1
|
Sprogyte L, Park M, Nureen L, Tedla N, Richardson A, Di Girolamo N. Development and characterization of a preclinical mouse model of alkali-induced limbal stem cell deficiency. Ocul Surf 2024; 34:329-340. [PMID: 39214186 DOI: 10.1016/j.jtos.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Limbal stem cell deficiency (LSCD) secondary to ocular surface alkali burn is a blinding condition that features corneal conjunctivalization. Mechanistic insights into its pathophysiology are lacking. Here, we developed a mouse model that recapitulates human disease to comprehensively delineate the clinicopathological features of a conjunctivalized cornea. METHODS LSCD was induced in the right eyes of 6-8-week-old C57BL/6 male and female mice (n = 151) by topical administration of 0.25N sodium hydroxide on the cornea. Uninjured left eyes served as controls. Clinical, histological, phenotypic, molecular, and immunological assessments were performed at multiple time-points over 6-months. RESULTS Clinically, alkali burn caused persistent corneal opacity (p = 0.0014), increased punctate staining (p = 0.0002), and reduced epithelial thickness (p = 0.0082) compared to controls. Total LSCD was confirmed in corneal whole mounts by loss of K12 protein (p < 0.0001) and mRNA expression (p = 0.0090). Instead, K8+, K13+, K15+ and MUC5AC+ conjunctival epithelia prevailed. 20 % of injured corneas developed islands of K12+ epithelia, suggesting epithelial transdifferentiation. Squamous metaplasia was detected in 50 % of injured corneas. Goblet cell density peaked early post-injury but decreased over time (p = 0.0047). Intraepithelial corneal basal nerve density remained reduced even at 6-months post-injury (p = 0.0487). CONCLUSIONS We developed and comprehensively characterized a preclinical mouse model of alkali-induced LSCD. Understanding the pathophysiological processes that transpire on the ocular surface in LSCD is key to discovering, testing, and advancing biological and pharmacological interventions that can be dispensed prior to or in conjunction with stem cell therapy to rehabilitate the cornea and restore vision.
Collapse
Affiliation(s)
- Lina Sprogyte
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lamia Nureen
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicodemus Tedla
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander Richardson
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Fang F, Li S, Sun H, Fu Y, Shao C. Clinical and pathologic characterization of a mouse model of graded limbal stem cell deficiency. Exp Eye Res 2024; 244:109942. [PMID: 38795839 DOI: 10.1016/j.exer.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Limbal stem cell deficiency (LSCD) is a clinically challenging eye disease caused by damage to limbal stem cells (LSCs). Currently, the international consensus classifies LSCD into three clinical stages based on the disease severity. However, no existing animal models attempt to replicate the varying degrees of LSCD observed in clinical cases. The present study demonstrates an easy-to-create, reproducible, and reliable mouse model of graded LSCD. To achieve mild, moderate, or severe LSCD, filter paper rings with a variety of central angles (90°, 180°, or 270°) are utilized to deliver alkali burns to different sizes of the limbal area (1, 2, or 3 quarters). The animal model has successfully resulted in the development of clinical signs and pathological manifestations in escalating severity that are similarly observed in the three clinical stages of LSCD. Our study thus provides new insights into distinct pathological features underlying different grades of LSCD and serves as a new tool for further exploring the disease mechanisms and developing new effective therapeutics for repairing damaged LSCs.
Collapse
Affiliation(s)
- Fei Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shiding Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Chunyi Shao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
4
|
Singh S, Srivastav S, Jaffet J, Prasad D, Padala KR, Singh V, Bokara KK, Basu S. Developing a model for aqueous deficient dry eye secondary to periglandular cicatrizing conjunctivitis. Exp Eye Res 2024; 244:109949. [PMID: 38815791 DOI: 10.1016/j.exer.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE The current study used various techniques to develop a rabbit animal model of lacrimal gland damage caused by scarring conjunctivitis in the periglandular area. METHODS Left eyes of New Zealand white rabbits were injected with 0.1 ml of 1M NaOH subconjunctivally around superior and inferior lacrimal gland orifices (Group 1, n = 4), touched with 1M NaOH for 100 s to the superior and inferior fornices with conjunctival denuding (Group 2; n = 4), and electrocauterization to the ductal opening area (Group 3; n = 4). The ocular surface staining, Schirmer I, lacrimal gland, and conjunctival changes were observed at baseline,1, 4, 8, and 12 weeks. The degree of glandular inflammation, conjunctival fibrosis (Masson Trichrome), and goblet cell density (PAS) were also assessed. RESULTS At 12 weeks, the lacrimal glands of group 1 rabbits with periglandular injection showed severe inflammation with mean four foci/10HPF and a significant mean reduction in the Schirmer values by 7.6 mm (P = 0.007). Lacrimal glands had diffuse acinar atrophy, loss of myoepithelial cells, and ductular dilatation. The overlying conjunctiva showed fibrosis, goblet cell loss, and corneal vascularization in the inferotemporal quadrant. No lacrimal gland or ocular surface changes were observed in groups 2 and 3 at 12 weeks, except for localized subconjunctival fibrosis. CONCLUSION Periglandular injection of 0.1 ml of 1M NaOH induced extensive lacrimal gland damage with reduced secretion and scarring in the subconjunctival plane compared to direct cauterization or direct NaOH contact to the ductal orifices of the rabbit lacrimal gland.
Collapse
Affiliation(s)
- Swati Singh
- Ophthalmic Plastic Surgery Services, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Saumya Srivastav
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Jilu Jaffet
- Manipal Academy of Higher Education, Manipal, Karnataka, India; Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Deeksha Prasad
- Manipal Academy of Higher Education, Manipal, Karnataka, India; Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Khyathi Ratna Padala
- CSIR-Center for Cellular and Molecular Biology, ANNEXE II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, India
| | - Vivek Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Kiran Kumar Bokara
- CSIR-Center for Cellular and Molecular Biology, ANNEXE II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, India.
| | - Sayan Basu
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Atalay E, Altuğ B, Çalışkan ME, Ceylan S, Özler ZS, Figueiredo G, Lako M, Figueiredo F. Animal Models for Limbal Stem Cell Deficiency: A Critical Narrative Literature Review. Ophthalmol Ther 2024; 13:671-696. [PMID: 38280103 PMCID: PMC10853161 DOI: 10.1007/s40123-023-00880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024] Open
Abstract
This literature review will provide a critical narrative overview of the highlights and potential pitfalls of the reported animal models for limbal stem cell deficiency (LSCD) and will identify the neglected aspects of this research area. There exists significant heterogeneity in the literature regarding the methodology used to create the model and the predefined duration after the insult when the model is supposedly fully fit for evaluations and/or for testing various therapeutic interventions. The literature is also replete with examples wherein the implementation of a specific model varies significantly across different studies. For example, the concentration of the chemical, as well as its duration and technique of exposure in a chemically induced LSCD model, has a great impact not only on the validity of the model but also on the severity of the complications. Furthermore, while some models induce a full-blown clinical picture of total LSCD, some are hindered by their ability to yield only partial LSCD. Another aspect to consider is the nature of the damage induced by a specific method. As thermal methods cause more stromal scarring, they may be better suited for assessing the anti-fibrotic properties of a particular treatment. On the other hand, since chemical burns cause more neovascularisation, they provide the opportunity to tap into the potential treatments for anti-neovascularisation. The animal species (i.e., rats, mice, rabbits, etc.) is also a crucial factor in the validity of the model and its potential for clinical translation, with each animal having its unique set of advantages and disadvantages. This review will also elaborate on other overlooked aspects, such as the anaesthetic(s) used during experiments, the gender of the animals, care after LSCD induction, and model validation. The review will conclude by providing future perspectives and suggestions for further developments in this rather important area of research.
