1
|
Greatbatch CJ, Lu Q, Hung S, Tran SN, Wing K, Liang H, Han X, Zhou T, Siggs OM, Mackey DA, Liu GS, Cook AL, Powell JE, Craig JE, MacGregor S, Hewitt AW. Deep Learning-Based Identification of Intraocular Pressure-Associated Genes Influencing Trabecular Meshwork Cell Morphology. OPHTHALMOLOGY SCIENCE 2024; 4:100504. [PMID: 38682030 PMCID: PMC11046128 DOI: 10.1016/j.xops.2024.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Purpose Genome-wide association studies have recently uncovered many loci associated with variation in intraocular pressure (IOP). Artificial intelligence (AI) can be used to interrogate the effect of specific genetic knockouts on the morphology of trabecular meshwork cells (TMCs) and thus, IOP regulation. Design Experimental study. Subjects Primary TMCs collected from human donors. Methods Sixty-two genes at 55 loci associated with IOP variation were knocked out in primary TMC lines. All cells underwent high-throughput microscopy imaging after being stained with a 5-channel fluorescent cell staining protocol. A convolutional neural network was trained to distinguish between gene knockout and normal control cell images. The area under the receiver operator curve (AUC) metric was used to quantify morphological variation in gene knockouts to identify potential pathological perturbations. Main Outcome Measures Degree of morphological variation as measured by deep learning algorithm accuracy of differentiation from normal controls. Results Cells where LTBP2 or BCAS3 had been perturbed demonstrated the greatest morphological variation from normal TMCs (AUC 0.851, standard deviation [SD] 0.030; and AUC 0.845, SD 0.020, respectively). Of 7 multigene loci, 5 had statistically significant differences in AUC (P < 0.05) between genes, allowing for pathological gene prioritization. The mitochondrial channel most frequently showed the greatest degree of morphological variation (33.9% of cell lines). Conclusions We demonstrate a robust method for functionally interrogating genome-wide association signals using high-throughput microscopy and AI. Genetic variations inducing marked morphological variation can be readily identified, allowing for the gene-based dissection of loci associated with complex traits. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Connor J. Greatbatch
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Qinyi Lu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Sandy Hung
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Son N. Tran
- Department of Information and Communication Technology, University of Tasmania, Hobart, Tasmania, Australia
| | - Kristof Wing
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Helena Liang
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Xikun Han
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Bedford Park, Australia
| | - Owen M. Siggs
- Cellular Genomics Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia
| | - David A. Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Joseph E. Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- UNSW Cellular Genomics Futures Institute, UNSW, Sydney, New South Wales, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Bedford Park, Australia
| | - Stuart MacGregor
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Al-Saei O, Malka S, Owen N, Aliyev E, Vempalli FR, Ocieczek P, Al-Khathlan B, Fakhro K, Moosajee M. Increasing the diagnostic yield of childhood glaucoma cases recruited into the 100,000 Genomes Project. BMC Genomics 2024; 25:484. [PMID: 38755526 PMCID: PMC11097485 DOI: 10.1186/s12864-024-10353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.
Collapse
Affiliation(s)
- Omayma Al-Saei
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Samantha Malka
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | - Paulina Ocieczek
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | | | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
- The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
3
|
Wei W, Li B, Li F, Sun K, Jiang X, Xu R. Variants in FOXC1 and FOXC2 identified in patients with conotruncal heart defects. Genomics 2024; 116:110840. [PMID: 38580085 DOI: 10.1016/j.ygeno.2024.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Conotruncal heart defects (CTD), subtypes of congenital heart disease, result from abnormal cardiac outflow tract development (OFT). FOXC1 and FOXC2 are closely related members of the forkhead transcription factor family and play essential roles in the development of OFT. We confirmed their expression pattern in mouse and human embryos, identifying four variants in FOXC1 and three in FOXC2 by screening these two genes in 605 patients with sporadic CTD. Western blot demonstrated expression levels, while Dual-luciferase reporter assay revealed affected transcriptional abilities for TBX1 enhancer in two FOXC1 variants and three FOXC2 variants. This might result from the altered DNA-binding abilities of mutant proteins. These results indicate that functionally impaired FOXC1 and FOXC2 variants may contribute to the occurrence of CTD.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Bojian Li
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Fen Li
- Shanghai Jiaotong University School of Medicine Shanghai Children's Medical Center, China
| | - Kun Sun
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Xuechao Jiang
- Scientific Research Center, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Rang Xu
- Scientific Research Center, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China.
