadherin. These effects were abolished by WEB 2086-mediated blockage of the PAF-R. PAF stimulation increased VEGF expression in RPE cells, and the antibody-mediated neutralization of VEGF caused a partial recovery of the barrier properties. Conclusion The barrier functions of ARPE-19 cells were altered by PAF, and these effects were partly mediated by an upregulation of VEGF expression in these cells. Our results contribute to the growing body of evidence supporting the role of PAF in choroidal neovascularization. Our findings suggest that PAF is a novel target in the development of therapies for increased permeability of the RPE monolayer.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Lei Liu
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Han Zhang
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhe-Li Liu
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
21
|
Do JY, Kim J, Kim MJ, Lee JY, Park SY, Yanai R, Lee IK, Park S, Park DH. Fursultiamine Alleviates Choroidal Neovascularization by Suppressing Inflammation and Metabolic Reprogramming. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 33107903 PMCID: PMC7594589 DOI: 10.1167/iovs.61.12.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the therapeutic effects of fursultiamine on choroidal neovascularization (CNV) through its modulation of inflammation and metabolic reprogramming in the retinal pigment epithelium (RPE). Methods The anti-angiogenic effects of fursultiamine were assessed by measuring vascular leakage and CNV lesion size in the laser-induced CNV mouse model. Inflammatory responses were evaluated by quantitative polymerase chain reaction, western blot, and ELISA in both CNV eye tissues and in vitro cell cultures using ARPE-19 cells or primary human RPE (hRPE) cells under lipopolysaccharide (LPS) treatment or hypoxia. Mitochondrial respiration was assessed by measuring oxygen consumption in ARPE-19 cells treated with LPS with or without fursultiamine, and lactate production was measured in ARPE-19 cells subjected to hypoxia with or without fursultiamine. Results In laser-induced CNV, fursultiamine significantly decreased vascular leakage and lesion size, as well as the numbers of both choroidal and retinal inflammatory cytokines, including IL-1β, IL-6, IL-8, and TNF-α. In LPS-treated ARPE-19 cells, fursultiamine decreased proinflammatory cytokine secretion and nuclear factor kappa B phosphorylation. Furthermore, fursultiamine suppressed LPS-induced upregulation of IL-6, IL-8, and monocyte chemoattractant protein-1 in a dose-dependent and time-dependent manner in primary hRPE cells. Interestingly, fursultiamine significantly enhanced mitochondrial respiration in the LPS-treated ARPE-19 cells. Additionally, fursultiamine attenuated hypoxia-induced aberrations, including lactate production and inhibitory phosphorylation of pyruvate dehydrogenase. Furthermore, fursultiamine attenuated hypoxia-induced VEGF secretion and mitochondrial fission in primary hRPE cells that were replicated in ARPE-19 cells. Conclusions Our findings show that fursultiamine is a viable putative therapeutic for neovascular age-related macular degeneration by modulating the inflammatory response and metabolic reprogramming by enhancing mitochondrial respiration in the RPE.
Collapse
Affiliation(s)
- Ji Yeon Do
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Juhee Kim
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Jin Kim
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Yi Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea.,R&D Center, JD Bioscience, Inc., Gwangju, Republic of Korea
| | - So-Young Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ryoji Yanai
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Sungmi Park
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Ho Park
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea.,Department of Ophthalmology, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
22
|
Go YM, Zhang J, Fernandes J, Litwin C, Chen R, Wensel TG, Jones DP, Cai J, Chen Y. MTOR-initiated metabolic switch and degeneration in the retinal pigment epithelium. FASEB J 2020; 34:12502-12520. [PMID: 32721041 DOI: 10.1096/fj.202000612r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
The retinal pigment epithelium (RPE) is a particularly vulnerable tissue to age-dependent degeneration. Over the life span, the RPE develops an expanded endo-lysosomal compartment to maintain the high efficiency of phagocytosis and degradation of photoreceptor outer segments (POS) necessary for photoreceptor survival. As the assembly and activation of the mechanistic target of rapamycin complex 1 (mTORC1) occur on the lysosome surface, increased lysosome mass with aging leads to higher mTORC1 activity. The functional consequences of hyperactive mTORC1 in the RPE are unclear. In the current study, we used integrated high-resolution metabolomic and genomic approaches to examine mice with RPE-specific deletion of the tuberous sclerosis 1 (Tsc1) gene which encodes an upstream suppressor of mTORC1. Our data show that RPE cells with constitutively high mTORC1 activity were reprogramed to be hyperactive in glucose and lipid metabolism. Lipolysis was suppressed, mitochondrial carnitine shuttle was inhibited, while genes involved in fatty acid (FA) biosynthesis were upregulated. The metabolic changes occurred prior to structural changes of RPE and retinal degeneration. These findings have revealed cellular events and intrinsic mechanisms that contribute to lipid accumulation in the RPE cells during aging and age-related degeneration.
Collapse
Affiliation(s)
- Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jing Zhang
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jolyn Fernandes
- Department of Medicine, Emory University, Atlanta, GA, USA.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christopher Litwin
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rui Chen
- Department of Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Theodore G Wensel
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan Chen
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
23
|
Rastoin O, Pagès G, Dufies M. Experimental Models in Neovascular Age Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21134627. [PMID: 32610682 PMCID: PMC7370120 DOI: 10.3390/ijms21134627] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Neovascular age-related macular degeneration (vAMD), characterized by the neo-vascularization of the retro-foveolar choroid, leads to blindness within few years. This disease depends on angiogenesis mediated by the vascular endothelial growth factor A (VEGF) and to inflammation. The only available treatments consist of monthly intravitreal injections of antibodies directed against VEGF or VEGF/VEGFB/PlGF decoy receptors. Despite their relative efficacy, these drugs only delay progression to blindness and 30% of the patients are insensitive to these treatments. Hence, new therapeutic strategies are urgently needed. Experimental models of vAMD are essential to screen different innovative therapeutics. The currently used in vitro and in vivo models in ophthalmic translational research and their relevance are discussed in this review.
Collapse
Affiliation(s)
- Olivia Rastoin
- Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University Cote d’Azur (UCA), 06000 Nice, France; (O.R.); (G.P.)
| | - Gilles Pagès
- Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University Cote d’Azur (UCA), 06000 Nice, France; (O.R.); (G.P.)