Collapse
Affiliation(s)
- Eray Atalay
- Department of Ophthalmology, Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | - Burcugül Altuğ
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey
| | | | - Semih Ceylan
- Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | | | | | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle University, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
6
|
Zhang X, Wang G, Wang Q, Jiang R. Dexamethasone and MicroRNA-204 Inhibit Corneal Neovascularization. Mil Med 2024; 189:374-378. [PMID: 36043264 DOI: 10.1093/milmed/usac260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION This was an in vivo animal study designed to investigate the interaction between dexamethasone (Dex) and microRNA-204 (miR-204) in a mouse alkali burn-induced corneal neovascularization (CNV) model. The function of miR-204 was then investigated in human mammary epithelial cells (HMECs) in vitro. MATERIALS AND METHODS The CNV model was induced by corneal alkali burn in BLAB/c mice. The mice were randomly divided into five groups: normal control (Ctrl), alkali burn-induced corneal injury (Alkali), alkali burn + Dex (Dex), alkali burn + negative control (NTC), and alkali burn + miR-204 agomir (miR-204). Subconjunctival injection of NTC, Dex, or miR-204 agomir was conducted at 0, 3, and 6 days, respectively, after alkali burn. The corneas were collected at day 7 after injury, and the CNV area was observed using immunofluorescence staining. The expression of miR-204 was analyzed with quantitative real time (qRT)-PCR. In HMECs, exogenous miR-204 agomir or antagomir was used to strengthen or inhibit the expression of miR-204. Migration assays and tube formation studies were conducted to evaluate the function of miR-204 on HMECs. RESULTS At 7 days post-alkali burn, CNV grew aggressively into the cornea. MicroRNA-204 expression was reduced in the Alkali group in contrast with the Ctrl group (P = .003). However, miR-204 was upregulated in the Dex group (vs. alkali group, P = .008). The CNV areas in the NTC and miR-204 groups were 59.30 ± 8.32% and 25.60 ± 2.30%, respectively (P = .002). In vitro, miR-204 agomir showed obvious inhibition on HMEC migration in contrast with NTC (P = .033) and miR-204 antagomir (P = .017). Compared with NTC, miR-204 agomir attenuated tube formation, while miR-204 antagomir accelerated HMEC tube formation (P < .05). CONCLUSION The role of Dex in attenuating CNV may be partly attributed to miR-204. MiR-204 may be a potential therapeutic target in alkali burn-induced CNV.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266002, China
| | - Gang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266002, China
| | - Qing Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266002, China
| | - Rui Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266002, China
| |
Collapse
|
7
|
Andreev AY, Yu Y, Rogovaya OS, Subbot AM, Vorotelyak EA, Osidak EO, Avetisov SE. [Experimental evaluation of the efficacy of tissue-engineered constructs in the treatment of limbal stem cell deficiency]. Vestn Oftalmol 2024; 140:80-89. [PMID: 38739135 DOI: 10.17116/oftalma202414002280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Limbal stem cell deficiency (LSCD) is one of the leading factors negatively affecting the success of keratoplasty, and its treatment remains an urgent problem in ophthalmology. With the development of regenerative medicine, one of the promising approaches is the transplantation of tissue-engineered constructs from cultured limbal stem cells (LSCs) in biopolymer carriers. PURPOSE This study was conducted to develop an experimental model of LSCD and evaluate the effectiveness of transplantation of a tissue-engineered construct consisting of cultured cells containing a population of LSCs and a collagen carrier. MATERIAL AND METHODS The study was performed on 12 rabbits and included several stages. At the first stage, the physiological effects of collagen matrix implantation into the limbal zone were studied. At the second stage, tissue-engineered constructs consisting of LSCs on a collagen matrix were formed and their effect on the regeneration processes in the experimental LSCD model was analyzed. The animals were divided into 2 groups: surgical treatment (transplantation of the tissue-engineered construct) was used in the experimental group, and conservative treatment was used in the control group. Slit-lamp biomicroscopy with photo-registration, fluorescein corneal staining, optical coherence tomography of the anterior segment of the eye, and impression cytology were used to assess the results. RESULTS No side reactions were observed after implantation of the collagen matrix into the limbal zone. One month after surgical treatment of the LSCD model in the experimental group, complete epithelization with minor manifestations of epitheliopathy was observed. In the control group, erosion of the corneal epithelium was noted. The time of corneal epithelization in the experimental and control groups was 9.2±2.95 and 46.20±12.07 days, respectively (p=0.139). According to the data of impression cytology, in the experimental group there were no goblet cells in the central part of the cornea, which indicates the restoration of corneal type epithelial cells, in contrast to the control group. CONCLUSION Transplantation of a tissue-engineered construct from cultured limbal cells on a collagen membrane should be considered as a promising method for the treatment of limbal stem cell deficiency.
Collapse
Affiliation(s)
- A Yu Andreev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - Ya Yu
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - O S Rogovaya
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - A M Subbot
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - E A Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | | | - S E Avetisov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
8
|
Lin S, Cai M, Zhang L, Mao Y, Wu H, Liu X, Li Y, Liang M, Cheng X, Yu F, He H, Zong R, Wu H, Liu Z, Ou S, Li W. Limbal Stem Cell Dysfunction Induced by Severe Dry Eye via Activation of the p38 MAPK Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1863-1878. [PMID: 37634709 DOI: 10.1016/j.ajpath.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Severe dry eye (SDE) can cause grievous damage to the ocular surface and result in vision impairment and even blindness. To investigate the fate of limbal stem cells in SDE and the underlying mechanism, the current study established an SDE rat model by removing the extraorbital and infraorbital lacrimal glands and maintaining them in a low-humidity environment. One month after the surgery, aqueous tear secretion was reduced dramatically, blood vessels invaded into the central cornea, and inflammatory cells infiltrated into the limbal stroma. The expressions of keratin 12 and paired box gene 6 were down-regulated dramatically, while those of keratin 10, small proline-rich protein 1b, and mucin 5AC were up-regulated in the corneal epithelium of the SDE rats. Cell proliferation in the limbal epithelium was up-regulated, while the stem/progenitor marker adenosine 5'-triphosphate-binding cassette member 2 and the limbal epithelial colony-forming efficiency were decreased in the SDE condition. Furthermore, the p38 mitogen-activated protein kinase signaling pathway was activated in the limbal corneal epithelium of SDE rats. The abnormal differentiation and stemness loss in the corneal epithelium could be reversed upon treatment with a p38 inhibitor in a SDE in vivo model and in vitro hyperosmolar corneal epithelial culture conditions. These data suggest that SDE can lead to limbal stem cell dysfunction, and p38 mitogen-activated protein kinase signaling pathway activation plays an essential role in this process.
Collapse
Affiliation(s)
- Sijie Lin
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Minqing Cai
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Lingyu Zhang
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yi Mao
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Han Wu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Xiaodong Liu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yixuan Li
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Minghui Liang
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Xinxuan Cheng
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Fei Yu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Hui He
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Rongrong Zong
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Huping Wu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China
| | - Zuguo Liu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China; Xiang'an Hospital, Xiamen University, Xiamen, China
| | - Shangkun Ou
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China.
| | - Wei Li
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China; Xiang'an Hospital, Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Singh VK, Kethiri AR, Pingali T, Sahoo A, Salman M, Koduri MA, Prasad D, Bokara KK, Basu S, Singh V. Development and validation of a reliable rabbit model of limbal stem cell deficiency by mechanical debridement using an ophthalmic burr. Exp Eye Res 2023; 236:109667. [PMID: 37758156 DOI: 10.1016/j.exer.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
A simple and reproducible method is necessary to generate reliable animal models of limbal stem cell deficiency (LSCD) for assessing the safety and efficacy of new therapeutic modalities. This study aimed to develop and validate a rabbit model of LSCD through mechanical injury. The corneal and limbal epithelium of New Zealand White rabbits (n = 18) were mechanically debrided using an ophthalmic burr (Algerbrush II) with a 1.0-mm rotating head after 360° conjunctival peritomy. The debrided eyes were serially evaluated for changes in corneal opacity, neo-vascularization, epithelial defect and corneal thickness using clinical photography, slit lamp imaging, fluorescein staining, and anterior segment optical coherence tomography scanning (AS-OCT). Following this, an assessment of histopathology and phenotypic marker expression of the excised corneas was conducted. The experimental eyes were grouped as mild (n = 4), moderate (n = 10), and severe (n = 4) based on the grade of LSCD. The moderate group exhibited abnormal epithelium, cellular infiltration in the stroma, and vascularization in the central, peripheral, and limbal regions of the cornea. The severe group demonstrated central epithelial edema, peripheral epithelial thinning with sparse goblet cell population, extensive cellular infiltration in the stroma, and dense vascularization in the limbal region of the cornea. A significant decrease in the expression of K12 and p63 (p < 0.0001) was observed, indicating the loss of corneal epithelium and limbal epithelial stem cells in the LSCD cornea. This study demonstrates that the Alger brush-induced mechanical debridement model provides a reliable model of LSCD with comprehensive clinic-pathological features and that is well suited for evaluating novel therapeutic and regenerative approaches.
