1
|
Shim MS, Liton PB. Time-Lapse Live-Cell Imaging Using Fluorescent Protein Sensors in Outflow Pathway Cells Under Fluid Flow Conditions. Methods Mol Biol 2025; 2858:77-86. [PMID: 39433668 DOI: 10.1007/978-1-0716-4140-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The role of shear stress in regulating aqueous humor (AH) outflow and intraocular pressure (IOP) in the trabecular meshwork (TM) and Schlemm's canal (SC) of the eye is an emerging field. Shear stress has been shown to activate mechanosensitive ion channels in TM cells and induce nitric oxide production in SC cells, which can affect outflow resistance and lower IOP. Live-cell imaging using fluorescent protein sensors has provided real-time data to investigate the physiological relationship between fluid flow and shear stress in the outflow pathway cells. The successful application of time-lapse live-cell imaging in primary cultured cells has led to the identification of key cellular and molecular mechanisms involved in regulating AH outflow and IOP, including the role of autophagy and primary cilia as mechanosensors. This chapter presents a detailed protocol for conducting time-lapse live-cell imaging under fluid flow conditions in the outflow pathway cells.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Department of Ophthalmology, Duke University, Durham, NC, USA.
| | - Paloma B Liton
- Department of Ophthalmology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Patel PD, Clark AF. Evaluation of Cross-Linked Actin Networks (CLANs) in Human Trabecular Meshwork Cells and Tissues. Methods Mol Biol 2025; 2858:1-15. [PMID: 39433662 DOI: 10.1007/978-1-0716-4140-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of glaucoma, the leading cause of irreversible vision loss and blindness. An overall increase in resistance to aqueous humor outflow causes sustained elevation in IOP. Glaucomatous insults in the aqueous humor outflow pathway, including the trabecular meshwork (TM), precede such chronic physiological changes in IOP. These insults include ultrastructural changes with excessive extracellular matrix deposition and actin cytoskeletal reorganization that leads to pathological stiffening of the ocular tissues. One of the most common cytoskeletal changes associated with TM tissue stiffness in glaucoma is the increased prevalence of cross-linked actin networks (CLANs) in cells of the trabecular meshwork (TM) and lamina cribrosa (LC). In glaucomatous cells, rearrangement of linear actin stress fibers leads to formation of polygonal arrays within the cytoplasm, resembling a geodesic dome-like structure, that we identified as CLANs. In addition to increased amounts of CLANs in POAG TM cells and tissues, we also discovered that glucocorticoid (GC) and TGFβ2 signaling pathways associated with the development of ocular hypertension (OHT) and glaucoma also induced CLANs in the TM. Despite a clear association, we are yet to completely understand the mechanisms involved in CLAN formation and their direct relevance to disease pathology. In this chapter, we will describe methods to identify and characterize CLANs using fluorescent microscopy in primary TM cell cultures, ex vivo perfusion cultured human anterior segments, and in situ in human donor eyes.
Collapse
Affiliation(s)
- Pinkal D Patel
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Abbot F Clark
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
3
|
Keller KE, Kaech Petrie S. Nanotubules and Cellular Communication in Trabecular Meshwork Cells. Methods Mol Biol 2025; 2858:49-62. [PMID: 39433666 DOI: 10.1007/978-1-0716-4140-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Glaucoma causes dysfunction to tissues located in the anterior and posterior eye. In the anterior eye, the trabecular meshwork (TM) is the site of pathogenesis, where decreased TM cell numbers and alterations to the amount and composition of extracellular matrix hinder outflow of aqueous humor fluid from the anterior chamber. This causes intraocular pressure (IOP) elevation. Elevated IOP, a main risk factor for primary open-angle glaucoma, damages the axons of retinal ganglion cells in the posterior eye, which ultimately leads to blindness. Thus, clinical treatment paradigms for glaucoma are focused on reducing IOP. Normotensive IOPs are established by balancing the production of aqueous fluid from the ciliary body with drainage through the TM to Schlemm's canal. When IOP becomes elevated, TM cells coordinate a homeostatic response to lower IOP, which requires effective and efficient cellular communication. Tunneling nanotubes (TNTs) are transient specialized structures that allow cells to communicate with one another. Actin-rich tubes allow direct transmission of signals and cargoes between cells. This is important to overcome limitations of diffusion-based signaling in aqueous environments such as the anterior eye. Here, we describe a live-cell imaging method for monitoring TNTs in primary TM cells.
Collapse
Affiliation(s)
- Kate E Keller
- Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA.
| | | |
Collapse
|
4
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
5
|
Yarishkin O, Lakk M, Rudzitis CN, Searle JE, Kirdajova D, Križaj D. Resting trabecular meshwork cells experience constitutive cation influx. Vision Res 2024; 224:108487. [PMID: 39303640 DOI: 10.1016/j.visres.2024.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
A quintessential sentinel of cell health, the membrane potential in nonexcitable cells integrates biochemical and biomechanical inputs, determines the driving force for ionic currents activated by input signals and plays critical functions in cellular differentiation, signaling, and pathology. The identity and properties of ion channels that subserve the resting potential in trabecular meshwork (TM) cells is poorly understood, which impairs our understanding of intraocular pressure regulation in healthy and diseased eyes. Here, we identified a powerful cationic conductance that subserves the TM resting potential. It disappears following Na+ removal or substitution with choline or NMDG+, is insensitive to TTX, verapamil, phenamil methanesulfonate, amiloride and GsMTx4, is substituted by Li+ and Cs+, and inhibited by Gd3+ and Ruthenium Red. Constitutive cation influx is thus not mediated by voltage-operated Na+, Ca2+, epithelial Na+ (ENaC) channels, Piezo channels or Na+/H+ exchange but may involve TRP-like channels. Transcriptional analysis detected expression of many TRP genes, with the transcriptome pool dominated by TRPC1 followed by expression of TRPV1, TRPC3, TRPV4 and TRPC5. Pyr3 and Pico1,4,5 did not affect the standing current whereas SKF96365 promoted rather than suppressed, Na+ influx. SEA-0400 induced a modest hyperpolarization, indicating residual contribution from Na+/Ca2+ exchange. The resting membrane potential in human TM cells is thus maintained by a constitutive monovalent cation leak current with properties not unlike those of TRP channels. This conductance is likely to influence conventional outflow by setting the homeostatic steady-state and by regulating the magnitude of pressure-induced currents in normotensive and hypertensive eyes.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | | | - Jordan E Searle
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - Denisa Kirdajova
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
6
|
Schwakopf J, Romero CO, Lopez NN, Millar JC, Vetter ML, Bosco A. Schlemm's canal-selective Tie2/TEK knockdown induces sustained ocular hypertension in adult mice. Exp Eye Res 2024; 248:110114. [PMID: 39368692 PMCID: PMC11533709 DOI: 10.1016/j.exer.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Deficient Angiopoietin-Tie2 signaling is linked to ocular hypertension in glaucoma. Receptor Tie2/TEK expression and signaling at Schlemm's canal (SC) is indispensable for canal integrity and homeostatic regulation of aqueous humor outflow (AHO) and intraocular pressure (IOP), as validated by conditional deletion of Tie2, its ligands (Angpt1, Angpt2 and Angpt3/4) or regulators (Tie1 and PTPRB/VE-PTP). However, these Tie2/TEK knockouts and conditional knockouts are global or endothelial, preventing separation of systemic and ocular vascular defects that impact retinal or renal integrity. To develop a more targeted model of ocular hypertension induced by selective knockdown of Tie2/TEK expressed in SC, we combined the use of viral vectors to target the canal, and two distinct gene-editing strategies to disrupt the Tie2 gene. Adeno-associated virus (AAV2) is known to transduce rodent SC when delivered into the anterior chamber by intracameral injection. First, delivery of Cre recombinase via AAV2.Cre into R26tdTomato/+ reporter mice confirmed preferential and stable transduction in SC endothelium. Next, to disrupt Tie2 expression in SC, we injected AAV2.Cre into homozygous floxed Tie2 (Tie2FL/FL) mice. This led to attenuated Tie2 protein expression along the SC inner wall, decreased SC area and reduced trabecular meshwork (TM) cellularity. Functionally, IOP was significantly and steadily elevated, whereas AHO facility was reduced. In contrast, hemizygous Tie2FL/+ mice responded to AAV2.Cre with inconsistent and low IOP elevation, corroborating the dose-dependency of ocular hypertension on Tie2 expression/activation. In a second model using CRISPR/SaCas9 genome editing, wild-type C57BL/6 J mice injected with AAV2.saCas9-sgTie2 showed similar selective SC transduction and comparable IOP elevation in course and magnitude to that induced by AAV2.Cre in Tie2FL/FL mice. Together, our findings, demonstrate that selective Tie2 knockdown in SC is a targeted strategy that reliably induces chronic ocular hypertension and reproduces glaucomatous damage to the conventional outflow pathway, providing novel models of SC-Tie2 signaling loss valuable for preclinical studies.
Collapse
Affiliation(s)
- Joon Schwakopf
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Cesar O Romero
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Navita N Lopez
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Monica L Vetter
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Alejandra Bosco
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
7
|
Wang R, Wei H, Shi Y, Wang C, Yu Z, Zhang Y, Lai Y, Chen J, Wang G, Tian W. Self-generating electricity system driven by aqueous humor flow and trabecular meshwork contraction motion activated BCKa for glaucoma intraocular pressure treatment. MATERIALS HORIZONS 2024. [PMID: 39449290 DOI: 10.1039/d4mh01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma and the leading cause of irreversible vision loss and blindness worldwide. Intraocular pressure (IOP) is the only modifiable risk factor, and prompt treatment to lower IOP can effectively slow the rate of vision loss due to glaucoma. Trabecular meshwork (TM) cells can maintain IOP homeostasis by correcting and adjusting the resistance to aqueous humor outflow in response to sustained pressure changes. TM cells' function is reduced, and membrane ion channels are impaired in POAG. The dysfunction of Large conductance Ca2+-activated K+ (BKCa) plays a central role in the pathogenesis of POAG. In this work, we targeted MXene nanoparticles (MXene-RGD) with piezoelectric response to TM cells in a 3D model of glaucoma in vitro as well as in the rabbit Transient Ocular Hypertension (OHT) Model in vivo. MXene-RGD gives the TM electromechanical transfer properties, while the self-enhancing and self-generated electricity properties of the TM are determined by the aqueous humor flow rate and the size of the deformation of the TM. MXene-RGD is nontoxic, as illustrated by a cell toxicity study and histological examination. In a 3D in vitro model of high-pressure glaucoma, whole-cell patch-clamp confirmed that piezoelectric stimulation turns on BKCa, which reduces the volume of the cell. MXene-RGD was injected into the anterior chamber with minimal trauma, i.e., anterior chamber injection, and specifically targeted to TM cells. The OHT model in vivo confirmed the potential IOP-lowering ability of MXene-RGD. We evaluated the ion channels involved in the reduction of IOP by MXene-RGD by pre-treatment with a BKCa channel blocker (iberiotoxin, IbTX) and a voltage-gated Ca2+channel blocker (nifedipine). Quantitative qPCR analysis showed that MXene-RGD inhibited the upregulation of mRNA expression levels of the myofibroblast marker α-smooth muscle actin (α-SMA) and the inflammatory response marker interleukin-6 (IL-6) induced by IOP. Histology confirmed that MXene-RGD attenuated IOP-induced proliferation and collagen production in the TM. Taken together, we present for the first time a minimally invasive surgical approach for targeting TM cells for POAG by utilizing piezoresponse nanomaterials to target BKCa to repair or awaken the ability of TM cells to regulate IOP homeostasis on their own.
