1
|
Race NS, Moschonas EH, Kline AE, Bondi CO. Cognition and Behavior in the Aging Brain Following TBI: Surveying the Preclinical Evidence. ADVANCES IN NEUROBIOLOGY 2024; 42:219-240. [PMID: 39432045 DOI: 10.1007/978-3-031-69832-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Elderly individuals (65 years and older) represent the fastest-growing demographic of new clinical traumatic brain injury (TBI) cases, yet there is a paucity of preclinical research in aged animals. The limited preclinical work available aligns with the clinical literature in that there appear to be significant differences in pathophysiology, recovery potential, and response to medications between animals at different points across the age spectrum. The aim of this review is to discuss the limited studies and highlight critical age-related differences in affective, cognitive, and neurobehavioral deficits, to discuss factors that influence functional outcomes, and to identify targets for future research. The consensus is that aged rodents face challenges related to dysregulated inflammation, reduced neuroplasticity, and age-related cellular changes, which hinder their recovery after TBI. The most successful intervention studies in animal models to date, of the limited array available, have explored interventions targeting inflammatory downregulation. Current standards of neuropsychopharmacology for post-TBI neurocognitive recovery have not been investigated in a significant capacity. In addition, currently available animal models do not sufficiently account for important age-related comorbidities, dual insults, or differences in TBI mechanism of injury in elderly individuals. TBI in the aged population is more likely to lead to additional neurodegenerative diseases that further complicate recovery. The findings underscore the need for tailored therapeutic interventions to improve outcomes in both adult and elderly populations.
Collapse
Affiliation(s)
- Nicholas S Race
- Department of Physical Medicine & Rehabilitation and Safar Center for Resuscitation Research, Association of Academic Physiatrists Rehabilitation Medicine Scientist Training Program,University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleni H Moschonas
- Department of Physical Medicine & Rehabilitation, Center for Neuroscience, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony E Kline
- Departments of Physical Medicine & Rehabilitation, Critical Care Medicine, and Psychology, Center for Neuroscience, Center for the Neural Basis of Cognition, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corina O Bondi
- Departments of Physical Medicine & Rehabilitation and Neurobiology, Center for Neuroscience, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022; 23:11193. [PMID: 36232495 PMCID: PMC9570205 DOI: 10.3390/ijms231911193] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.
Collapse
Affiliation(s)
- Alice Jacquens
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Edward J. Needham
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Vincent Degos
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Pierre Gressens
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - David Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
3
|
Gebicki JM, Nauser T. Initiation and Prevention of Biological Damage by Radiation-Generated Protein Radicals. Int J Mol Sci 2021; 23:ijms23010396. [PMID: 35008823 PMCID: PMC8745036 DOI: 10.3390/ijms23010396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
Ionizing radiations cause chemical damage to proteins. In aerobic aqueous solutions, the damage is commonly mediated by the hydroxyl free radicals generated from water, resulting in formation of protein radicals. Protein damage is especially significant in biological systems, because proteins are the most abundant targets of the radiation-generated radicals, the hydroxyl radical-protein reaction is fast, and the damage usually results in loss of their biological function. Under physiological conditions, proteins are initially oxidized to carbon-centered radicals, which can propagate the damage to other molecules. The most effective endogenous antioxidants, ascorbate, GSH, and urate, are unable to prevent all of the damage under the common condition of oxidative stress. In a promising development, recent work demonstrates the potential of polyphenols, their metabolites, and other aromatic compounds to repair protein radicals by the fast formation of less damaging radical adducts, thus potentially preventing the formation of a cascade of new reactive species.