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Maeva Dufies
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco
- Correspondence:
| |
Collapse
|
24
|
Gao T, Tian C, Xu H, Tang X, Huang L, Zhao M. Disease-causing mutations associated with bestrophinopathies promote apoptosis in retinal pigment epithelium cells. Graefes Arch Clin Exp Ophthalmol 2020; 258:2251-2261. [PMID: 32507900 DOI: 10.1007/s00417-020-04636-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Best vitelliform macular dystrophy (BVMD) and autosomal recessive bestrophinopathy (ARB) are two kinds of bestrophinopathies which are caused by BEST1 mutations and characterized by accumulation of lipofuscin-like materials on the retinal pigment epithelium cell-photoreceptor interface. In the past two decades, research about the pathogenesis of bestrophinopathies was mainly focused on the anion channel and intracellular Ca2+ signaling, but seldom concentrated on the function of retinal pigment epithelium (RPE) cells. In this study, we explored the possible effect of the three BEST1 mutations p.V143F, p.S142G, and p.A146T on the apoptosis in human fetal RPE cells. METHODS Wild-type plasmid and mutant plasmids BEST1-pcDNA3.1 p.V143F, p.S142G, and p.A146T were transfected to human fetal RPE cells. The molecules caspase-3, phospho-Bcl-2, BAX, PARP, and AIF associated with apoptosis were determined by quantitative PCR and Western blot. Apoptotic rate and active Caspase-3 staining were analyzed by flow cytometry. RESULTS Caspase-3 and PARP expression were significantly increased in BEST1-pcDNA3.1 p.S142G and p.A146T group. Flow cytometry showed that the apoptosis rates were significantly increased in the BEST1-pcDNA3.1 p.V143F, p.S142G, and p.A146T group compared with the wild-type group. CONCLUSIONS For the first time, we found that the three mutations promoted RPE cell apoptosis. Furthermore, the results indicated that BEST1 mutations p.S142G and p.A146T may contribute apoptosis of RPE cells by targeting Caspase 3. Our observations suggested that the apoptosis of RPE cells may be one of the mechanisms in bestrophinopathies, which may provide a new potential therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Department of Ophthalmology & Clinical Centre of Optometry, Eye diseases and optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Peking University People's Hospital, Xizhimen South Street 11, Xi Cheng District, Beijing, 100044, China
| | - Chengqiang Tian
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Xu
- Department of Ophthalmology & Clinical Centre of Optometry, Eye diseases and optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Peking University People's Hospital, Xizhimen South Street 11, Xi Cheng District, Beijing, 100044, China
| | - Xin Tang
- Department of Ophthalmology & Clinical Centre of Optometry, Eye diseases and optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Peking University People's Hospital, Xizhimen South Street 11, Xi Cheng District, Beijing, 100044, China
| | - Lvzhen Huang
- Department of Ophthalmology & Clinical Centre of Optometry, Eye diseases and optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Peking University People's Hospital, Xizhimen South Street 11, Xi Cheng District, Beijing, 100044, China.
| | - Mingwei Zhao
- Department of Ophthalmology & Clinical Centre of Optometry, Eye diseases and optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Peking University People's Hospital, Xizhimen South Street 11, Xi Cheng District, Beijing, 100044, China.
| |
Collapse
|
25
|
Song J, Han D, Lee H, Kim DJ, Cho JY, Park JH, Seok SH. A Comprehensive Proteomic and Phosphoproteomic Analysis of Retinal Pigment Epithelium Reveals Multiple Pathway Alterations in Response to the Inflammatory Stimuli. Int J Mol Sci 2020; 21:ijms21093037. [PMID: 32344885 PMCID: PMC7246457 DOI: 10.3390/ijms21093037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
Overwhelming and persistent inflammation of retinal pigment epithelium (RPE) induces destructive changes in the retinal environment. However, the precise mechanisms remain unclear. In this study, we aimed to investigate RPE-specific biological and metabolic responses against intense inflammation and identify the molecular characteristics determining pathological progression. We performed quantitative analyses of the proteome and phosphoproteome of the human-derived RPE cell line ARPE-19 after treatment with lipopolysaccharide (LPS) for 45 min or 24 h using the latest isobaric tandem-mass tags (TMTs) labeling approach. This approach led to the identification of 8984 proteins, of which 261 showed a 1.5-fold change in abundance after 24 h of treatment with LPS. A parallel phosphoproteome analysis identified 20,632 unique phosphopeptides from 3207 phosphoproteins with 3103 phosphorylation sites. Integrated proteomic and phosphoproteomic analyses showed significant downregulation of proteins related to mitochondrial respiration and cell cycle checkpoint, while proteins related to lipid metabolism, amino acid metabolism, cell-matrix adhesion, and endoplasmic reticulum (ER) stress were upregulated after LPS stimulation. Further, phosphorylation events in multiple pathways, including MAPKK and Wnt/β-catenin signalings, were identified as involved in LPS-triggered pathobiology. In essence, our findings reveal multiple integrated signals exerted by RPE under inflammation and are expected to give insight into the development of therapeutic interventions for RPE disorders.
Collapse
Affiliation(s)
- Juha Song
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea;
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (H.L.)
| | - Heonyi Lee
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (H.L.)
| | - Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea; (D.J.K.); (J.-Y.C.)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea; (D.J.K.); (J.-Y.C.)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul 08826, Korea
- Correspondence: (J.-H.P.); (S.H.S.); Tel.: +82-2-880-1256 (J.-H.P.); +82-2-740-8302 (S.H.S.); Fax: +82-2-763-5206 (S.H.S.)
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea;
- Department of Biomedical Sciences, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea
- Correspondence: (J.-H.P.); (S.H.S.); Tel.: +82-2-880-1256 (J.-H.P.); +82-2-740-8302 (S.H.S.); Fax: +82-2-763-5206 (S.H.S.)