Collapse
Affiliation(s)
- Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Haiying Wei
- The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, P. R. China
| | - Yuying Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Zhenqiang Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Yijian Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Yifan Lai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Jingwei Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Guangfu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| |
Collapse
|
8
|
Buffault J, Reboussin É, Blond F, Guillonneau X, Bastelica P, Kessal K, Akkurt Arslan M, Melik-Parsadaniantz S, Réaux-le Goazigo A, Labbé A, Brignole-Baudouin F, Baudouin C. RNA-seq transcriptomic profiling of TGF-β2-exposed human trabecular meshwork explants: Advancing insights beyond conventional cell culture models. Exp Cell Res 2024; 442:114220. [PMID: 39214330 DOI: 10.1016/j.yexcr.2024.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Primary open-angle glaucoma (POAG), a leading cause of irreversible vision loss, is closely linked to increased intraocular pressure (IOP), with the trabecular meshwork (TM) playing a critical role in its regulation. The TM, located at the iridocorneal angle, acts as a sieve, filtering the aqueous humor from the eye into the collecting ducts, thus maintaining proper IOP levels. The transforming growth factor-beta 2 (TGF-β2) signaling pathway has been implicated in the pathophysiology of primary open-angle glaucoma POAG particularly, in the dysfunction of the TM. This study utilizes human TM explants to closely mimic in vivo conditions, thereby minimizing transcriptional changes that could arise from cell culture enabling an exploration of the transcriptomic impacts of TGF-β2. Through bulk RNA sequencing and immunohistological analysis, we identified distinct gene expression patterns and morphological changes induced by TGF-β2 exposure (5 ng/ml for 48 h). Bulk RNA sequencing identified significant upregulation in genes linked to extracellular matrix (ECM) regulation and fibrotic signaling. Immunohistological analysis further elucidated the morphological alterations, including cytoskeletal rearrangements and ECM deposition, providing a visual confirmation of the transcriptomic data. Notably, the enrichment analysis unveils TGF-β2's influence on both bone morphogenic protein (BMP) and Wnt signaling pathways, suggesting a complex interplay of molecular mechanisms contributing to TM dysfunction in glaucoma. This characterization of the transcriptomic modifications on an explant model of TM obtained under the effect of this profibrotic cytokine involved in glaucoma is crucial in order to develop and test new molecules that can block their signaling pathways.
Collapse
Affiliation(s)
- J Buffault
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Paris Saclay, Boulogne-Billancourt, France.
| | - É Reboussin
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - F Blond
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - X Guillonneau
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - P Bastelica
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - K Kessal
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - M Akkurt Arslan
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - S Melik-Parsadaniantz
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - A Réaux-le Goazigo
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - A Labbé
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Paris Saclay, Boulogne-Billancourt, France
| | - F Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France; Department of Biology, CHNO des Quinze-Vingts, IHU Foresight, Paris, France
| | - C Baudouin
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France.
| |
Collapse
|
9
|
Adhikari B, Barakoti P, Pantcheva MB, Krebs MD. 3D printed gelatin methacryloyl hydrogels for perfusion culture of human trabecular meshwork cells and glaucoma studies. Biotechnol Bioeng 2024. [PMID: 39291858 DOI: 10.1002/bit.28849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Glaucoma, a progressive eye disease leading to irreversible blindness, currently affects over 70 million people globally. Elevated intraocular pressure (IOP) is implicated in its development. IOP is carefully regulated by the trabecular meshwork (TM). However, studying TM behavior has been limited to traditional tissue culture studies or costly ex vivo cultures of animal and donor eyes. Developing novel functional TM models could enhance cell/tissue behavior understanding and aid therapeutic development for glaucoma. In this study, we 3D printed a simplified and reproducible model of the human TM (hTM) and studied hTM cell behavior under static and dynamic cultures. Gelatin Methacryloyl bioinks proved suitable for printing with viable and proliferative hTM cells expressing crucial marker genes in response to glucocorticoid induction. This, to our knowledge, is the first functional 3D printed hTM model and aims to facilitate TM research. Moreover, this easily reproducible model could also be applicable in the study of numerous other cell types throughout the body.
Collapse
Affiliation(s)
- Bikram Adhikari
- Colorado School of Mines, Quantitative Biosciences and Engineering, Golden, Colorado, USA
| | - Prasanga Barakoti
- Colorado School of Mines, Quantitative Biosciences and Engineering, Golden, Colorado, USA
| | - Mina B Pantcheva
- Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melissa D Krebs
- Colorado School of Mines, Quantitative Biosciences and Engineering, Golden, Colorado, USA
- Colorado School of Mines, Chemical and Biological Engineering, Golden, Colorado, USA
| |
Collapse
|
10
|
Lamont HC, Wright AL, Devries K, Okur KE, Jones M, Masood I, Hill LJ, Nazhat SN, Grover LM, Haj AJE, Metcalfe AD. Trabecular meshwork cell differentiation in response to collagen and TGFβ-2 spatial interactions. Acta Biomater 2024:S1742-7061(24)00490-2. [PMID: 39218278 DOI: 10.1016/j.actbio.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Primary open-angle glaucoma (POAG) is currently the most prevalent cause of irreversible blindness globally. To date, few in vitro models that can faithfully recapitulate the complex architecture of the trabecular meshwork (TM) and the specialised trabecular meshwork cell (TMC) characteristics that are local to the structurally opposing regions. This study aimed to investigate the parameters that govern TMC phenotype by adapting the extracellular matrix structure to mimic the juxtacanalicular tissue (JCT) region of the TM. Initially, TMC phenotypic characteristics were investigated within type I collagen matrices of controlled fiber density and anisotropy, generated through confined plastic compression (PC). Notably, PC-collagen presented biophysical cues that induced JCT cellular characteristics (elastin, α-β-Crystallin protein expression, cytoskeletal remodelling, increased mesenchymal markers and JCT-specific genetic markers). In parallel, a pathological mesenchymal phenotype associated with POAG was induced through localised transforming growth factor -beta 2 (TGFβ-2) exposure. This resulted in a profile of alternative mesenchymal states (fibroblast/smooth muscle or myofibroblast) displayed by the TMC in vitro. Overall, the study provides an advanced insight into the biophysical cues that modulate TMC fate, inducing a JCT-specific phenotype and transient mesenchymal characteristics that reflect healthy and pathological scenarios. STATEMENT OF SIGNIFICANCE: Glaucoma is a leading cause of blindness, with a lack of long-term efficacy within current drug candidates. Reliable trabecular meshwork (TM) in vitro models will be critical for enhancing the fields understanding of healthy and disease states for pre-clinical testing. Trabecular meshwork cells (TMCs) display heterogeneity throughout the hierarchical TM, however our understanding into recapitulating these phenotypes in vitro, remains elusive. This study hypothesizes the importance of specific matrix/growth factor spatial stimuli in governing TMCs phenotype. By emulating certain biophysical/biochemical in vivo parameters, we introduce an advanced profile of distinct TMC phenotypic states, reflecting healthy and disease scenarios. A notion that has not be stated prior and a fundamental consideration for future 3D TM in vitro modelling.
Collapse
Affiliation(s)
- Hannah C Lamont
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Kate Devries
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Kerime E Okur
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Michael Jones
- Cell Guidance Systems Ltd, Maia Building, Babraham Bioscience Campus, Cambridge, UK
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, UK
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Anthony D Metcalfe
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Yarishkin O, Lakk M, Rudzitis CN, Kirdajova D, Krizaj D. Resting human trabecular meshwork cells experience tonic cation influx. RESEARCH SQUARE 2024:rs.3.rs-4980372. [PMID: 39257996 PMCID: PMC11384028 DOI: 10.21203/rs.3.rs-4980372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The trabecular meshwork (TM) regulates intraocular pressure (IOP) by converting biochemical and biomechanical stimuli into intracellular signals. Recent electrophysiological studies demonstrated that this process is mediated by pressure sensing ion channels in the TM plasma membrane while the molecular and functional properties of channels that underpin ionic homeostasis in resting cells remain largely unknown. Here, we demonstrate that the TM resting potential is subserved by a powerful cationic conductance that disappears following Na+ removal and substitution with choline or NMDG+. Its insensitivity to TTX, verapamil, phenamil methanesulfonate and amiloride indicates it does not involve voltage-operated Na+, Ca2+ and epithelial Na+ (ENaC) channels or Na+/H+ exchange while a modest hyperpolarization induced by SEA-0440 indicates residual contribution from reversed Na+/Ca2+ exchange. Tonic cationic influx was inhibited by Gd3+ and Ruthenium Red but not GsMTx4, indicating involvement of TRP-like but not Piezo channels. Transcriptional analysis detected expression of most TRP genes, with the canonical transcriptome pool dominated by TRPC1 followed by the expression ofTRPV1, TRPC3 and TRPC5. TRPC3 antagonist Pyr3 and TRPC1,4,5 antagonist Pico1,4,5 did not affect the standing current, whereas the TRPC blocker SKF96365 promoted rather than suppressed, Na+ influx. TM cells thus maintain the resting membrane potential, control Na+ homeostasis, and balance K+ efflux through a novel constitutive monovalent cation leak current with properties not unlike those of TRP channels. Yet to be identified at the molecular level, this novel channel sets the homeostatic steady-state and controls the magnitude of pressure-induced transmembrane signals.
Collapse
|
12
|
Li H, Harvey DH, Dai J, Swingle SP, Compton AM, Sugali CK, Dhamodaran K, Yao J, Lin TY, Sulchek T, Kim T, Ethier CR, Mao W. Characterization, enrichment, and computational modeling of cross-linked actin networks in trabecular meshwork cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608970. [PMID: 39229235 PMCID: PMC11370370 DOI: 10.1101/2024.08.21.608970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Purpose Cross-linked actin networks (CLANs) are prevalent in the glaucomatous trabecular meshwork (TM), yet their role in ocular hypertension remains unclear. We used a human TM cell line that spontaneously forms fluorescently-labeled CLANs (GTM3L) to explore the origin of CLANs, developed techniques to increase CLAN incidence in GMT3L cells, and computationally studied the biomechanical properties of CLAN-containing cells. Methods GTM3L cells were fluorescently sorted for viral copy number analysis. CLAN incidence was increased by (i) differential sorting of cells by adhesion, (ii) cell deswelling, and (iii) cell selection based on cell stiffness. GTM3L cells were also cultured on glass or soft hydrogel to determine substrate stiffness effects on CLAN incidence. Computational models were constructed to mimic and study the biomechanical properties of CLANs. Results All GTM3L cells had an average of 1 viral copy per cell. LifeAct-GFP expression level did not affect CLAN incidence rate, but CLAN rate was increased from ~0.28% to ~50% by a combination of adhesion selection, cell deswelling, and cell stiffness-based sorting. Further, GTM3L cells formed more CLANs on a stiff vs. a soft substrate. Computational modeling predicted that CLANs contribute to higher cell stiffness, including increased resistance of the nucleus to tensile stress when CLANs are physically linked to the nucleus. Conclusions It is possible to greatly enhance CLAN incidence in GTM3L cells. CLANs are mechanosensitive structures that affect cell biomechanical properties. Further research is needed to determine the effect of CLANs on TM biomechanics and mechanobiology as well as the etiology of CLAN formation in the TM.