Collapse
Affiliation(s)
- Janusz M. Gebicki
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
- Correspondence:
| | - Thomas Nauser
- Departement für Chemie und Angewandte Biowissenschaften, Eidgenössische Technische Hochschule, 8093 Zurich, Switzerland;
| |
Collapse
|
4
|
Leichtle SW, Sarma AK, Strein M, Yajnik V, Rivet D, Sima A, Brophy GM. High-Dose Intravenous Ascorbic Acid: Ready for Prime Time in Traumatic Brain Injury? Neurocrit Care 2020; 32:333-339. [PMID: 31440996 DOI: 10.1007/s12028-019-00829-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading public health problems in the USA and worldwide. It is the number one cause of death and disability in children and adults between ages 1-44. Despite efforts to prevent TBIs, the incidence continues to rise. Secondary brain injury occurs in the first hours and days after the initial impact and is the most effective target for intervention. Inflammatory processes and oxidative stress play an important role in the pathomechanism of TBI and are exacerbated by impaired endogenous defense mechanisms, including depletion of antioxidants. As a reducing agent, free radical scavenger, and co-factor in numerous biosynthetic reactions, ascorbic acid (AA, vitamin C) is an essential nutrient that rapidly becomes depleted in states of critical illness. The administration of high-dose intravenous (IV) AA has demonstrated benefits in numerous preclinical models in the areas of trauma, critical care, wound healing, and hematology. A safe and inexpensive treatment, high-dose IV AA administration gained recent attention in studies demonstrating an associated mortality reduction in septic shock patients. High-quality data on the effects of high-dose IV AA on TBI are lacking. Historic data in a small number of patients demonstrate acute and profound AA deficiency in patients with central nervous system pathology, particularly TBI, and a strong correlation between low AA concentrations and poor outcomes. While replenishing deficient AA stores in TBI patients should improve the brain's ability to tolerate oxidative stress, high-dose IV AA may prove an effective strategy to prevent or mitigate secondary brain injury due to its ability to impede lipid peroxidation, scavenge reactive oxygen species, suppress inflammatory mediators, stabilize the endothelium, and reduce brain edema. The existing preclinical data and limited clinical data suggest that high-dose IV AA may be effective in lowering oxidative stress and decreasing cerebral edema. Whether this translates into improved clinical outcomes will depend on identifying the ideal target patient population and possible treatment combinations, factors that need to be evaluated in future clinical studies. With its excellent safety profile and low cost, high-dose IV AA is ready to be evaluated in the early treatment of TBI patients to mitigate secondary brain injury and improve outcomes.
Collapse
Affiliation(s)
- Stefan W Leichtle
- Division of Acute Care Surgical Services, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, USA.
| | - Anand K Sarma
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Micheal Strein
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University School of Pharmacy, Richmond, USA
| | - Vishal Yajnik
- Division of Critical Care, Department of Anesthesiology, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Dennis Rivet
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Adam Sima
- Department of Biostatistics, Virginia Commonwealth University, Richmond, USA
| | - Gretchen M Brophy
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University School of Pharmacy, Richmond, USA
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, USA
| |
Collapse
|
5
|
Ozga-Hess JE, Whirtley C, O'Hearn C, Pechacek K, Vonder Haar C. Unilateral parietal brain injury increases risk-taking on a rat gambling task. Exp Neurol 2020; 327:113217. [PMID: 32014440 DOI: 10.1016/j.expneurol.2020.113217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/03/2020] [Accepted: 01/30/2020] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) affects millions of individuals every year. Many of these injuries lead to lasting effects, particularly impairments in domains broadly classified as executive functions, such as impulse control and decision-making. While these impairments have been historically associated with frontal brain damage, other injuries such as concussion or parietal injury also contribute to similar dysfunction. However, it is unknown whether animal models of TBI would replicate these broad effects that are observed in human patients. In the current study, we delivered a unilateral parietal controlled cortical impact injury and assessed the performance of rats on a motoric task (rotarod) and a test of decision-making and impulsivity (rodent gambling task). TBI rats demonstrated significant motor impairments on the rotarod task; however, this did not extend to difficulties inhibiting motor actions (impulsivity). In addition, TBI caused chronic alterations to risk-based decision-making, extending out to 12 weeks post-injury. Specifically, rats with TBI preferred the riskiest, and most suboptimal option over all others. The current data suggest that models of unilateral TBI are sufficient for replicating some aspects of executive dysfunction (risky decision-making), while others are limited to frontal damage (impulsivity). These models may be used to develop therapeutics targeted at the chronic post-injury period when these symptoms often manifest in patients, a critically understudied area in preclinical TBI research.
