1
|
Chen D, Deng X, Jia Y, Sun X, Duan X, Yan S, Huang J. Allostatic load in rat model: An efficient tool for evaluating and understanding aging. Geriatr Gerontol Int 2024; 24:1077-1084. [PMID: 39227186 DOI: 10.1111/ggi.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 09/05/2024]
Abstract
AIM Aging and age-related diseases are an ever-increasing social and public health problem. Allostatic load (AL) shows great potential as an interdisciplinary tool for assessing the aging of human beings but as yet lacks investigation in animal models which is our study focus at. METHODS Here a continuous study of AL was conducted on naturally aging rats. Blood samples were collected from the rats at ages of 5, 8, 14, 18, and 21 months. Dozens of blood biochemical indicators, including serum corticosterone, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, C-reactive protein, interleukin-6, 25-hydroxyvitamin D, free fatty acid, CD3+ T cell count, CD4+/CD3+ T cell ratio, CD8+/CD3+ T cell ratio, and CD3/4/8+ T cell apoptosis, were determined. RESULTS AL was scored from those indicators, and we found that AL score gradually increased with age. CONCLUSIONS AL can reliably reveal the cumulative and systemic changes in aging. Geriatr Gerontol Int 2024; 24: 1077-1084.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Jia
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Duan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Sirakawin C, Lin D, Zhou Z, Wang X, Kelleher R, Huang S, Long W, Pires‐daSilva A, Liu Y, Wang J, Vinnikov IA. SKN-1/NRF2 upregulation by vitamin A is conserved from nematodes to mammals and is critical for lifespan extension in Caenorhabditis elegans. Aging Cell 2024; 23:e14064. [PMID: 38100161 PMCID: PMC10928581 DOI: 10.1111/acel.14064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/13/2024] Open
Abstract
Vitamin A (VA) is a micronutrient essential for the physiology of many organisms, but its role in longevity and age-related diseases remains unclear. In this work, we used Caenorhabditis elegans to study the impact of various bioactive compounds on lifespan. We demonstrate that VA extends lifespan and reduces lipofuscin and fat accumulation while increasing resistance to heat and oxidative stress. This resistance can be attributed to high levels of detoxifying enzymes called glutathione S-transferases, induced by the transcription factor skinhead-1 (SKN-1). Notably, VA upregulated the transcript levels of skn-1 or its mammalian ortholog NRF2 in both C. elegans, human cells, and liver tissues of mice. Moreover, the loss-of-function genetic models demonstrated a critical involvement of the SKN-1 pathway in longevity extension by VA. Our study thus provides novel insights into the molecular mechanism of anti-aging and anti-oxidative effects of VA, suggesting that this micronutrient could be used for the prevention and/or treatment of age-related disorders.
Collapse
Affiliation(s)
- Chaweewan Sirakawin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dongfa Lin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory for Molecular Enzymology and Engineering, School of Life SciencesJilin UniversityChangchunChina
| | - Ziyue Zhou
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | | | - Shangyuan Huang
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Weimiao Long
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | | | - Yu Liu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ilya A. Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
3
|
Yang B, Man MQ. Improvement in Cutaneous Conditions Can Benefit Some Health Conditions in the Elderly. Clin Interv Aging 2023; 18:2031-2040. [PMID: 38058550 PMCID: PMC10697145 DOI: 10.2147/cia.s430552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
As we are aging, a number of cutaneous and extracutaneous disorders will be developed. Although the pathogenesis of these aging-associated disorders is not clear yet, abnormalities in the skin are linked to some aging-associated disorders at least to some extent. Inflammatory dermatoses such as psoriasis and atopic dermatitis predispose to the development of cardiovascular diseases, obesity and type 2 diabetes. In addition, both chronologically aged skin and individuals with some aging-associated systemic conditions display altered epidermal function, such as reduced stratum corneum hydration levels, which can provoke cutaneous inflammation. Because aged skin exhibits higher expression levels of inflammatory cytokines, which play a pathogenic role in a variety of aging-associated health condition, the association of the skin with some aging-associated disorders is likely mediated by inflammation. This postulation is supported by the evidence that improvement in either epidermal function or inflammatory dermatoses can mitigate some aging-associated disorders such as mild cognitive impairment and insulin sensitivity. This perspective discusses the association of the skin with aging-associated disorders and highlights the potential of improvement in cutaneous conditions in the management of some health conditions in the elderly.