| |
Collapse
|
26
|
Sinha T, Naash MI, Al-Ubaidi MR. The Symbiotic Relationship between the Neural Retina and Retinal Pigment Epithelium Is Supported by Utilizing Differential Metabolic Pathways. iScience 2020; 23:101004. [PMID: 32252018 PMCID: PMC7132098 DOI: 10.1016/j.isci.2020.101004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The neural retina and retinal pigment epithelium (RPE) maintain a symbiotic metabolic relationship, disruption of which leads to debilitating vision loss. The current study was undertaken to identify the differences in the steady-state metabolite levels and the pathways functioning between bona fide neural retina and RPE. Global metabolomics and cluster analyses identified 650 metabolites differentially modulated between the murine neural retina and RPE. Of these, 387 and 163 were higher in the RPE and the neural retina, respectively. Further analysis coupled with transcript and protein level investigations revealed that under normal physiological conditions, the RPE utilizes the pentose phosphate (>3-fold in RPE), serine (>10-fold in RPE), and sphingomyelin biosynthesis (>5-fold in RPE) pathways. Conversely, the neural retina relied mostly on glycolysis. These results show how the RPE and the neural retina have acquired an efficient, complementary and metabolically diverse symbiotic niche to support each other's distinct functions.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
27
|
Han JYS, Kinoshita J, Bisetto S, Bell BA, Nowak RA, Peachey NS, Philp NJ. Role of monocarboxylate transporters in regulating metabolic homeostasis in the outer retina: Insight gained from cell-specific Bsg deletion. FASEB J 2020; 34:5401-5419. [PMID: 32112484 DOI: 10.1096/fj.201902961r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
The neural retina metabolizes glucose through aerobic glycolysis generating large amounts of lactate. Lactate flux into and out of cells is regulated by proton-coupled monocarboxylate transporters (MCTs), which are encoded by members of the Slc16a family. MCT1, MCT3, and MCT4 are expressed in the retina and require association with the accessory protein basigin, encoded by Bsg, for maturation and trafficking to the plasma membrane. Bsg-/- mice have severely reduced electroretinograms (ERGs) and progressive photoreceptor degeneration, which is presumed to be driven by metabolic dysfunction resulting from loss of MCTs. To understand the basis of the Bsg-/- phenotype, we generated mice with conditional deletion of Bsg in rods (RodΔBsg), cones (Cone∆Bsg), or retinal pigment epithelial cells (RPEΔBsg). RodΔBsg mice showed a progressive loss of photoreceptors, while ConeΔBsg mice did not display a degenerative phenotype. The RPEΔBsg mice developed a distinct phenotype characterized by severely reduced ERG responses as early as 4 weeks of age. The loss of lactate transporters from the RPE most closely resembled the phenotype of the Bsg-/- mouse, suggesting that the regulation of lactate levels in the RPE and the subretinal space is essential for the viability and function of photoreceptors.
Collapse
Affiliation(s)
- John Y S Han
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Sara Bisetto
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brent A Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Romana A Nowak
- Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Neal S Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
28
|
Hellinen L, Sato K, Reinisalo M, Kidron H, Rilla K, Tachikawa M, Uchida Y, Terasaki T, Urtti A. Quantitative Protein Expression in the Human Retinal Pigment Epithelium: Comparison Between Apical and Basolateral Plasma Membranes With Emphasis on Transporters. Invest Ophthalmol Vis Sci 2020; 60:5022-5034. [PMID: 31791063 DOI: 10.1167/iovs.19-27328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal pigment epithelium (RPE) limits the xenobiotic entry from the systemic blood stream to the eye. RPE surface transporters can be important in ocular drug distribution, but it has been unclear whether they are expressed on the apical, basal, or both cellular surfaces. In this paper, we provide quantitative comparison of apical and basolateral RPE surface proteomes. Methods We separated the apical and basolateral membranes of differentiated human fetal RPE (hfRPE) cells by combining apical membrane peeling and sucrose density gradient centrifugation. The membrane fractions were analyzed with quantitative targeted absolute proteomics (QTAP) and sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) to reveal the membrane protein localization on the RPE cell surfaces. We quantitated 15 transporters in unfractionated RPE cells and scaled their expression to tissue level. Results Several proteins involved in visual cycle, cell adhesion, and ion and nutrient transport were expressed on the hfRPE plasma membranes. Most drug transporters showed similar abundance on both RPE surfaces, whereas large neutral amino acids transporter 1 (LAT1), p-glycoprotein (P-gp), and monocarboxylate transporter 1 (MCT1) showed modest apical enrichment. Many solute carriers (SLC) that are potential prodrug targets were present on both cellular surfaces, whereas putative sodium-coupled neutral amino acid transporter 7 (SNAT7) and riboflavin transporter (RFT3) were enriched on the basolateral and sodium- and chloride-dependent neutral and basic amino acid transporter (ATB0+) on the apical membrane. Conclusions Comprehensive quantitative information of the RPE surface proteomes was reported for the first time. The scientific community can use the data to further increase understanding of the RPE functions. In addition, we provide insights for transporter protein localization in the human RPE and the significance for ocular pharmacokinetics.
Collapse
Affiliation(s)
- Laura Hellinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kazuki Sato
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Mika Reinisalo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine, Department of Ophthalmology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heidi Kidron
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Rilla
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Laboratory of Biohybrid Technologies, Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
29
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films. Acta Biomater 2020; 101:327-343. [PMID: 31711900 DOI: 10.1016/j.actbio.2019.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/28/2022]
Abstract
In vitro cell culture models representing the physiological and pathological features of the outer retina are urgently needed. Artificial tissue replacements for patients suffering from degenerative retinal diseases are similarly in great demand. Here, we developed a co-culture system based solely on the use of human induced pluripotent stem cell (hiPSC)-derived cells. For the first time, hiPSC-derived retinal pigment epithelium (RPE) and endothelial cells (EC) were cultured on opposite sides of porous polylactide substrates prepared by breath figures (BF), where both surfaces had been collagen-coated by Langmuir-Schaefer (LS) technology. Small modifications of casting conditions during material preparation allowed the production of free-standing materials with distinct porosity, wettability and ion diffusion capacity. Complete pore coverage was achieved by the collagen coating procedure, resulting in a detectable nanoscale topography. Primary retinal endothelial cells (ACBRI181) and umbilical cord vein endothelial cells (hUVEC) were utilised as EC references. Mono-cultures of all ECs were prepared for comparison. All tested materials supported cell attachment and growth. In mono-culture, properties of the materials had a major effect on the growth of all ECs. In co-culture, the presence of hiPSC-RPE affected the primary ECs more significantly than hiPSC-EC. In consistency, hiPSC-RPE were also less affected by hiPSC-EC than by the primary ECs. Finally, our results show that the modulation of the porosity of the materials can promote or prevent EC migration. In short, we showed that the behaviour of the cells is highly dependent on the three main variables of the study: the presence of a second cell type in co-culture, the source of endothelial cells and the biomaterial properties. The combination of BF and LS methodologies is a powerful strategy to develop thin but stable materials enabling cell growth and modulation of cell-cell contact. STATEMENT OF SIGNIFICANCE: Artificial blood-retinal barriers (BRB), mimicking the interface at the back of the eye, are urgently needed as physiological and disease models, and for tissue transplantation targeting patients suffering from degenerative retinal diseases. Here, we developed a new co-culture model based on thin, biodegradable porous films, coated on both sides with collagen, one of the main components of the natural BRB, and cultivated endothelial and retinal pigment epithelial cells on opposite sides of the films, forming a three-layer structure. Importantly, our hiPSC-EC and hiPSC-RPE co-culture model is the first to exclusively use human induced pluripotent stem cells as cell source, which have been widely regarded as an practical candidate for therapeutic applications in regenerative medicine.