Collapse
Affiliation(s)
- Jenny E Ozga-Hess
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Cory Whirtley
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Christopher O'Hearn
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Kristen Pechacek
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA; Department of Neuroscience, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
6
|
Iboaya A, Harris JL, Arickx AN, Nudo RJ. Models of Traumatic Brain Injury in Aged Animals: A Clinical Perspective. Neurorehabil Neural Repair 2019; 33:975-988. [PMID: 31722616 PMCID: PMC6920554 DOI: 10.1177/1545968319883879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States, with advanced age being one of the major predictors of poor prognosis. To replicate the mechanisms and multifaceted complexities of human TBI and develop prospective therapeutic treatments, various TBI animal models have been developed. These models have been essential in furthering our understanding of the pathophysiology and biochemical effects on brain mechanisms following TBI. Despite these advances, translating preclinical results to clinical application, particularly in elderly individuals, continues to be challenging. This review aims to provide a clinical perspective, identifying relevant variables currently not replicated in TBI animal models, to potentially improve translation to clinical practice, especially as it applies to elderly populations. As background for this clinical perspective, we reviewed articles indexed on PubMed from 1970 to 2019 that used aged animal models for studying TBI. These studies examined end points relevant for clinical translation, such as neurocognitive effects, sensorimotor behavior, physiological mechanisms, and efficacy of neuroprotective therapies. However, compared with the higher incidence of TBI in older individuals, animal studies on the basic science of aging and TBI remain remarkably scarce. Moreover, a fundamental disconnect remains between experiments in animal models of TBI and successful translation of findings for treating the older TBI population. In this article, we aim to provide a clinical perspective on the unique attributes of TBI in older individuals and a critical appraisal of the research to date on TBI in aged animal models as well as recommendations for future studies.
Collapse
Affiliation(s)
- Aiwane Iboaya
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Janna L Harris
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | |
Collapse
|
7
|
Executive (dys)function after traumatic brain injury: special considerations for behavioral pharmacology. Behav Pharmacol 2019; 29:617-637. [PMID: 30215621 PMCID: PMC6155367 DOI: 10.1097/fbp.0000000000000430] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Executive function is an umbrella term that includes cognitive processes such as decision-making, impulse control, attention, behavioral flexibility, and working memory. Each of these processes depends largely upon monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission in the frontal cortex, striatum, and hippocampus, among other brain areas. Traumatic brain injury (TBI) induces disruptions in monoaminergic signaling along several steps in the neurotransmission process - synthesis, distribution, and breakdown - and in turn, produces long-lasting deficits in several executive function domains. Understanding how TBI alters monoamingeric neurotransmission and executive function will advance basic knowledge of the underlying principles that govern executive function and potentially further treatment of cognitive deficits following such injury. In this review, we examine the influence of TBI on the following measures of executive function - impulsivity, behavioral flexibility, and working memory. We also describe monoaminergic-systems changes following TBI. Given that TBI patients experience alterations in monoaminergic signaling following injury, they may represent a unique population with regard to pharmacotherapy. We conclude this review by discussing some considerations for pharmacotherapy in the field of TBI.
