1
|
Nordahl KML, Fedulov V, Holm A, Haanes KA. Intraocular Adeno-Associated Virus-Mediated Transgene Endothelin-1 Delivery to the Rat Eye Induces Functional Changes Indicative of Retinal Ischemia-A Potential Chronic Glaucoma Model. Cells 2023; 12:1987. [PMID: 37566067 PMCID: PMC10417058 DOI: 10.3390/cells12151987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Endothelin-1 (ET-1) overactivity has been implicated as a factor contributing to glaucomatous neuropathy, and it has been utilized in animal models of retinal ischemia. The functional effects of long-term ET-1 exposure and possible compensatory mechanisms have, however, not been investigated. This was therefore the purpose of our study. ET-1 was delivered into rat eyes via a single intravitreal injection of 500 µM or via transgene delivery using an adeno-associated viral (AAV) vector. Retinal function was assessed using electroretinography (ERG) and the retinal expression of potentially compensatory genes was evaluated by means of qRT-PCR. Acute ET-1 delivery led to vasoconstriction and a significant reduction in the ERG response. AAV-ET-1 resulted in substantial transgene expression and ERG results similar to the acute ET-1 injections and comparable to other models of retinal ischemia. Compensatory changes were observed, including an increase in calcitonin gene-related peptide (CGRP) gene expression, which may both counterbalance the vasoconstrictive effects of ET-1 and provide neuroprotection. This chronic ET-1 ischemia model might be especially relevant to glaucoma research, mimicking the mild and repeated ischemic events in patients with long-term vascular dysfunction. The compensatory mechanisms, and particularly the role of vasodilatory CGRP in mitigating the retinal damage, warrant further investigation with the aim of evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Karin M. L. Nordahl
- Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark; (A.H.); (K.A.H.)
| | - Vadim Fedulov
- Clinical and Medical Affairs, Radiometer, 2700 Brønshøj, Denmark;
| | - Anja Holm
- Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark; (A.H.); (K.A.H.)
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Kristian A. Haanes
- Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark; (A.H.); (K.A.H.)
| |
Collapse
|
2
|
Paşcalău R, Badea TC. Signaling - transcription interactions in mouse retinal ganglion cells early axon pathfinding -a literature review. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1180142. [PMID: 38983012 PMCID: PMC11182120 DOI: 10.3389/fopht.2023.1180142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/21/2023] [Indexed: 07/11/2024]
Abstract
Sending an axon out of the eye and into the target brain nuclei is the defining feature of retinal ganglion cells (RGCs). The literature on RGC axon pathfinding is vast, but it focuses mostly on decision making events such as midline crossing at the optic chiasm or retinotopic mapping at the target nuclei. In comparison, the exit of RGC axons out of the eye is much less explored. The first checkpoint on the RGC axons' path is the optic cup - optic stalk junction (OC-OS). OC-OS development and the exit of the RGC pioneer axons out of the eye are coordinated spatially and temporally. By the time the optic nerve head domain is specified, the optic fissure margins are in contact and the fusion process is ongoing, the first RGCs are born in its proximity and send pioneer axons in the optic stalk. RGC differentiation continues in centrifugal waves. Later born RGC axons fasciculate with the more mature axons. Growth cones at the end of the axons respond to guidance cues to adopt a centripetal direction, maintain nerve fiber layer restriction and to leave the optic cup. Although there is extensive information on OC-OS development, we still have important unanswered questions regarding its contribution to the exit of the RGC axons out of the eye. We are still to distinguish the morphogens of the OC-OS from the axon guidance molecules which are expressed in the same place at the same time. The early RGC transcription programs responsible for axon emergence and pathfinding are also unknown. This review summarizes the molecular mechanisms for early RGC axon guidance by contextualizing mouse knock-out studies on OC-OS development with the recent transcriptomic studies on developing RGCs in an attempt to contribute to the understanding of human optic nerve developmental anomalies. The published data summarized here suggests that the developing optic nerve head provides a physical channel (the closing optic fissure) as well as molecular guidance cues for the pioneer RGC axons to exit the eye.