Collapse
Affiliation(s)
- Bin Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People’s Republic of China
| | - Mao-Qiang Man
- Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People’s Republic of China
- Dermatology Services, Veterans Affairs Medical Center and University of California, San Francisco, CA, 94121, USA
| |
Collapse
|
4
|
Vijakumaran U, Shanmugam J, Heng JW, Azman SS, Yazid MD, Haizum Abdullah NA, Sulaiman N. Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules 2023; 28:molecules28041861. [PMID: 36838850 PMCID: PMC9966213 DOI: 10.3390/molecules28041861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Pharmacologists have been emphasizing and applying plant and herbal-based treatments in vascular diseases for decades now. Olives, for example, are a traditional symbol of the Mediterranean diet. Hydroxytyrosol is an olive-derived compound known for its antioxidant and cardioprotective effects. Acknowledging the merit of antioxidants in maintaining endothelial function warrants the application of hydroxytyrosol in endothelial dysfunction salvage and recovery. Endothelial dysfunction (ED) is an impairment of endothelial cells that adversely affects vascular homeostasis. Disturbance in endothelial functioning is a known precursor for atherosclerosis and, subsequently, coronary and peripheral artery disease. However, the effects of hydroxytyrosol on endothelial functioning were not extensively studied, limiting its value either as a nutraceutical supplement or in clinical trials. The action of hydroxytyrosol in endothelial functioning at a cellular and molecular level is gathered and summarized in this review. The favorable effects of hydroxytyrosol in the improvement of endothelial functioning from in vitro and in vivo studies were scrutinized. We conclude that hydroxytyrosol is capable to counteract oxidative stress, inflammation, vascular aging, and arterial stiffness; thus, it is beneficial to preserve endothelial function both in vitro and in vivo. Although not specifically for endothelial dysfunction, hydroxytyrosol safety and efficacy had been demonstrated via in vivo and clinical trials for cardiovascular-related studies.
Collapse
|
5
|
Chronic Bedridden Condition Is Reflected by Substantial Changes in Plasma Inflammatory Profile. Biomolecules 2022; 12:biom12121867. [PMID: 36551295 PMCID: PMC9775060 DOI: 10.3390/biom12121867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Absent or reduced physical activity and spontaneous movement over days, weeks, or even years may lead to problems in almost every major organ/system in the human body. In this study, we investigated whether the dysregulation and alteration of plasma protein inflammatory profiling can stratify chronic bedridden conditions observed in 22 elderly chronic bedridden (CBR) individuals with respect to 11 age-matched active (OLD) controls. By using a combination of immune-assay multiplex techniques, a complex of 27 inflammatory mediators was assessed in the plasma collected from the two groups. A specific plasma protein signature is indeed able to distinguish IPO individuals from age-matched OLD controls; while significantly (p < 0.001) higher protein levels of IL-2, IL-7, and IL-12p70 were measured in the plasma of CBR with respect to OLD individuals, significantly (p < 0.01) higher levels of seven inflammatory mediators, including IL-9, PDGF-b, CCL4 (MIP-1b), CCL5 (RANTES), IL-1Ra, CXCL10 (IP10), and CCL2 (MCP-1), were identified in OLD individuals with respect to CBR individuals. These data suggest that the chronic absence of physical activity may contribute to the dysregulation of a complex molecular pattern occurring with ageing and that specific plasma protein signatures may represent potential biomarkers as well as new potential therapeutic targets for new treatments aimed at improving health expectancy.