Collapse
|
8
|
Ballaz SJ, Rebec GV. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res 2019; 146:104321. [PMID: 31229562 DOI: 10.1016/j.phrs.2019.104321] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Ascorbic acid (AA) is a water-soluble vitamin (C) found in all bodily organs. Most mammals synthesize it, humans are required to eat it, but all mammals need it for healthy functioning. AA reaches its highest concentration in the brain where both neurons and glia rely on tightly regulated uptake from blood via the glucose transport system and sodium-coupled active transport to accumulate and maintain AA at millimolar levels. As a prototype antioxidant, AA is not only neuroprotective, but also functions as a cofactor in redox-coupled reactions essential for the synthesis of neurotransmitters (e.g., dopamine and norepinephrine) and paracrine lipid mediators (e.g., epoxiecoisatrienoic acids) as well as the epigenetic regulation of DNA. Although redox capacity led to the promotion of AA in high doses as potential treatment for various neuropathological and psychiatric conditions, ample evidence has not supported this therapeutic strategy. Here, we focus on some long-neglected aspects of AA neurobiology, including its modulatory role in synaptic transmission as demonstrated by the long-established link between release of endogenous AA in brain extracellular fluid and the clearance of glutamate, an excitatory amino acid. Evidence that this link can be disrupted in animal models of Huntington´s disease is revealing opportunities for new research pathways and therapeutic applications (e.g., epilepsy and pain management). In fact, we suggest that improved understanding of the regulation of endogenous AA and its interaction with key brain neurotransmitter systems, rather than administration of AA in excess, should be the target of future brain-based therapies.
Collapse
Affiliation(s)
- Santiago J Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui, Ecuador.
| | - George V Rebec
- Program in Neuroscience, Department Psychological & Brain Sciences, Indiana University, Bloomington, USA.
| |
Collapse
|
9
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
10
|
Kuan CY, Lin YY, Chen CY, Yang CC, Chi CY, Li CH, Dong GC, Lin FH. The preparation of oxidized methylcellulose crosslinked by adipic acid dihydrazide loaded with vitamin C for traumatic brain injury. J Mater Chem B 2019. [DOI: 10.1039/c9tb00816k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxi-MC-ADH-VC can open up a new avenue for clinical TBI treatment and rehabilitation.
Collapse
Affiliation(s)
- Che-Yung Kuan
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Yu-Ying Lin
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Ching-Yun Chen
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
- Taiwan
| | - Chun-Chen Yang
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei
- Taiwan
| | - Chih-Ying Chi
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Chi-Han Li
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Guo-Chung Dong
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Feng-Huei Lin
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| |
Collapse
|
11
|
Liu H, He J, Zhong J, Zhang H, Zhang Z, Liu L, Huang Z, Wu Y, Jiang L, Guo Z, Xu R, Chai W, Huo G, Sun X, Cheng C. Clinical and Basic Evaluation of the Prognostic Value of Uric Acid in Traumatic Brain Injury. Int J Med Sci 2018; 15:1072-1082. [PMID: 30013449 PMCID: PMC6036155 DOI: 10.7150/ijms.25799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
Background: As a major antioxidant in serum, uric acid (UA) was once considered only as the leading cause of gout; however, recent studies have validated its neuroprotective role in ischemic stroke. Because the potential protective effects of UA in traumatic brain injury (TBI) remain largely unknown, this study investigated the role of UA in TBI in both clinical patients and experimental animals. Methods: In TBI patients, serum UA concentrations were measured within 3 days after injury. Clinical outcomes at discharge were classified according to the Glasgow Outcome Scale: good outcome (4-5) and poor outcome (1-3). Risk factors for good outcome were identified via backward logistic regression analysis. For the animal study, a controlled cortical impact (CCI) injury model was established in mice. These mice were given UA at different doses intraperitoneally, and subsequent UA concentrations in mouse serum and brain tissue were determined. Neurological function, oxidative stress, inflammatory response, neuronal maintenance, cerebral blood flow, and lesion size were also assessed. Results: The serum UA level was significantly lower in TBI patients who had a good outcome (P<0.01), and low serum UA was an independent predictor of good outcome after TBI (P<0.01; odds ratio, 0.023; 95% confidence interval, 0.006-0.082). Consistently, decreased levels of serum UA were observed in both TBI patients and CCI animals (P<0.05), whereas the UA concentration was increased in CCI brain tissue (P<0.05). Administration of UA further increased the UA level in brain tissue as compared to that in control animals (P<0.05). Among the different doses administered, 16 mg/kg UA improved sensorimotor functional recovery, spatial learning, and memory in CCI mice (P<0.05). Moreover, oxidative stress and the inflammatory response were inhibited by UA treatment (P<0.05). UA treatment also improved neuronal maintenance and cortical blood flow (P<0.05) but not lesion size (P>0.05). Conclusions: UA acted to attenuate neuronal loss, cerebral perfusion impairment and neurological deficits in TBI mice through suppression of neuronal and vascular oxidative stress. Following TBI, active antioxidant defense in the brain may result in consumption of UA in the serum, and thus, a decreased serum UA level could be predictive of good clinical recovery.
