1
|
Ruan Y, Buonfiglio F, Gericke A. Adrenoceptors in the Eye - Physiological and Pathophysiological Relevance. Handb Exp Pharmacol 2024; 285:453-505. [PMID: 38082203 DOI: 10.1007/164_2023_702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The autonomic nervous system plays a crucial role in the innervation of the eye. Consequently, it comes as no surprise that catecholamines and their corresponding receptors have been extensively studied and characterized in numerous ocular structures, including the cornea, conjunctiva, lacrimal gland, trabecular meshwork, uvea, and retina. These investigations have unveiled substantial clinical implications, particularly in the context of treating glaucoma, a progressive neurodegenerative disorder responsible for irreversible vision loss on a global scale. The primary therapeutic approaches for glaucoma frequently involve the modulation of α1-, α2-, and β-adrenoceptors, making them pivotal targets. In this chapter, we offer a comprehensive overview of the expression, distribution, and functional roles of adrenoceptors within various components of the eye and its associated structures. Additionally, we delve into the pivotal role of adrenoceptors in the pathophysiology of glaucoma. Furthermore, we provide a concise historical perspective on adrenoceptor research, examine the distinct contributions of individual adrenoceptor subtypes to the treatment of various ocular conditions, and propose potential future avenues of exploration in this field.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Zhang Z, Yang L, Li Y, Sun D, Chen R, Dou S, Liu T, Zhang S, Zhou Q, Xie L. Interference of sympathetic overactivation restores limbal stem/progenitor cells function and accelerates corneal epithelial wound healing in diabetic mice. Biomed Pharmacother 2023; 161:114523. [PMID: 36931034 DOI: 10.1016/j.biopha.2023.114523] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Diabetic keratopathy (DK), the diabetic complication in the cornea, is characterized by the delayed epithelial regeneration and sensory nerve degeneration. The involvement of limbal stem/progenitor cells (LSPCs) dysfunction has been reported, however the pathogenic mechanisms remain unclear. Here, we confirmed the dysfunction of LSPCs in diabetic mouse and human corneas. The sympathetic nerve in the cornea was adjacent to LSPCs, and the sympathetic overactivation was found in diabetic mice. Surgical and pharmacological ablation of sympathetic nerves rescued the LSPCs function and promoted corneal epithelial regeneration in diabetic mice. In contrast, both topical norepinephrine (NE) application and chemogenetic sympathetic overactivation directly impaired the stemness and proliferation characteristics of LSPCs, as well as the normal epithelial regeneration. Moreover, we identified that β2-adrenoceptor (Adrb2) was the predominant adrenergic receptor expressed in LSPCs by corneal limbal single-cell sequencing and real time PCR (RT-PCR) analysis of sorted LSPCs. The Adrb2 knockout mice exhibited the enhancement of epithelial regeneration and LSPCs function, compared with the wild-type mice. Similarly, topical application of the Adrb2 specific antagonist ICI 118, 551 effectively accelerated diabetic corneal epithelial regeneration with the restored LSPCs function. Mechanistically, sonic hedgehog (Shh) activity mediated the downstream effects of NE-Adrb2 signaling pathway in regulating LSPCs and epithelial regeneration. Taken together, our data revealed the involvement of sympathetic overactivation in the impairment of diabetic LSPCs function and corneal epithelial regeneration through the NE-Adrb2-Shh signaling pathway. The interference of sympathetic overactivation may provide novel treatment strategies for diabetic keratopathy.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Medical College of Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Di Sun
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Rong Chen
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Sai Zhang
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Qingjun Zhou
- Medical College of Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China.