Collapse
Affiliation(s)
- Raluca Paşcalău
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- Ophthalmology Clinic, Cluj County Emergency Hospital, Cluj-Napoca, Romania
| | - Tudor Constantin Badea
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- National Center for Brain Research, Institutul de Cercetări pentru Inteligență Artificială, Romanian Academy, Bucharest, Romania
| |
Collapse
|
3
|
Miralles de Imperial-Ollero JA, Vidal-Villegas B, Gallego-Ortega A, Nadal-Nicolás FM, Salinas-Navarro M, Norte-Muñoz M, Di Pierdomenico J, Galindo-Romero C, Agudo-Barriuso M, Vidal-Sanz M, Valiente-Soriano FJ. Methods to Identify Rat and Mouse Retinal Ganglion Cells in Retinal Flat-Mounts. Methods Mol Biol 2023; 2708:175-194. [PMID: 37558971 DOI: 10.1007/978-1-0716-3409-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The identification of distinct retinal ganglion cell (RGC) populations in flat-mounted retinas is key to investigating pathological or pharmacological effects in these cells. In this chapter, we review the main techniques for detecting the total population of RGCs and various of their subtypes in whole-mounted retinas of pigmented and albino rats and mice, four of the animal strains most studied by the scientific community in the retina field. These methods are based on the studies published by the Vidal-Sanz's laboratory.
Collapse
Affiliation(s)
- Juan A Miralles de Imperial-Ollero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Beatriz Vidal-Villegas
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Francisco M Nadal-Nicolás
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - María Norte-Muñoz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain.
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain.
| |
Collapse
|
4
|
Gallego-Ortega A, Norte-Muñoz M, Di Pierdomenico J, Avilés-Trigueros M, de la Villa P, Valiente-Soriano FJ, Vidal-Sanz M. Alpha retinal ganglion cells in pigmented mice retina: number and distribution. Front Neuroanat 2022; 16:1054849. [PMID: 36530520 PMCID: PMC9751430 DOI: 10.3389/fnana.2022.1054849] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: To identify and characterize numerically and topographically the population of alpha retinal ganglion cells (αRGCs) and their subtypes, the sustained-response ON-center αRGCs (ONs-αRGCs), which correspond to the type 4 intrinsically photosensitive RGCs (M4-ipRGCs), the transient-response ON-center αRGCs (ONt-αRGCs), the sustained-response OFF-center αRGCs (OFFs-αRGCs), and the transient-response OFF-center αRGCs (OFFt-αRGCs) in the adult pigmented mouse retina.Methods: The αRGC population and its subtypes were studied in flat-mounted retinas and radial sections immunodetected against non-phosphorylated high molecular weight neurofilament subunit (SMI-32) or osteopontin (OPN), two αRGCs pan-markers; Calbindin, expressed in ONs-αRGCs, and amacrines; T-box transcription factor T-brain 2 (Tbr2), a key transcriptional regulator for ipRGC development and maintenance, expressed in ipRGCs and GABA-displaced amacrine cells; OPN4, an anti-melanopsin antibody; or Brn3a and Brn3c, markers of RGCs. The total population of RGCs was counted automatically and αRGCs and its subtypes were counted manually, and color-coded neighborhood maps were used for their topographical representation.Results: The total mean number of αRGCs per retina is 2,252 ± 306 SMI32+αRGCs and 2,315 ± 175 OPN+αRGCs (n = 10), representing 5.08% and 5.22% of the total number of RGCs traced from the optic nerve, respectively. αRGCs are distributed throughout the retina, showing a higher density in the temporal hemiretina. ONs-αRGCs represent ≈36% [841 ± 110 cells (n = 10)] of all αRGCs and are located throughout the retina, with the highest density in the temporal region. ONt-αRGCs represent ≈34% [797 ± 146 cells (n = 10)] of all αRGCs and are mainly located in the central retinal region. OFF-αRGCs represent the remaining 32% of total αRGCs and are divided equally between OFFs-αRGCs and OFFt-αRGCs [363 ± 50 cells (n = 10) and 376 ± 36 cells (n = 10), respectively]. OFFs-αRGCs are mainly located in the supero-temporal peripheral region of the retina and OFFt-αRGCs in the mid-peripheral region of the retina, especially in the infero-temporal region.Conclusions: The combination of specific antibodies is a useful tool to identify and study αRGCs and their subtypes. αRGCs are distributed throughout the retina presenting higher density in the temporal area. The sustained ON and OFF response subtypes are mainly located in the periphery while the transient ON and OFF response subtypes are found in the central regions of the retina.