Collapse
Affiliation(s)
- Haiyan Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
| | - Devon H Harvey
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Jiannong Dai
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Steven P Swingle
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Anthony M Compton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
| | - Chenna Kesavulu Sugali
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Kamesh Dhamodaran
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Jing Yao
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Tsai-Yu Lin
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Weiming Mao
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
- Department of Biochemistry & Molecular Biology, Indiana University, Indianapolis, Indiana
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana
| |
Collapse
|
13
|
Baumann JM, Yarishkin O, Lakk M, De Ieso ML, Rudzitis CN, Kuhn M, Tseng YT, Stamer WD, Križaj D. TRPV4 and chloride channels mediate volume sensing in trabecular meshwork cells. Am J Physiol Cell Physiol 2024; 327:C403-C414. [PMID: 38881423 PMCID: PMC11427009 DOI: 10.1152/ajpcell.00295.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.
Collapse
Affiliation(s)
- Jackson M Baumann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Michael L De Ieso
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | | | - Megan Kuhn
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Yun Ting Tseng
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - W Daniel Stamer
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
14
|
Wu J, Wang C, Sun S, Ren T, Pan L, Liu H, Hou S, Wu S, Yan X, Zhang J, Zhao X, Liu W, Zhu S, Wei S, Zhang C, Jia X, Zhang Q, Yu Z, Zhuo Y, Zhao Q, Yang C, Wang N. Single-cell transcriptomic Atlas of aging macaque ocular outflow tissues. Protein Cell 2024; 15:594-611. [PMID: 38366188 PMCID: PMC11259549 DOI: 10.1093/procel/pwad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/24/2023] [Indexed: 02/18/2024] Open
Abstract
The progressive degradation in the trabecular meshwork (TM) is related to age-related ocular diseases like primary open-angle glaucoma. However, the molecular basis and biological significance of the aging process in TM have not been fully elucidated. Here, we established a dynamic single-cell transcriptomic landscape of aged macaque TM, wherein we classified the outflow tissue into 12 cell subtypes and identified mitochondrial dysfunction as a prominent feature of TM aging. Furthermore, we divided TM cells into 13 clusters and performed an in-depth analysis on cluster 0, which had the highest aging score and the most significant changes in cell proportions between the two groups. Ultimately, we found that the APOE gene was an important differentially expressed gene in cluster 0 during the aging process, highlighting the close relationship between cell migration and extracellular matrix regulation, and TM function. Our work further demonstrated that silencing the APOE gene could increase migration and reduce apoptosis by releasing the inhibition on the PI3K-AKT pathway and downregulating the expression of extracellular matrix components, thereby increasing the aqueous outflow rate and maintaining intraocular pressure within the normal range. Our work provides valuable insights for future clinical diagnosis and treatment of glaucoma.
Collapse
Affiliation(s)
- Jian Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chaoye Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Lijie Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Hongyi Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Simeng Hou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing 100191, China
| | - Sirui Zhu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Shuwen Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Chi Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Xu Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ziyu Yu
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chenlong Yang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing 100191, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| |
Collapse
|
15
|
Redmon SN, Lakk M, Tseng YT, Rudzitis CN, Searle JE, Ahmed F, Unser A, Borrás T, Torrejon K, Krizaj D. TRPV4 subserves physiological and pathological elevations in intraocular pressure. RESEARCH SQUARE 2024:rs.3.rs-4714050. [PMID: 39041037 PMCID: PMC11261973 DOI: 10.21203/rs.3.rs-4714050/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Ocular hypertension (OHT) caused by mechanical stress and chronic glucocorticoid exposure reduces the hydraulic permeability of the conventional outflow pathway. It increases the risk for irreversible vision loss, yet healthy individuals experience nightly intraocular pressure (IOP) elevations without adverse lifetime effects. It is not known which pressure sensors regulate physiological vs. pathological OHT nor how they impact the permeability of the principal drainage pathway through the trabecular meshwork (TM). We report that OHT induced by the circadian rhythm, occlusion of the iridocorneal angle and glucocorticoids requires activation of TRPV4, a stretch-activated cation channel. Wild-type mice responded to nocturnal topical administration of the agonist GSK1016790A with IOP lowering, while intracameral injection of the agonist elevated diurnal IOP. Microinjection of TRPV4 antagonists HC067047 and GSK2193874 lowered IOP during the nocturnal OHT phase and in hypertensive eyes treated with steroids or injection of polystyrene microbeads. Conventional outflow-specific Trpv4 knockdown induced partial IOP lowering in mice with occluded iridocorneal angle and protected retinal neurons from pressure injury. Indicating a central role for TRPV4-dependent mechanosensing in trabecular outflow, HC067047 doubled the outflow facility in TM-populated steroid-treated 3D nanoscaffolds. Tonic TRPV4 signaling thus represents a fundamental property of TM biology as a driver of increased in vitro and in vivo outflow resistance. The TRPV4-dependence of OHT under conditions that mimic primary and secondary glaucomas could be explored as a novel target for glaucoma treatments.
Collapse
|
16
|
Youn KI, Lee JW, Song Y, Lee SY, Song KH. Development of Cell Culture Platforms for Study of Trabecular Meshwork Cells and Glaucoma Development. Tissue Eng Regen Med 2024; 21:695-710. [PMID: 38642251 PMCID: PMC11187050 DOI: 10.1007/s13770-024-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Various cell culture platforms that could display native environmental cue-mimicking stimuli were developed, and effects of environmental cues on cell behaviors were studied with the cell culture platforms. Likewise, various cell culture platforms mimicking native trabecular meshwork (TM) composed of juxtacanalicular, corneoscleral and uveal meshwork located in internal scleral sulcus were used to study effects of environmental cues and/or drug treatments on TM cells and glaucoma development. Glaucoma is a disease that could cause blindness, and cause of glaucoma is not clearly identified yet. It appears that aqueous humor (AH) outflow resistance increased by damages on pathway of AH outflow can elevate intraocular pressure (IOP). These overall possibly contribute to development of glaucoma. METHODS For the study of glaucoma, static and dynamic cell culture platforms were developed. Particularly, the dynamic platforms exploiting AH outflow-mimicking perfusion or increased IOP-mimicking increased pressure were used to study how perfusion or increased pressure could affect TM cells. Overall, potential mechanisms of glaucoma development, TM structures and compositions, TM cell culture platform types and researches on TM cells and glaucoma development with the platforms were described in this review. RESULTS AND CONCLUSION This will be useful to improve researches on TM cells and develop enhanced therapies targeting glaucoma.
Collapse
Affiliation(s)
- Kook In Youn
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Ji Woo Lee
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Youngjun Song
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Sang Yeop Lee
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
- Research Center of Brain-Machine Interface, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
17
|
Li G, van Batenburg‐Sherwood J, Safa BN, Fraticelli Guzmán NS, Wilson A, Bahrani Fard MR, Choy K, de Ieso ML, Cui JS, Feola AJ, Weisz T, Kuhn M, Bowes Rickman C, Farsiu S, Ethier CR, Stamer WD. Aging and intraocular pressure homeostasis in mice. Aging Cell 2024; 23:e14160. [PMID: 38566432 PMCID: PMC11258442 DOI: 10.1111/acel.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Guorong Li
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Babak N. Safa
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Nina Sara Fraticelli Guzmán
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrea Wilson
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Mohammad Reza Bahrani Fard
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Kevin Choy
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | | | - J. Serena Cui
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Andrew J. Feola
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Center for Visual and Neurocognitive RehabilitationAtlanta Virginia Medical CenterDecaturGeorgiaUSA
| | - Tara Weisz
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Megan Kuhn
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Sina Farsiu
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
| | - W. Daniel Stamer
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
18
|
Zhang N, Zhang P, Deng X, Zhu M, Hu Y, Ji D, Li L, Liu Y, Zeng W, Ke M. Protective Effect of Nicotinamide Riboside on Glucocorticoid-Induced Glaucoma: Mitigating Mitochondrial Damage and Extracellular Matrix Deposition. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38949632 PMCID: PMC11221610 DOI: 10.1167/iovs.65.8.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Glucocorticoid-induced glaucoma (GIG) is a prevalent complication associated with glucocorticoids (GCs), resulting in irreversible blindness. GIG is characterized by the abnormal deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), elevation of intraocular pressure (IOP), and loss of retinal ganglion cells (RGCs). The objective of this study is to investigate the effects of nicotinamide riboside (NR) on TM in GIG. Methods Primary human TM cells (pHTMs) and C57BL/6J mice responsive to GCs were utilized to establish in vitro and in vivo GIG models, respectively. The study assessed the expression of ECM-related proteins in TM and the functions of pHTMs to reflect the effects of NR. Mitochondrial morphology and function were also examined in the GIG cell model. GIG progression was monitored through IOP, RGCs, and mitochondrial morphology. Intracellular nicotinamide adenine dinucleotide (NAD+) levels of pHTMs were enzymatically assayed. Results NR significantly prevented the expression of ECM-related proteins and alleviated dysfunction in pHTMs after dexamethasone treatment. Importantly, NR protected damaged ATP synthesis, preventing overexpression of mitochondrial reactive oxygen species (ROS), and also protect against decreased mitochondrial membrane potential induced by GCs in vitro. In the GIG mouse model, NR partially prevented the elevation of IOP and the loss of RGCs. Furthermore, NR effectively suppressed the excessive expression of ECM-associated proteins and mitigated mitochondrial damage in vivo. Conclusions Based on the results, NR effectively enhances intracellular levels of NAD+, thereby mitigating abnormal ECM deposition and TM dysfunction in GIG by attenuating mitochondrial damage induced by GCs. Thus, NR has promising potential as a therapeutic candidate for GIG treatment.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pengyu Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yixin Hu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongxiao Ji
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Huaihai Hospital of Henan University, Kaifeng, Henan, China
| | - Lufan Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
20
|
Huang X, Zhou X, Zhang F, Wang X, Duan X, Liu K. DDX58 variant triggers IFN-β-induced autophagy in trabecular meshwork and influences intraocular pressure. FASEB J 2024; 38:e23651. [PMID: 38752537 DOI: 10.1096/fj.202302265rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 07/16/2024]
Abstract
Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-β-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-β on TM cells. Our study is the first to demonstrate that IFN-β significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-β remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-β-induced autophagy in TM cells, we performed microarray analysis in IFN-β-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-β-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-β. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-β, which elevates IOP by modulating autophagy through RSAD2 in TM cells.