Collapse
|
31
|
Zhang Q, Presswalla F, Calton M, Charniga C, Stern J, Temple S, Vollrath D, Zacks DN, Ali RR, Thompson DA, Miller JML. Highly Differentiated Human Fetal RPE Cultures Are Resistant to the Accumulation and Toxicity of Lipofuscin-Like Material. Invest Ophthalmol Vis Sci 2019; 60:3468-3479. [PMID: 31408109 PMCID: PMC6692057 DOI: 10.1167/iovs.19-26690] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose The accumulation of undigestible autofluorescent material (UAM), termed lipofuscin in vivo, is a hallmark of aged RPE. Lipofuscin derives, in part, from the incomplete degradation of phagocytized photoreceptor outer segments (OS). Whether this accumulated waste is toxic is unclear. We therefore investigated the effects of UAM in highly differentiated human fetal RPE (hfRPE) cultures. Methods Unmodified and photo-oxidized OS were fed daily to confluent cultures of ARPE-19 RPE or hfRPE. The emission spectrum, composition, and morphology of resulting UAM were measured and compared to in vivo lipofuscin. Effects of UAM on multiple RPE phenotypes were assessed. Results Compared to ARPE-19, hfRPE were markedly less susceptible to UAM buildup. Accumulated UAM in hfRPE initially resembled the morphology of lipofuscin from AMD eyes, but compacted and shifted spectrum over time to resemble lipofuscin from healthy aged human RPE. UAM accumulation mildly reduced transepithelial electrical resistance, ketogenesis, certain RPE differentiation markers, and phagocytosis efficiency, while inducing senescence and rare, focal pockets of epithelial-mesenchymal transition. However, it had no effects on mitochondrial oxygen consumption rate, certain other RPE differentiation markers, secretion of drusen components or polarity markers, nor cell death. Conclusions hfRPE demonstrates a remarkable resistance to UAM accumulation, suggesting mechanisms for efficient OS processing that may be lost in other RPE culture models. Furthermore, while UAM alters hfRPE phenotype, the effects are modest, consistent with conflicting reports in the literature on the toxicity of lipofuscin. Our results suggest that healthy RPE may adequately adapt to and tolerate lipofuscin accumulation.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Melissa Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - Carol Charniga
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Jeffrey Stern
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - David N Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Robin R Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Debra A Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
32
|
Retinal Pigment Epithelial Cell Line with Fast Differentiation and Improved Barrier Properties. Pharmaceutics 2019; 11:pharmaceutics11080412. [PMID: 31412689 PMCID: PMC6722654 DOI: 10.3390/pharmaceutics11080412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 01/13/2023] Open
Abstract
Retinal pigment epithelium (RPE) acts as an outer blood–retinal barrier that limits the access of circulating xenobiotics to the eye. In addition, the RPE limits posterior elimination of intravitreally injected drugs to circulation. Thus, permeation in the RPE has a significant effect on ocular pharmacokinetics. The RPE is also a potentially important drug target in age-related macular degeneration. Therefore, the cell models of the RPE are important tools in ocular drug development, but poor availability and problems in reproducibility limit the use of primary RPE cell cultures. Furthermore, the best and widely used human cell line ARPE19 requires specialized culture conditions and a long time for cellular differentiation. In this paper, we describe a cell population arisen from the ARPE19 culture, with fast differentiation and improved barrier properties. This cell line, LEPI, forms clear microvilli and rapidly displays RPE-like cobblestone morphology after subculture in simple culture conditions. The LEPI cells show RPE-specific functions and expression of RPE65, ezrin, and BEST1 proteins. On filter, the LEPI cells develop tighter barrier than the ex vivo bovine RPE-choroid: permeability coefficients of beta-blockers (atenolol, nadolol, timolol, pindolol, metoprolol, betaxolol) ranged from 0.4 × 10−6 cm/sec to 2.3 × 10−6 cm/sec depending on the drug lipophilicity. This rapidly differentiating cell line will be an asset in ocular studies since it is easily maintained, it grows and differentiates quickly and does not require specialized culture conditions for differentiation. Thus, this cell line is suitable for both small scale assays and high throughput screening in drug discovery and development.
Collapse
|
33
|
Yam M, Engel AL, Wang Y, Zhu S, Hauer A, Zhang R, Lohner D, Huang J, Dinterman M, Zhao C, Chao JR, Du J. Proline mediates metabolic communication between retinal pigment epithelial cells and the retina. J Biol Chem 2019; 294:10278-10289. [PMID: 31110046 PMCID: PMC6664195 DOI: 10.1074/jbc.ra119.007983] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/16/2019] [Indexed: 01/16/2023] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of pigmented cells between the choroid and the retina. RPE dysfunction underlies many retinal degenerative diseases, including age-related macular degeneration, the leading cause of age-related blindness. To perform its various functions in nutrient transport, phagocytosis of the outer segment, and cytokine secretion, the RPE relies on an active energy metabolism. We previously reported that human RPE cells prefer proline as a nutrient and transport proline-derived metabolites to the apical, or retinal, side. In this study, we investigated how RPE utilizes proline in vivo and why proline is a preferred substrate. By using [13C]proline labeling both ex vivo and in vivo, we found that the retina rarely uses proline directly, whereas the RPE utilizes it at a high rate, exporting proline-derived mitochondrial intermediates for use by the retina. We observed that in primary human RPE cell culture, proline is the only amino acid whose uptake increases with cellular maturity. In human RPE, proline was sufficient to stimulate de novo serine synthesis, increase reductive carboxylation, and protect against oxidative damage. Blocking proline catabolism in RPE impaired glucose metabolism and GSH production. Notably, in an acute model of RPE-induced retinal degeneration, dietary proline improved visual function. In conclusion, proline is an important nutrient that supports RPE metabolism and the metabolic demand of the retina.