Collapse
Affiliation(s)
- Alejandro Gallego-Ortega
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - María Norte-Muñoz
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Johnny Di Pierdomenico
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Pedro de la Villa
- Department of Systems Biology, Laboratory of Visual Neurophysiology, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - Francisco Javier Valiente-Soriano
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
- *Correspondence: Manuel Vidal-Sanz Francisco Javier Valiente-Soriano
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
- *Correspondence: Manuel Vidal-Sanz Francisco Javier Valiente-Soriano
| |
Collapse
|
5
|
Lucas-Ruiz F, Galindo-Romero C, Albaladejo-García V, Vidal-Sanz M, Agudo-Barriuso M. Mechanisms implicated in the contralateral effect in the central nervous system after unilateral injury: focus on the visual system. Neural Regen Res 2021; 16:2125-2131. [PMID: 33818483 PMCID: PMC8354113 DOI: 10.4103/1673-5374.310670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
The retina, as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments. During the last decade is becoming clear that unilateral lesions in bilateral areas of the central nervous system trigger an inflammatory response in the contralateral uninjured site. This effect has been better studied in the visual system where, as a rule, one retina is used as experimental and the other as control. Contralateral retinas in unilateral models of retinal injury show neuronal degeneration and glial activation. The mechanisms by which this adverse response in the central nervous system occurs are discussed in this review, focusing primarily on the visual system.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Virginia Albaladejo-García
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| |
Collapse
|
6
|
Abstract
Retinal ganglion cells (RGCs) serve as a crucial communication channel from the retina to the brain. In the adult, these cells receive input from defined sets of presynaptic partners and communicate with postsynaptic brain regions to convey features of the visual scene. However, in the developing visual system, RGC interactions extend beyond their synaptic partners such that they guide development before the onset of vision. In this Review, we summarize our current understanding of how interactions between RGCs and their environment influence cellular targeting, migration and circuit maturation during visual system development. We describe the roles of RGC subclasses in shaping unique developmental responses within the retina and at central targets. Finally, we highlight the utility of RNA sequencing and genetic tools in uncovering RGC type-specific roles during the development of the visual system.
Collapse
Affiliation(s)
- Shane D'Souza
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Richard A Lang
- The Visual Systems Group, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Pereiro X, Ruzafa N, Urcola JH, Sharma SC, Vecino E. Differential Distribution of RBPMS in Pig, Rat, and Human Retina after Damage. Int J Mol Sci 2020; 21:ijms21239330. [PMID: 33297577 PMCID: PMC7729751 DOI: 10.3390/ijms21239330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
RNA binding protein with multiple splicing (RBPMS) is expressed exclusively in retinal ganglion cells (RGCs) in the retina and can label all RGCs in normal retinas of mice, rats, guinea pigs, rabbits, cats, and monkeys, but its function in these cells is not known. As a result of the limited knowledge regarding RBPMS, we analyzed the expression of RBPMS in the retina of different mammalian species (humans, pigs, and rats), in various stages of development (neonatal and adult) and with different levels of injury (control, hypoxia, and organotypic culture or explants). In control conditions, RBPMS was localized in the RGCs somas in the ganglion cell layer, whereas in hypoxic conditions, it was localized in the RGCs dendrites in the inner plexiform layer. Such differential distributions of RBPMS occurred in all analyzed species, and in adult and neonatal retinas. Furthermore, we demonstrate RBPMS localization in the degenerating RGCs axons in the nerve fiber layer of retinal explants. This is the first evidence regarding the possible transport of RBPMS in response to physiological damage in a mammalian retina. Therefore, RBPMS should be further investigated in relation to its role in axonal and dendritic degeneration.
Collapse
Affiliation(s)
- Xandra Pereiro
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE), University of the Basque Country UPV/EHU, 48940 Leioa, Vizcaya, Spain; (X.P.); (N.R.); (J.H.U.); (S.C.S.)
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE), University of the Basque Country UPV/EHU, 48940 Leioa, Vizcaya, Spain; (X.P.); (N.R.); (J.H.U.); (S.C.S.)
| | - J. Haritz Urcola
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE), University of the Basque Country UPV/EHU, 48940 Leioa, Vizcaya, Spain; (X.P.); (N.R.); (J.H.U.); (S.C.S.)
- Department of Ophthalmology, Araba University Hospital, 01009 Vitoria, Alava, Spain
| | - Sansar C. Sharma
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE), University of the Basque Country UPV/EHU, 48940 Leioa, Vizcaya, Spain; (X.P.); (N.R.); (J.H.U.); (S.C.S.)
- Department of Anatomy and Cell Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Elena Vecino
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE), University of the Basque Country UPV/EHU, 48940 Leioa, Vizcaya, Spain; (X.P.); (N.R.); (J.H.U.); (S.C.S.)