Collapse
Affiliation(s)
- Xinting Huang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoyu Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Feng Zhang
- The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaobo Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuanchu Duan
- Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Ke Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Hu Y, Ge K, Du Y. Paeoniflorin alleviates TGF-β2-mediated extracellular matrix remodeling and oxidative stress in human trabecular meshwork cells. Int Ophthalmol 2024; 44:229. [PMID: 38795168 DOI: 10.1007/s10792-024-02917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/24/2023] [Indexed: 05/27/2024]
Abstract
BACKGROUND The multifunctional profibrotic cytokine transforming growth factor-beta2 (TGF-β2) is implicated in the pathophysiology of primary open angle glaucoma. Paeoniflorin (PAE) is a monoterpene glycoside with multiple pharmacological efficacies, such as antioxidant, anti-fibrotic, and anti-inflammatory properties. Studies have demonstrated that paeoniflorin protects human corneal epithelial cells, retinal pigment epithelial cells, and retinal microglia from damage. Here, the biological role of PAE in TGF-β2-dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment. METHODS Primary or transformed (GTM3) human TM (HTM) cells conditioned in serum-free media were incubated with TGF-β2 (5 ng/mL). PAE (300 μM) was added to serum-starved confluent cultures of HTM cells for 2 h, followed by incubation with TGF-β2 for 22 h. SB-431542, a TGF-β receptor inhibitor (10 μM), was used as a positive control. The levels of intracellular ROS were evaluated by CellROX green dye. Western blotting was used to measure the levels of TGF-β2/Smad2/3 signaling-related molecules. Collagen 1α1, collagen 4α1, and connective tissue growth factor (CTGF) expression was evaluated by RT-qPCR. Immunofluorescence assay was conducted to measure collagen I/IV expression in HTM cells. Phalloidin staining assay was conducted for evaluating F-actin stress fiber formation in the cells. RESULTS PAE attenuated TGF-β2-induced oxidative stress and suppressed TGF-β2-induced Smad2/3 signaling in primary or transformed HTM cells. Additionally, PAE repressed TGF-β2-induced upregulation of collagen 1α1, collagen 4α1, and CTGF expression and reduced TGF-β2-mediated collagen I/IV expression and of F-actin stress fiber formation in primary or transformed HTM cells. CONCLUSION PAE alleviates TGF-β2-induced ECM deposition and oxidative stress in HTM cells through inactivation of Smad2/3 signaling.
Collapse
Affiliation(s)
- Yongmei Hu
- Department of Ophthalmology, The First People's Hospital of Jiangxia District, Wuhan, No.1 Wenhua Avenue, Zhifang Street, Jiangxia District, Wuhan, 430200, China
| | - Kui Ge
- Department of Ophthalmology, The First People's Hospital of Jiangxia District, Wuhan, No.1 Wenhua Avenue, Zhifang Street, Jiangxia District, Wuhan, 430200, China
| | - Yan Du
- Department of Ophthalmology, The First People's Hospital of Jiangxia District, Wuhan, No.1 Wenhua Avenue, Zhifang Street, Jiangxia District, Wuhan, 430200, China.
| |
Collapse
|
22
|
Shui YB, Liu Y, Huang AJW, Siegfried CJ. SDPR expression in human trabecular meshwork and its potential role in racial disparities of glaucoma. Sci Rep 2024; 14:10258. [PMID: 38704467 PMCID: PMC11069504 DOI: 10.1038/s41598-024-61071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
In order to identify how differential gene expression in the trabecular meshwork (TM) contributes to racial disparities of caveolar protein expression, TM dysfunction and development of primary open angle glaucoma (POAG), RNA sequencing was performed to compare TM tissue obtained from White and Black POAG surgical (trabeculectomy) specimens. Healthy donor TM tissue from White and Black donors was analyzed by PCR, qPCR, immunohistochemistry staining, and Western blot to evaluate SDPR (serum deprivation protein response; Cavin 2) and CAV1/CAV2 (Caveolin 1/Caveolin 2). Standard transmission electron microscopy (TEM) and immunogold labeled studies were performed. RNA sequencing demonstrated reduced SDPR expression in TM from Black vs White POAG patients' surgical specimens, with no significant expression differences in other caveolae-associated genes, confirmed by qPCR analysis. No racial differences in SDPR gene expression were noted in healthy donor tissue by PCR analysis, but there was greater expression as compared to specimens from patients with glaucoma. Analysis of SDPR protein expression confirmed specific expression in the TM regions, but not in adjacent tissues. TEM studies of TM specimens from healthy donors did not demonstrate any racial differences in caveolar morphology, but a significant reduction of caveolae with normal morphology and immuno-gold staining of SDPR were noted in glaucomatous TM as compared to TM from healthy donors. Linkage of SDPR expression levels in TM, POAG development, and caveolar ultrastructural morphology may provide the basis for a novel pathway of exploration of the pathologic mechanisms of glaucoma. Differential gene expression of SDPR in TM from Black vs White subjects with glaucoma may further our understanding of the important public health implications of the racial disparities of this blinding disease.
Collapse
Affiliation(s)
- Ying-Bo Shui
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ying Liu
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew J W Huang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carla J Siegfried
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
23
|
Zhu J, Chen H, Wu J, Li S, Lin W, Wang N, Bai L. Ferroptosis in Glaucoma: A Promising Avenue for Therapy. Adv Biol (Weinh) 2024; 8:e2300530. [PMID: 38411382 DOI: 10.1002/adbi.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Glaucoma, a blind-leading disease largely since chronic pathological intraocular high pressure (ph-IOP). Hitherto, it is reckoned incurable for irreversible neural damage and challenges in managing IOP. Thus, it is significant to develop neuroprotective strategies. Ferroptosis, initially identified as an iron-dependent regulated death that triggers Fenton reactions and culminates in lipid peroxidation (LPO), has emerged as a focal point in multiple tumors and neurodegenerative diseases. Researches show that iron homeostasis play critical roles in the optic nerve (ON) and retinal ganglion cells (RGCs), suggesting targeted treatments could be effective. In glaucoma, apart from neural lesions, disrupted metal balance and increased oxidative stress in trabecular meshwork (TM) are observed. These disturbances lead to extracellular matrix excretion disorders, known as sclerotic mechanisms, resulting in refractory blockages. Importantly, oxidative stress, a significant downstream effect of ferroptosis, is also a key factor in cell senescence. It plays a crucial role in both the etiology and risk of glaucoma. Moreover, ferroptosis also induces non-infectious inflammation, which exacerbate glaucomatous injury. Therefore, the relevance of ferroptosis in glaucoma is extensive and multifaceted. In this review, the study delves into the current understanding of ferroptosis mechanisms in glaucoma, aiming to provide clues to inform clinical therapeutic practices.
Collapse
Affiliation(s)
- Jingyun Zhu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Hui Chen
- Department of Geriatrics, Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, China
| | - Jian Wu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 8, East Chongwenmennei Street, Dongcheng District, Beijing, 100005, China
| | - Sen Li
- Department of Spinal Surgery, Drum Tower Hospital, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu, 210008, China
| | - Wanying Lin
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Ningli Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 8, East Chongwenmennei Street, Dongcheng District, Beijing, 100005, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
24
|
Yamagishi-Kimura R, Honjo M, Aihara M. Effect of a fixed combination of ripasudil and brimonidine on aqueous humor dynamics in mice. Sci Rep 2024; 14:7861. [PMID: 38570526 PMCID: PMC10991514 DOI: 10.1038/s41598-024-58212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ripasudil-brimonidine fixed-dose combination (K-232) simultaneously targets three different intraocular pressure (IOP) lowering mechanisms, increasing trabecular meshwork outflow and uveoscleral outflow, and reducing aqueous humor production Vascularly, ripasudil induces transient vasodilation, brimonidine transient vasoconstriction. Investigating effects on IOP, aqueous dynamics, and EVP in mice eyes by microneedle and constant-pressure perfusion methods, and on cytoskeletal and fibrotic proteins changes in HTM cells by a gel contraction assay and immunocytochemistry. Ripasudil, K-232, and brimonidine droplets significantly reduced IOP at 30 min, with K-232 sustaining the effect at 60 min. For EVP, only K-232 exhibited reduced EVP until 60 min after instillation. In vitro, ripasudil inhibited gel contractility and TGFβ2-induced fibrotic changes, whereas brimonidine did not. K-232 significantly lowered IOPs in mice by combining the effects of ripasudil and brimonidine. Brimonidine alone also showed IOP reductions with enhanced outflow facility, and the drug did not interfere with the effects of ripasudil on the trabecular meshwork outflow; K-232 and ripasudil alone both significantly lowered the EVP and enhanced outflow facility, demonstrating that K-232 efficiently reduces IOPs.
Collapse
Affiliation(s)
- Reiko Yamagishi-Kimura
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655, Japan.
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655, Japan
| |
Collapse
|
25
|
Brown SFK, Nguyen H, Mzyk P, De Ieso ML, Unser AM, Brown I, Ramesh P, Afzaal H, Ahmed F, Torrejon KY, Nhan A, Markrush D, Daly T, Knecht E, McConaughy W, Halmos S, Liu ZL, Rennard R, Peterson A, Stamer WD. ANGPTL7 and Its Role in IOP and Glaucoma. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 38497513 PMCID: PMC10950037 DOI: 10.1167/iovs.65.3.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose Loss-of-function variants in the ANGPTL7 gene are associated with protection from glaucoma and reduced intraocular pressure (IOP). We investigated the role of ANGPTL7 in IOP homeostasis and its potential as a target for glaucoma therapeutics. Methods IOP, outflow facility, and outflow tissue morphology of Angptl7 knockout (KO) mice were assessed with and without dexamethasone (Dex). ANGPTL7 was quantified in conditioned media from human trabecular meshwork cells in response to Dex, in effluent from perfused human donor eyes, and in aqueous humor from human patients treated with steroids. Antibodies to ANGPTL7 were generated and tested in three-dimensional (3D) culture of outflow cells and perfused human donor eyes. Rabbits were injected intravitreally with a neutralizing antibody targeting ANGPTL7, and IOP was measured. Results IOP was significantly elevated, but outflow facility and outflow tissue morphology were not different between Angptl7 KO mice and littermates. When challenged with Dex, IOP increased in wild-type but not Angptl7 KO mice. In human samples, increased ANGPTL7 was seen in the aqueous humor of patients treated with steroids, regardless of glaucoma status. Using 3D culture, recombinant ANGPTL7 decreased, and ANGPTL7-blocking antibodies increased hydraulic conductivity. Significantly, outflow facility increased in human eyes treated ex vivo with ANGPTL7-blocking antibodies, and IOP decreased for 21 days in rabbits after a single injection of blocking antibodies. Conclusions Using multiple models, we have demonstrated that excess ANGPTL7 increases outflow resistance and IOP and that neutralizing ANGPTL7 has beneficial effects in both naïve and steroid-induced hypertensive eyes, thus motivating the development of ANGPTL7-targeting therapeutics for the treatment of glaucoma.