Collapse
|
6
|
Tian Z. Ageing-Associated Transcriptomic Alterations in Peri-Implantitis Pathology: A Bioinformatic Study. DISEASE MARKERS 2022; 2022:8456968. [PMID: 36267464 PMCID: PMC9578877 DOI: 10.1155/2022/8456968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Background Ageing is associated with increased incidence of peri-implantitis but the roles of ageing-associated biological mechanisms in the occurrence of peri-implantitis are not known. This study is aimed at performing integrative bioinformatic analysis of publically available datasets to uncover molecular mechanisms related to ageing and peri-implantitis. Methods Gene expression datasets related to ageing and peri-implantitis (PI) were sought, and differentially expressed genes (DEGs) were analysed. Ageing-related genes were also identified from the "Aging Atlas" database. Using intersection analysis, an age-related-PI gene set was identified. Functional enrichment analysis for enriched GO biological process and KEGG pathways, protein-protein interaction (PPI) network analysis, correlation analysis, and immune cell infiltration analysis to determine high-abundance immune cells were performed. Least absolute shrinkage and selection operator (LASSO) logistic regression identified key age-related-PI genes. Transcription factor-gene and drug-gene interactions and enriched KEGG pathways for the key age-related-PI genes were determined. Results A total of 52 genes were identified as age-related-PI genes and found enriched in several inflammation-associated processes including myeloid leukocyte activation, acute inflammatory response, mononuclear cell differentiation, B cell activation, NF-kappa B signalling, IL-17 signalling, and TNF signalling. LYN, CDKN2A, MAPT, BTK, and PRKCB were hub genes in the PPI network. Immune cell infiltration analysis showed activated dendritic cells, central memory CD4 T cells, immature dendritic cells, and plasmacytoid dendritic cells were highly abundant in PI and ageing. 7 key age-related PI genes including ALOX5AP, EAF2, FAM46C, GZMK, MAPT, RGS1, and SOSTDC1 were identified using LASSO with high predictive values and found to be enriched in multiple neurodegeneration-associated pathways, MAPK signalling, and Fc epsilon RI signalling. MAPT and ALOX5AP were associated with multiple drugs and transcription factors and interacted with other age-related genes to regulate multiple biological pathways. Conclusion A suite of bioinformatics analysis identified a 7-signature gene set highly relevant to cooccurrence of ageing and peri-implantitis and highlighted the role of neurodegeneration, autoimmune, and inflammation related pathways. MAPT and ALOX5AP were identified as key candidate target genes for clinical translation.
Collapse
Affiliation(s)
- Zhaojun Tian
- College of Dentistry, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street, No. 2с4, Moscow 119435, Russia
| |
Collapse
|
7
|
Sierra-Cruz M, Miguéns-Gómez A, Grau-Bové C, Rodríguez-Gallego E, Blay M, Pinent M, Ardévol A, Terra X, Beltrán-Debón R. Grape-Seed Proanthocyanidin Extract Reverts Obesity-Related Metabolic Derangements in Aged Female Rats. Nutrients 2021; 13:nu13062059. [PMID: 34208508 PMCID: PMC8234113 DOI: 10.3390/nu13062059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity and ageing are current issues of global concern. Adaptive homeostasis is compromised in the elderly, who are more likely to suffer age-related health issues, such as obesity, metabolic syndrome, and cardiovascular disease. The current worldwide prevalence of obesity and higher life expectancy call for new strategies for treating metabolic disorders. Grape-seed proanthocyanidin extract (GSPE) is reported to be effective in ameliorating these pathologies, especially in young animal models. In this study, we aimed to test the effectiveness of GSPE in modulating obesity-related pathologies in aged rats fed an obesogenic diet. To do so, 21-month-old rats were fed a high-fat/high-sucrose diet (cafeteria diet) for 11 weeks. Two time points for GSPE administration (500 mg/kg body weight), i.e., a 10-day preventive GSPE treatment prior to cafeteria diet intervention and a simultaneous GSPE treatment with the cafeteria diet, were assayed. Body weight, metabolic parameters, liver steatosis, and systemic inflammation were analysed. GSPE administered simultaneously with the cafeteria diet was effective in reducing body weight, total adiposity, and liver steatosis. However, the preventive treatment was effective in reducing only mesenteric adiposity in these obese, aged rats. Our results confirm that the simultaneous administration of GSPE improves metabolic disruptions caused by the cafeteria diet also in aged rats.
Collapse
|
8
|
Koh AS, Kovalik JP. Metabolomics and cardiovascular imaging: a combined approach for cardiovascular ageing. ESC Heart Fail 2021; 8:1738-1750. [PMID: 33783981 PMCID: PMC8120371 DOI: 10.1002/ehf2.13274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/14/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of this review is to explore how metabolomics can help uncover new biomarkers and mechanisms for cardiovascular ageing. Cardiovascular ageing refers to cardiovascular structural and functional alterations that occur with chronological ageing and that can lead to the development of cardiovascular disease. These alterations, which were previously only detectable on tissue histology or corroborated on blood samples, are now detectable with modern imaging techniques. Despite the emergence of powerful new imaging tools, clinical investigation into cardiovascular ageing is challenging because ageing is a life course phenomenon involving known and unknown risk factors that play out in a dynamic fashion. Metabolomic profiling measures large numbers of metabolites with diverse chemical properties. Metabolomics has the potential to capture changes in biochemistry brought about by pathophysiologic processes as well as by normal ageing. When combined with non-invasive cardiovascular imaging tools, metabolomics can be used to understand pathological consequences of cardiovascular ageing. This review will summarize previous metabolomics and imaging studies in cardiovascular ageing. These methods may be a clinically relevant and novel approach to identify mechanisms of cardiovascular ageing and formulate or personalize treatment strategies.