- Correspondence:
| |
Collapse
|
8
|
Boia R, Dias PA, Martins JM, Galindo-Romero C, Aires ID, Vidal-Sanz M, Agudo-Barriuso M, de Sousa HC, Ambrósio AF, Braga ME, Santiago AR. Porous poly(ε-caprolactone) implants: A novel strategy for efficient intraocular drug delivery. J Control Release 2019; 316:331-348. [DOI: 10.1016/j.jconrel.2019.09.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/22/2023]
|
9
|
Roig-Puiggros S, Vigouroux RJ, Beckman D, Bocai NI, Chiou B, Davimes J, Gomez G, Grassi S, Hoque A, Karikari TK, Kiffer F, Lopez M, Lunghi G, Mazengenya P, Meier S, Olguín-Albuerne M, Oliveira MM, Paraíso-Luna J, Pradhan J, Radiske A, Ramos-Hryb AB, Ribeiro MC, Schellino R, Selles MC, Singh S, Theotokis P, Chédotal A. Construction and reconstruction of brain circuits: normal and pathological axon guidance. J Neurochem 2019; 153:10-32. [PMID: 31630412 DOI: 10.1111/jnc.14900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Perception of our environment entirely depends on the close interaction between the central and peripheral nervous system. In order to communicate each other, both systems must develop in parallel and in coordination. During development, axonal projections from the CNS as well as the PNS must extend over large distances to reach their appropriate target cells. To do so, they read and follow a series of axon guidance molecules. Interestingly, while these molecules play critical roles in guiding developing axons, they have also been shown to be critical in other major neurodevelopmental processes, such as the migration of cortical progenitors. Currently, a major hurdle for brain repair after injury or neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By contrasts, PNS axons can regenerate. Many hypotheses have been put forward to explain this paradox but recent studies suggest that hacking neurodevelopmental mechanisms may be the key to promote CNS regeneration. Here we provide a seminar report written by trainees attending the second Flagship school held in Alpbach, Austria in September 2018 organized by the International Society for Neurochemistry (ISN) together with the Journal of Neurochemistry (JCN). This advanced school has brought together leaders in the fields of neurodevelopment and regeneration in order to discuss major keystones and future challenges in these respective fields.
Collapse
Affiliation(s)
| | - Robin J Vigouroux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Danielle Beckman
- California National Primate Research Center, UC Davis, Davis, California, USA
| | - Nadia I Bocai
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Brian Chiou
- Department of Pediatrics, University of California - San Francisco, San Francisco, California, USA
| | - Joshua Davimes
- Faculty of Health Sciences School of Anatomical Sciences, University of the Witwatersrand, Parktown Johannesburg, South Africa
| | - Gimena Gomez
- Laboratorio de Parkinson Experimental, Instituto de Investigaciones Farmacológicas (ININFA-CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ashfaqul Hoque
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,School of Life Sciences, University of Warwick, Coventry, UK.,Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, UK
| | - Frederico Kiffer
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mary Lopez
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicin, University of Milano, Segrate, Italy
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sonja Meier
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mauricio M Oliveira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juan Paraíso-Luna
- Ramón y Cajal Institute of Health Research (IRYCIS), Department of Biochemistry and Molecular Biology and University Research Institute in Neurochemistry (IUIN), Complutense University, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jonu Pradhan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Belén Ramos-Hryb
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina.,Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Mayara C Ribeiro
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Roberta Schellino
- Neuroscience Department "Rita Levi-Montalcini" and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Maria Clara Selles
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shripriya Singh
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Paschalis Theotokis
- Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Macedonia, Greece
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
10
|
Neuronal Death in the Contralateral Un-Injured Retina after Unilateral Axotomy: Role of Microglial Cells. Int J Mol Sci 2019; 20:ijms20225733. [PMID: 31731684 PMCID: PMC6888632 DOI: 10.3390/ijms20225733] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022] Open
Abstract
For years it has been known that unilateral optic nerve lesions induce a bilateral response that causes an inflammatory and microglial response in the contralateral un-injured retinas. Whether this contralateral response involves retinal ganglion cell (RGC) loss is still unknown. We have analyzed the population of RGCs and the expression of several genes in both retinas of pigmented mice after a unilateral axotomy performed close to the optic nerve head (0.5 mm), or the furthest away that the optic nerve can be accessed intraorbitally in mice (2 mm). In both retinas, RGC-specific genes were down-regulated, whereas caspase 3 was up-regulated. In the contralateral retinas, there was a significant loss of 15% of RGCs that did not progress further and that occurred earlier when the axotomy was performed at 2 mm, that is, closer to the contralateral retina. Finally, the systemic treatment with minocycline, a tetracycline antibiotic that selectively inhibits microglial cells, or with meloxicam, a non-steroidal anti-inflammatory drug, rescued RGCs in the contralateral but not in the injured retina. In conclusion, a unilateral optic nerve axotomy triggers a bilateral response that kills RGCs in the un-injured retina, a death that is controlled by anti-inflammatory and anti-microglial treatments. Thus, contralateral retinas should not be used as controls.