| |
Collapse
|
4
|
Greatbatch CJ, Lu Q, Hung S, Barnett AJ, Wing K, Liang H, Han X, Zhou T, Siggs OM, Mackey DA, Cook AL, Senabouth A, Liu GS, Craig JE, MacGregor S, Powell JE, Hewitt AW. High throughput functional profiling of genes at intraocular pressure loci reveals distinct networks for glaucoma. Hum Mol Genet 2024; 33:739-751. [PMID: 38272457 PMCID: PMC11031357 DOI: 10.1093/hmg/ddae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/18/2023] [Accepted: 04/06/2024] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. METHODS 62 genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups, underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled with CellProfiler image analysis allowed for single-cell morphological profiling. RESULTS Many gene knockouts invoked DEGs relating to matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology. TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and PLEKHA7 increased granularity and intensity of actin and the cell-membrane. CONCLUSION High-throughput analysis of cellular structure and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong genetic basis.
Collapse
Affiliation(s)
- Connor J Greatbatch
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Qinyi Lu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sandy Hung
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| | - Alexander J Barnett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Kristof Wing
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Helena Liang
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane 4006, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, 1 Flinders Dr, Bedford Park, South Australia 5042, Australia
| | - Owen M Siggs
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, Short Street, St George Hospital KOGARAH UNSW, Sydney 2217, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, 2 Verdun Street Nedlands WA 6009, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Anne Senabouth
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, 1 Flinders Dr, Bedford Park, South Australia 5042, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane 4006, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| |
Collapse
|
5
|
Pan Y, Iwata T. Exploring the Genetic Landscape of Childhood Glaucoma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:454. [PMID: 38671671 PMCID: PMC11048810 DOI: 10.3390/children11040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Childhood glaucoma, a significant cause of global blindness, represents a heterogeneous group of disorders categorized into primary or secondary forms. Primary childhood glaucoma stands as the most prevalent subtype, comprising primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Presently, multiple genes are implicated in inherited forms of primary childhood glaucoma. This comprehensive review delves into genetic investigations into primary childhood glaucoma, with a focus on identifying causative genes, understanding their inheritance patterns, exploring essential biological pathways in disease pathogenesis, and utilizing animal models to study these mechanisms. Specifically, attention is directed towards genes such as CYP1B1 (cytochrome P450 family 1 subfamily B member 1), LTBP2 (latent transforming growth factor beta binding protein 2), TEK (TEK receptor tyrosine kinase), ANGPT1 (angiopoietin 1), and FOXC1 (forkhead box C1), all associated with PCG; and MYOC (myocilin), associated with JOAG. Through exploring these genetic factors, this review aims to deepen our understanding of the intricate pathogenesis of primary childhood glaucoma, thereby facilitating the development of enhanced diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
| |
Collapse
|
6
|
Higgins RC, Bingcang CM, Dowdall JR. Axenfeld-Rieger Syndrome and Possible Airway Complications. EAR, NOSE & THROAT JOURNAL 2024:1455613241229955. [PMID: 38321760 DOI: 10.1177/01455613241229955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
|
7
|
Liuska PJ, Tadji A, Repo P, Hiltunen J, Backlund M, Järvinen RS, Ojanen E, Majander A, Kivelä TT, Harju M, Turunen JA. Analysis of glaucoma genes in Finnish patients with juvenile open-angle glaucoma. Acta Ophthalmol 2023; 101:797-806. [PMID: 37032519 DOI: 10.1111/aos.15670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE To identify germline variants in myocilin (MYOC) and other known monogenic glaucoma genes in Finnish patients with juvenile open-angle glaucoma (JOAG). METHODS Finnish patients with JOAG treated between 2010 and 2018 at the Department of Ophthalmology, Helsinki University Hospital, Finland, were enrolled. We sequenced all exonic regions and flanking splice sites of MYOC for five patients and one healthy relative using Sanger sequencing. In 48 patients, we performed exome sequencing to identify variants also in 28 other glaucoma-related genes. RESULTS Fifty-three individuals with JOAG from 50 pedigrees, and one healthy relative, participated. The mean age at diagnosis was 30.8 years [SD 7.6; range 11 to 39]. Five probands had probably pathogenic variants in MYOC: c.1102C>T p.(Gln368Ter), c.1109C>T p.(Pro370Leu), c.1130C>T p.(Thr377Met), c.1132G>A p.(Asp378Asn) and c.1456C>T p.(Leu486Phe). Four of these patients had a family history of dominantly inherited JOAG. The frequency of MYOC variants was 10% (5 of 50 families). One patient and his mother with JOAG had a novel loss-of-function variant in the FOXC1 gene, c.366G>A p.(Trp122Ter). A patient with sporadic JOAG had a homozygous likely pathogenic variant in the LTBP2 gene, c.3938G>A p.(Cys1313Tyr). The genetic variants explained 14% (7 out of 50 families; 95% CI, 6%-23%) of JOAG in our cohort. CONCLUSIONS The frequency of pathogenic variants in previously known glaucoma-associated genes is low in Finnish patients with JOAG. Because of the distinct genetic background of Finns, it might be possible to identify novel glaucoma genes through our JOAG series in the future.