Collapse
Affiliation(s)
- Michelle Yam
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Abbi L Engel
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Yekai Wang
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Siyan Zhu
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Allison Hauer
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Rui Zhang
- From the Departments of Ophthalmology and
- the Save Sight Institute, University of Sydney, 8 Macquarie Street, Sydney, New South Wales 2000, Australia
| | - Daniel Lohner
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Jiancheng Huang
- From the Departments of Ophthalmology and
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
- the Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Marlee Dinterman
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Chen Zhao
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
| | - Jennifer R Chao
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109,
| | - Jianhai Du
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
34
|
Rosales MAB, Shu DY, Iacovelli J, Saint-Geniez M. Loss of PGC-1α in RPE induces mesenchymal transition and promotes retinal degeneration. Life Sci Alliance 2019; 2:2/3/e201800212. [PMID: 31101737 PMCID: PMC6526284 DOI: 10.26508/lsa.201800212] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/07/2023] Open
Abstract
Sustained loss of PGC-1α in RPE cells triggers mitochondrial/autophagic dysfunction and oxidative damage resulting in epithelial dedifferentiation and mesenchymal transition. RPE dysfunction caused by deletion of the PGC-1 coactivators in vivo causes retinal degeneration. The retinal pigment epithelium (RPE) supports visual processing and photoreceptor homeostasis via energetically demanding cellular functions. Here, we describe the consequences of repressing peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), a master regulator of mitochondrial function and biogenesis, on RPE epithelial integrity. The sustained silencing of PGC-1α in differentiating human RPE cells affected mitochondria/autophagy function, redox state, and impaired energy sensor activity ultimately inducing epithelial to mesenchymal transition (EMT). Adult conditional knockout of PGC-1 coactivators in mice resulted in rapid RPE dysfunction and transdifferentiation associated with severe photoreceptor degeneration. RPE anomalies were characteristic of autophagic defect and mesenchymal transition comparable with the ones observed in age-related macular degeneration. These findings demonstrate that PGC-1α is required to maintain the functional and phenotypic status of RPE by supporting the cells’ oxidative metabolism and autophagy-mediated repression of EMT.
Collapse
Affiliation(s)
- Mariana Aparecida Brunini Rosales
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA.,Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Daisy Y Shu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA.,Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Jared Iacovelli
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA.,Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA .,Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Brown CN, Green BD, Thompson RB, den Hollander AI, Lengyel I. Metabolomics and Age-Related Macular Degeneration. Metabolites 2018; 9:metabo9010004. [PMID: 30591665 PMCID: PMC6358913 DOI: 10.3390/metabo9010004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) leads to irreversible visual loss, therefore, early intervention is desirable, but due to its multifactorial nature, diagnosis of early disease might be challenging. Identification of early markers for disease development and progression is key for disease diagnosis. Suitable biomarkers can potentially provide opportunities for clinical intervention at a stage of the disease when irreversible changes are yet to take place. One of the most metabolically active tissues in the human body is the retina, making the use of hypothesis-free techniques, like metabolomics, to measure molecular changes in AMD appealing. Indeed, there is increasing evidence that metabolic dysfunction has an important role in the development and progression of AMD. Therefore, metabolomics appears to be an appropriate platform to investigate disease-associated biomarkers. In this review, we explored what is known about metabolic changes in the retina, in conjunction with the emerging literature in AMD metabolomics research. Methods for metabolic biomarker identification in the eye have also been discussed, including the use of tears, vitreous, and aqueous humor, as well as imaging methods, like fluorescence lifetime imaging, that could be translated into a clinical diagnostic tool with molecular level resolution.
Collapse
Affiliation(s)
- Connor N Brown
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Brian D Green
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast BT9 6AG, UK.
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen 6525 EX, The Netherlands.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
36
|
Swarup A, Samuels IS, Bell BA, Han JYS, Du J, Massenzio E, Abel ED, Boesze-Battaglia K, Peachey NS, Philp NJ. Modulating GLUT1 expression in retinal pigment epithelium decreases glucose levels in the retina: impact on photoreceptors and Müller glial cells. Am J Physiol Cell Physiol 2018; 316:C121-C133. [PMID: 30462537 DOI: 10.1152/ajpcell.00410.2018] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The retina is one of the most metabolically active tissues in the body and utilizes glucose to produce energy and intermediates required for daily renewal of photoreceptor cell outer segments. Glucose transporter 1 (GLUT1) facilitates glucose transport across outer blood retinal barrier (BRB) formed by the retinal pigment epithelium (RPE) and the inner BRB formed by the endothelium. We used conditional knockout mice to study the impact of reducing glucose transport across the RPE on photoreceptor and Müller glial cells. Transgenic mice expressing Cre recombinase under control of the Bestrophin1 ( Best1) promoter were bred with Glut1flox/flox mice to generate Tg-Best1-Cre:Glut1flox/flox mice ( RPEΔGlut1). The RPEΔGlut1 mice displayed a mosaic pattern of Cre expression within the RPE that allowed us to analyze mice with ~50% ( RPEΔGlut1m) recombination and mice with >70% ( RPEΔGlut1h) recombination separately. Deletion of GLUT1 from the RPE did not affect its carrier or barrier functions, indicating that the RPE utilizes other substrates to support its metabolic needs thereby sparing glucose for the outer retina. RPEΔGlut1m mice had normal retinal morphology, function, and no cell death; however, where GLUT1 was absent from a span of RPE greater than 100 µm, there was shortening of the photoreceptor cell outer segments. RPEΔGlut1h mice showed outer segment shortening, cell death of photoreceptors, and activation of Müller glial cells. The severe phenotype seen in RPEΔGlut1h mice indicates that glucose transport via the GLUT1 transporter in the RPE is required to meet the anabolic and catabolic requirements of photoreceptors and maintain Müller glial cells in a quiescent state.
Collapse
Affiliation(s)
- Aditi Swarup
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Ivy S Samuels
- Louis Stokes Cleveland VA Medical Center , Cleveland, Ohio.,Cole Eye Institute, Cleveland Clinic , Cleveland, Ohio
| | - Brent A Bell
- Department of Ophthalmology, University of Pennsylvania , Philadelphia, Pennsylvania
| | - John Y S Han
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Jianhai Du
- Department of Ophthalmology, Department of Biochemistry, West Virginia University Eye Institute , Morgantown, West Virginia
| | - Erik Massenzio
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa , Iowa City, Iowa.,Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, Penn Dental Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Neal S Peachey
- Louis Stokes Cleveland VA Medical Center , Cleveland, Ohio.,Cole Eye Institute, Cleveland Clinic , Cleveland, Ohio.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, Ohio
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Song J, Lee K, Park SW, Chung H, Jung D, Na YR, Quan H, Cho CS, Che JH, Kim JH, Park JH, Seok SH. Lactic Acid Upregulates VEGF Expression in Macrophages and Facilitates Choroidal Neovascularization. ACTA ACUST UNITED AC 2018; 59:3747-3754. [DOI: 10.1167/iovs.18-23892] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Juha Song
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul, South Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, South Korea
| | - Kihwang Lee
- Department of Ophthalmology, Ajou University School of Medicine, Suwon-si, South Korea
| | - Sung Wook Park
- FARB Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Hyewon Chung
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul, South Korea
| | - Daun Jung
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul, South Korea
| | - Yi Rang Na
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul, South Korea
| | - Hailian Quan
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul, South Korea
| | - Chang Sik Cho
- FARB Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jeong-Hwan Che
- Biomedical Research Institute, Seoul National University Hospital, Chongno-gu, Seoul, South Korea
| | - Jeong Hun Kim
- FARB Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, South Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul, South Korea
| |
Collapse
|
38
|
Luthert PJ, Serrano L, Kiel C. Opportunities and Challenges of Whole-Cell and -Tissue Simulations of the Outer Retina in Health and Disease. Annu Rev Biomed Data Sci 2018. [DOI: 10.1146/annurev-biodatasci-080917-013356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual processing starts in the outer retina, where photoreceptor cells sense photons that trigger electrical responses. Retinal pigment epithelial cells are located external to the photoreceptor layer and have critical functions in supporting cell and tissue homeostasis and thus sustaining a healthy retina. The high level of specialization makes the retina vulnerable to alterations that promote retinal degeneration. In this review, we discuss opportunities and challenges in proposing whole-cell and -tissue simulations of the human outer retina. An implicit position taken throughout this review is that mapping diverse data sets onto integrative computational models is likely to be a pivotal approach to understanding complex disease and developing novel interventions.