Collapse
|
11
|
The “Use It or Lose It” Dogma in the Retina: Visual Stimulation Promotes Protection Against Retinal Ischemia. Mol Neurobiol 2019; 57:435-449. [DOI: 10.1007/s12035-019-01715-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/18/2019] [Indexed: 01/12/2023]
|
12
|
Murcia-Belmonte V, Erskine L. Wiring the Binocular Visual Pathways. Int J Mol Sci 2019; 20:ijms20133282. [PMID: 31277365 PMCID: PMC6651880 DOI: 10.3390/ijms20133282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm—to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.
Collapse
Affiliation(s)
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
13
|
Murcia-Belmonte V, Coca Y, Vegar C, Negueruela S, de Juan Romero C, Valiño AJ, Sala S, DaSilva R, Kania A, Borrell V, Martinez LM, Erskine L, Herrera E. A Retino-retinal Projection Guided by Unc5c Emerged in Species with Retinal Waves. Curr Biol 2019; 29:1149-1160.e4. [PMID: 30905607 PMCID: PMC6453780 DOI: 10.1016/j.cub.2019.02.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/04/2019] [Accepted: 02/22/2019] [Indexed: 12/29/2022]
Abstract
The existence of axons extending from one retina to the other has been reported during perinatal development in different vertebrates. However, it has been thought that these axons are either a labeling artifact or misprojections. Here, we show unequivocally that a small subset of retinal ganglion cells (RGCs) project to the opposite retina and that the guidance receptor Unc5c, expressed in the retinal region where the retinal-retinal (R-R) RGCs are located, is necessary and sufficient to guide axons to the opposite retina. In addition, Netrin1, an Unc5c ligand, is expressed in the ventral diencephalon in a pattern that is consistent with impeding the growth of Unc5c-positive retinal axons into the brain. We also have generated a mathematical model to explore the formation of retinotopic maps in the presence and absence of a functional connection between both eyes. This model predicts that an R-R connection is required for the bilateral coordination of axonal refinement in species where refinement depends upon spontaneous retinal waves. Consistent with this idea, the retinal expression of Unc5c correlates with the existence and size of an R-R projection in different species and with the extent of axonal refinement in visual targets. These findings demonstrate that active guidance drives the formation of the R-R projection and suggest an important role for these projections in visual mapping to ensure congruent bilateral refinement. A subset of retinal ganglion cells project to the contralateral retina Unc5c mediates the formation of the retina-retina projection Unc5c retinal expression correlates with extent of refinement in visual targets Congruency of visual maps in species with retinal waves may rely on R-R axons
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Alicante, Spain
| | - Yaiza Coca
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Alicante, Spain
| | - Celia Vegar
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Alicante, Spain
| | - Santiago Negueruela
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Alicante, Spain
| | - Camino de Juan Romero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Alicante, Spain
| | - Arturo José Valiño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Alicante, Spain
| | - Salvador Sala
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Alicante, Spain
| | - Ronan DaSilva
- Institut de Recherches Cliniques de Montréal (IRCM), 110, ave. des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal (IRCM), 110, ave. des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 2B2, Canada
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Alicante, Spain
| | - Luis M Martinez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Alicante, Spain
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| | - Eloísa Herrera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Alicante, Spain.
| |
Collapse
|
14
|
Huang XR, Kong W, Qiao J. Response of the Retinal Nerve Fiber Layer Reflectance and Thickness to Optic Nerve Crush. Invest Ophthalmol Vis Sci 2018; 59:2094-2103. [PMID: 29677373 PMCID: PMC5912800 DOI: 10.1167/iovs.17-23148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/13/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose To study the effects of acute optic nerve damage on the reflectance of the retinal nerve fiber layer (RNFL) and to compare the time courses of changes of RNFL reflectance and thickness. Methods A rat model of optic nerve crush (ONC) was compared with previously studied normal retinas. The reflectance and thickness of the RNFL were studied at 1 to 5 weeks after ONC. Reflectance spectra from 400 to 830 nm were measured for eyes with ONC, their contralateral untreated eyes, and eyes with sham surgery. Directional reflectance was studied by varying the angle of light incidence. RNFL thickness was measured by confocal microscopy. Results After ONC, the RNFL reflectance remained directional. At 1 week, RNFL reflectance decreased significantly at all wavelengths (P < 0.001), whereas there was no significant change in RNFL thickness (P = 0.739). At 2 weeks, both RNFL reflectance and thickness decreased significantly, and by 5 weeks they declined to approximately 40% and 30%, respectively, of the normal values. Although RNFL reflectance decreased at all wavelengths, there was a greater reduction at short wavelengths. Spectral shape at long wavelengths was similar to the normal. Some of these changes were also found in the contralateral untreated eyes, but none of these changes were found in eyes with sham surgery. Conclusions Decrease of RNFL reflectance after ONC occurs prior to thinning of the RNFL and the decrease is more prominent at short wavelengths. Direct measurement of RNFL reflectance, especially at short wavelengths, may provide early detection of axonal damage.