Collapse
Affiliation(s)
- Perttu J Liuska
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | - Abdessallam Tadji
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | - Pauliina Repo
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juho Hiltunen
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | - Michael Backlund
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | | | - Eeva Ojanen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Majander
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tero T Kivelä
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Harju
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joni A Turunen
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Zhang L, Tie X, Che F, Wang G, Ge Y, Li B, Yang Y. Novel maternal duplication of 6p22.3-p25.3 with subtelomeric 6p25.3 deletion: new clinical findings and genotype-phenotype correlations. Mol Cytogenet 2023; 16:11. [PMID: 37303060 DOI: 10.1186/s13039-023-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Copy-number variants (CNVs) drive many neurodevelopmental-related disorders. Although many neurodevelopmental-related CNVs can give rise to widespread phenotypes, it is necessary to identify the major genes contributing to phenotypic presentation. Copy-number variations in chromosome 6, such as independent 6p deletion and 6p duplication, have been reported in several live-born infants and present widespread abnormalities such as intellectual disability, growth deficiency, developmental delay, and multiple dysmorphic facial features. However, a contiguous deletion and duplication in chromosome 6p regions have been reported in only a few cases. CASE PRESENTATION In this study, we reported the first duplication of chromosome band 6p25.3-p22.3 with deletion of 6p25.3 in a pedigree. This is the first case reported involving CNVs in these chromosomal regions. In this pedigree, we reported a 1-year-old boy with maternal 6p25-pter duplication characterized by chromosome karyotype. Further analysis using CNV-seq revealed a 20.88-Mb duplication at 6p25.3-p22.3 associated with a contiguous 0.66-Mb 6p25.3 deletion. Whole exome sequencing confirmed the deletion/duplication and identified no pathogenic or likely pathogenic variants related with the patient´s phenotype. The proband presented abnormal growth, developmental delay, skeletal dysplasia, hearing loss, and dysmorphic facial features. Additionally, he presented recurrent infection after birth. CNV-seq using the proband´s parental samples showed that the deletion/duplication was inherited from the proband´s mother, who exhibited a similar phenotype to the proband. When compared with other cases, this proband and his mother presented a new clinical finding: forearm bone dysplasia. The major candidate genes contributing to recurrent infection, eye development, hearing loss features, neurodevelopmental development, and congenital bone dysplasia were further discussed. CONCLUSIONS Our results showed a new clinical finding of a contiguous deletion and duplication in chromosome 6p regions and suggested candidate genes associated with phenotypic features, such as FOXC1, SERPINB6, NRN1, TUBB2A, IRF4, and RIPK1.