Collapse
Affiliation(s)
| | - Hien Nguyen
- Broadwing Bio, Waltham, Massachusetts, United States
| | - Philip Mzyk
- Duke University, Durham, North Carolina, United States
| | | | | | - Ian Brown
- Broadwing Bio, Waltham, Massachusetts, United States
| | | | - Hira Afzaal
- Humonix Biosciences, Albany, New York, United States
| | - Feryan Ahmed
- Humonix Biosciences, Albany, New York, United States
| | | | - Alan Nhan
- Alloy Therapeutics, Waltham, Massachusetts, United States
| | | | - Tom Daly
- Alloy Therapeutics, Waltham, Massachusetts, United States
| | - Ellie Knecht
- Alloy Therapeutics, Waltham, Massachusetts, United States
| | | | - Sara Halmos
- Alloy Therapeutics, Waltham, Massachusetts, United States
| | | | - Rachel Rennard
- Alloy Therapeutics, Waltham, Massachusetts, United States
| | | | | |
Collapse
|
26
|
Ikegami K. Circadian rhythm of intraocular pressure. J Physiol Sci 2024; 74:14. [PMID: 38431563 PMCID: PMC10908160 DOI: 10.1186/s12576-024-00905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker. The SCN resets peripheral clocks through sympathetic nerves or adrenal glucocorticoids (GCs). IOP's circadian rhythm is governed by circadian time signals, sympathetic noradrenaline (NE), and GCs, rather than the local clock. The activity of Na+/K+-ATPase in non-pigmented epithelial cells in the ciliary body can influence the nocturnal increase in IOP by enhancing AH inflow. Conversely, NE, not GCs, can regulate the IOP rhythm by suppressing TM macrophage phagocytosis and AH outflow. The activation of the β1-adrenergic receptor (AR)-mediated EPAC-SHIP1 signal through the ablation of phosphatidylinositol triphosphate may govern phagocytic cup formation. These findings could offer insights for better glaucoma management, such as chronotherapy.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
27
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
28
|
Harvey DH, Sugali CK, Mao W. Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Clin Ophthalmol 2024; 18:481-505. [PMID: 38379915 PMCID: PMC10878139 DOI: 10.2147/opth.s442749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Glucocorticoid (GC) therapy is indicated in many diseases, including ocular diseases. An important side-effect of GC therapy is GC-induced ocular hypertension (GIOHT), which may cause irreversible blindness known as GC-induced glaucoma (GIG). Here, we reviewed the pathological changes that contribute to GIOHT including in the trabecular meshwork and Schlemm's canal at cellular and molecular levels. We also discussed the clinical aspects of GIOHT/GIG including disease prevalence, risk factors, the type of GCs, the route of GC administration, and management strategies.
Collapse
Affiliation(s)
- Devon Hori Harvey
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Weiming Mao
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
29
|
Yan X, Wu S, Liu Q, Cheng Y, Teng Y, Ren T, Zhang J, Wang N. Serine to proline mutation at position 341 of MYOC impairs trabecular meshwork function by causing autophagy deregulation. Cell Death Discov 2024; 10:21. [PMID: 38212635 PMCID: PMC10784477 DOI: 10.1038/s41420-024-01801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Glaucoma is a highly heritable disease, and myocilin was the first identified causal and most common pathogenic gene in glaucoma. Serine-to-proline mutation at position 341 of myocilin (MYOCS341P) is associated with severe glaucoma phenotypes in a five-generation primary open-angle glaucoma family. However, the underlying mechanisms are underexplored. Herein, we established the MYOCS341P transgenic mouse model and characterized the glaucoma phenotypes. Further, we systematically explored the functional differences between wild-type and MYOCS341P through immunoprecipitation, mass spectrometry, and RNA-seq analyses. We found that MYOCS341P transgenic mice exhibit glaucoma phenotypes, characterized by reduced aqueous humor outflow, elevated intraocular pressure, decreased trabecular meshwork (TM) cell number, narrowed Schlemm's canal, retinal ganglion cell loss, and visual impairment. Mechanistically, the secretion of dysfunctional MYOCS341P accumulated in the endoplasmic reticulum (ER), inducing ER stress and dysregulation of autophagy, thereby promoting TM cell death. We describe an effective transgenic model for mechanistic studies and the screening of therapeutic targets. Our data generated from high-throughput analyses help elucidate the mechanism underlying mutant MYOC-related glaucoma.
Collapse
Affiliation(s)
- Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ying Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Yufei Teng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
30
|
Binter M, Langer F, Hu X, Lindziute M, Framme C, Tode J, Fuchs H. A simple dissection method for the isolation of mouse trabecular meshwork cells. PLoS One 2023; 18:e0296124. [PMID: 38128042 PMCID: PMC10734917 DOI: 10.1371/journal.pone.0296124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE The outflow pathway, especially trabecular meshwork (TM), plays an essential role in glaucoma, and the availability of TM cells is crucial for in vitro research. So far, the isolation of TM cells from mice has been anything but manageable due to the small size of the eye. Direct isolation using a stereomicroscope and forceps requires a high grade of dexterity. Indirect isolation is based on the phagocytic properties of TM cells and involves injecting magnetic microspheres into the anterior chamber of live mice followed by isolation. Therefore, a simpler, less expensive, and nonexperimental strategy for isolating mouse TM cells would be desirable. METHODS After enucleation, the eyes were cut in half anterior-to-posteriorly. The lens and posterior segment were removed. Iris and the attached ciliary body were gently pulled backward and disconnected from the remaining tissue to expose the TM. By incising through the cornea anteriorly and posteriorly of the TM, the cornea/TM stripe could be isolated. The cornea/TM stripe was cultured with the pigmented side down in a 6-well. The outgrowing pigmented cells were analyzed by immunocytochemistry and mRNA expression for previously described TM cell markers. The phagocytic properties of the cells were additionally confirmed using fluorescent microspheres. RESULTS Pigmented phagocytic cells were the first to grow out of the cornea/TM strips after approximately 4-7 days. Cells were positive for Collagen IV, Fibronectin1, Vimentin, and Actin alpha 2 and could phagocytize fluorescent microbeads. Cross-linked actin networks were visible after 9 days of exposure to TGFB2 (transforming growth factor-beta 2). Additionally, treatment with 500 nM Dexamethasone for one week increased myocilin expression, as previously reported for TM cells. In addition, we proved that this method can also be used in albino mice, which lack pigmentation of the trabecular meshwork. CONCLUSIONS The isolated cells show phagocytic properties and specific expression of markers reported in TM cells. Therefore, our dissection-based method is inexpensive and reproducible for isolating TM cells in mice.
Collapse
Affiliation(s)
- Maximilian Binter
- Institute of Ophthalmology, Hannover Medical School, University Eye Hospital, Hannover, Germany
| | - Fridolin Langer
- Institute of Ophthalmology, Hannover Medical School, University Eye Hospital, Hannover, Germany
| | - Xiaonan Hu
- Institute of Ophthalmology, Hannover Medical School, University Eye Hospital, Hannover, Germany
| | - Migle Lindziute
- Institute of Ophthalmology, Hannover Medical School, University Eye Hospital, Hannover, Germany
| | - Carsten Framme
- Institute of Ophthalmology, Hannover Medical School, University Eye Hospital, Hannover, Germany
| | - Jan Tode
- Institute of Ophthalmology, Hannover Medical School, University Eye Hospital, Hannover, Germany
| | - Heiko Fuchs
- Institute of Ophthalmology, Hannover Medical School, University Eye Hospital, Hannover, Germany
| |
Collapse
|
31
|
Munuera I, Aragon-Navas A, Villacampa P, Gonzalez-Cela MA, Subías M, Pablo LE, Garcia-Feijoo J, Herrero-Vanrell R, Garcia-Martin E, Bravo-Osuna I, Rodrigo MJ. Chronic Glaucoma Induced in Rats by a Single Injection of Fibronectin-Loaded PLGA Microspheres: IOP-Dependent and IOP-Independent Neurodegeneration. Int J Mol Sci 2023; 25:9. [PMID: 38203183 PMCID: PMC10779403 DOI: 10.3390/ijms25010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
To evaluate a new animal model of chronic glaucoma induced using a single injection of fibronectin-loaded biodegradable PLGA microspheres (Ms) to test prolonged therapies. 30 rats received a single injection of fibronectin-PLGA-Ms suspension (MsF) in the right eye, 10 received non-loaded PLGA-Ms suspension (Control), and 17 were non-injected (Healthy). Follow-up was performed (24 weeks), evaluating intraocular pressure (IOP), optical coherence tomography (OCT), histology and electroretinography. The right eyes underwent a progressive increase in IOP, but only induced cohorts reached hypertensive values. The three cohorts presented a progressive decrease in ganglion cell layer (GCL) thickness, corroborating physiological age-related loss of ganglion cells. Injected cohorts (MsF > Control) presented greater final GCL thickness. Histological exams explain this paradox: the MsF cohort showed lower ganglion cell counts but higher astrogliosis and immune response. A sequential trend of functional damage was recorded using scotopic electroretinography (MsF > Control > Healthy). It seems to be a function-structure correlation: in significant astrogliosis, early functional damage can be detected by electroretinography, and structural damage can be detected by histological exams but not by OCT. Males presented higher IOP and retinal and GCL thicknesses and lower electroretinography. A minimally invasive chronic glaucoma model was induced by a single injection of biodegradable Ms.
Collapse
Affiliation(s)
- Ines Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
| | - Alba Aragon-Navas
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907 l’Hospitalet de Llobregat, Spain;
| | - Miriam A. Gonzalez-Cela
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Biotech Vision SLP (Spin-Off Company), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain
| | - Luis E. Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Biotech Vision SLP (Spin-Off Company), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Julian Garcia-Feijoo
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Maria J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| |
Collapse
|
32
|
Li G, van Batenburg-Sherwood J, Safa BN, Fraticelli Guzmán NS, Wilson A, Bahrani Fard MR, Choy K, De Ieso ML, Cui JS, Feola AJ, Weisz T, Kuhn M, Rickman CB, Farsiu S, Ethier CR, Stamer WD. Aging and intraocular pressure homeostasis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562768. [PMID: 38106150 PMCID: PMC10723259 DOI: 10.1101/2023.10.17.562768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.
Collapse
|
33
|
Wu J, Lin C, Yang C, Pan L, Liu H, Zhu S, Wei S, Jia X, Zhang Q, Yu Z, Zhao X, Liu W, Zhuo Y, Wang N. Identification and validation of key biomarkers and potential therapeutic targets for primary open-angle glaucoma. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2837-2850. [PMID: 37610681 DOI: 10.1007/s11427-022-2344-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/06/2023] [Indexed: 08/24/2023]
Abstract
Primary open-angle glaucoma (POAG) is a prevalent cause of blindness worldwide, resulting in degeneration of retinal ganglion cells and permanent damage to the optic nerve. However, the underlying pathogenetic mechanisms of POAG are currently indistinct, and there has been no effective nonsurgical treatment regimen. The objective of this study is to identify novel biomarkers and potential therapeutic targets for POAG. The mRNA expression microarray datasets GSE27276 and GSE138125, as well as the single-cell high-throughput RNA sequencing (scRNA-seq) dataset GSE148371 were utilized to screen POAG-related differentially expressed genes (DEGs). Functional enrichment analyses, protein-protein interaction (PPI) analysis, and weighted gene co-expression network analysis (WGCNA) of the DEGs were performed. Subsequently, the hub genes were validated at a single-cell level, where trabecular cells were annotated, and the mRNA expression levels of target genes in different cell clusters were analyzed. Immunofluorescence and quantitative real-time PCR (qPCR) were performed for further validation. DEGs analysis identified 43 downregulated and 32 upregulated genes in POAG, which were mainly enriched in immune-related pathways, oxidative stress, and endoplasmic reticulum (ER) stress. PPI networks showed that FN1 and DUSP1 were the central hub nodes, while GPX3 and VAV3 were screened out as hub genes through WGCNA and subsequently validated by qPCR. Finally, FN1, GPX3, and VAV3 were determined to be pivotal core genes via single-cell validation. The relevant biomarkers involved in the pathogenesis of POAG, may serve as potential therapeutic targets. Further studies are necessary to unveil the mechanisms underlying the expression variations of these genes in POAG.