Collapse
Affiliation(s)
- Vijay Kumar Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Tejaswini Pingali
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Abhishek Sahoo
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mohd Salman
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Madhuri Amulya Koduri
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Deeksha Prasad
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Sayan Basu
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Nureen L, Di Girolamo N. Limbal Epithelial Stem Cells in the Diabetic Cornea. Cells 2023; 12:2458. [PMID: 37887302 PMCID: PMC10605319 DOI: 10.3390/cells12202458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Continuous replenishment of the corneal epithelium is pivotal for maintaining optical transparency and achieving optimal visual perception. This dynamic process is driven by limbal epithelial stem cells (LESCs) located at the junction between the cornea and conjunctiva, which is otherwise known as the limbus. In patients afflicted with diabetes, hyperglycemia-induced impairments in corneal epithelial regeneration results in persistent epithelial and other defects on the ocular surface, termed diabetic keratopathy (DK), which progressively diminish vision and quality of life. Reports of delayed corneal wound healing and the reduced expression of putative stem cell markers in diabetic relative to healthy eyes suggest that the pathogenesis of DK may be associated with the abnormal activity of LESCs. However, the precise role of these cells in diabetic corneal disease is poorly understood and yet to be comprehensively explored. Herein, we review existing literature highlighting aberrant LESC activity in diabetes, focusing on factors that influence their form and function, and emerging therapies to correct these defects. The consequences of malfunctioning or depleted LESC stocks in DK and limbal stem cell deficiency (LSCD) are also discussed. These insights could be exploited to identify novel targets for improving the management of ocular surface complications that manifest in patients with diabetes.
Collapse
Affiliation(s)
| | - Nick Di Girolamo
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
11
|
Zhang H, Zhang K, Zhang QS, Wang L, Gao YH, Xu GY, Long D, Wang H, Hu Y. A peptidic network antibody inhibits both angiogenesis and inflammatory response. J Control Release 2023; 362:715-725. [PMID: 37699470 DOI: 10.1016/j.jconrel.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Corneal neovascularization (CNV) is a global threat to human health. Traditional anti-angiogenesis agent may have therapy effect, while the inflammation in disease area remains unsolved. Herein, we reported two binding-induced fibrillogenesis (BIF) peptides as peptidic network antibodies for high-efficient and long-lasting anti-angiogenesis with reduced inflammatory response. BIF peptides could self-assemble into nanoparticles and further perform BIF behavior through binding Ca2+. In vitro, the migration of integrin αvβ3 highly expressed endothelial cells was inhibited by BIF peptides. In vivo, one BIF peptide (0.012 mg/Kg) exhibited higher anti-angiogenesis effect than monoclonal antibody bevacizumab (0.96 mg/Kg) in a CNV rabbit model on day 14, despite that the dose of BIF was only 1.3% of bevacizumab. Meanwhile, the inflammatory response, such as PI3 kinase/Akt pathway in CNV was successfully inhibited as well. The peptidic network antibody could block integrin αvβ3 via a long-term retention mode, which led to long-term therapeutic effect. The study provides BIF peptides as promising therapeutic agents for both anti-angiogenesis and reduced inflammatory response.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Qing-Shi Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Yong-Hong Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Guo-Yang Xu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Da Long
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600, Yishan Road, Shanghai 200233, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Ying Hu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600, Yishan Road, Shanghai 200233, China.
| |
Collapse
|
12
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
13
|
Yao G, Mo X, Liu S, Wang Q, Xie M, Lou W, Chen S, Pan T, Chen K, Yao D, Lin Y. Snowflake-inspired and blink-driven flexible piezoelectric contact lenses for effective corneal injury repair. Nat Commun 2023; 14:3604. [PMID: 37330515 PMCID: PMC10276863 DOI: 10.1038/s41467-023-39315-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/06/2023] [Indexed: 06/19/2023] Open
Abstract
The cornea is a tissue susceptible to various injuries and traumas with a complicated cascade repair process, in which conserving its integrity and clarity is critical to restoring visual function. Enhancing the endogenous electric field is recognized as an effective method of accelerating corneal injury repair. However, current equipment limitations and implementation complexities hinder its widespread adoption. Here, we propose a snowflake-inspired, blink-driven flexible piezoelectric contact lens that can convert mechanical blink motions into a unidirectional pulsed electric field for direct application to moderate corneal injury repair. The device is validated on mouse and rabbit models with different relative corneal alkali burn ratios to modulate the microenvironment, alleviate stromal fibrosis, promote orderly epithelial arrangement and differentiation, and restore corneal clarity. Within an 8-day intervention, the corneal clarity of mice and rabbits improves by more than 50%, and the repair rate of mouse and rabbit corneas increases by over 52%. Mechanistically, the device intervention is advantageous in blocking growth factors' signaling pathways specifically involved in stromal fibrosis whilst preserving and harnessing the signaling pathways required for indispensable epithelial metabolism. This work put forward an efficient and orderly corneal therapeutic technology utilizing artificial endogenous-strengthened signals generated by spontaneous body activities.
Collapse
Affiliation(s)
- Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China.
| | - Xiaoyi Mo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Shanshan Liu
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Maowen Xie
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Wenhao Lou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Shiyan Chen
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Ke Chen
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
| |
Collapse
|
14
|
Xu P, Lin X, Dong X, Liu Y, Wang Z, Wang S. Trigeminal nerve-derived substance P regulates limbal stem cells by the PI3K-AKT pathway. iScience 2023; 26:106688. [PMID: 37187698 PMCID: PMC10176256 DOI: 10.1016/j.isci.2023.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/04/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Trigeminal nerve-derived substance P (SP), a widespread neuropeptide, is known to maintain the corneal epithelial homeostasis and promote the closure of wound healing. Using comprehensive in vivo and in vitro assays and RNA-sequencing analysis, we aimed to unveil the positive effects of SP on the biological characteristics of limbal stem cells (LSCs) and the underlying mechanism. SP enhanced the proliferation and stemness of LSCs in vitro. Correspondingly, it rescued corneal defects, corneal sensitivity, and the expression of LSC-positive markers in a neurotrophic keratopathy (NK) mouse model in vivo. Topical injection of a neurokinin-1 receptor (NK1R) antagonist caused similar pathological changes as in corneal denervated mice and attenuated LSC-positive markers levels. Mechanistically, we revealed that SP regulated LSCs functions by modulating the PI3K-AKT pathway. Our findings showed that the trigeminal nerve regulates LSCs by releasing SP, which may provide new insights into the regulation of LSCs' fate and stem cell therapy.
Collapse
Affiliation(s)
- Peipei Xu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiongshi Lin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xing Dong
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
- Corresponding author
| | - Shuangyong Wang
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Corresponding author
| |
Collapse
|
15
|
Sprogyte L, Park M, Di Girolamo N. Pathogenesis of Alkali Injury-Induced Limbal Stem Cell Deficiency: A Literature Survey of Animal Models. Cells 2023; 12:cells12091294. [PMID: 37174694 PMCID: PMC10177508 DOI: 10.3390/cells12091294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Limbal stem cell deficiency (LSCD) is a debilitating ocular surface disease that eventuates from a depleted or dysfunctional limbal epithelial stem cell (LESC) pool, resulting in corneal epithelial failure and blindness. The leading cause of LSCD is a chemical burn, with alkali substances being the most common inciting agents. Characteristic features of alkali-induced LSCD include corneal conjunctivalization, inflammation, neovascularization and fibrosis. Over the past decades, animal models of corneal alkali burn and alkali-induced LSCD have been instrumental in improving our understanding of the pathophysiological mechanisms responsible for disease development. Through these paradigms, important insights have been gained with regards to signaling pathways that drive inflammation, neovascularization and fibrosis, including NF-κB, ERK, p38 MAPK, JNK, STAT3, PI3K/AKT, mTOR and WNT/β-catenin cascades. Nonetheless, the molecular and cellular events that underpin re-epithelialization and those that govern long-term epithelial behavior are poorly understood. This review provides an overview of the current mechanistic insights into the pathophysiology of alkali-induced LSCD. Moreover, we highlight limitations regarding existing animal models and knowledge gaps which, if addressed, would facilitate development of more efficacious therapeutic strategies for patients with alkali-induced LSCD.