Collapse
Affiliation(s)
- Liyu Zhang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Xiaoling Tie
- Department of Rehabilitation, Xi'an Children's Hospital, Xi'an, China
| | - Fengyu Che
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Guoxia Wang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Ying Ge
- The Center Laboratory Medicine, Xi'an Children's Hospital, Xi'an, China
| | - Benchang Li
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China.
| |
Collapse
|
9
|
Rraku E, Kerstjens-Frederikse WS, Swertz MA, Dijkhuizen T, van Ravenswaaij-Arts CMA, Engwerda A. The phenotypic spectrum of terminal and subterminal 6p deletions based on a social media-derived cohort and literature review. Orphanet J Rare Dis 2023; 18:68. [PMID: 36964621 PMCID: PMC10039519 DOI: 10.1186/s13023-023-02670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Terminal 6p deletions are rare, and information on their clinical consequences is scarce, which impedes optimal management and follow-up by clinicians. The parent-driven Chromosome 6 Project collaborates with families of affected children worldwide to better understand the clinical effects of chromosome 6 aberrations and to support clinical guidance. A microarray report is required for participation, and detailed phenotype information is collected directly from parents through a multilingual web-based questionnaire. Information collected from parents is then combined with case data from literature reports. Here, we present our findings on 13 newly identified patients and 46 literature cases with genotypically well-characterised terminal and subterminal 6p deletions. We provide phenotype descriptions for both the whole group and for subgroups based on deletion size and HI gene content. RESULTS The total group shared a common phenotype characterised by ocular anterior segment dysgenesis, vision problems, brain malformations, congenital defects of the cardiac septa and valves, mild to moderate hearing impairment, eye movement abnormalities, hypotonia, mild developmental delay and dysmorphic features. These characteristics were observed in all subgroups where FOXC1 was included in the deletion, confirming a dominant role for this gene. Additional characteristics were seen in individuals with terminal deletions exceeding 4.02 Mb, namely complex heart defects, corpus callosum abnormalities, kidney abnormalities and orofacial clefting. Some of these additional features may be related to the loss of other genes in the terminal 6p region, such as RREB1 for the cardiac phenotypes and TUBB2A and TUBB2B for the cerebral phenotypes. In the newly identified patients, we observed previously unreported features including gastrointestinal problems, neurological abnormalities, balance problems and sleep disturbances. CONCLUSIONS We present an overview of the phenotypic characteristics observed in terminal and subterminal 6p deletions. This reveals a common phenotype that can be highly attributable to haploinsufficiency of FOXC1, with a possible additional effect of other genes in the 6p25 region. We also delineate the developmental abilities of affected individuals and report on previously unrecognised features, showing the added benefit of collecting information directly from parents. Based on our overview, we provide recommendations for clinical surveillance to support clinicians, patients and families.
Collapse
Affiliation(s)
- Eleana Rraku
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Trijnie Dijkhuizen
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- ATN/Jonx, Groningen, The Netherlands.
| | - Aafke Engwerda
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Genotype-phenotype association of PITX2 and FOXC1 in Axenfeld-Rieger syndrome. Exp Eye Res 2023; 226:109307. [PMID: 36442680 DOI: 10.1016/j.exer.2022.109307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
PITX2 and FOXC1 are the most common pathogenic genes associated with Axenfeld-Rieger syndrome (ARS). In this study, we aimed to explore the variation spectrum of PITX2 and FOXC1 and their associated phenotype based on data from our study and previously reported literatures. Whole exome sequencing was performed on eight probands in our study. Multistep bioinformatic and co-segregation analyses were performed to detect pathogenic variants. Genotype-phenotype correlations of PITX2 and FOXC1 and the differences between them were determined. We detected three variants of FOXC1 and two variants of PITX2 in five unrelated families with ARS. Macular retinoschisis had been observed in AR1 with variant in PITX2 and it is not reported before. Additionally, a review of published literature and our study led to the identification of 593 families with variants of PITX2 or FOXC1, including 316 families with heterozygous variants in FOXC1, 251 families with heterozygous variants in PITX2, 13 families with variants in double genes, seven families with homozygous or compound heterozygous variants in FOXC1, and six families with variants in ADAMTS17, PRDM5, COL4A1 or CYP1B1. Significant differences were observed between the prevalence of missense and in-frame, truncation, and large deletion variants in PITX2 (32.00%, 42.67%, and 25.33%, respectively) and FOXC1 (34.49%, 35.13%, 30.38%, respectively) (p = 1.16E-43). Enrichment and frequency analyses revealed that missense variants were concentrated in the forkhead domain of FOXC1 (76.14%) and homeodomain of PITX2 (87.50%). The percentage of Caucasians with variants in FOXC1 was significantly higher than that of PITX2 (p = 2.00E-2). Significant differences between PITX2 and FOXC1 were observed in glaucoma (p = 3.00E-2), corectopia (p = 3.050E-6), and polycoria (p = 5.21E-08). Additionally, we observed a significant difference in best-corrected visual acuity (BCVA) between FOXC1 and PITX2 (p = 3.80E-2). Among all the family members with PITX2 or FOXC1 variants, the prevalence of systemic abnormalities was significantly higher in PITX2 than in FOXC1 (89.16% vs. 58.77%, p = 5.44E-17). In conclusion, macular retinoschisis as a novel phenotype had been observed in patient with variant in PITX2. Significant differences were detected in phenotypes and genotypes between PITX2 and FOXC1.