Collapse
Affiliation(s)
- Xiang-Run Huang
- Bascom Palmer Eye Institute, Miller School of Medicine University of Miami, Miami, Florida, United States
| | - Wei Kong
- Bascom Palmer Eye Institute, Miller School of Medicine University of Miami, Miami, Florida, United States
| | - Jianzhong Qiao
- Bascom Palmer Eye Institute, Miller School of Medicine University of Miami, Miami, Florida, United States
| |
Collapse
|
15
|
Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Sobrado-Calvo P, Vidal-Sanz M, Agudo-Barriuso M. Microglial dynamics after axotomy-induced retinal ganglion cell death. J Neuroinflammation 2017; 14:218. [PMID: 29121969 PMCID: PMC5679427 DOI: 10.1186/s12974-017-0982-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Microglial cells (MCs) are the sentries of the central nervous system. In health, they are known as surveying MCs because they examine the tissue to maintain the homeostasis. In disease, they activate and, among other functions, become phagocytic to clean the cellular debris. In this work, we have studied the behavior of rat retinal MCs in two models of unilateral complete intraorbital optic nerve axotomy which elicit a different time course of retinal ganglion cell (RGC) loss. METHODS Albino Sprague-Dawley rats were divided into these groups: (a) intact (no surgery), (b) fluorogold (FG) tracing from the superior colliculi, and (c) FG tracing + crush or transection of the left optic nerve. The retinas were dissected from 2 days to 2 months after the lesions (n = 4-12 group/lesion and time point) and then were subjected to Brn3a and Iba1 double immunodetection. In each intact retina, the total number of Brn3a+RGCs and Iba+MCs was quantified. In each traced retina (b and c groups), FG-traced RGCs and phagocytic microglial cells (PMCs, FG+Iba+) were also quantified. Topographical distribution was assessed by neighbor maps. RESULTS In intact retinas, surveying MCs are homogenously distributed in the ganglion cell layer and the inner plexiform layer. Independently of the axotomy model, RGC death occurs in two phases, one quick and one protracted, and there is a lineal and topographical correlation between the appearance of PMCs and the loss of traced RGCs. Furthermore, the clearance of FG+RGCs by PMCs occurs 3 days after the actual loss of Brn3a expression that marks RGC death. In addition, almost 50% of MCs from the inner plexiform layer migrate to the ganglion cell layer during the quick phase of RGC loss, returning to the inner plexiform layer during the slow degeneration phase. Finally, in contrast to what happens in mice, in rats, there is no microglial phagocytosis in the contralateral uninjured retina. CONCLUSIONS Axotomy-induced RGC death occurs earlier than RGC clearance and there is an inverse correlation between RGC loss and PMC appearance, both numerically and topographically, suggesting that phagocytosis occurs as a direct response to RGC death rather than to axonal damage.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, Edificio LAIB Planta 5ª, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain.
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
- Present address: Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Manuel Jiménez-López
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, Edificio LAIB Planta 5ª, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Manuel Salinas-Navarro
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, Edificio LAIB Planta 5ª, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Paloma Sobrado-Calvo
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, Edificio LAIB Planta 5ª, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, Edificio LAIB Planta 5ª, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, Edificio LAIB Planta 5ª, Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain.
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
16
|
Ortiz G, Odom JV, Passaglia CL, Tzekov RT. Efferent influences on the bioelectrical activity of the retina in primates. Doc Ophthalmol 2016; 134:57-73. [PMID: 28032236 DOI: 10.1007/s10633-016-9567-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/13/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE The existence of retinopetal (sometimes referred to as "efferent" or "centrifugal") axons in the mammalian optic nerve is a topic of long-standing debate. Opposition is fading as efferent innervation of the retina has now been widely documented in rodents and other animals. The existence and function of an efferent system in humans and non-human primates has not, though, been definitively established. Such a feedback pathway could have important functional, clinical, and experimental significance to the field of vision science and ophthalmology. METHODS Following a comprehensive literature review (PubMed and Google Scholar, until July 2016), we present evidence regarding a system that can influence the bioelectrical activity of the retina in primates. RESULTS Anatomical and physiological evidences are presented separately. Improvements in histological staining and the advent of retrograde nerve fiber tracers have allowed for more confidence in the identification of efferent optic nerve fibers, including back to their point of origin. CONCLUSION Even with the accumulation of more modern anatomical and physiological evidence, some limitations and uncertainties about crucial details regarding the origins and role of a top-down, efferent system still exist. However, the summary of the evidence from earlier and more modern studies makes a compelling case in support of such a system in humans and non-human primates.