Collapse
Affiliation(s)
- Han Liu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junchi He
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Zhong
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongrong Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaosi Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Liu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhijian Huang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Xu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weina Chai
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Huo
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chongjie Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 2017; 79:66-86. [PMID: 28476525 DOI: 10.1016/j.neubiorev.2017.04.030] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Aging is a natural process that is associated with cognitive decline as well as functional and social impairments. One structure of particular interest when considering aging and cognitive decline is the hippocampus, a brain region known to play an important role in learning and memory consolidation as well as in affective behaviours and mood regulation, and where both functional and structural plasticity (e.g., neurogenesis) occur well into adulthood. Neurobiological alterations seen in the aging hippocampus including increased oxidative stress and neuroinflammation, altered intracellular signalling and gene expression, as well as reduced neurogenesis and synaptic plasticity, are thought to be associated with age-related cognitive decline. Non-invasive strategies such as caloric restriction, physical exercise, and environmental enrichment have been shown to counteract many of the age-induced alterations in hippocampal signalling, structure, and function. Thus, such approaches may have therapeutic value in counteracting the deleterious effects of aging and protecting the brain against age-associated neurodegenerative processes.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luckshi Rajendran
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; UBC Island Medical program, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
13
|
Vonder Haar C, Peterson TC, Martens KM, Hoane MR. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies. Brain Res 2016; 1640:114-129. [PMID: 26723564 PMCID: PMC4870112 DOI: 10.1016/j.brainres.2015.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of the literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, Gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
14
|
|
15
|
High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging. Neurobiol Aging 2014; 35:1686-94. [PMID: 24559659 DOI: 10.1016/j.neurobiolaging.2014.01.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 12/19/2013] [Accepted: 01/19/2014] [Indexed: 11/24/2022]
Abstract
Altered brain metabolism is likely to be an important contributor to normal cognitive decline and brain pathology in elderly individuals. To characterize the metabolic changes associated with normal brain aging, we used high-field proton magnetic resonance spectroscopy in vivo to quantify 20 neurochemicals in the hippocampus and sensorimotor cortex of young adult and aged rats. We found significant differences in the neurochemical profile of the aged brain when compared with younger adults, including lower aspartate, ascorbate, glutamate, and macromolecules, and higher glucose, myo-inositol, N-acetylaspartylglutamate, total choline, and glutamine. These neurochemical biomarkers point to specific cellular mechanisms that are altered in brain aging, such as bioenergetics, oxidative stress, inflammation, cell membrane turnover, and endogenous neuroprotection. Proton magnetic resonance spectroscopy may be a valuable translational approach for studying mechanisms of brain aging and pathology, and for investigating treatments to preserve or enhance cognitive function in aging.