Collapse
Affiliation(s)
- Philip J. Luthert
- Institute of Ophthalmology and National Institute for Health Research (NIHR) Biomedical Research Centre, University College London, London EC1V 9EL, United Kingdom
| | - Luis Serrano
- European Molecular Biology Laboratory (EMBL)/Centre for Genomic Regulation (CRG) Systems Biology Research Unit, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Christina Kiel
- European Molecular Biology Laboratory (EMBL)/Centre for Genomic Regulation (CRG) Systems Biology Research Unit, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Systems Biology Ireland, Charles Institute of Dermatology, and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
39
|
Rimpelä AK, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, del Amo EM. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev 2018; 126:23-43. [PMID: 29247767 DOI: 10.1016/j.addr.2017.12.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/04/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Pigmented ocular tissues contain melanin within the intracellular melanosomes. Drugs bind to melanin at varying extent that ranges from no binding to extensive binding. Binding may lead to drug accumulation to the pigmented tissues and prolonged drug retention in the melanin containing cells. Therefore, melanin binding is an important feature that affects ocular drug delivery and biodistribution, but this topic has not been reviewed since 1998. In this review, we present current knowledge on ocular melanin, melanosomes and binding of drugs to pigmented cells and tissues. In vitro, in vivo and in silico methods in the field were critically evaluated, because the literature in this field can be confusing if the reader does not properly understand the methodological aspects. Literature analysis includes a comprehensive table of literature data on melanin binding of drugs. Furthermore, we aimed to give some insights beyond the current literature by making a chemical structure based classification model for melanin binding of drugs and kinetic simulations that revealed significant interplay between melanin binding and drug permeability across the melanosomal and plasma membranes. Overall, more mechanistic and systematic research is needed before the impact of melanin binding on ocular drug delivery can be properly understood and predicted.
Collapse
|
40
|
Joyal JS, Gantner ML, Smith LEH. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 2017; 64:131-156. [PMID: 29175509 DOI: 10.1016/j.preteyeres.2017.11.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Canada.
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, United States
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston MA 02115, United States.
| |
Collapse
|
41
|
Shao Z, Wang H, Zhou X, Guo B, Gao X, Xiao Z, Liu M, Sha J, Jiang C, Luo Y, Liu Z, Li S. Spontaneous generation of a novel foetal human retinal pigment epithelium (RPE) cell line available for investigation on phagocytosis and morphogenesis. Cell Prolif 2017; 50. [PMID: 28924976 PMCID: PMC6529143 DOI: 10.1111/cpr.12386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022] Open
Abstract
Objectives Primary retinal pigment epithelium (RPE) cells have a limited capacity to re‐establish epithelial morphology and to maintain native RPE function in vitro, and all commercially available RPE cell lines have drawbacks of morphology or function; therefore, the establishment of new RPE cell lines with typical characteristics of RPE would be helpful in further understanding of their physiological and pathological mechanisms. Here, we firstly report a new spontaneously generated RPE line, fhRPE‐13A, from a 13‐week aborted foetus. We aimed to investigate its availability as a RPE model. Materials and methods RNA‐seq data were mapped to the human genome assembly hg19. Global transcriptional data were analysed by Weighted Gene Co‐expression Network Analysis (WGCNA) and differentially expressed genes (DEGs). The morphology and molecular characteristics were examined by immunofluorescence, transmission electron micrographs, PCR and western blot. Photoreceptor outer segments (POS) phagocytosis assay and transepithelial resistance measurement (TER) were performed to assess phagocytic activity and barrier function, respectively. Results The fhRPE‐13A cells showed typical polygonal morphology and normal biological processes of RPE. Meanwhile they were capable of POS phagocytosis in vitro, and the expression level of TYR and TYRP1 were significantly higher than that in ARPE‐19 cells. Conclusions The foetal human RPE line fhRPE‐13A is a valuable system for researching phagocytosis and morphogenesis of RPE in vitro.
Collapse
Affiliation(s)
- Zhihua Shao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyun Wang
- Shanghai First Maternity and Infant Health Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuejian Zhou
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Baosen Guo
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Xuehu Gao
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Zengrong Xiao
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Meng Liu
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Jihong Sha
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Chunlian Jiang
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhixue Liu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Kanow MA, Giarmarco MM, Jankowski CS, Tsantilas K, Engel AL, Du J, Linton JD, Farnsworth CC, Sloat SR, Rountree A, Sweet IR, Lindsay KJ, Parker ED, Brockerhoff SE, Sadilek M, Chao JR, Hurley JB. Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. eLife 2017; 6:28899. [PMID: 28901286 PMCID: PMC5617631 DOI: 10.7554/elife.28899] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Müller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.