| | - Lixin Xie
- Medical College of Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
3
|
Lasagni Vitar RM, Bonelli F, Rama P, Ferrari G. Immunity and pain in the eye: focus on the ocular surface. Clin Exp Immunol 2021; 207:149-163. [PMID: 35020868 PMCID: PMC8982975 DOI: 10.1093/cei/uxab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
Most ocular diseases are associated with pain. While pain has been generally considered a mere (deleterious) additional symptom, it is now emerging that it is a key modulator of innate/adaptive immunity. Because the cornea receives the highest nerve density of the entire body, it is an ideal site to demonstrate interactions between pain and the immune response. Indeed, most neuropeptides involved in pain generation are also potent regulators of innate and adaptive leukocyte physiology. On the other hand, most inflammatory cells can modulate the generation of ocular pain through release of specific mediators (cytokines, chemokines, growth factors, and lipid mediators). This review will discuss the reciprocal role(s) of ocular surface (and specifically: corneal) pain on the immune response of the eye. Finally, we will discuss the clinical implications of such reciprocal interactions in the context of highly prevalent corneal diseases.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Bonelli
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy,Correspondence: Giulio Ferrari, Cornea and Ocular Surface Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy. E-mail:
| |
Collapse
|
4
|
Lasagni Vitar RM, Fonteyne P, Chaabane L, Rama P, Ferrari G. A Hypothalamic-Controlled Neural Reflex Promotes Corneal Inflammation. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 34698773 PMCID: PMC8556564 DOI: 10.1167/iovs.62.13.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To test whether an acute corneal injury activates a proinflammatory reflex, involving corneal sensory nerves expressing substance P (SP), the hypothalamus, and the sympathetic nervous system. Methods C57BL6/N (wild-type [WT]) and SP-depleted B6.Cg-Tac1tm1Bbm/J (TAC1-KO) mice underwent bilateral corneal alkali burn. One group of WT mice received oxybuprocaine before alkali burn. One hour later, hypothalamic neuronal activity was assessed in vivo by magnetic resonance imaging and ex vivo by cFOS staining. Some animals were followed up for 14 days to evaluate corneal transparency and inflammation. Tyrosine hydroxylase (TH), neurokinin 1 receptor (NK1R), and neuronal nitric oxide synthase (nNOS) expression was assessed in brain sections. Sympathetic neuron activation was evaluated in the superior cervical ganglion (SCG). CD45+ leukocytes were quantified in whole-mounted corneas. Noradrenaline (NA) was evaluated in the cornea and bone marrow. Results Alkali burn acutely induced neuronal activation in the trigeminal ganglion, paraventricular hypothalamus, and lateral hypothalamic area (PVH and LHA), which was significantly lower in TAC1-KO mice (P < 0.05). Oxybuprocaine application similarly reduced neuronal activation (P < 0.05). TAC1-KO mice showed a reduced number of cFOS+/NK1R+/TH+ presympathetic neurons (P < 0.05) paralleled by higher nNOS expression (P < 0.05) in both PVH and LHA. A decrease in activated sympathetic neurons in the SCG and NA levels in both cornea/bone marrow and reduced corneal leukocyte infiltration (P < 0.05) in TAC1-KO mice were found. Finally, 14 days after injury, TAC1-KO mice showed reduced corneal opacity and inflammation (P < 0.05). Conclusions Our findings suggest that stimulation of corneal sensory nerves containing SP activates presympathetic neurons located in the PVH and LHA, leading to sympathetic activation, peripheral release of NA, and corneal inflammation.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Hwang DDJ, Lee SJ, Kim JH, Lee SM. The Role of Neuropeptides in Pathogenesis of Dry Dye. J Clin Med 2021; 10:4248. [PMID: 34575359 PMCID: PMC8471988 DOI: 10.3390/jcm10184248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides are known as important mediators between the nervous and immune systems. Recently, the role of the corneal nerve in the pathogenesis of various ocular surface diseases, including dry eye disease, has been highlighted. Neuropeptides are thought to be important factors in the pathogenesis of dry eye disease, as suggested by the well-known role between the nervous and immune systems, and several recently published studies have elucidated the previously unknown pathogenic mechanisms involved in the role of the neuropeptides secreted from the corneal nerves in dry eye disease. Here, we reviewed the emerging concept of neurogenic inflammation as one of the pathogenic mechanisms of dry eye disease, the recent results of related studies, and the direction of future research.
Collapse
Affiliation(s)
- Daniel Duck-Jin Hwang
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| | - Seok-Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Jeong-Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
| | - Sang-Mok Lee
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| |
Collapse
|
6
|
Lasagni Vitar RM, Rama P, Ferrari G. The two-faced effects of nerves and neuropeptides in corneal diseases. Prog Retin Eye Res 2021; 86:100974. [PMID: 34098111 DOI: 10.1016/j.preteyeres.2021.100974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Corneal nerves are instrumental to maintain cornea integrity through regulation of key physiological functions such as tear secretion, blink reflex, and neuropeptide turnover. Corneal nerve injury/stimulation can follow many insults including mechanical/chemical trauma, infections and surgeries. Nerve disruption initiates a process named neurogenic inflammation which leads to edema, pain, and recruitment and activation of leukocytes. Interestingly, leukocyte influx in the cornea can further damage nerves by releasing inflammatory mediators-including neuropeptides. The clinical outcome of neuroinflammation can be beneficial or detrimental to corneal integrity. On one side, it ensures prompt wound healing and prevents infections. On the other, prolonged and/or deranged neuroinflammation can permanently disrupt corneal integrity and impair vision. The cornea is an ideal site to study peripheral neuroinflammation and neurogenic inflammation since it receives the highest density of sensory nerves of the entire body. We will review the corneal nerve anatomy and neurochemistry, discuss the beneficial and detrimental effects of neurogenic inflammation in corneal wound healing, inflammatory processes, and pain. We will also examine the emerging remote impact of corneal nerve disruption on the trigeminal ganglion and the brain, highlighting the key role of neuropeptide Substance P. Finally, we will discuss the clinical relevance of such neuroinflammatory network in the context of severe and highly prevalent ocular diseases, including potential treatments.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Ruiz-Lozano RE, Hernandez-Camarena JC, Loya-Garcia D, Merayo-Lloves J, Rodriguez-Garcia A. The molecular basis of neurotrophic keratopathy: Diagnostic and therapeutic implications. A review. Ocul Surf 2021; 19:224-240. [DOI: 10.1016/j.jtos.2020.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