Collapse
Affiliation(s)
- Angela S Koh
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Duke-NUS Medical School, Singapore, Singapore.,Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
9
|
Orlandoni P, Jukic Peladic N, Amoruso A, Pane M, Di Rosa M, Vedruccio J, Santini F. Safety and Efficacy of Probiotic Supplementation in Reducing the Incidence of Infections and Modulating Inflammation in the Elderly with Feeding Tubes: A Pilot, Double-Blind, Placebo-Controlled Study, "IntegPRO". Nutrients 2021; 13:nu13020391. [PMID: 33513820 PMCID: PMC7911800 DOI: 10.3390/nu13020391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 01/05/2023] Open
Abstract
A double-blind, placebo-controlled study was performed in a sample of geriatric patients treated with home enteral nutrition (HEN) to analyze the efficacy of a probiotic supplement Proxian®, which contains Lactiplantibacillus plantarum LP01 (LMG P-21021), Lentilactobacillus buchneri Lb26 (DSM 16341), Bifidobacterium animalis subsp. lactis BS01 (LMG P-21384), and is enriched with zinc (Zn) and selenium (Se), in reducing the incidence of infections and modulating inflammation. Thirty-two subjects were enrolled (mean age 79.7 ± 10.3 years), 16 in the intervention group, 16 controls. They received Proxian® or placebo for 60 days. Patients were assessed at baseline (t0) and 60 (t1) and 90 (t2) days after the beginning. Infections were detected by information regarding their clinical manifestations and the incidence of antibiotic therapy. Levels of C-reactive protein (CRP) were measured to study inflammation. Information on bowel function, nutritional status and testimonials regarding the feasibility of administration of the product were collected. Differences between the two groups in number of infections (25% intervention group vs. 44% controls), antibiotic therapies (12% vs. 37%) and modulation of CRP levels (median CRP moved from 0.95 mg/L (t0), to 0.6 (t1) and 0.7 (t2) in intervention group vs. 0.7 mg/L, 0.5 and 0.7 in controls) did not reach statistical significance. No significant changes in bowel function and nutritional status were found. Caregivers’ adherence was 100%. Results of this “IntegPRO” study showed that Proxian® is potentially safe, easy to administer and promising for further studies but it appears not to change the incidence of infections or modulate inflammation in elderly treated with HEN. The utility of Proxian® in reducing the incidence of infections and modulating inflammation in these subjects needs to be investigated by a larger multi-center clinical trial, and by using additional analyses on inflammatory markers and markers of infections.
Collapse
Affiliation(s)
- Paolo Orlandoni
- Clinical Nutrition Unit, National Institute of Health and Science on Aging, IRCCS INRCA Ancona, Via della Montagnola 81, 60127 Ancona, Italy;
- Correspondence: ; Tel.: +39-071-8003653; Fax: +39-071-8003777
| | - Nikolina Jukic Peladic
- Clinical Nutrition Unit, National Institute of Health and Science on Aging, IRCCS INRCA Ancona, Via della Montagnola 81, 60127 Ancona, Italy;
| | - Angela Amoruso
- Probiotical Research Srl, Via E.Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Marco Pane
- Probiotical Research Srl, Via E.Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Mirko Di Rosa
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, National Institute of Health and Science on Aging, IRCCS INRCA Ancona, Via Santa Margherita 5, 60124 Ancona, Italy;
| | - Jennifer Vedruccio
- Residenza Conero Santo Stefano, SS 16 Via Flaminia 293 326/A, 60020 Ancona, Italy;
| | - Franco Santini
- Ex Medical Direction, Errekappa Euroterapici S.p.A., Via Ciro Menotti 1/A, 20129 Milan, Italy;
| |
Collapse
|
10
|
Kounis NG, Koniari I, Plotas P, Soufras GD, Tsigkas G, Davlouros P, Hahalis G. Inflammation, Thrombosis, and Platelet-to-Lymphocyte Ratio in Acute Coronary Syndromes. Angiology 2020; 72:6-8. [PMID: 32748627 DOI: 10.1177/0003319720946213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nicholas G Kounis
- Department of Cardiology, 37795University of Patras Medical School, Patras, Greece
| | - Ioanna Koniari
- Electrophysiology and Device Department, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Panagiotis Plotas
- Department of Cardiology, 37795University of Patras Medical School, Patras, Greece
| | - George D Soufras
- Department of Cardiology, "Saint Andrews" State General Hospital, Patras, Greece
| | - Grigorios Tsigkas
- Department of Cardiology, 37795University of Patras Medical School, Patras, Greece
| | - Periklis Davlouros
- Department of Cardiology, 37795University of Patras Medical School, Patras, Greece
| | - George Hahalis
- Department of Cardiology, 37795University of Patras Medical School, Patras, Greece
| |
Collapse
|
11
|
Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis 2019; 10:367-382. [PMID: 31011483 PMCID: PMC6457053 DOI: 10.14336/ad.2018.0324] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/24/2018] [Indexed: 12/13/2022] Open
Abstract
Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term "senoinflammation", that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.