Collapse
Affiliation(s)
- Lina Sprogyte
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Polisetti N, Martin G, Cristina Schmitz HR, Schlötzer-Schrehardt U, Schlunck G, Reinhard T. Characterization of Porcine Ocular Surface Epithelial Microenvironment. Int J Mol Sci 2023; 24:ijms24087543. [PMID: 37108705 PMCID: PMC10145510 DOI: 10.3390/ijms24087543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The porcine ocular surface is used as a model of the human ocular surface; however, a detailed characterization of the porcine ocular surface has not been documented. This is due, in part, to the scarcity of antibodies produced specifically against the porcine ocular surface cell types or structures. We performed a histological and immunohistochemical investigation on frozen and formalin-fixed, paraffin-embedded ocular surface tissue from domestic pigs using a panel of 41 different antibodies related to epithelial progenitor/differentiation phenotypes, extracellular matrix and associated molecules, and various niche cell types. Our observations suggested that the Bowman's layer is not evident in the cornea; the deep invaginations of the limbal epithelium in the limbal zone are analogous to the limbal interpalisade crypts of human limbal tissue; and the presence of goblet cells in the bulbar conjunctiva. Immunohistochemistry analysis revealed that the epithelial progenitor markers cytokeratin (CK)15, CK14, p63α, and P-cadherin were expressed in both the limbal and conjunctival basal epithelium, whereas the basal cells of the limbal and conjunctival epithelium did not stain for CK3, CK12, E-cadherin, and CK13. Antibodies detecting marker proteins related to the extracellular matrix (collagen IV, Tenascin-C), cell-matrix adhesion (β-dystroglycan, integrin α3 and α6), mesenchymal cells (vimentin, CD90, CD44), neurons (neurofilament), immune cells (HLA-ABC; HLA-DR, CD1, CD4, CD14), vasculature (von Willebrand factor), and melanocytes (SRY-homeobox-10, human melanoma black-45, Tyrosinase) on the normal human ocular surface demonstrated similar immunoreactivity on the normal porcine ocular surface. Only a few antibodies (directed against N-cadherin, fibronectin, agrin, laminin α3 and α5, melan-A) appeared unreactive on porcine tissues. Our findings characterize the main immunohistochemical properties of the porcine ocular surface and provide a morphological and immunohistochemical basis useful to research using porcine models. Furthermore, the analyzed porcine ocular structures are similar to those of humans, confirming the potential usefulness of pig eyes to study ocular surface physiology and pathophysiology.
Collapse
Affiliation(s)
- Naresh Polisetti
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Heidi R Cristina Schmitz
- CEMT-Freiburg, Experimental Surgery, Hospital-Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
17
|
Novel Animal Model of Limbal Stem Cell Deficiency Induced by Forcing Eye-Open at Birth. Cornea 2023:00003226-990000000-00244. [PMID: 36796015 DOI: 10.1097/ico.0000000000003242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/08/2022] [Indexed: 02/18/2023]
Abstract
PURPOSE The aim of this study was to develop a rat model of limbal stem cell deficiency (LSCD) by forcing eye-open at birth (FEOB). METHODS A total of 200 Sprague-Dawley neonatal rats were randomly divided into the control group and the experimental group, which received eyelid open surgery on postnatal day 1 (P1). Observation time points were defined as P1, P5, P10, P15, and P30. Slit-lamp microscope and corneal confocal microscope were used to observe the clinical features of the model. The eyeballs were collected for hematoxylin and eosin staining and periodic acid-Schiff staining. Proliferating cell nuclear antigen, CD68/polymorphonuclear leukocytes, and cytokeratin 10/12/13 immunostaining were performed, while the ultrastructure of the cornea was observed by scanning electron microscopy. Real-time polymerase chain reactions (PCRs), western blot, and immunohistochemical staining of activin A receptor-like kinase-1/5 were used to analyze the possible pathogenesis. RESULTS FEOB could successfully induce the typical manifestations of LSCD, including corneal neovascularization, severe inflammation, and corneal opacity. In the FEOB group, goblet cells could be detected in the corneal epithelium by periodic acid-Schiff staining. The expression of cytokeratins was also different between the 2 groups. Furthermore, proliferating cell nuclear antigen immunohistochemical staining revealed the weak proliferation and differentiation ability of limbal epithelial stem cells in the FEOB group. Real-time PCRs, western blot, and immunohistochemical staining of activin A receptor-like kinase-1/activin A receptor-like kinase-5 in the FEOB group showed different expression patterns than those of the control group. CONCLUSIONS FEOB in rats induces ocular surface changes resembling LSCD in humans, representing a novel model of LSCD.
Collapse
|
18
|
Ying PX, Fu M, Huang C, Li ZH, Mao QY, Fu S, Jia XH, Cao YC, Hong LB, Cai LY, Guo X, Liu RB, Meng FK, Yi GG. Profile of biological characterizations and clinical application of corneal stem/progenitor cells. World J Stem Cells 2022; 14:777-797. [PMID: 36483848 PMCID: PMC9724387 DOI: 10.4252/wjsc.v14.i11.777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal stem/progenitor cells are typical adult stem/progenitor cells. The human cornea covers the front of the eyeball, which protects the eye from the outside environment while allowing vision. The location and function demand the cornea to maintain its transparency and to continuously renew its epithelial surface by replacing injured or aged cells through a rapid turnover process in which corneal stem/progenitor cells play an important role. Corneal stem/progenitor cells include mainly corneal epithelial stem cells, corneal endothelial cell progenitors and corneal stromal stem cells. Since the discovery of corneal epithelial stem cells (also known as limbal stem cells) in 1971, an increasing number of markers for corneal stem/progenitor cells have been proposed, but there is no consensus regarding the definitive markers for them. Therefore, the identification, isolation and cultivation of these cells remain challenging without a unified approach. In this review, we systematically introduce the profile of biological characterizations, such as anatomy, characteristics, isolation, cultivation and molecular markers, and clinical applications of the three categories of corneal stem/progenitor cells.
Collapse
Affiliation(s)
- Pei-Xi Ying
- Department of Ophthalmology, Zhujiang Hospital, The Second Clinical School, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200030, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200030, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200030, China
| | - Zhi-Hong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510550, Guangdong Province, China
| | - Qing-Yi Mao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng Fu
- Hengyang Medical School, The University of South China, Hengyang 421001, Hunan Province, China
| | - Xu-Hui Jia
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yu-Chen Cao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Bing Hong
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Yang Cai
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xi Guo
- Medical College of Rehabilitation, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ru-Bing Liu
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Fan-ke Meng
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Guo-Guo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
19
|
Comparative Histology of the Cornea and Palisades of Vogt in the Different Wild Ruminants (Bovidae, Camelidae, Cervidae, Giraffidae, Tragulidae). Animals (Basel) 2022; 12:ani12223188. [PMID: 36428415 PMCID: PMC9687073 DOI: 10.3390/ani12223188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In the study, we data concerning the histological and morphometrical examination of the cornea and palisades of Vogt in the different species of ruminants from the families Bovidae, Camelidae, Cervidae, Giraffidae and Tragulidae, coming from the Warsaw Zoological Garden, the Wroclaw Zoological Garden and the Division of Animal Anatomy. The following ruminant species were investigated: common wildebeest, Kirk's dik-dik, Natal red duiker, scimitar oryx, sitatunga, Philippine spotted deer, Père David's deer, moose, reindeer, reticulated giraffe, okapi, Balabac mouse-deer and alpaca. The cornea of ruminant species such as the common wildebeest, Kirk's dik-dik, Natal red duiker, scimitar oryx, reindeer and Balabac mouse-deer consisted of four layers (not found in the Bowman's layer): the anterior corneal epithelium, the proper substance of the cornea, the posterior limiting membrane (Descemet's membrane) and the posterior corneal epithelium (endothelium). The anterior corneal epithelium was composed of a multilayer keratinizing squamous epithelium, which was characterized in the studied ruminants with a variable number of cell layers but also with a different thickness both in the central epithelium part and in the peripheral part. Moreover, the proper substance of cornea was thinnest in Balabac mouse-deer, Kirk's dik-dik, Natal red duiker, scimitar oryx, Philippine spotted deer, alpaca, reindeer and sitatunga and was thickest in the reticulated giraffe. The thickest Descemet's membrane was observed in the Père David's deer. The corneal limbus is characterized by a large number of pigment cell clusters in Kirk's dik-dik, scimitar oryx, moose, Balabac mouse-deer and alpaca. In the common wildebeest, Père David's deer, moose, reticulated giraffe, okapi and alpaca, the palisades of Vogt were marked in the form of a crypt-like structure. The corneal limbus epithelium in the examined ruminants was characterized by a variable number of cell layers but also a variable number of melanocytes located in different layers of this epithelium. The detailed knowledge of the corneal structure of domestic and wild animals can contribute to the even better development of methods for treating eye diseases in veterinary medicine.
Collapse
|
20
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
21
|
Mao Y, Ou S, Zhu C, Lin S, Liu X, Liang M, Yu J, Wu Y, He H, Zong R, Lin Z, Liu Z, Li W. Downregulation of p38 MAPK signaling pathway ameliorates tissue engineered corneal epithelium. Tissue Eng Part A 2022; 28:977-989. [PMID: 36066335 DOI: 10.1089/ten.tea.2022.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue engineered corneal epithelium transplantation is effective treatment for severe limbal stem cell deficiency (LSCD), while epithelial terminal differentiation, tans-differentiation and insufficient stem cell during construction affects the quality of tissue engineered corneal epithelium. In this study, we applied SB203580 in the culture medium to downregulate the P38 MAPK signaling pathway during construction of tissue engineered corneal epithelium. With application of SB203580, tissue engineered corneal epithelium showed enhanced strength and condensed structure. The expression of progenitor cell markers ABCG2, P63, K14, Wnt7a was increased, differentiation markers K12, Pax6, K10, K13, and trans-differentiation markers α-SMA and Snail1 was decreased, while cell junction markers Claudin-1 and E-cadherin was increased in the tissue engineered corneal epithelium. The wnt/β-catenin signaling pathway was upregulated in the epithelium after p38 MAPK inhibition. Transplantation of tissue engineered corneal epithelium treated with SB203580 to rabbit LSCD model showed faster wound healing and improved epithelial quality. We conclude that downregulation of p38 MAPK signaling pathway helps maintain the stemness, prevent terminal differentiation and abnormal differentiation of corneal epithelial cells during epithelium construction process, thus can improve the quality of tissue engineered corneal epithelium.