|
8
|
Li J, Ma X, Zhao L, Li Y, Zhou Q, Du X. Extended Contact Lens Wear Promotes Corneal Norepinephrine Secretion and Pseudomonas aeruginosa Infection in Mice. Invest Ophthalmol Vis Sci 2020; 61:17. [PMID: 32298434 PMCID: PMC7401850 DOI: 10.1167/iovs.61.4.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Extended contact lens (CL) wear predisposes the wearer to Pseudomonas aeruginosa infection of the cornea, but the mechanism involved remains incompletely understood. The purpose of this study was to investigate the role of the stress hormone norepinephrine (NE) in the pathogenesis of CL-induced P. aeruginosa keratitis. Methods A total 195 adult C57BL/6 mice were used in this study. Corneal NE content was measured after 48 hours of sterile CL wear in mice. The effect of NE on P. aeruginosa adhesion and biofilm formation on the CL surface was examined in vitro. Moreover, mouse eyes were covered with P. aeruginosa-contaminated CLs, and either 500-µM NE was topically applied or the eyes were subconjunctivally injected with 100 µg of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to deplete local NE. Clinical scores, neutrophil infiltration, proinflammatory cytokine levels, and bacterial load on the corneas and CLs were evaluated. Results Corneal NE content was elevated with extended CL wear in mice. In vitro, NE promoted the adhesion and biofilm formation of P. aeruginosa on the CL surface. In mice, topical application of NE aggravated P. aeruginosa infection, accompanied with increased clinical scores, neutrophil infiltration, proinflammatory cytokine expression, and bacterial burden on the corneas and CLs. However, pre-depletion of local NE with DSP-4 significantly alleviated the severity of P. aeruginosa keratitis. Conclusions Extended CL wear elevates corneal NE content, which promotes the pathogenesis of CL-induced P. aeruginosa keratitis in mice. Targeting NE may provide a potential strategy for the treatment of CL-related corneal infection caused by P. aeruginosa.
Collapse
|
9
|
Klyce SD. 12. Endothelial pump and barrier function. Exp Eye Res 2020; 198:108068. [PMID: 32663497 DOI: 10.1016/j.exer.2020.108068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 10/23/2022]
Abstract
The mammalian cornea maintains its thickness and transparency primarily by the activity of a fluid pump located in the endothelial cell layer. The accepted concept, the "pump-leak" theory, holds that the active transport of solute from the stroma to the aqueous humor leads to a steady state osmotic pressure gradient across the endothelium that balances the imbibition pressure created by the hydrophilic proteoglycans in the stromal ground substance. The details of this process are controversial and some of the classical in vitro studies aimed to explore the fluid pump using low temperature to challenge the regulatory behavior cannot be duplicated in vivo. The activity of sensory or sympathetic innervation may play a role in this low temperature tolerance. Asymmetry in endothelial cell volume regulation could be the basis for the fluid pump.
Collapse
Affiliation(s)
- Stephen D Klyce
- Ophthalmology, Icahn School of Medicine at Mount Sinai 5 North Court Port, Washington, NY, 11050, United States.
| |
Collapse
|
10
|
Ma X, Wang Q, Song F, Li Y, Li J, Dou S, Xie L, Zhou Q. Corneal epithelial injury-induced norepinephrine promotes Pseudomonas aeruginosa keratitis. Exp Eye Res 2020; 195:108048. [PMID: 32376471 DOI: 10.1016/j.exer.2020.108048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Tissue injury causes the secretion of stress hormone catecholamine and increases susceptibility to opportunistic infection. Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen that is a leading cause of microbial keratitis usually associated with ocular injury or contact lens wear. However, the effect of catecholamine on P. aeruginosa induced corneal infection is unknown. Here, we test if norepinephrine (NE) would promote the progression of P. aeruginosa keratitis in mice. Adult C57BL/6 mouse corneas were scarified and then inoculated with P. aeruginosa. The content of NE was elevated in corneas after scarification and inoculation with P. aeruginosa. Then, exogenous NE was applied to the infected corneas at 24 h after inoculation; control eyes were treated with sterile saline. Topical application of NE aggravated the severity of P. aeruginosa keratitis, accompanied with the increase of clinical score, bacterial load, pathological changes, neutrophils infiltration, bacterial virulence factors and proinflammatory factors levels. In order to further verify the role of NE, N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a neurotoxin selected to deplete NE, was injected subconjunctivally 12 h before scarification. Pre-depletion of local NE by DSP-4 significantly alleviated the severity of corneal infection. Moreover, NE was also confirmed to increase the bacterial growth and the expression of virulence factors gene in vitro. Together, these data showed that increased corneal NE content facilitated the progression of P. aeruginosa keratitis in mice by amplifying host excessive inflammatory response and bacterial virulence. Therefore, targeting NE may provide a potential strategy for the treatment of P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Xiubin Ma
- Medical College, Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Fangying Song
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Jing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|