Collapse
|
11
|
First Results from the Prospective German Registry for Childhood Glaucoma: Phenotype-Genotype Association. J Clin Med 2021; 11:jcm11010016. [PMID: 35011756 PMCID: PMC8745723 DOI: 10.3390/jcm11010016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Childhood glaucoma is a heterogeneous disease and can be associated with various genetic alterations. The aim of this study was to report first results of the phenotype–genotype relationship in a German childhood glaucoma cohort. Forty-nine eyes of 29 children diagnosed with childhood glaucoma were prospectively included in the registry. Besides medical history, non-genetic risk factor anamnesis and examination results, genetic examination report was obtained (23 cases). DNA from peripheral blood or buccal swab was used for molecular genetic analysis using a specific glaucoma gene panel. Primary endpoint was the distribution of causative genetic mutations and associated disorders. Median age was 1.8 (IQR 0.6; 3.8) years, 64% participants were female. Secondary childhood glaucoma (55%) was more common than primary childhood glaucoma (41%). In 14%, parental consanguinity was indicated. A mutation was found in all these cases, which makes consanguinity an important risk factor for genetic causes in childhood glaucoma. CYP1B1 (30%) and TEK (10%) mutations were found in primary childhood glaucoma patients. In secondary childhood glaucoma cases, alterations in CYP1B1 (25%), SOX11 (13%), FOXC1 (13%), GJA8 (13%) and LTBP2 (13%) were detected. Congenital cataract was associated with variants in FYCO1 and CRYBB3 (25% each), and one case of primary megalocornea with a CHRDL1 aberration. Novel variants of causative genetic mutations were found. Distribution of childhood glaucoma types and causative genes was comparable to previous investigated cohorts. This is the first prospective study using standardized forms to determine phenotypes and non-genetic factors in childhood glaucoma with the aim to evaluate their association with genotypes in childhood glaucoma.
Collapse
|
12
|
Wang R, Wang WQ, Li XQ, Zhao J, Yang K, Feng Y, Guo MM, Liu M, Liu X, Wang X, Yuan YY, Gao X, Xu JC. A novel variant in FOXC1 associated with atypical Axenfeld-Rieger syndrome. BMC Med Genomics 2021; 14:277. [PMID: 34809627 PMCID: PMC8609746 DOI: 10.1186/s12920-021-01130-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
Mutations in the Forkhead Box C1 (FOXC1) are known to cause autosomal dominant hereditary Axenfeld-Rieger syndrome, which is a genetic disorder characterized by ocular and systemic features including glaucoma, variable dental defects, craniofacial dysmorphism and hearing loss. Due to late-onset of ocular disorders and lack of typical presentation, clinical diagnosis presents a huge challenge. In this study, we described a pathogenic in-frame variant in FOXC1 in one 5-year-old boy who is presented with hypertelorism, pupil deformation in both eyes, conductive hearing loss, and dental defects. By whole exome sequencing, we identified a 3 bp deletion in FOXC1, c.516_518delGCG (p.Arg173del) as the disease-causing variant, which was de novo and not detected in the parents, and could be classified as a "pathogenic variant" according to the American College of Medical Genetics and Genomics guidelines. After confirmation of this FOXC1 variant, clinical data on Axenfeld-Rieger syndrome-associated clinical features were collected and analyzed. Furthermore, Although the affected individual present hearing loss, however, the hearing loss is conductive and is reversible during the follow-up, which might not linke to the FOXC1 variant and is coincidental. Routine examination of FOXC1 is necessary for the genetic diagnosis of hypertelorism-associated syndrome. These findings may assist clinicians in reaching correct clinical and molecular diagnoses, and providing appropriate genetic counseling.