Collapse
Affiliation(s)
- Yi Mao
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Shangkun Ou
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Chengfang Zhu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Sijie Lin
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Xiaodong Liu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Minghui Liang
- School of Medicine, Nankai University, Naikai, Fujian, China;
| | - Jingwen Yu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Yiming Wu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Hui He
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Rongrong Zong
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, 3. Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, China;
| | - Zhirong Lin
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China;
| | - Zuguo Liu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| | - Wei Li
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China;
| |
Collapse
|
22
|
Wnt/β-catenin signaling stimulates the self-renewal of conjunctival stem cells and promotes corneal conjunctivalization. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1156-1164. [PMID: 35974097 PMCID: PMC9440202 DOI: 10.1038/s12276-022-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022]
Abstract
Limbal stem cell deficiency causes conjunctivalization characterized by the covering of the corneal surface with conjunctival epithelium. However, the driving force for the encroachment of these conjunctival cells is unclear. Conjunctival stem cells are bipotent stem cells that can proliferate and differentiate into conjunctival epithelial cells and goblet cells to maintain regeneration of the conjunctival epithelium. Here, we show a robust proliferative response of conjunctival stem cells and upregulation of Wnt2b and Wnt3a gene expression in the conjunctivae of mice with induced limbal stem cell deficiency. Topical application of the Wnt/β-catenin signaling activator CHIR resulted in increased proliferation of ΔNp63α-positive stem cells in the basal layers of the bulbar and forniceal conjunctivae and enhanced invasion of conjunctival epithelial and goblet cells into the corneal surface. We also found that in cultures of stem cells isolated from the human conjunctiva, Wnt/β-catenin pathway activation improved the expansion of the ΔNp63α/ABCG2 double-positive cell population by promoting the proliferation and preventing the differentiation of these cells. These expanded stem cells formed a stratified epithelium containing goblet cells under airlift culture conditions. Our data reveal that Wnt/β-catenin signaling contributes to the pathological process of limbal stem cell deficiency by promoting the self-renewal of conjunctival stem cells and suggest that these cells are a driving force in corneal conjunctivalization. A major signaling pathway that regulates stem cell function acts as a key mediator of conjunctival invasion into the cornea following eye injuries. Using human tissue and mouse models, a team from South Korea led by Chang Rae Rho of Daejeon St. Mary’s Hospital and Jungmook Lyu of Konyang University, Daejon, showed how insults to the eye can spur the proliferation of stem cells found in the conjunctiva, the thin membrane covering the white part of the eyeball. This cell growth and self-renewal is driven by increased activity of the Wnt/β-catenin signaling pathway, leading to conjunctivalization of the cornea, the transparent outer layer of the eye, resulting in corneal opacity and loss of vision. Therapies that manipulate this signaling pathway could help improve vision for people with certain corneal diseases.
Collapse
|
23
|
Zhu S, Shan H, Li J, Pan L, Wang S, Zhu J, Guo H, Mi F, Wu X, Yin J, Pang K. Therapeutic potential of topical administration of acriflavine against hypoxia-inducible factors for corneal fibrosis. Front Pharmacol 2022; 13:996635. [PMID: 36339559 PMCID: PMC9634531 DOI: 10.3389/fphar.2022.996635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Transdifferentiation of keratocytes into fibroblasts or further into myofibroblasts, which produced denser and more disorganized extracellular matrix, is the major cause of corneal fibrosis and scarring, leading to corneal blindness. TGF-β1 is the critical cytokine for the myofibroblast's transdifferentiation and survival. Hypoxia Inducible Factor (HIF) was found to play an important role in promoting fibrosis in lung, kidney, and dermal tissues recently. Our preliminary study demonstrated that topical administration of the acriflavine (ACF), a drug inhibiting HIF dimerization, delayed corneal opacity and neovascularization after the alkali burn. To know whether ACF could prevent corneal fibrosis and improve corneal transparency, we created a mouse mechanical corneal injury model and found that topical administration of ACF significantly inhibited corneal fibrosis at day 14 post-injury. The reduction of myofibroblast marker α-SMA, and fibronectin, one of the disorganized extracellular matrix molecules, in the corneal stroma were confirmed by the examination of immunohistochemistry and real-time PCR. Furthermore, the ACF inhibited the expression of α-SMA and fibronectin in both TGF-β1 stimulated or unstimulated fibroblasts in vitro. This effect was based on the inhibition of HIF signal pathways since the levels of the HIF-1α downstream genes including Slc2a1, Bnip3 and VEGFA were downregulated. To our knowledge, this is the first time to implicate that HIFs might be a new treatment target for controlling corneal fibrosis in mechanical corneal injuries.
Collapse
Affiliation(s)
- Shuyan Zhu
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shanxi Eye Hospital, Xi'an, Shanxi, China
| | - Huimin Shan
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianqiao Li
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijie Pan
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shudan Wang
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
| | - Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fenghua Mi
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jia Yin
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
| | - Kunpeng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Chaurasia S, Jaffet J, Singh V, Jakati S, Hazari A, Sangwan V. Clinical, histological and immunohistochemistry characteristics of cornea in the sequelae stage of chronic vernal keratoconjunctivitis. Indian J Ophthalmol 2022; 70:59-64. [PMID: 34937208 PMCID: PMC8917557 DOI: 10.4103/ijo.ijo_1179_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose: To report the clinical outcomes and histopathological and immunohistochemistry (IHC) features in eyes with the sequelae stage of vernal keratoconjunctivitis (VKC). Methods: Investigative study of corneal samples obtained following surgical intervention for vision restoration in four eyes of three patients with VKC. Patient 1 (an 11-year-old boy) had deep anterior lamellar keratoplasty in both eyes, Patient 2 (a 24-year-old male) underwent superficial keratectomy followed by penetrating keratoplasty, and Patient 3 (a 22-year-old male) underwent penetrating keratoplasty. The corneal samples retrieved after surgical intervention were assessed for histology features and immunohistochemistry (IHC) studies. Results: The grafts were clear till the follow-up of 2–18 months. Histopathology of all four corneal samples showed epithelial hyperplasia, absent Bowman layer, thick hyalinized stromal lamellae, vascularization, and chronic inflammatory cells such as lymphocytes and plasma cells. IHC showed strong expression of CK 3 in both eyes of Patient 1 and no expression in Patients 2 and 3. The marker for limbal stem cells, ABCG2, was absent in all four samples; however, p63α was expressed strongly in Patients 2 and 3, moderately in the right eye of Patient 1, and marginally expressed in the left eye of Patient 1. Conclusion: The eyes in the sequelae stage of VKC (having corneal scarring and 360° hypertrophied limbus) can be managed favorably with keratoplasty and amniotic membrane transplantation without allogenic/cadaveric stem cell transplantation. The expression of transient progenitor cells in the scarred corneas of VKC patients in the sequelae stage suggests that the limbal stem cell dysfunction is more likely partial and self-renewal of limbal stem cells is a plausibility in these eyes.
Collapse
|
25
|
Luo Y, Shen M, Feng P, Qiu H, Wu X, Yang L, Zhu Y. Various administration forms of decellularized amniotic membrane extract towards improving corneal repair. J Mater Chem B 2021; 9:9347-9357. [PMID: 34724021 DOI: 10.1039/d1tb01848e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amniotic membrane (AM) transplantation is often used as a treatment for corneal repair, but AM is prone to dissolving and shedding after surgery; multiple transplants will cause pain and financial burden. In this work, human amniotic membrane was firstly decellularized to obtain an AM extracellular matrix (dAM). This dAM was homogenized and extracted to obtain the dAM extract (simplified as dAME). Different forms of administration for corneal injury were performed as liquid drops (diluted dAME), in situ gels (using temperature-dependent Poloxamer 407 as the matrix), and tablets (poly(vinyl alcohol) as the matrix). The cytocompatibility of dAME was evaluated using corneal epithelial cells, corneal stromal cells and fibroblasts as cell models. The results showed that dAME is biocompatible to all these cells. Cells exhibited normal morphology and growth state at a dAME concentration of up to 160 μg mL-1. In vivo, dAME exhibited increased wound healing efficiency in severe corneal injury, being characterized with a shorter healing time for epithelium and a faster recovery for stromal opacity and thickness, compared with those of the control eyes. Different forms of administration have different effects on corneal repair; among them, in situ gels achieved the best therapeutic efficiency. Their biological mechanism was detected via quantitative real-time polymerase chain reaction (qRT-PCR) technology. It was confirmed that dAME plays important roles in promoting the mRNA expression of leucine-rich and immunoglobulin-like domains 1 (LRIG1) and in inhibiting the mRNA of transforming growth factor-β1 (TGF-β1).