Collapse
Affiliation(s)
- Jian Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Caixia Lin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, 100191, China
- North America Medical Education Foundation, Union City, CA, 94539, USA
| | - Lijie Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Hongyi Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Sirui Zhu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Shuwen Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Xu Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ziyu Yu
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, 100191, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China.
| |
Collapse
|
34
|
Buffault J, Brignole-Baudouin F, Labbé A, Baudouin C. An Overview of Current Glaucomatous Trabecular Meshwork Models. Curr Eye Res 2023; 48:1089-1099. [PMID: 37661784 DOI: 10.1080/02713683.2023.2253378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/26/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE To provide an overview of the existing alternative models for studying trabecular meshwork (TM). METHODS Literature review. RESULTS The TM is a complex tissue that regulates aqueous humor outflow from the eye. Dysfunction of the TM is a major contributor to the pathogenesis of open-angle glaucoma, a leading cause of irreversible blindness worldwide. The TM is a porous structure composed of trabecular meshwork cells (TMC) within a multi-layered extracellular matrix (ECM). Although dysregulation of the outflow throughout the TM represents the first step in the disease process, the underlying mechanisms of TM degeneration associate cell loss and accumulation of ECM, but remain incompletely understood, and drugs targeting the TM are limited. Therefore, experimental models of glaucomatous trabeculopathy are necessary for preclinical screening, to advance research on this disease's pathophysiology, and to develop new therapeutic strategies targeting the TM. Traditional animal models have been used extensively, albeit with inherent limitations, including ethical concerns and limited translatability to humans. Consequently, there has been an increasing focus on developing alternative in vitro models to study the TM. Recent advancements in three-dimensional cell culture and tissue engineering are still in their early stages and do not yet fully reflect the complexity of the outflow pathway. However, they have shown promise in reducing reliance on animal experimentation in certain aspects of glaucoma research. CONCLUSION This review provides an overview of the existing alternative models for studying TM and their potential for advancing research on the pathophysiology of open-angle glaucoma and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Juliette Buffault
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Françoise Brignole-Baudouin
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Biology, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
| | - Antoine Labbé
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Christophe Baudouin
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
| |
Collapse
|
35
|
Pandino I, Giammaria S, Zingale GA, Roberti G, Michelessi M, Coletta M, Manni G, Agnifili L, Vercellin AV, Harris A, Oddone F, Sbardella D. Ubiquitin proteasome system and glaucoma: A survey of genetics and molecular biology studies supporting a link with pathogenic and therapeutic relevance. Mol Aspects Med 2023; 94:101226. [PMID: 37950974 DOI: 10.1016/j.mam.2023.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
Glaucoma represents a group of progressive neurodegenerative diseases characterized by the loss of retinal ganglion cells (RGCs) and their axons with subsequent visual field impairment. The disease develops through largely uncharacterized molecular mechanisms, that are likely to occur in different localized cell types, either in the anterior (e.g., trabecular meshwork cells) or posterior (e.g., Muller glia, retinal ganglion cells) segments of the eye. Genomic and preclinical studies suggest that glaucoma pathogenesis may develop through altered ubiquitin (Ub) signaling. Ubiquitin conjugation, referred to as ubiquitylation, is a major post-synthetic modification catalyzed by E1-E2-E3 enzymes, that profoundly regulates the turnover, trafficking and biological activity of the targeted protein. The development of new technologies, including proteomics workflows, allows the biology of ubiquitin signaling to be described in health and disease. This post-translational modification is emerging as a key role player in neurodegeneration, gaining relevance for novel therapeutic options, such as in the case of Proteolysis Targeting Chimeras technology. Although scientific evidence supports a link between Ub and glaucoma, their relationship is still not well-understood. Therefore, this review provides a detailed research-oriented discussion on current evidence of Ub signaling in glaucoma. A review of genomic and genetic data is provided followed by an in-depth discussion of experimental data on ASB10, parkin and optineurin, which are proteins that play a key role in Ub signaling and have been associated with glaucoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianluca Manni
- IRCCS Fondazione Bietti, Rome, Italy; DSCMT University of Tor Vergata, Rome, Italy
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Science, University "G. D'Annunzio" of Chieti-Pescara, Italy
| | | | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
36
|
Debele TA, Mount ZF, Yuan Y, Kao WWY, Park YC. The Effects of ROCK Inhibitor on Prevention of Dexamethasone-Induced Glaucoma Phenotype in Human Trabecular Meshwork Cells. Transl Vis Sci Technol 2023; 12:4. [PMID: 38051267 PMCID: PMC10702786 DOI: 10.1167/tvst.12.12.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Purpose This study investigated the effects of dexamethasone (Dex) on human trabecular meshwork (TM) cells, a model of glucocorticoid-induced glaucoma, and evaluated the impact of ripasudil (Rip) as a co-delivery or sequential dosing strategy. Methods In vitro experiments were conducted to assess the effects of Dex and Rip on TM cells. Confocal microscopy was used to evaluate the impact of Dex and Rip on F-actin staining signals. Contractility of the TM cells upon Dex and Rip treatment mimicking co-delivery and sequential delivery was quantified using collagen gel contraction assay. Transepithelial electrical resistance (TEER) values and fluorescein isothiocyanate (FITC)-dextran permeability were also measured to assess the impact of Dex and Rip on TM cells. Results Dex and Rip did not exhibit cytotoxicity at the maximum tested concentration (20 µM). Dex-treated TM cells exhibited higher F-actin staining signals compared to controls, which were reduced when co-treated with Rip. Rip inhibited Dex-induced collagen gel contraction activity in both co-delivery and sequential treatments. Dex resulted in increased TEER values as the dose increased, whereas TEER values were maintained when co-treated with Rip. Conclusions Co-delivery of Rip has the potential to prevent glaucoma symptoms when patients are treated with Dex. This study highlights the importance of identifying strategies to reduce the side effects of prolonged use of glucocorticoids, such as Dex, in the treatment of various diseases. Translational Relevance This study demonstrates the potential of co-delivering ripasudil with dexamethasone to mitigate glucocorticoid-induced ocular hypertension and a secondary glaucoma that resembles primary open-angle glaucoma, providing insights for the development of novel preventive strategies in clinical care.
Collapse
Affiliation(s)
- Tilahun Ayane Debele
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Zachary F. Mount
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yong Yuan
- Department of Ophthalmology, College of Medicine, University of Cincinnati, OH, USA
| | - Winston W.-Y. Kao
- Department of Ophthalmology, College of Medicine, University of Cincinnati, OH, USA
| | - Yoonjee C. Park
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, OH, USA
| |
Collapse
|
37
|
Youngblood H, Schoenlein PV, Pasquale LR, Stamer WD, Liu Y. Estrogen dysregulation, intraocular pressure, and glaucoma risk. Exp Eye Res 2023; 237:109725. [PMID: 37956940 PMCID: PMC10842791 DOI: 10.1016/j.exer.2023.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Characterized by optic nerve atrophy due to retinal ganglion cell (RGC) death, glaucoma is the leading cause of irreversible blindness worldwide. Of the major risk factors for glaucoma (age, ocular hypertension, and genetics), only elevated intraocular pressure (IOP) is modifiable, which is largely regulated by aqueous humor outflow through the trabecular meshwork. Glucocorticoids such as dexamethasone have long been known to elevate IOP and lead to glaucoma. However, several recent studies have reported that steroid hormone estrogen levels inversely correlate with glaucoma risk, and that variants in estrogen signaling genes have been associated with glaucoma. As a result, estrogen dysregulation may contribute to glaucoma pathogenesis, and estrogen signaling may protect against glaucoma. The mechanism for estrogen-related protection against glaucoma is not completely understood but likely involves both regulation of IOP homeostasis and neuroprotection of RGCs. Based upon its known activities, estrogen signaling may promote IOP homeostasis by affecting extracellular matrix turnover, focal adhesion assembly, actin stress fiber formation, mechanosensation, and nitric oxide production. In addition, estrogen receptors in the RGCs may mediate neuroprotective functions. As a result, the estrogen signaling pathway may offer a therapeutic target for both IOP control and neuroprotection. This review examines the evidence for a relationship between estrogen and IOP and explores the possible mechanisms by which estrogen maintains IOP homeostasis.
Collapse
Affiliation(s)
- Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Patricia V Schoenlein
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; Department of Radiology and Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Surgery, Augusta University, Augusta, GA, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Daniel Stamer
- Department of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.
| |
Collapse
|
38
|
Jia X, Wu J, Chen X, Hou S, Li Y, Zhao L, Zhu Y, Li Z, Deng C, Su W, Zhuo Y. Cell atlas of trabecular meshwork in glaucomatous non-human primates and DEGs related to tissue contract based on single-cell transcriptomics. iScience 2023; 26:108024. [PMID: 37867950 PMCID: PMC10589847 DOI: 10.1016/j.isci.2023.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
As the major channel of aqueous humor outflow, dysfunction of trabecular meshwork (TM) can lead to intraocular pressure elevating, which can trigger primary open-angle glaucoma (POAG). In this study, we use single-cell RNA sequencing (scRNA-seq) technique to build an atlas and further explore the spontaneous POAG and healthy macaques cellular heterogeneity associated with the dysfunction of TM contraction. We built the TM atlas, which identified 14 different cell types. In Beam A, Beam B, Beam C, and smooth muscle cell (SMC) cell types, we first found multiple genes associated with TM contraction (e.g., TPM1, ACTC1, TNNT1), determining their differential expression in the POAG and healthy groups. In addition, the microstructural alterations in TM of POAG non-human primates were observed, which was compact and collapsed. Thus, our study indicated that TPM1 may be a key target for regulating TM structure, contraction function, and resistance of aqueous humor outflow.
Collapse
Affiliation(s)
- Xu Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, Guangdong, China
- The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Xiaohong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, Guangdong, China
| | - Simeng Hou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Yangyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, Guangdong, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, Guangdong, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, Guangdong, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, Guangdong, China
| | - Caibin Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, Guangdong, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, Guangdong, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Jayaram H, Kolko M, Friedman DS, Gazzard G. Glaucoma: now and beyond. Lancet 2023; 402:1788-1801. [PMID: 37742700 DOI: 10.1016/s0140-6736(23)01289-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 09/26/2023]
Abstract
The glaucomas are a group of conditions leading to irreversible sight loss and characterised by progressive loss of retinal ganglion cells. Although not always elevated, intraocular pressure is the only modifiable risk factor demonstrated by large clinical trials. It remains the leading cause of irreversible blindness, but timely treatment to lower intraocular pressure is effective at slowing the rate of vision loss from glaucoma. Methods for lowering intraocular pressure include laser treatments, topical medications, and surgery. Although modern surgical innovations aim to be less invasive, many have been introduced with little supporting evidence from randomised controlled trials. Many cases remain undiagnosed until the advanced stages of disease due to the limitations of screening and poor access to opportunistic case finding. Future research aims to generate evidence for intraocular pressure-independent neuroprotective treatments, personalised treatment through genetic risk profiling, and exploration of potential advanced cellular and gene therapies.