Collapse
Affiliation(s)
- Rui Wang
- Postgraduate Training Base Of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), 16# XinWai Da Jie, Beijing, 100088, People's Republic of China
| | - Wei-Qian Wang
- Department of Otolaryngology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China.,College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, People's Republic of China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People's Republic of China
| | - Xiao-Qin Li
- Department of Ophthalmology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China
| | - Juan Zhao
- Department of Otolaryngology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China
| | - Kun Yang
- Department of Otolaryngology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China
| | - Yong Feng
- Department of Otolaryngology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China
| | - Meng-Meng Guo
- Department of Otolaryngology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China
| | - Min Liu
- Department of Otolaryngology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China
| | - Xing Liu
- Department of Otolaryngology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China
| | - Xi Wang
- Department of Otolaryngology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China.
| | - Yong-Yi Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, People's Republic of China. .,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People's Republic of China.
| | - Xue Gao
- Department of Otolaryngology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China.
| | - Jin-Cao Xu
- Department of Otolaryngology, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, People's Republic of China.
| |
Collapse
|
13
|
Li K, Tang M, Xu M, Yu Y. A novel missense mutation of FOXC1 in an Axenfeld-Rieger syndrome patient with a congenital atrial septal defect and sublingual cyst: a case report and literature review. BMC Med Genomics 2021; 14:255. [PMID: 34715865 PMCID: PMC8555356 DOI: 10.1186/s12920-021-01103-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022] Open
Abstract
Background Axenfeld–Rieger syndrome (ARS) is a rare autosomal dominant hereditary disease characterized primarily by maldevelopment of the anterior segment of both eyes, accompanied by developmental glaucoma, and other congenital anomalies. FOXC1 and PITX2 genes play important roles in the development of ARS. Case presentation The present report describes a 7-year-old boy with iris dysplasia, displaced pupils, and congenital glaucoma in both eyes. The patient presented with a congenital atrial septal defect and sublingual cyst. The patient’s family has no clinical manifestations. Next generation sequencing identified a pathogenic heterozygous missense variant in FOXC1 gene (NM_001453:c. 246C>A, p. S82R) in the patient. Sanger sequencing confirmed this result, and this mutation was not detected in the other three family members. Conclusion To the best of our knowledge, the results of our study reveal a novel mutation in the FOXC1 gene associated with ARS.
Collapse
Affiliation(s)
- Kaiming Li
- Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China
| | - Min Tang
- Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China
| | - Manhua Xu
- Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China
| | - Yinggui Yu
- Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.
| |
Collapse
|
14
|
Identification of Estrogen Signaling in a Prioritization Study of Intraocular Pressure-Associated Genes. Int J Mol Sci 2021; 22:ijms221910288. [PMID: 34638643 PMCID: PMC8508848 DOI: 10.3390/ijms221910288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-β signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified β-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by β-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm’s canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17β-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17β-estradiol in AH supports a role for estrogen signaling in IOP regulation.
Collapse
|
15
|
French CR. Mechanistic Insights into Axenfeld-Rieger Syndrome from Zebrafish foxc1 and pitx2 Mutants. Int J Mol Sci 2021; 22:ijms221810001. [PMID: 34576164 PMCID: PMC8472202 DOI: 10.3390/ijms221810001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022] Open
Abstract
Axenfeld-Rieger syndrome (ARS) encompasses a group of developmental disorders that affect the anterior segment of the eye, as well as systemic developmental defects in some patients. Malformation of the ocular anterior segment often leads to secondary glaucoma, while some patients also present with cardiovascular malformations, craniofacial and dental abnormalities and additional periumbilical skin. Genes that encode two transcription factors, FOXC1 and PITX2, account for almost half of known cases, while the genetic lesions in the remaining cases remain unresolved. Given the genetic similarity between zebrafish and humans, as well as robust antisense inhibition and gene editing technologies available for use in these animals, loss of function zebrafish models for ARS have been created and shed light on the mechanism(s) whereby mutations in these two transcription factors cause such a wide array of developmental phenotypes. This review summarizes the published phenotypes in zebrafish foxc1 and pitx2 loss of function models and discusses possible mechanisms that may be used to target pharmaceutical development and therapeutic interventions.