Collapse
|
16
|
Liu K, Yu P, Lin Y, Wang Y, Ohsaka T, Mao L. Online Electrochemical Monitoring of Dynamic Change of Hippocampal Ascorbate: Toward a Platform for In Vivo Evaluation of Antioxidant Neuroprotective Efficiency against Cerebral Ischemia Injury. Anal Chem 2013; 85:9947-54. [DOI: 10.1021/ac402620c] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kun Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- Capital University of Physical Education and Sports, Beijing 100191, P. R. China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuqing Lin
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuexiang Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Takeo Ohsaka
- Department
of Electronic Chemistry, Interdisciplinary Graduate School of Science
and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
17
|
Kumar A, Stoica BA, Sabirzhanov B, Burns MP, Faden AI, Loane DJ. Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiol Aging 2012; 34:1397-411. [PMID: 23273602 DOI: 10.1016/j.neurobiolaging.2012.11.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/22/2012] [Accepted: 11/22/2012] [Indexed: 12/01/2022]
Abstract
Traumatic brain injury (TBI) causes chronic microglial activation that contributes to subsequent neurodegeneration, with clinical outcomes declining as a function of aging. Microglia/macrophages (MG/Mɸ) have multiple phenotypes, including a classically activated, proinflammatory (M1) state that might contribute to neurotoxicity, and an alternatively activated (M2) state that might promote repair. In this study we used gene expression, immunohistochemical, and stereological analyses to show that TBI in aged versus young mice caused larger lesions associated with an M1/M2 balance switch and increased numbers of reactive (bushy and hypertrophic) MG/Mɸ in the cortex, hippocampus, and thalamus. Chitinase3-like 3 (Ym1), an M2 phenotype marker, displayed heterogeneous expression after TBI with amoeboid-like Ym1-positive MG/Mɸ at the contusion site and ramified Ym1-positive MG/Mɸ at distant sites; this distribution was age-related. Aged-injured mice also showed increased MG/Mɸ expression of major histocompatibility complex II and NADPH oxidase, and reduced antioxidant enzyme expression which was associated with lesion size and neurodegeneration. Thus, altered relative M1/M2 activation and an nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase)-mediated shift in redox state might contribute to worse outcomes observed in older TBI animals by creating a more proinflammatory M1 MG/Mɸ activation state.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
18
|
Chen X, Wu G, Schwarzschild MA. Urate in Parkinson's disease: more than a biomarker? Curr Neurol Neurosci Rep 2012; 12:367-75. [PMID: 22580741 DOI: 10.1007/s11910-012-0282-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with characteristic motor manifestations. Although appreciation of PD as a multisystem disorder has grown, loss of dopaminergic neurons in the substantia nigra remains a pathological and neurochemical hallmark, accounting for the substantial symptomatic benefits of dopamine replacement therapies. However, currently no treatment has been shown to prevent or forestall the progression of the disease in spite of tremendous efforts. Among multiple environmental and genetic factors that have been implicated in the pathogenesis of PD, oxidative stress is proposed to play a critical role. A recent confluence of clinical, epidemiological, and laboratory evidence identified urate, an antioxidant and end product of purine metabolism, as not only a molecular predictor for both reduced risk and favorable progression of PD but also a potential neuroprotectant for the treatment of PD. This review summarizes recent findings on urate in PD and their clinical implications.
Collapse
Affiliation(s)
- Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
19
|
Domazou AS, Zelenay V, Koppenol WH, Gebicki JM. Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress. Free Radic Biol Med 2012; 53:1565-73. [PMID: 22910232 DOI: 10.1016/j.freeradbiomed.2012.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/27/2012] [Accepted: 08/03/2012] [Indexed: 11/23/2022]
Abstract
Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress.
Collapse
Affiliation(s)
- Anastasia S Domazou
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland
| | | | | | | |
Collapse
|
20
|
Razmkon A, Sadidi A, Sherafat-Kazemzadeh E, Mehrafshan A, Jamali M, Malekpour B, Saghafinia M. Administration of Vitamin C and Vitamin E in Severe Head Injury: A Randomized Double-blind Controlled Trial. Neurosurgery 2011; 58:133-7. [DOI: 10.1227/neu.0b013e3182279a8f] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Reduction of protein radicals by GSH and ascorbate: potential biological significance. Amino Acids 2010; 39:1131-7. [DOI: 10.1007/s00726-010-0610-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 04/23/2010] [Indexed: 01/02/2023]
|
22
|
Domazou AS, Koppenol WH, Gebicki JM. Efficient repair of protein radicals by ascorbate. Free Radic Biol Med 2009; 46:1049-57. [PMID: 19185609 DOI: 10.1016/j.freeradbiomed.2009.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 11/15/2022]
Abstract
Protein radicals were selectively generated by reaction with azide radicals on Trp and Tyr residues in insulin, beta-lactoglobulin, pepsin, chymotrypsin, and bovine serum albumin at rate constants in the range (2.9-19)x10(8) M(-1) s(-1). Monohydrogen ascorbate reduced tryptophanyl radicals in chymotrypsin and pepsin with rate constants in the narrow range of (1.6-1.8)x10(8) M(-1) s(-1), whereas beta-lactoglobulin tryptophanyl radicals reacted almost 10 times slower. The corresponding values for the protein tyrosyl radicals were about an order of magnitude smaller. Comparison of the rate constants of reactions of free and protein-bound tryptophanyl and tyrosyl radicals showed that, in most cases, the location of the radicals in the protein chain did not constitute a major barrier to the reaction with monohydrogen ascorbate. The results suggest that, under physiological concentrations of dioxygen, monohydrogen ascorbate is likely to be a significant target of protein radicals. It seems likely, therefore, that reaction with protein radicals may be responsible for much of the well-documented loss of ascorbate in living organisms subjected to oxidative stress.