Collapse
Affiliation(s)
- Yang Luo
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Meiting Shen
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Peipei Feng
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Haofeng Qiu
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Xujin Wu
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Lu Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315000, China.
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
26
|
Evaluating the clinical translational relevance of animal models for limbal stem cell deficiency: A systematic review. Ocul Surf 2021; 23:169-183. [PMID: 34583088 DOI: 10.1016/j.jtos.2021.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Animal models are pivotal for elucidating pathophysiological mechanisms and evaluating novel therapies. This systematic review identified studies that developed or adapted animal models of limbal stem cell deficiency (LSCD), assessed their reporting quality, summarized their key characteristics, and established their clinical translational relevance to human disease. METHODS The protocol was prospectively registered (PROSPERO CRD42020203937). Searches were conducted in PubMed, Ovid EMBASE and Web of Science in August 2020. Two authors screened citations, extracted data, assessed the reporting quality of eligible studies using the ARRIVE guidelines, and judged the clinical translational relevance of each model using a custom matrix. RESULTS 105 studies were included. Rabbits were the most common animal species. Overall, 97% of studies recapitulated LSCD to a clinical etiology, however 62% did not provide sufficient methodological detail to enable independent reproduction of the model. Adverse events and/or exclusion of animals were infrequently (20%) reported. Approximately one-quarter of studies did not produce the intended severity of LSCD; 34% provided insufficient information to assess the fidelity of disease induction. Adjunctive diagnostic confirmation of LSCD induction was performed in 13% of studies. CONCLUSIONS This is the first systematic review to assess the reporting quality and clinical translational relevance of animal models of LSCD. Models of LSCD have evolved over time, resulting in variable reporting of the characteristics of animals, experimental procedures and adverse events. In most studies, validation of LSCD was made using clinical tests; newer adjunctive techniques would enhance diagnostic validation. As most studies sought to evaluate novel therapies for LSCD, animal models should ideally recapitulate all features of the condition that develop in patients.
Collapse
|
27
|
Corneal Epithelial Stem Cells-Physiology, Pathophysiology and Therapeutic Options. Cells 2021; 10:cells10092302. [PMID: 34571952 PMCID: PMC8465583 DOI: 10.3390/cells10092302] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
In the human cornea, regeneration of the epithelium is regulated by the stem cell reservoir of the limbus, which is the marginal region of the cornea representing the anatomical and functional border between the corneal and conjunctival epithelium. In support of this concept, extensive limbal damage, e.g., by chemical or thermal injury, inflammation, or surgery, may induce limbal stem cell deficiency (LSCD) leading to vascularization and opacification of the cornea and eventually vision loss. These acquired forms of limbal stem cell deficiency may occur uni- or bilaterally, which is important for the choice of treatment. Moreover, a variety of inherited diseases, such as congenital aniridia or dyskeratosis congenita, are characterized by LSCD typically occurring bilaterally. Several techniques of autologous and allogenic stem cell transplantation have been established. The limbus can be restored by transplantation of whole limbal grafts, small limbal biopsies or by ex vivo-expanded limbal cells. In this review, the physiology of the corneal epithelium, the pathophysiology of LSCD, and the therapeutic options will be presented.
Collapse
|
28
|
Hao D, Nourbakhsh M. Recent Advances in Experimental Burn Models. BIOLOGY 2021; 10:526. [PMID: 34204763 PMCID: PMC8231482 DOI: 10.3390/biology10060526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Experimental burn models are essential tools for simulating human burn injuries and exploring the consequences of burns or new treatment strategies. Unlike clinical studies, experimental models allow a direct comparison of different aspects of burns under controlled conditions and thereby provide relevant information on the molecular mechanisms of tissue damage and wound healing, as well as potential therapeutic targets. While most comparative burn studies are performed in animal models, a few human or humanized models have been successfully employed to study local events at the injury site. However, the consensus between animal and human studies regarding the cellular and molecular nature of systemic inflammatory response syndrome (SIRS), scarring, and neovascularization is limited. The many interspecies differences prohibit the outcomes of animal model studies from being fully translated into the human system. Thus, the development of more targeted, individualized treatments for burn injuries remains a major challenge in this field. This review focuses on the latest progress in experimental burn models achieved since 2016, and summarizes the outcomes regarding potential methodological improvements, assessments of molecular responses to injury, and therapeutic advances.
Collapse
Affiliation(s)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
29
|
Yan D, Yu F, Chen L, Yao Q, Yan C, Zhang S, Wu N, Gong D, Sun H, Fu Y, Shao C. Subconjunctival Injection of Regulatory T Cells Potentiates Corneal Healing Via Orchestrating Inflammation and Tissue Repair After Acute Alkali Burn. Invest Ophthalmol Vis Sci 2021; 61:22. [PMID: 33326018 PMCID: PMC7745601 DOI: 10.1167/iovs.61.14.22] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose This study aimed to investigate the therapeutic effects and underlying mechanisms of locally delivered regulatory T cells (Tregs) on acute corneal wound healing after alkali burn. Methods After corneal alkali burn, the mice were injected subconjunctivally with regulatory T cells (Tregs) isolated from syngeneic mice. The wound healing process was monitored by clinical manifestation, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). As amphiregulin (Areg) was significantly upregulated, its reparative function in injured corneas was suggested. The hypothesis was further verified via loss- and gain-of-function experiments by administrating the antibody of Areg (anti-Areg) and recombinant Areg (rmAreg). Results Subconjunctivally injected Tregs rapidly migrated to injured corneas. The mice treated with Tregs showed prominently reduced corneal opacity, alleviated edema, and faster re-epithelialization compared with the control group. Mechanistically, Treg treatment led to suppressed infiltration of inflammatory cells, along with improved proliferation and inhibited apoptosis of corneal epithelial cells. Tregs expressed upregulated functional markers, including Areg. Expectantly, the levels of Areg in corneas were dramatically higher in the Treg injection group, in line with better corneal restoration. Additional experiments showed that the administration of anti-Areg blunted the reparative effect of Tregs, while exogenous Areg enhanced it. Treg-treated corneas also exhibited less neovascularization and fibrosis at a later reconstruction stage of corneal repair. Conclusions The findings showed that the subconjunctival injection of Tregs effectively promoted corneal wound healing by inhibiting excessive inflammation and enhancing epithelial regeneration, with an indispensable reparative role of Areg. Subsequent complications of corneal vascularization and fibrosis were therefore reduced.
Collapse
Affiliation(s)
- Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chenxi Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Nianxuan Wu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Danni Gong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chunyi Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
30
|
Nieto-Nicolau N, Martínez-Conesa EM, Fuentes-Julián S, Arnalich-Montiel F, García-Tuñón I, De Miguel MP, Casaroli-Marano RP. Priming human adipose-derived mesenchymal stem cells for corneal surface regeneration. J Cell Mol Med 2021; 25:5124-5137. [PMID: 33951289 PMCID: PMC8178265 DOI: 10.1111/jcmm.16501] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cells (LSC) maintain the transparency of the corneal epithelium. Chemical burns lead the loss of LSC inducing an up-regulation of pro-inflammatory and pro-angiogenic factors, triggering corneal neovascularization and blindness. Adipose tissue-derived mesenchymal stem cells (AT-MSC) have shown promise in animal models to treat LSC deficiency (LSCD), but there are not studies showing their efficacy when primed with different media before transplantation. We cultured AT-MSC with standard medium and media used to culture LSC for clinical application. We demonstrated that different media changed the AT-MSC paracrine secretion showing different paracrine effector functions in an in vivo model of chemical burn and in response to a novel in vitro model of corneal inflammation by alkali induction. Treatment of LSCD with AT-MSC changed the angiogenic and inflammatory cytokine profile of mice corneas. AT-MSC cultured with the medium that improved their cytokine secretion, enhanced the anti-angiogenic and anti-inflammatory profile of the treated corneas. Those corneas also presented better outcome in terms of corneal transparency, neovascularization and histologic reconstruction. Priming human AT-MSC with LSC specific medium can potentiate their ability to improve corneal wound healing, decrease neovascularization and inflammation modulating paracrine effector functions in an in vivo optimized rat model of LSCD.