Collapse
Affiliation(s)
- Hari Jayaram
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK; UCL Institute of Ophthalmology, London, UK; National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK
| | - Miriam Kolko
- Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; University of Copenhagen, Department of Drug Design and Pharmacology, Copenhagen, Denmark
| | - David S Friedman
- Massachusetts Eye and Ear Hospital, Glaucoma Center of Excellence, Boston, MA, USA; Harvard University, Boston, MA, USA
| | - Gus Gazzard
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK; UCL Institute of Ophthalmology, London, UK; National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK.
| |
Collapse
|
40
|
Zhu X, Zeng B, Wu C, Chen Z, Yu M, Yang Y. Inhibition of TGF-β2-Induced Trabecular Meshwork Fibrosis by Pirfenidone. Transl Vis Sci Technol 2023; 12:21. [PMID: 37975842 PMCID: PMC10664722 DOI: 10.1167/tvst.12.11.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose Trabecular meshwork (TM) fibrosis is a crucial pathophysiological process in the development of primary open-angle glaucoma. Pirfenidone (PFD) is a new, broad-spectrum antifibrotic agent approved for the treatment of idiopathic pulmonary fibrosis. This study investigated the inhibitory effect of PFD on TM fibrosis and evaluated its efficacy in lowering intraocular pressure (IOP). Methods Human TM cells were isolated, cultured, and characterized. Cell Counting Kit-8 was used to evaluate the proliferation and toxicity of different concentrations of PFD on normal or fibrotic TM cells. TM cells were treated with transforming growth factor beta-2 (TGF-β2) in the absence or presence of PFD. Western blotting and immunofluorescence analyses were used to analyze changes in the TM cell cytoskeleton and extracellular matrix (ECM) proteins, including alpha-smooth muscle actin (α-SMA), F-actin, collagen IV (COL IV), and fibronectin (FN). An ocular hypertension (OHT) mouse model was induced with Ad-TGF-β2C226/228S and then treated with PFD or latanoprost (LT) eye drops to confirm the efficacy of PFD in lowering IOP. Results PFD inhibited the proliferation of fibrotic TM cells in a dose-dependent manner and inhibited TGF-β2-induced overexpression of α-SMA, COL IV, and FN in TM cells. PFD stabilized F-actin. In vivo, PFD eye drops reduced the IOP of the OHT models and showed no significant difference compared with LT eye drops. Conclusions PFD inhibited TGF-β2-induced TM cell fibrosis by rearranging the disordered cytoskeleton and decreasing ECM deposition, thereby enhancing the aqueous outflow from the TM outflow pathway and lowering IOP, which provides a potential new approach to treating glaucoma. Translational Relevance Our work with pirfenidone provides a new approach to treat glaucoma.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zidong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmology Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
41
|
Zhang Y, Han R, Xu S, Chen J, Zhong Y. Matrix Metalloproteinases in Glaucoma: An Updated Overview. Semin Ophthalmol 2023; 38:703-712. [PMID: 37224230 DOI: 10.1080/08820538.2023.2211149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Matrix metalloproteinases (MMPs) are important regulators of the extracellular matrix (ECM) and are involved in many stages of cellular growth and development. An imbalance of MMP expression is also the basis of many diseases, including eye diseases, such as diabetic retinopathy (DR), glaucoma, dry eye, corneal ulcer, keratoconus. This paper describes the role of MMPs in the glaucoma and their role in the glaucomatous trabecular meshwork (TM), aqueous outflow channel, retina, and optic nerve (ON). This review also summarizes several treatments for glaucoma that target MMPs imbalance and suggests that MMPs may represent a viable therapeutic target for glaucoma.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shushu Xu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
42
|
Kathirvel K, Fan X, Haribalaganesh R, Bharanidharan D, Sharmila R, Krishnadas R, Muthukkaruppan V, Willoughby CE, Senthilkumari S. Small RNA Sequencing Reveals a Distinct MicroRNA Signature between Glucocorticoid Responder and Glucocorticoid Non-Responder Primary Human Trabecular Meshwork Cells after Dexamethasone Treatment. Genes (Basel) 2023; 14:2012. [PMID: 38002955 PMCID: PMC10671261 DOI: 10.3390/genes14112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Glucocorticoids (GCs) are known to regulate several physiological processes and are the mainstay in the management of inflammatory eye diseases. The long-term use of GC causes raised intraocular pressure (IOP) or ocular hypertension (OHT) in about 30-50% of the susceptible individuals depending on the route of administration, and can lead to steroid-induced secondary glaucoma. The present study aims to understand the role of microRNAs (miRNAs) in differential glucocorticoid (GC) responsiveness in human trabecular meshwork (HTM) cells using small RNA sequencing. The human organ-cultured anterior segment (HOCAS) model was used to identify whether donor eyes were from GC-responders (GC-R; n = 4) or GC-non-responders (GC-NR; n = 4) following treatment with either 100 nM dexamethasone (DEX) or ethanol (ETH) for 7 days. The total RNA was extracted from cultured HTM cells with known GC responsiveness, and the differentially expressed miRNAs (DEMIRs) were compared among the following five groups: Group #1: ETH vs. DEX-treated GC-R; #2: ETH vs. DEX-treated GC-NR; #3: overlapping DEGs between Group #1 and #2; #4: Unique DEMIRs of GC-R; #5: Unique DEMIRs of GC-NR; and validated by RT-qPCR. There were 13 and 21 DEMIRs identified in Group #1 and Group #2, respectively. Seven miRNAs were common miRNAs dysregulated in both GC-R and GC-NR (Group #3). This analysis allowed the identification of DEMIRs that were unique to GC-R (6 miRNAs) and GC-NR (14 miRNAs) HTM cells, respectively. Ingenuity Pathway Analysis identified enriched pathways and biological processes associated with differential GC responsiveness in HTM cells. This is the first study to reveal a unique miRNA signature between GC-R and GC-NR HTM cells, which raises the possibility of developing new molecular targets for the management of steroid-OHT/glaucoma.
Collapse
Affiliation(s)
- Kandasamy Kathirvel
- Department of Ocular Pharmacology, Aravind Medical Research Foundation #1, Anna Nagar, Madurai 625020, Tamilnadu, India
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai 625020, Tamilnadu, India;
| | - Xiaochen Fan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Ravinarayanan Haribalaganesh
- Department of Ocular Pharmacology, Aravind Medical Research Foundation #1, Anna Nagar, Madurai 625020, Tamilnadu, India
| | - Devarajan Bharanidharan
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai 625020, Tamilnadu, India;
| | | | - Ramasamy Krishnadas
- Glaucoma Clinic, Aravind Eye Hospital, Madurai 625020, Tamilnadu, India (R.K.)
| | | | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, BT52 1SA Coleraine, UK
| | - Srinivasan Senthilkumari
- Department of Ocular Pharmacology, Aravind Medical Research Foundation #1, Anna Nagar, Madurai 625020, Tamilnadu, India
| |
Collapse
|
43
|
Schmitt HM, Hake KM, Perkumas KM, Lê BM, Suarez MF, De Ieso ML, Rahman RS, Johnson WM, Gomez-Caraballo M, Ashley-Koch AE, Hauser MA, Stamer WD. Lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) lncRNA differentially regulates gene and protein expression, signaling and morphology of human ocular cells. Hum Mol Genet 2023; 32:3053-3062. [PMID: 37540217 PMCID: PMC10586201 DOI: 10.1093/hmg/ddad128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Pseudoexfoliation glaucoma (PEXG) is characterized by dysregulated extracellular matrix (ECM) homeostasis that disrupts conventional outflow function and increases intraocular pressure (IOP). Prolonged IOP elevation results in optic nerve head damage and vision loss. Uniquely, PEXG is a form of open angle glaucoma that has variable penetrance, is difficult to treat and does not respond well to common IOP-lowering pharmaceuticals. Therefore, understanding modulators of disease severity will aid in targeted therapies for PEXG. Genome-wide association studies have identified polymorphisms in the long non-coding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) as a risk factor for PEXG. Risk alleles, oxidative stress and mechanical stretch all alter LOXL1-AS1 expression. As a long non-coding RNA, LOXL1-AS1 binds hnRNPL and regulates global gene expression. In this study, we focus on the role of LOXL1-AS1 in the ocular cells (trabecular meshwork and Schlemm's canal) that regulate IOP. We show that selective knockdown of LOXL1-AS1 leads to cell-type-specific changes in gene expression, ECM homeostasis, signaling and morphology. These results implicate LOXL1-AS1 as a modulator of cellular homeostasis, altering cell contractility and ECM turnover, both of which are well-known contributors to PEXG. These findings support LOXL1-AS1 as a key target for modifying the disease.
Collapse
Affiliation(s)
- Heather M Schmitt
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Kristyn M Hake
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Brandon M Lê
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Maria F Suarez
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Rashad S Rahman
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - William M Johnson
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | | | - Michael A Hauser
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
44
|
Nemoto H, Honjo M, Arai S, Miyazaki T, Aihara M. Apoptosis inhibitor of macrophages/CD5L enhances phagocytosis in the trabecular meshwork cells and regulates ocular hypertension. J Cell Physiol 2023; 238:2451-2467. [PMID: 37584382 DOI: 10.1002/jcp.31097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The trabecular meshwork (TM) cells of the eye are important for controlling intraocular pressure (IOP) and regulating outflow resistance in the aqueous humor. TM cells can remove particles and cellular debris by phagocytosis, decreasing both outflow resistance and IOP. However, the underlying mechanisms remain unclear. Here, we investigate whether apoptosis inhibitor of macrophages (AIM), which mediates the removal of dead cells and debris in renal tubular epithelial cells, regulates the phagocytic capacity of TM cells. In vitro experiments revealed that CD36, the main receptor for AIM, colocalized with AIM in human TM cells; additionally, phagocytosis was stimulated when AIM was provided. Furthermore, in a mouse model with transient IOP elevation induced by laser iridotomy (LI), removal of accumulated iris pigment epithelial cells or debris in the TM and recovery of IOP to baseline levels were delayed in AIM-/- mice, compared with control mice. However, treatment with AIM eyedrops rescued AIM-/- mice from the elevated IOP after LI. Since AIM is a protein known to inhibit macrophage apoptosis, we additionally verified its involvement in macrophage removal of cellular debris and IOP. There were no statistically significant differences in the number of macrophages between control mice and AIM-/- mice in the TM. Additionally, we confirmed the rescue effect of the rAIM eyedrops after macrophages had been removed by clodronate liposomes. Therefore, AIM plays an important role in regulating the phagocytic capacity of TM cells, thereby affecting outflow resistance. Our results suggest that drugs targeting the phagocytic capacity of TM cells via the AIM-CD36 pathway may be used to treat glaucoma.
Collapse
Affiliation(s)
- Hotaka Nemoto
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Crouch DJ, Sheridan CM, Behnsen JG, D’Sa RA, Bosworth LA. Cryo-Electrospinning Generates Highly Porous Fiber Scaffolds Which Improves Trabecular Meshwork Cell Infiltration. J Funct Biomater 2023; 14:490. [PMID: 37888155 PMCID: PMC10607045 DOI: 10.3390/jfb14100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Human trabecular meshwork is a sieve-like tissue with large pores, which plays a vital role in aqueous humor outflow. Dysfunction of this tissue can occur, which leads to glaucoma and permanent vision loss. Replacement of trabecular meshwork with a tissue-engineered device is the ultimate objective. This study aimed to create a biomimetic structure of trabecular meshwork using electrospinning. Conventional electrospinning was compared to cryogenic electrospinning, the latter being an adaptation of conventional electrospinning whereby dry ice is incorporated in the fiber collector system. The dry ice causes ice crystals to form in-between the fibers, increasing the inter-fiber spacing, which is retained following sublimation. Structural characterization demonstrated cryo-scaffolds to have closer recapitulation of the trabecular meshwork, in terms of pore size, porosity, and thickness. The attachment of a healthy, human trabecular meshwork cell line (NTM5) to the scaffold was not influenced by the fabrication method. The main objective was to assess cell infiltration. Cryo-scaffolds supported cell penetration deep within their structure after seven days, whereas cells remained on the outer surface for conventional scaffolds. This study demonstrates the suitability of cryogenic electrospinning for the close recapitulation of trabecular meshwork and its potential as a 3D in vitro model and, in time, a tissue-engineered device.