Collapse
Affiliation(s)
- Gonzalo Ortiz
- Department of Ophthalmology, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 21, Tampa, FL, 33612, USA
| | - J Vernon Odom
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA
| | - Christopher L Passaglia
- Department of Ophthalmology, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 21, Tampa, FL, 33612, USA.,Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA
| | - Radouil T Tzekov
- Department of Ophthalmology, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 21, Tampa, FL, 33612, USA. .,The Roskamp Institute, Sarasota, FL, USA.
| |
Collapse
|
17
|
Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury. Sci Rep 2016; 6:38499. [PMID: 27929040 PMCID: PMC5144087 DOI: 10.1038/srep38499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
Axonal injury is a common feature of central nervous system insults that culminates with the death of the affected neurons, and an irreversible loss of function. Inflammation is an important component of the neurodegenerative process, where the microglia plays an important role by releasing proinflammatory factors as well as clearing the death neurons by phagocytosis. Here we have identified the purinergic signaling through the P2X7 receptor as an important component for the neuronal death in a model of optic nerve axotomy. We have found that in P2X7 receptor deficient mice there is a delayed loss of retinal ganglion cells and a decrease of phagocytic microglia at early times points after axotomy. In contralateral to the axotomy retinas, P2X7 receptor controlled the numbers of phagocytic microglia, suggesting that extracellular ATP could act as a danger signal activating the P2X7 receptor in mediating the loss of neurons in contralateral retinas. Finally, we show that intravitreal administration of the selective P2X7 receptor antagonist A438079 also delays axotomy-induced retinal ganglion cell death in retinas from wild type mice. Thus, our work demonstrates that P2X7 receptor signaling is involved in neuronal cell death after axonal injury, being P2X7 receptor antagonism a potential therapeutic strategy.
Collapse
|
18
|
Dillingham CM, Guggenheim JA, Erichsen JT. The effect of unilateral disruption of the centrifugal visual system on normal eye development in chicks raised under constant light conditions. Brain Struct Funct 2016; 222:1315-1330. [PMID: 27535408 PMCID: PMC5368197 DOI: 10.1007/s00429-016-1279-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/22/2016] [Indexed: 12/02/2022]
Abstract
The centrifugal visual system (CVS) comprises a visually driven isthmic feedback projection to the retina. While its function has remained elusive, we have previously shown that, under otherwise normal conditions, unilateral disconnection of centrifugal neurons in the chick affected eye development, inducing a reduced rate of axial elongation that resulted in a unilateral hyperopia in the eye contralateral to the lesion. Here, we further investigate the role of centrifugal neurons in ocular development in chicks reared in an abnormal visual environment, namely constant light. The baseline ocular phenotype of constant light-reared chicks (n = 8) with intact centrifugal neurons was assessed over a 3-week post-hatch time period and, subsequently, compared to chicks raised in normal diurnal lighting (n = 8). Lesions of the isthmo-optic tract or sham surgeries were performed in another seventeen chicks, all raised under constant light. Ocular phenotyping was performed over a 21-day postoperative period to assess changes in refractive state (streak retinoscopy) and ocular component dimensions (A-scan ultrasonography). A pathway-tracing paradigm was employed to quantify lesion success. Chicks raised in constant light conditions with an intact CVS developed shallower anterior chambers combined with elongated vitreous chambers relative to chicks raised in normal diurnal lighting. Seven days following surgery to disrupt centrifugal neurons, a significant positive correlation between refractive error asymmetry between the eyes and lesion success was evident, characterized by hyperopia in the eye contralateral to the lesion. By 21 days post-surgery, these contralateral eyes had become emmetropic, while ipsilateral eyes had developed relative axial hyperopia. Our results provide further support for the hypothesis that the centrifugal visual system can modulate eye development.
Collapse
Affiliation(s)
| | - Jeremy Andrew Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, Wales, UK
| | - Jonathan Thor Erichsen
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, Wales, UK.