Collapse
Affiliation(s)
- Anastasia S Domazou
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | |
Collapse
|
23
|
Abstract
In the acute-care setting, it is widely accepted that elderly patients have increased morbidity and mortality compared with young healthy patients. The reasons for this, however, are largely unknown. Although animal modeling has helped improve treatment strategies for young patients, there are a scarce number of studies attempting to understand the mechanisms of systemic insults such as trauma, burn, and sepsis in aged individuals. This review aims to highlight the relevance of using animals to study the pathogenesis of these insults in the aged and, despite the deficiency of information, to summarize what is currently known in this field.
Collapse
|
24
|
Dynamic regional changes of extracellular ascorbic acid during global cerebral ischemia: Studied with in vivo microdialysis coupled with on-line electrochemical detection. Brain Res 2009; 1253:161-8. [DOI: 10.1016/j.brainres.2008.11.096] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 11/22/2008] [Accepted: 11/26/2008] [Indexed: 01/19/2023]
|
25
|
Onyszchuk G, He YY, Berman NEJ, Brooks WM. Detrimental effects of aging on outcome from traumatic brain injury: a behavioral, magnetic resonance imaging, and histological study in mice. J Neurotrauma 2008; 25:153-71. [PMID: 18260798 DOI: 10.1089/neu.2007.0430] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Considerable evidence indicates that outcomes from traumatic brain injury (TBI) are worse in the elderly, but there has been little preclinical research to explore potential mechanisms. In this study, we examined the age-related effects on outcome in a mouse model of controlled cortical impact (CCI) injury. We compared the responses of adult (5-6 months old) and aged (21-24 months old) male mice following a moderate lateral CCI injury to the sensorimotor cortex. Sensorimotor function was evaluated with the rotarod, gridwalk and spontaneous forelimb behavioral tests. Acute edema was assessed from hyperintensity on T2-weighted magnetic resonance images. Blood-brain barrier opening was measured using anti-mouse immunoglobulin G (IgG) immunohistochemistry. Neurodegeneration was assessed by amino-cupric silver staining, and lesion cavity volumes were measured from histological images. Indicators of injury were generally worse in the aged than the adult mice. Acute edema, measured at 24 and 48 h post-injury, resolved more slowly in the aged mice (p < 0.01). Rotarod recovery (p < 0.05) and gridwalk deficits (p < 0.01) were significantly worse in aged mice. There was greater (p < 0.01 at 3 days) and more prolonged post-acute opening of the blood-brain barrier in the aged mice. Neurodegeneration was greater in the aged mice (p < 0.01 at 3 days). In contrast, lesion cavity volumes, measured at 3 days post-injury, were not different between injured groups. These results suggest that following moderate controlled cortical impact injury, the aged brain is more vulnerable than the adult brain to neurodegeneration, resulting in greater loss of function. Tissue loss at the impact site does not explain the increased functional deficits seen in the aged animals. Prolonged acute edema, increased opening of the blood-brain barrier and increased neurodegeneration found in the aged animals implicate secondary processes in age-related differences in outcome.
Collapse
Affiliation(s)
- Gregory Onyszchuk
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|