Collapse
Affiliation(s)
- Devon J. Crouch
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (D.J.C.); (C.M.S.)
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (D.J.C.); (C.M.S.)
| | - Julia G. Behnsen
- Department of Mechanical, Materials, and Aerospace Engineering, University of Liverpool, Liverpool L69 6GB, UK;
| | - Raechelle A. D’Sa
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK;
| | - Lucy A. Bosworth
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (D.J.C.); (C.M.S.)
| |
Collapse
|
46
|
Chen S, Wang N, Xiong S, Xia X. The correlation between primary open-angle glaucoma (POAG) and gut microbiota: a pilot study towards predictive, preventive, and personalized medicine. EPMA J 2023; 14:539-552. [PMID: 37605653 PMCID: PMC10439875 DOI: 10.1007/s13167-023-00336-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Background Glaucoma is the leading cause of irreversible blindness worldwide. Emerged evidence has shown that glaucoma is considered an immune system related disorder. The gut is the largest immune organ in the human body and the gut microbiota (GM) plays an irreversible role in maintaining immune homeostasis. But, how the GM influences glaucoma remains unrevealed. This study aimed at investigating the key molecules/pathways mediating the GM and the glaucoma to provide new biomarkers for future predictive, preventive, and personalized medicine. Methods Datasets from the primary open-angle glaucoma (POAG) patients (GSE138125) and datasets for target genes of GM/GM metabolites were downloaded from a public database. For GSE138125, the differentially expressed genes (DEGs) between healthy and POAG samples were identified. And the online Venn diagram tool was used to obtain the DEGs from POAG related to GM. After which GM-related DEGs were analyzed by correlation analysis, pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. Human trabecular meshwork cells were used for validation, and the mRNA level of hub genes was verified by quantitative real-time polymerase chain reaction (RT-qPCR) in the in vitro glaucoma model. Results A total of 16 GM-related DEGs in POAG were identified from the above 2 datasets (9 upregulated genes and 7 downregulated genes). Pathway enrichment analysis indicated that these genes are mostly enriched in immune regulation especially macrophages-related pathways. Then 6 hub genes were identified by PPI network analysis and construction of key modules. Finally, RT-qPCR confirmed that the expression of the hub genes in the in vitro glaucoma model was consistent with the results of bioinformatics analysis of the mRNA chip. Conclusion This bioinformatic study elucidates NFKB1, IL18, KITLG, TLR9, FKBP2, and HDAC4 as hub genes for POAG and GM regulation. Immune response modulated by macrophages plays an important role in POAG and may be potential targets for future predictive, preventive, and personalized diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00336-2.
Collapse
Affiliation(s)
- Si Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Nan Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
47
|
Yoo H, Singh A, Li H, Strat AN, Bagué T, Ganapathy PS, Herberg S. Simvastatin Attenuates Glucocorticoid-Induced Human Trabecular Meshwork Cell Dysfunction via YAP/TAZ Inactivation. Curr Eye Res 2023; 48:736-749. [PMID: 37083467 PMCID: PMC10524554 DOI: 10.1080/02713683.2023.2206067] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Impairment of the trabecular meshwork (TM) is the principal cause of increased outflow resistance in the glaucomatous eye. Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) are emerging as potential mediators of TM cell/tissue dysfunction. Furthermore, YAP/TAZ activity was recently found to be controlled by the mevalonate pathway in non-ocular cells. Clinically used statins block the mevalonate cascade and were shown to improve TM cell pathobiology; yet, the link to YAP/TAZ signaling was not investigated. In this study, we hypothesized that simvastatin attenuates glucocorticoid-induced human TM (HTM) cell dysfunction via YAP/TAZ inactivation. METHODS Primary HTM cells were seeded atop or encapsulated within bioengineered extracellular matrix (ECM) hydrogels. Dexamethasone was used to induce a pathologic phenotype in HTM cells in the absence or presence of simvastatin. Changes in YAP/TAZ activity, actin cytoskeletal organization, phospho-myosin light chain levels, hydrogel contraction/stiffness, and fibronectin deposition were assessed. RESULTS Simvastatin potently blocked pathologic YAP/TAZ nuclear localization/activity, actin stress fiber formation, and myosin light chain phosphorylation in HTM cells. Importantly, simvastatin co-treatment significantly attenuated dexamethasone-induced ECM contraction/stiffening and fibronectin mRNA and protein levels. Sequential treatment was similarly effective but did not match clinically-used Rho kinase inhibition. CONCLUSIONS YAP/TAZ inactivation with simvastatin attenuates HTM cell pathobiology in a tissue-mimetic ECM microenvironment. Our data may help explain the association of statin use with a reduced risk of developing glaucoma via indirect YAP/TAZ inhibition as a proposed regulatory mechanism.
Collapse
Affiliation(s)
- Hannah Yoo
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Ana N. Strat
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
48
|
Sung MS, Kim SY, Eom GH, Park SW. High VEGF Concentrations Accelerate Human Trabecular Meshwork Fibrosis in a TAZ-Dependent Manner. Int J Mol Sci 2023; 24:ijms24119625. [PMID: 37298577 DOI: 10.3390/ijms24119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
We aimed to investigate the effects of different concentrations of vascular endothelial growth factor (VEGF) on the extracellular matrix (ECM) and fibrotic proteins in human trabecular meshwork (TM) cells. We also explored how the Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling pathway modulates VEGF-induced fibrosis. We determined cross-linked actin network (CLAN) formation using TM cells. Changes in fibrotic and ECM protein expression were determined. High VEGF concentrations (10 and 30 ng/mL) increased TAZ and decreased p-TAZ/TAZ expression in TM cells. Western blotting and real-time PCR revealed no YAP expression changes. Fibrotic and ECM protein expression decreased at low VEGF concentrations (1 and 10 ρg/mL) and significantly increased at high VEGF concentrations (10 and 30 ng/mL). CLAN formation increased in TM cells treated with high VEGF concentrations. Moreover, TAZ inhibition by verteporfin (1 μM) rescued TM cells from high-VEGF-concentration-induced fibrosis. Low VEGF concentrations reduced fibrotic changes, whereas high VEGF concentrations accelerated fibrosis and CLAN formations in TM cells in a TAZ-dependent manner. These findings reflect the dose-dependent influences of VEGF on TM cells. Moreover, TAZ inhibition might be a therapeutic target for VEGF-induced TM dysfunction.
Collapse
Affiliation(s)
- Mi Sun Sung
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - So Young Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Sang Woo Park
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
49
|
Zhang C, Tannous E, Thomas A, Jung N, Ma E, Zheng JJ. Dexamethasone Modulates the Dynamics of Wnt Signaling in Human Trabecular Meshwork Cells. Vision (Basel) 2023; 7:43. [PMID: 37368816 DOI: 10.3390/vision7020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Trabecular meshwork (TM) tissue is highly specialized, and its structural integrity is crucial for maintaining homeostatic intraocular pressure (IOP). The administration of glucocorticoids, such as dexamethasone (DEX), can perturb the TM structure and significantly increase IOP in susceptible individuals, resulting in ocular diseases such as steroid-induced glaucoma, a form of open-angle glaucoma. Although the exact mechanism involved in steroid-induced glaucoma remains elusive, increasing evidence suggests that DEX may act through various signaling cascades in TM cells. Despite uncertainty surrounding the specific process by which steroid-induced glaucoma occurs, there is growing evidence to indicate that DEX can impact multiple signaling pathways within TM cells. In this study, we examined the impact of DEX treatment on the Wnt signaling pathway in TM cells, given that Wnt signaling has been reported to play a crucial role in regulating extracellular matrix (ECM) levels in the TM. To further elucidate the role of Wnt signaling in the glaucomatous phenotype, we examined mRNA expression patterns between Wnt signaling markers AXIN2 and sFRP1 and DEX-mediated induction of myocilin (MYOC) mRNA and protein levels over 10 days in DEX-treated primary TM cells. We observed a sequential pattern of peak expression between AXIN2, sFRP1, and MYOC. Based on the study, we propose that sFRP1 upregulation could be a result of a negative feedback mechanism generated by stressed TM cells to suppress abnormal Wnt signaling activities.
Collapse
Affiliation(s)
- Chi Zhang
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| | - Elizabeth Tannous
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| | - Alseena Thomas
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| | - Natalia Jung
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| | - Edmond Ma
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| | - Jie J Zheng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
50
|
Wang J, Rong Y, Liu Y, Zhu M, Chen W, Chen Z, Guo J, Deng C, Manyande A, Wang P, Zhang H, Xiang Y. The effect of ET1-CTGF mediated pathway on the accumulation of extracellular matrix in the trabecular meshwork and its contribution to the increase in IOP. Int Ophthalmol 2023:10.1007/s10792-023-02733-y. [PMID: 37160587 DOI: 10.1007/s10792-023-02733-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/22/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE To investigate the effect of endothelin-1 (ET-1) in excessive accumulation of extracellular matrix (ECM) of the trabecular meshwork (TM) and its role in intraocular pressure (IOP) regulation. METHODS Cultured human TM cells (HTMCs) were treated with ET-1, ET-1 + ETA receptor (ETAR) antagonist BQ123, ET-1 + ETB receptor (ETBR) antagonist BQ788. The expressions of fibronectin (FN) and collagen type IV (Col IV) were evaluated by western blotting and immunofluorescence. A time course effect of ET-1 on the transcription level of connective tissue growth factor (CTGF) was investigated by qRT-PCR. Next, the transcription level of CTGF was downregulated by using antisense oligodeoxynucleotide sequence. Then HTMCs were treated with ET-1, and the expression levels of FN and Col IV were evaluated by western blotting. In addition, by using an ex-vivo model of cultured anterior eye segment, we explored the effect of ET-1 on IOP changes and the expressions of FN and Col IV. RESULTS In cultured HTMCs, the expressions of FN and Col IV were significantly increased after ET-1 treatment, which were blocked by the pretreatment of ETAR antagonist BQ123, rather than ETBR antagonist BQ788. Besides, the CTGF mRNA level increased significantly and reached a peak after 48 h of ET-1 treatment. However, the effect of ET-1 on increasing the expressions of FN and Col IV in HTMCs could be inhibited by the downregulation of CTGF. In an ex-vivo model, IOP increased significantly after ET-1 administration, which could be blocked by BQ123 but not by BQ788. Furthermore, elevated expressions of FN and Col IV in TM were observed after ET-1 perfusion, and could be inhibited by BQ123 pretreatment. CONCLUSION Excessive ET-1 in aqueous humor could lead to the abnormal accumulation of FN and Col IV in TM via the ETA-CTGF pathway, thereby increasing IOP.
Collapse
Affiliation(s)
- Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yan Rong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Ying Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Mengxia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Wei Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Jingmin Guo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Ping Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yan Xiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|