| |
Collapse
|
19
|
Tang X, Tzekov R, Passaglia CL. Retinal cross talk in the mammalian visual system. J Neurophysiol 2016; 115:3018-29. [PMID: 26984426 DOI: 10.1152/jn.01137.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/13/2016] [Indexed: 11/22/2022] Open
Abstract
The existence and functional relevance of efferent optic nerve fibers in mammals have long been debated. While anatomical evidence for cortico-retinal and retino-retinal projections is substantial, physiological evidence is lacking, as efferent fibers are few in number and are severed in studies of excised retinal tissue. Here we show that interocular connections contribute to retinal bioelectrical activity in adult mammals. Full-field flash electroretinograms (ERGs) were recorded from one or both eyes of Brown-Norway rats under dark-adapted (n = 16) and light-adapted (n = 11) conditions. Flashes were confined to each eye by an opaque tube that blocked stray light. Monocular flashes evoked a small (5-15 μV) signal in the nonilluminated eye, which was named "crossed ERG" (xERG). The xERG began under dark-adapted conditions with a positive (xP1) wave that peaked at 70-90 ms and ended with slower negative (xN1) and positive (xP2) waves from 200 to 400 ms. xN1 was absent under light-adapted conditions. Injection of tetrodotoxin in either eye (n = 15) eliminated the xERG. Intraocular pressure elevation of the illuminated eye (n = 6) had the same effect. The treatments also altered the ERG b-wave in both eyes, and the alterations correlated with xERG disappearance. Optic nerve stimulation (n = 3) elicited a biphasic compound action potential in the nonstimulated nerve with 10- to 13-ms latency, implying that the xERG comes from slow-conducting (W type) fibers. Monocular dye application (n = 7) confirmed the presence of retino-retinal ganglion cells in adult rats. We conclude that mammalian eyes communicate directly with each other via a handful of optic nerve fibers. The cross talk alters retinal activity in rats, and perhaps other animals.
Collapse
Affiliation(s)
- Xiaolan Tang
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida
| | - Radouil Tzekov
- Department of Ophthalmology, University of South Florida, Tampa, Florida; and The Roskamp Institute, Sarasota, Florida
| | - Christopher L Passaglia
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida; Department of Ophthalmology, University of South Florida, Tampa, Florida; and
| |
Collapse
|
20
|
Sapienza A, Raveu AL, Reboussin E, Roubeix C, Boucher C, Dégardin J, Godefroy D, Rostène W, Reaux-Le Goazigo A, Baudouin C, Melik Parsadaniantz S. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat. J Neuroinflammation 2016; 13:44. [PMID: 26897546 PMCID: PMC4761202 DOI: 10.1186/s12974-016-0509-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glaucoma is one of the leading causes of irreversible blindness in the world. The major risk factor is elevated intraocular pressure (IOP) leading to progressive retinal ganglion cell (RGC) death from the optic nerve (ON) to visual pathways in the brain. Glaucoma has been reported to share mechanisms with neurodegenerative disorders. We therefore hypothesize that neuroinflammatory mechanisms in central visual pathways may contribute to the spread of glaucoma disease. The aim of the present study was to analyze the neuroinflammation processes that occur from the pathological retina to the superior colliculi (SCs) in a rat model of unilateral ocular hypertension induced by episcleral vein cauterization (EVC). RESULTS Six weeks after unilateral (right eye) EVC in male Long-Evans rats, we evaluated both the neurodegenerative process and the neuroinflammatory state in visual pathway tissues. RGCs immunolabeled (Brn3a(+)) in ipsilateral whole flat-mounted retina demonstrated peripheral RGC loss associated with tissue macrophage/microglia activation (CD68(+)). Gene expression analysis of hypertensive and normotensive retinas revealed a significant increase of pro-inflammatory genes such as CCL2, IL-1β, and Nox2 mRNA expression compared to naïve eyes. Importantly, we found an upregulation of pro-inflammatory markers such as IL-1β and TNFα and astrocyte and tissue macrophage/microglia activation in hypertensive and normotensive RGC projection sites in the SCs compared to a naïve SC. To understand how neuroinflammation in the hypertensive retina is sufficient to damage both right and left SCs and the normotensive retina, we used an inflammatory model consisting in an unilateral stereotaxic injection of TNFα (25 ng/μl) in the right SC of naïve rats. Two weeks after TNFα injection, using an optomotor test, we observed that rats had visual deficiency in both eyes. Furthermore, both SCs showed an upregulation of genes and proteins for astrocytes, microglia, and pro-inflammatory cytokines, notably IL-1β. In addition, both retinas exhibited a significant increase of inflammatory markers compared to a naïve retina. CONCLUSIONS All these data evidence the complex role played by the SCs in the propagation of neuroinflammatory events induced by unilateral ocular hypertension and provide a new insight into the spread of neurodegenerative diseases such as glaucoma.
Collapse
Affiliation(s)
- Anaïs Sapienza
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Anne-Laure Raveu
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Elodie Reboussin
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Christophe Roubeix
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Céline Boucher
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Julie Dégardin
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - David Godefroy
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - William Rostène
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Annabelle Reaux-Le Goazigo
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Christophe Baudouin
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC, 28 rue de Charenton, 75012, Paris, France.,Department Ophthalmology, Hopital Ambroise Pare, AP HP, F-92100, Boulogne, France.,University Versailles St Quentin En Yvelines, F-78180, Montigny-Le-Bretonneux, France
| | - Stéphane Melik Parsadaniantz
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France. .,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France. .,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|