Collapse
Affiliation(s)
- Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
- Pathological and Analytical Center, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Sangwoon Chung
- Department of Internal Medicine, Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea.
| | - Arnold Y. Seo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Jae Heun Chung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| | - Young Suk Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eunok Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Jaewon Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Nam Deuk Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea.
| | - Dong Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Yabuki A, Yoneshige S, Tanaka S, Tsujio M, Mitani S, Yamato O. Age-related histological changes in kidneys of Brown Norway rat. J Vet Med Sci 2013; 76:277-80. [PMID: 24107464 PMCID: PMC3982817 DOI: 10.1292/jvms.13-0431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, age-dependent histological changes in the kidneys of Brown Norway rat, a
strain useful for conducting aging research, were evaluated. Examination was performed at
3, 12, 18, 24 and 30 months of age. Sclerotic and hypertrophic changes of the glomeruli
were observed, and quantitative scores of these changes persistently increased with age. A
marginal increase in scores was observed for glomerular cystic changes and
tubulointerstitial damage. Further, urothelial hyperplasia was observed in the renal
papillae, particularly at 30 months of age. In conclusion, the findings of the present
study demonstrate that the Brown Norway strain exhibits persistent, but mild progression
of age-dependent renal histological changes.
Collapse
Affiliation(s)
- Akira Yabuki
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev 2013; 12:520-34. [PMID: 23220384 DOI: 10.1016/j.arr.2012.11.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 01/10/2023]
Abstract
Autophagy and apoptosis are crucial cellular housekeeping and tissue survival mechanisms. There is emerging evidence of important crosstalk between apoptosis and autophagy which can be linked to inflammasome activation. Beclin 1 is a platform protein which assembles an interactome consisting of diverse proteins which control the initiation of autophagocytosis and distinct phases in endocytosis. Recent studies have demonstrated that the anti-apoptotic Bcl-2 family members can interact with Beclin 1 and inhibit autophagy. Consequently, impaired autophagy can trigger inflammasome activation. Interestingly, the hallmarks of the ageing process include a decline in autophagy, increased resistance to apoptosis and a low-grade inflammatory phenotype. Age-related stresses, e.g. genotoxic, metabolic and environmental insults, enhance the expression of NF-κB-driven anti-apoptotic Bcl-2 proteins which repress the Beclin 1-dependent autophagy. Suppression of autophagocytosis provokes inflammation including NF-κB activation which further potentiates anti-apoptotic defence. In a context-dependent manner, this feedback defence mechanism can enhance the aging process or provoke tumorigenesis or cellular senescence. We will review the role of Beclin 1 interactome in the crosstalk between apoptosis, autophagy and inflammasomes emphasizing that disturbances in Beclin 1-dependent autophagy can have a crucial impact on the aging process.
Collapse
|
14
|
Gordon CJ, Jarema KA, Lehmann JR, Ledbetter AD, Schladweiler MC, Schmid JE, Ward WO, Kodavanti UP, Nyska A, MacPhail RC. Susceptibility of adult and senescent Brown Norway rats to repeated ozone exposure: an assessment of behavior, serum biochemistry and cardiopulmonary function. Inhal Toxicol 2013; 25:141-59. [DOI: 10.3109/08958378.2013.764946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|