Collapse
Affiliation(s)
- Núria Nieto-Nicolau
- CellTec-UB, Department of Cell Biology, University of Barcelona, Barcelona, Spain.,Barcelona Tissue Bank (BTB), Banc de Sang I Teixits (BST), Barcelona, Spain.,Institute of Biomedical Research IIB-Sant Pau (SGR1113), Barcelona, Spain
| | - Eva M Martínez-Conesa
- Barcelona Tissue Bank (BTB), Banc de Sang I Teixits (BST), Barcelona, Spain.,Institute of Biomedical Research IIB-Sant Pau (SGR1113), Barcelona, Spain
| | | | | | - Ignacio García-Tuñón
- Cell Engineering Laboratory, La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - María P De Miguel
- Cell Engineering Laboratory, La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Ricardo P Casaroli-Marano
- CellTec-UB, Department of Cell Biology, University of Barcelona, Barcelona, Spain.,Barcelona Tissue Bank (BTB), Banc de Sang I Teixits (BST), Barcelona, Spain.,Institute of Biomedical Research IIB-Sant Pau (SGR1113), Barcelona, Spain.,Department of Surgery & Hospital Clinic de Barcelona, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Chandru A, Agrawal P, Ojha SK, Selvakumar K, Shiva VK, Gharat T, Selvam S, Thomas MB, Damala M, Prasad D, Basu S, Bhowmick T, Sangwan VS, Singh V. Human Cadaveric Donor Cornea Derived Extra Cellular Matrix Microparticles for Minimally Invasive Healing/Regeneration of Corneal Wounds. Biomolecules 2021; 11:532. [PMID: 33918484 PMCID: PMC8066719 DOI: 10.3390/biom11040532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/10/2023] Open
Abstract
Biological materials derived from extracellular matrix (ECM) proteins have garnered interest as their composition is very similar to that of native tissue. Herein, we report the use of human cornea derived decellularized ECM (dECM) microparticles dispersed in human fibrin sealant as an accessible therapeutic alternative for corneal anterior stromal reconstruction. dECM microparticles had good particle size distribution (≤10 µm) and retained the majority of corneal ECM components found in native tissue. Fibrin-dECM hydrogels exhibited compressive modulus of 70.83 ± 9.17 kPa matching that of native tissue, maximum burst pressure of 34.3 ± 3.7 kPa, and demonstrated a short crosslinking time of ~17 min. The fibrin-dECM hydrogels were found to be biodegradable, cytocompatible, non-mutagenic, non-sensitive, non-irritant, and supported the growth and maintained the phenotype of encapsulated human corneal stem cells (hCSCs) in vitro. In a rabbit model of anterior lamellar keratectomy, fibrin-dECM bio-adhesives promoted corneal re-epithelialization within 14 days, induced stromal tissue repair, and displayed integration with corneal tissues in vivo. Overall, our results suggest that the incorporation of cornea tissue-derived ECM microparticles in fibrin hydrogels is non-toxic, safe, and shows tremendous promise as a minimally invasive therapeutic approach for the treatment of superficial corneal epithelial wounds and anterior stromal injuries.
Collapse
Affiliation(s)
- Arun Chandru
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Parinita Agrawal
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Sanjay Kumar Ojha
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Kamalnath Selvakumar
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Vaishnavi K. Shiva
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Tanmay Gharat
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Shivaram Selvam
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Midhun Ben Thomas
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Mukesh Damala
- Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India; (M.D.); (D.P.); (S.B.); (V.S.S.)
| | - Deeksha Prasad
- Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India; (M.D.); (D.P.); (S.B.); (V.S.S.)
| | - Sayan Basu
- Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India; (M.D.); (D.P.); (S.B.); (V.S.S.)
- Center for Ocular Regeneration (CORE), LV Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Tuhin Bhowmick
- Pandorum Technologies Private Limited, Bangalore, Karnataka 560100, India; (P.A.); (S.K.O.); (K.S.); (V.K.S.); (T.G.); (S.S.); (M.B.T.)
| | - Virender Singh Sangwan
- Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India; (M.D.); (D.P.); (S.B.); (V.S.S.)
- Center for Ocular Regeneration (CORE), LV Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Vivek Singh
- Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India; (M.D.); (D.P.); (S.B.); (V.S.S.)
- Center for Ocular Regeneration (CORE), LV Prasad Eye Institute, Hyderabad, Telangana 500034, India
| |
Collapse
|
32
|
Long term observation of ocular surface alkali burn in rabbit models: Quantitative analysis of corneal haze, vascularity and self-recovery. Exp Eye Res 2021; 205:108526. [PMID: 33662355 DOI: 10.1016/j.exer.2021.108526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022]
Abstract
Limbal Stem Cell Deficiency (LSCD), caused due to corneal injury, primarily by chemical/alkali burns, leads to compromised vision. Recently, several animal models of corneal alkali burn injury have become available. The majority of the studies with these animal models start interventions soon after the injury. However, in the clinical setting, there is a considerable delay before the intervention is initiated. Detailed knowledge of the molecular, histopathological, and clinical parameters associated with the progression of the injury leading to LSCD is highly desirable. In this context, we set out to investigate clinical, histopathological parameters of ocular surface alkali burn over a long period of time, post-injury. Limbal stem cell-deficient animal models of rabbits were created by alkali burn using sodium hydroxide, which was then assessed for their progression towards LSCD by grading the alkali burn, corneal haze, and vascularization. Additionally, cells present on the corneal surface after the burn was investigated by histology and immunophenotyping. Grading of rabbit eyes post-alkali burn had shown complete conjunctivalization in 80% (n = 12/15) of the rabbits with the alkali burn grade score of 3.88 ± 0.29 in three months and remained stable at four months (4.12 ± 0.24). However, ocular surface showed self-healing in 20% (n = 3/15) of the rabbits with a score of 1.67 ± 0.34 in four months irrespective of similar alkali injury. These self-healing corneas exhibited decreased opacity score from 2.51 ± 0.39 to 0.66 ± 0.22 (p = 0.002) and regressed vascularity from 1.66 ± 0.41 to 0.66 ± 0.33 in one to nine months, respectively. Restoration of the corneal phenotype (CK3+) was observed in central and mid-peripheral regions of the self-healing corneas, and histology revealed the localization of inflammatory cells to the peripheral cornea when compared to conjunctivalized and scarred LSCD eyes. Our study shows the essentiality to consider the time required for surgical intervention after the corneal alkali injury in rabbit models as evident from their tendency to self-heal and restore corneal phenotype without therapy. Such information on the possibility of self-healing should be useful in further studies as well as determining interventional timings and strategy during clinical presentation of corneal alkali burns.
Collapse
|
33
|
Di GH, Qi X, Xu J, Yu CQ, Cao QL, Xing ZJ, Li ZC. Therapeutic effect of secretome from TNF-α stimulated mesenchymal stem cells in an experimental model of corneal limbal stem cell deficiency. Int J Ophthalmol 2021; 14:179-185. [PMID: 33614444 DOI: 10.18240/ijo.2021.02.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
AIM To explore the secretome efficacy in tumor necrosis factor (TNF)-α stimulated mouse mesenchymal stem cells (MSCs) in a murine model of corneal limbal alkali injury. METHODS Corneal limbal stem cell deficiency (LSCD) was created in the eyes of male C57 mice. Concentrated conditioned medium from TNF-α stimulated MSCs (MSC-CMT) was applied topically for 4wk, with basal medium and conditioned medium from MSCs as controls. Corneal opacification, corneal inflammatory response, and corneal neovascularization (NV) were evaluated. Corneal epithelial cell apoptosis, corneal conjunctivation, and inflammatory cell infiltration were assessed with TUNEL staining, CK3 and Muc-5AC immunostaining, and CD11b immunofluorescence staining, respectively. The effect of TSG-6 was further evaluated by knockdown with short hairpin RNA (shRNA). RESULTS Compared to the controls, topical administration of MSC-CMT significantly ameliorated the clinical symptoms of alkali-induced LSCD, with restrained corneal NV, reduced corneal epithelial cell apoptosis, and inhibition of corneal conjunctivation. In addition, MSC-CMT treatment significantly reduced CD11b+ inflammatory cell infiltration, and inhibited the expression of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6). Furthermore, the promotion of corneal epithelial reconstruction by MSC-CMT was largely abolished by TSG-6 knockdown. CONCLUSION Our study provides evidence that MSC-CMT enhances the alleviation of corneal alkali injuries, partially through TSG-6-mediated anti-inflammatory protective mechanisms. MSC-CMT may serve as a potential strategy for treating corneal disorders.