Collapse
Affiliation(s)
- Mark A Kanow
- Department of Biochemistry, University of Washington, Seattle, United States
| | | | - Connor Sr Jankowski
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Kristine Tsantilas
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, United States
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, United States.,Department of Biochemistry, West Virginia University, Morgantown, United States
| | - Jonathan D Linton
- Department of Biochemistry, University of Washington, Seattle, United States.,Department of Ophthalmology, University of Washington, Seattle, United States
| | | | - Stephanie R Sloat
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Austin Rountree
- Department of Medicine, UW Diabetes Institute, University of Washington, Seattle, United States
| | - Ian R Sweet
- Department of Medicine, UW Diabetes Institute, University of Washington, Seattle, United States
| | - Ken J Lindsay
- Department of Biochemistry, University of Washington, Seattle, United States.,Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Edward D Parker
- Department of Ophthalmology, University of Washington, Seattle, United States
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, United States.,Department of Ophthalmology, University of Washington, Seattle, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, United States
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, United States
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, United States.,Department of Ophthalmology, University of Washington, Seattle, United States
| |
Collapse
|
43
|
Chao JR, Knight K, Engel AL, Jankowski C, Wang Y, Manson MA, Gu H, Djukovic D, Raftery D, Hurley JB, Du J. Human retinal pigment epithelial cells prefer proline as a nutrient and transport metabolic intermediates to the retinal side. J Biol Chem 2017; 292:12895-12905. [PMID: 28615447 DOI: 10.1074/jbc.m117.788422] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/30/2017] [Indexed: 11/06/2022] Open
Abstract
Metabolite transport is a major function of the retinal pigment epithelium (RPE) to support the neural retina. RPE dysfunction plays a significant role in retinal degenerative diseases. We have used mass spectrometry with 13C tracers to systematically study nutrient consumption and metabolite transport in cultured human fetal RPE. LC/MS-MS detected 120 metabolites in the medium from either the apical or basal side. Surprisingly, more proline is consumed than any other nutrient, including glucose, taurine, lipids, vitamins, or other amino acids. Besides being oxidized through the Krebs cycle, proline is used to make citrate via reductive carboxylation. Citrate, made either from 13C proline or from 13C glucose, is preferentially exported to the apical side and is taken up by the retina. In conclusion, RPE cells consume multiple nutrients, including glucose and taurine, but prefer proline, and they actively synthesize and export metabolic intermediates to the apical side to nourish the outer retina.
Collapse
Affiliation(s)
- Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109.
| | - Kaitlen Knight
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Connor Jankowski
- Department of Biochemistry, University of Washington, Seattle, Washington 98109
| | - Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506; Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Megan A Manson
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - James B Hurley
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109; Department of Biochemistry, University of Washington, Seattle, Washington 98109
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506; Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506.
| |
Collapse
|
44
|
Reyes-Reveles J, Dhingra A, Alexander D, Bragin A, Philp NJ, Boesze-Battaglia K. Phagocytosis-dependent ketogenesis in retinal pigment epithelium. J Biol Chem 2017; 292:8038-8047. [PMID: 28302729 DOI: 10.1074/jbc.m116.770784] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/13/2017] [Indexed: 11/06/2022] Open
Abstract
Daily, the retinal pigment epithelium (RPE) ingests a bolus of lipid and protein in the form of phagocytized photoreceptor outer segments (OS). The RPE, like the liver, expresses enzymes required for fatty acid oxidation and ketogenesis. This suggests that these pathways play a role in the disposal of lipids from ingested OS, as well as providing a mechanism for recycling metabolic intermediates back to the outer retina. In this study, we examined whether OS phagocytosis was linked to ketogenesis. We found increased levels of β-hydroxybutyrate (β-HB) in the apical medium following ingestion of OS by human fetal RPE and ARPE19 cells cultured on Transwell inserts. No increase in ketogenesis was observed following ingestion of oxidized OS or latex beads. Our studies further defined the connection between OS phagocytosis and ketogenesis in wild-type mice and mice with defects in phagosome maturation using a mouse RPE explant model. In explant studies, the levels of β-HB released were temporally correlated with OS phagocytic burst after light onset. In the Mreg-/- mouse where phagosome maturation is delayed, there was a temporal shift in the release of β-HB. An even more pronounced shift in maximal β-HB production was observed in the Abca4-/- RPE, in which loss of the ATP-binding cassette A4 transporter results in defective phagosome processing and accumulation of lipid debris. These studies suggest that FAO and ketogenesis are key to supporting the metabolism of the RPE and preventing the accumulation of lipids that lead to oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Juan Reyes-Reveles
- From the Department of Biochemistry, School of Dental Medicine (SDM), University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Anuradha Dhingra
- From the Department of Biochemistry, School of Dental Medicine (SDM), University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Desiree Alexander
- From the Department of Biochemistry, School of Dental Medicine (SDM), University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Alvina Bragin
- From the Department of Biochemistry, School of Dental Medicine (SDM), University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Nancy J Philp
- the Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19146
| | - Kathleen Boesze-Battaglia
- From the Department of Biochemistry, School of Dental Medicine (SDM), University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
45
|
Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis 2017; 23:60-89. [PMID: 28356702 PMCID: PMC5360456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/03/2017] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of ARPE-19 cells in an undifferentiated state to attempt to model RPE functions. We wished to determine whether suitable culture conditions and differentiation could restore the RPE-appropriate expression of genes and proteins to ARPE-19, along with a functional and morphological phenotype resembling native RPE. We compared the transcriptome of ARPE-19 cells kept in long-term culture with those of primary and other human RPE cells to assess the former's inherent plasticity relative to the latter. METHODS ARPE-19 cells at passages 9 to 12 grown in DMEM containing high glucose and pyruvate with 1% fetal bovine serum were differentiated for up to 4 months. Immunocytochemistry was performed on ARPE-19 cells grown on filters. Total RNA extracted from ARPE-19 cells cultured for either 4 days or 4 months was used for RNA sequencing (RNA-Seq) analysis using a 2 × 50 bp paired end protocol. The RNA-Seq data were analyzed to identify the affected pathways and recognize shared ontological classification among differentially expressed genes. RPE-specific mRNAs and miRNAs were assessed with quantitative real-time (RT)-PCR, and proteins with western blotting. RESULTS ARPE-19 cells grown for 4 months developed the classic native RPE phenotype with heavy pigmentation. RPE-expressed genes, including RPE65, RDH5, and RDH10, as well as miR-204/211, were greatly increased in the ARPE-19 cells maintained at confluence for 4 months. The RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of the genes in the differentiated ARPE-19 cells. Of the 16,757 genes with detectable signals, nearly 1,681 genes were upregulated, and 1,629 genes were downregulated with a fold change of 2.5 or more differences between 4 months and 4 days of culture. Gene Ontology analysis showed that the upregulated genes were associated with visual cycle, phagocytosis, pigment synthesis, cell differentiation, and RPE-related transcription factors. The majority of the downregulated genes play a role in cell cycle and proliferation. CONCLUSIONS The ARPE-19 cells cultured for 4 months developed a phenotype characteristic of native RPE and expressed proteins, mRNAs, and miRNAs characteristic of the RPE. Comparison of the ARPE-19 RNA-Seq data set with that of primary human fetal RPE, embryonic stem cell-derived RPE, and native RPE revealed an important overall similar expression ratio among all the models and native tissue. However, none of the cultured models reached the absolute values in the native tissue. The results of this study demonstrate that low-passage ARPE-19 cells can express genes specific to native human RPE cells when appropriately cultured and differentiated.