Collapse
Affiliation(s)
- Curtis R French
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
16
|
Balikov DA, Jacobson A, Prasov L. Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders. Genes (Basel) 2021; 12:genes12091403. [PMID: 34573386 PMCID: PMC8471311 DOI: 10.3390/genes12091403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Monogenic syndromic disorders frequently feature ocular manifestations, one of which is glaucoma. In many cases, glaucoma in children may go undetected, especially in those that have other severe systemic conditions that affect other parts of the eye and the body. Similarly, glaucoma may be the first presenting sign of a systemic syndrome. Awareness of syndromes associated with glaucoma is thus critical both for medical geneticists and ophthalmologists. In this review, we highlight six categories of disorders that feature glaucoma and other ocular or systemic manifestations: anterior segment dysgenesis syndromes, aniridia, metabolic disorders, collagen/vascular disorders, immunogenetic disorders, and nanophthalmos. The genetics, ocular and systemic features, and current and future treatment strategies are discussed. Findings from rare diseases also uncover important genes and pathways that may be involved in more common forms of glaucoma, and potential novel therapeutic strategies to target these pathways.
Collapse
Affiliation(s)
- Daniel A. Balikov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
| | - Adam Jacobson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
17
|
Fuller-Carter PI, Basiri H, Harvey AR, Carvalho LS. Focused Update on AAV-Based Gene Therapy Clinical Trials for Inherited Retinal Degeneration. BioDrugs 2021; 34:763-781. [PMID: 33136237 DOI: 10.1007/s40259-020-00453-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been significant advances in basic research findings as well as translational studies, culminating in an increasing number of clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna® (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing in the same therapeutic space.
Collapse
Affiliation(s)
- Paula I Fuller-Carter
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Hamed Basiri
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
18
|
Wiggs JL. CPAMD8, a New Gene for Anterior Segment Dysgenesis and Childhood Glaucoma. Ophthalmology 2020; 127:767-768. [PMID: 32444017 DOI: 10.1016/j.ophtha.2020.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022] Open
|
19
|
Jing P, Zou J, Zhang L, Wang C, Yang Y, Deng L, Zhao D. HOXB2 and FOXC1 synergistically drive the progression of Wilms tumor. Exp Mol Pathol 2020; 115:104469. [PMID: 32445751 DOI: 10.1016/j.yexmp.2020.104469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To uncover the expression patterns of HOXB2 and FOXC1 in Wilms tumor samples, and their synergistical regulations on the development of Wilms tumor. METHODS Expression levels of HOXB2 and FOXC1 in 58 cases of Wilms tumor tissues and paracancerous ones were detected. The influences of HOXB2 and FOXC1 on prognosis in Wilms tumor patients were analyzed. Their regulatory effects on proliferative and migratory abilities in WT-CLS1 and HFWT cells were examined by cell counting kit-8 (CCK-8) and Transwell assay, respectively. The interaction between HOXB2 and FOXC1, and their synergistical regulation on the development of Wilms tumor were finally explored. RESULTS HOXB2 and FOXC1 were upregulated in Wilms tumor tissues. Higher levels of HOXB2 and FOXC1 indicated higher risks of advanced stage and lymphatic metastasis, as well as worse prognosis in Wilms tumor patients. Knockdown of HOXB2 or FOXC1 weakened proliferative and migratory abilities in WT-CLS1 and HFWT cells, while the opposite trends were observed in those overexpressing HOXB2 or FOXC1. The positive interaction between HOXB2 and FOXC1 was identified, which synergistically drove the malignant development of Wilms tumor. CONCLUSIONS HOXB2 and FOXC1 are upregulated in Wilms tumor samples, and they are closely linked to tumor staging and lymphatic metastasis in Wilms tumor patients. HOXB2 and FOXC1 synergistically drive the malignant development of Wilms tumor by stimulating proliferative and migratory potentials.
Collapse
Affiliation(s)
- Peng Jing
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China.
| | - Jiaqiong Zou
- Department of Medical Laboratory, the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lixin Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, China
| | - Cheng Wang
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuanbo Yang
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin Deng
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dan Zhao
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|