Collapse
Affiliation(s)
- Guo-Hu Di
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.,Shandong Eye Institute, Qingdao 266071, Shandong Province, China
| | - Xia Qi
- Shandong Eye Institute, Qingdao 266071, Shandong Province, China
| | - Jing Xu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Chao-Qun Yu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Qi-Long Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao 266071, Shandong Province, China
| | - Zhi-Jun Xing
- Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao 266033, Shandong Province, China
| | - Zhi-Chao Li
- Department of Gynecology and Obstetrics, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
34
|
Adil MT, Henry JJ. Understanding cornea epithelial stem cells and stem cell deficiency: Lessons learned using vertebrate model systems. Genesis 2021; 59:e23411. [PMID: 33576188 DOI: 10.1002/dvg.23411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Animal models have contributed greatly to our understanding of human diseases. Here, we focus on cornea epithelial stem cell (CESC) deficiency (commonly called limbal stem cell deficiency, LSCD). Corneal development, homeostasis and wound healing are supported by specific stem cells, that include the CESCs. Damage to or loss of these cells results in blindness and other debilitating ocular conditions. Here we describe the contributions from several vertebrate models toward understanding CESCs and LSCD treatments. These include both mammalian models, as well as two aquatic models, Zebrafish and the amphibian, Xenopus. Pioneering developments have been made using stem cell transplants to restore normal vision in patients with LSCD, but questions still remain about the basic biology of CESCs, including their precise cell lineages and behavior in the cornea. We describe various cell lineage tracing studies to follow their patterns of division, and the fates of their progeny during development, homeostasis, and wound healing. In addition, we present some preliminary results using the Xenopus model system. Ultimately, a more thorough understanding of these cornea cells will advance our knowledge of stem cell biology and lead to better cornea disease therapeutics.
Collapse
Affiliation(s)
- Mohd Tayyab Adil
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
35
|
Lee J, Kim S, Yoon CH, Kim MJ, Kim KH. Moxifloxacin based axially swept wide-field fluorescence microscopy for high-speed imaging of conjunctival goblet cells. BIOMEDICAL OPTICS EXPRESS 2020; 11:4890-4900. [PMID: 33014588 PMCID: PMC7510874 DOI: 10.1364/boe.401896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 05/04/2023]
Abstract
Goblet cells (GCs) in the conjunctiva are specialized epithelial cells producing mucins on the ocular surface. GCs play important roles in maintaining homeostasis of the ocular surface, and GC dysfunction is associated with various complications including dry eye diseases. Current GC examination methods, which are conjunctival impression cytology and confocal reflection microscopy, have limitations for routine examination. Fluorescence microscopy using moxifloxacin was recently introduced as a non-invasive and high-contrast imaging method, but further development is needed to be used for GC examination. Here we developed a non-invasive high-speed high-contrast GC imaging method, called moxifloxacin based axially swept wide-field fluorescence microscopy (MBAS-WFFM). This method acquired multiple fluorescence images with the axial sweeping of the focal plane to capture moxifloxacin labeled GCs on the tilted conjunctival surface in focus and generated all-in-focus images by combining the acquired images. The imaging field of view and imaging speed were increased to 1.6 mm × 1.6 mm and 30 fps. An image processing method was developed for the analysis of GC density. MBAS-WFFM was applied to alkali burn mouse models and detected GC damage and recovery via longitudinal imaging. MBAS-WFFM could assess the status of GCs rapidly and non-invasively. We anticipate MBAS-WFFM to be a starting point for non-invasive GC examination and the diagnosis of GC associated diseases. For example, MBAS-WFFM could be used to classify dry eye diseases into detail categories for effective treatment.
Collapse
Affiliation(s)
- Jungbin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
- These authors contributed equally
| | - Seonghan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
- These authors contributed equally
| | - Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Myoung Joon Kim
- Renew Seoul Eye Center, 528 Teheran-ro, Gangnam-gu, Seoul 06181, South Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
36
|
Joshi VP, Vaishnavi K S, Ojha SK, Singh V, Basu S. A reliable animal model of corneal stromal opacity: Development and validation using in vivo imaging. Ocul Surf 2020; 18:681-688. [PMID: 32735950 DOI: 10.1016/j.jtos.2020.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To validate an animal model of corneal stromal opacity by using objective vision-independent in vivo imaging metrics. METHODS This was a prospective study, with two arms: (i) observational human arm which included 14 patients with healed unilateral ulcerative keratitis; and (ii) experimental rabbit arm, which included 6 New Zealand white rabbits. A 3-mm central wound was created in the left eye of the rabbits by manually removing 200-250 μm of the superficial stroma, followed by rotating-burr application. Both groups underwent photography, high-resolution anterior segment optical coherence tomography, and Scheimpflug imaging using similar diagnostic platforms and standardized image capturing protocols. Parameters studied were relative change in (i) corneal thickness; (ii) corneal epithelial: stromal (E:S) reflectivity ratio; (iii) corneal stromal light scattering using densitometry; and (iv) central corneal keratometry. RESULTS In the experimental arm, there was a significant decrease in corneal thickness (273 ± 51.3 vs. 407.3 ± 10.3 μm, p = 0.0038), E:S reflectivity ratio (0.71 ± 0.09 vs. 0.99 ± 0.06, p = 0.0018), and keratometry (40.4 ± 2.3 vs. 45.8 ± 0.9D, p = 0.0033) and increase in densitometry (54.2 ± 11.65 vs.18.7 ± 3.8 GSU, p = 0.0001) from baseline, which stabilized at 4 to 8-weeks post-wounding (p > 0.3632). At 8-weeks, the relative change from baseline in corneal thickness (28.4 ± 13.5% vs.22.4 ± 13%, p = 0.368), E:S reflectivity ratio (28.1 ± 11.5% vs. 30.6 ± 8.9%, p = 0.603), corneal densitometry (204.17 ± 97.3% vs. 304.9 ± 113.6%, p = 0.1113), and central corneal keratometry (13.6 ± 6.9% vs. 18.9 ± 7.4%, p = 0.1738) in rabbits was similar to human corneal scars. CONCLUSION The animal model of corneal opacification was objectively comparable to human post-keratitis scars and can be valuable for in vivo evaluation of emerging therapies for corneal opacities.
Collapse
Affiliation(s)
- Vineet Pramod Joshi
- Centre for Innovation, LV Prasad Eye Institute, Hyderabad, Telangana, India; The Cornea Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | | | | | - Vivek Singh
- Center for Ocular Regeneration (CORE), LV Prasad Eye Institute, Hyderabad, Telangana, India; Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Sayan Basu
- The Cornea Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India; Center for Ocular Regeneration (CORE), LV Prasad Eye Institute, Hyderabad, Telangana, India; Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
37
|
de Oliveira RC, Murillo S, Saikia P, Wilson SE. The Efficacy of Topical HGF on Corneal Fibrosis and Epithelial Healing after Scar-Producing PRK Injury in Rabbits. Transl Vis Sci Technol 2020; 9:29. [PMID: 32818116 PMCID: PMC7396189 DOI: 10.1167/tvst.9.4.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/14/2020] [Indexed: 01/18/2023] Open
Abstract
Purpose To determine the effect of topical hepatocyte growth factor (HGF) on myofibroblast development and corneal opacity after fibrosis-producing photorefractive keratectomy (PRK). Methods Twelve New Zealand rabbits had transepithelial PRK. Six rabbits received topical recombinant human HGF (rhHGF) (50 µL of 0.1 mg/mL) 3 times a day for 1 week beginning 6 hours prior surgery and until full closure of the epithelium, and 6 control rabbits received vehicle by the same schedule. Slit lamp photos were taken immediately and at 43 to 45 hours after surgery to determine the rate of epithelial healing. Slit lamp photographs and immunohistochemistry for α-smooth muscle actin were analyzed at 1 month in masked fashion. Results The rhHGF group tended to have slower re-epithelization when compared with the controls, but no statistically significant difference was noted (P = 0.62). There was no significant difference in the density of myofibroblasts in the central stroma (P = 0.49) or corneal opacity (P = 0.84) between the HGF and control groups at 1 month after PRK. Conclusions Topical rhHGF applied three times a day during the early postoperative period prior to epithelial closure did not significantly change the corneal epithelial healing rate, myofibroblast density, or opacity compared with vehicle after transepithelial -9.0 D PRK injury of the central cornea in rabbits. Translational Relevance HGF has been reported to decrease myofibroblast generation and fibrosis in many organs, but topical HGF applied to the cornea until epithelial healing had no effect on scarring fibrosis in rabbit corneas.
Collapse
Affiliation(s)
| | - Sofia Murillo
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | | - Steven E. Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|