Collapse
|
46
|
Pelkonen L, Sato K, Reinisalo M, Kidron H, Tachikawa M, Watanabe M, Uchida Y, Urtti A, Terasaki T. LC–MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line. Mol Pharm 2017; 14:605-613. [DOI: 10.1021/acs.molpharmaceut.6b00782] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laura Pelkonen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Kazuki Sato
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan
| | - Mika Reinisalo
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Heidi Kidron
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Masanori Tachikawa
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan
| | - Michitoshi Watanabe
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan
| | - Arto Urtti
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Tetsuya Terasaki
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
47
|
Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium. Proc Natl Acad Sci U S A 2016; 113:14710-14715. [PMID: 27911769 DOI: 10.1073/pnas.1604572113] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of pigmented cells that requires an active metabolism to maintain outer retinal homeostasis and compensate for oxidative stress. Using 13C metabolic flux analysis in human RPE cells, we found that RPE has an exceptionally high capacity for reductive carboxylation, a metabolic pathway that has recently garnered significant interest because of its role in cancer cell survival. The capacity for reductive carboxylation in RPE exceeds that of all other cells tested, including retina, neural tissue, glial cells, and a cancer cell line. Loss of reductive carboxylation disrupts redox balance and increases RPE sensitivity to oxidative damage, suggesting that deficiencies of reductive carboxylation may contribute to RPE cell death. Supporting reductive carboxylation by supplementation with an NAD+ precursor or its substrate α-ketoglutarate or treatment with a poly(ADP ribose) polymerase inhibitor protects reductive carboxylation and RPE viability from excessive oxidative stress. The ability of these treatments to rescue RPE could be the basis for an effective strategy to treat blinding diseases caused by RPE dysfunction.
Collapse
|
48
|
Por ED, Greene WA, Burke TA, Wang HC. Trichostatin A Inhibits Retinal Pigmented Epithelium Activation in an In Vitro Model of Proliferative Vitreoretinopathy. J Ocul Pharmacol Ther 2016; 32:415-24. [PMID: 27494828 PMCID: PMC5011631 DOI: 10.1089/jop.2016.0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose: Proliferative vitreoretinopathy (PVR) is a blinding disorder that develops after a retinal tear or detachment. Activation of the retinal pigmented epithelium (RPE) is implicated in PVR; however, the mechanisms leading to enhanced RPE proliferation, migration, and contraction remain largely unknown. This study utilized an in vitro model of PVR to investigate the role of acetylation in RPE activation and its contribution to the progression of this disease. Methods: ARPE-19 cells, primary cultures of porcine RPE, and induced pluripotent stem cell-derived RPE (iPS-RPE) were utilized for cellular and molecular analyses. Cells treated with transforming growth factor beta 2 (TGFβ2; 10 ng/mL) alone or in the presence of the broad-spectrum histone deacetylase (HDAC) inhibitor, trichostatin A (TSA; 0.1 μM), were assessed for contraction and migration through collagen contraction and scratch assays, respectively. Western blotting and immunofluorescence analysis were performed to assess α-smooth muscle actin (α-SMA) and β-catenin expression after TGFβ2 treatment alone or in combination with TSA. Results: TGFβ2 significantly increased RPE cell contraction in collagen matrix and this effect was inhibited in the presence of TSA (0.1 μM). In agreement with these data, immunofluorescence analysis of TSA-treated iPS-RPE wounded monolayers revealed decreased α-SMA as compared with control. Scratch assays to assess wound healing revealed TSA inhibited TGFβ2-mediated iPS-RPE cell migration. Conclusions: Our findings indicate a role of acetylation in RPE activation. Specifically, the HDAC inhibitor TSA decreased RPE cell proliferation and TGFβ2-mediated cell contraction and migration. Further investigation of pharmacological compounds that modulate acetylation may hold promise as therapeutic agents for PVR.
Collapse
Affiliation(s)
- Elaine D Por
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| | - Whitney A Greene
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| | - Teresa A Burke
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| | - Heuy-Ching Wang
- Ocular Trauma, U.S. Army Institute of Surgical Research , JBSA-Fort Sam Houston, Texas
| |
Collapse
|
49
|
Iacovelli J, Rowe GC, Khadka A, Diaz-Aguilar D, Spencer C, Arany Z, Saint-Geniez M. PGC-1α Induces Human RPE Oxidative Metabolism and Antioxidant Capacity. Invest Ophthalmol Vis Sci 2016; 57:1038-51. [PMID: 26962700 PMCID: PMC4788093 DOI: 10.1167/iovs.15-17758] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Oxidative stress and metabolic dysregulation of the RPE have been implicated in AMD; however, the molecular regulation of RPE metabolism remains unclear. The transcriptional coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) is a powerful mediator of mitochondrial function. This study examines the ability of PGC-1α to regulate RPE metabolic program and oxidative stress response. Methods Primary human fetal RPE (hfRPE) and ARPE-19 were matured in vitro using standard culture conditions. Mitochondrial mass of RPE was measured using MitoTracker staining and citrate synthase activity. Expression of PGC-1 isoforms, RPE-specific genes, oxidative metabolism proteins, and antioxidant enzymes was analyzed by quantitative PCR and Western blot. Mitochondrial respiration and fatty-acid oxidation were monitored using the Seahorse extracellular flux analyzer. Expression of PGC-1α was increased using adenoviral delivery. ARPE-19 were exposed to hydrogen peroxide to induce oxidative stress. Reactive oxygen species were measured by CM-H2DCFDA fluorescence. Cell death was analyzed by LDH release. Results Maturation of ARPE-19 and hfRPE was associated with significant increase in mitochondrial mass, expression of oxidative phosphorylation (OXPHOS) genes, and PGC-1α gene expression. Overexpression of PGC-1α increased expression of OXPHOS and fatty-acid β-oxidation genes, ultimately leading to the potent induction of mitochondrial respiration and fatty-acid oxidation. PGC-1α gain of function also strongly induced numerous antioxidant genes and, importantly, protected RPE from oxidant-mediated cell death without altering RPE functions. Conclusions This study provides important insights into the metabolic changes associated with RPE functional maturation and identifies PGC-1α as a potent driver of RPE mitochondrial function and antioxidant capacity.
Collapse
Affiliation(s)
- Jared Iacovelli
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Glenn C Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Arogya Khadka
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Daniel Diaz-Aguilar
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Carrie Spencer
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Magali Saint-Geniez
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
50
|
Fronk AH, Vargis E. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations. J Tissue Eng 2016; 7:2041731416650838. [PMID: 27493715 PMCID: PMC4959307 DOI: 10.1177/2041731416650838] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/23/2016] [Indexed: 12/17/2022] Open
Abstract
The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.
Collapse
Affiliation(s)
- Aaron H Fronk
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| |
Collapse
|