1
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2025; 21:2-27. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
2
|
Malaguarnera R, Ledda C, Filippello A, Frasca F, Francavilla VC, Ramaci T, Parisi MC, Rapisarda V, Piro S. Thyroid Cancer and Circadian Clock Disruption. Cancers (Basel) 2020; 12:E3109. [PMID: 33114365 PMCID: PMC7690860 DOI: 10.3390/cancers12113109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) represents the most common malignancy of the endocrine system, with an increased incidence across continents attributable to both improvement of diagnostic procedures and environmental factors. Among the modifiable risk factors, insulin resistance might influence the development of TC. A relationship between circadian clock machinery disfunction and TC has recently been proposed. The circadian clock machinery comprises a set of rhythmically expressed genes responsible for circadian rhythms. Perturbation of this system contributes to the development of pathological states such as cancer. Several clock genes have been found deregulated upon thyroid nodule malignant transformation. The molecular mechanisms linking circadian clock disruption and TC are still unknown but could include insulin resistance. Circadian misalignment occurring during shift work, jet lag, high fat food intake, is associated with increased insulin resistance. This metabolic alteration, in turn, is associated with a well-known risk factor for TC i.e., hyperthyrotropinemia, which could also be induced by sleep disturbances. In this review, we describe the mechanisms controlling the circadian clock function and its involvement in the cell cycle, stemness and cancer. Moreover, we discuss the evidence supporting the link between circadian clockwork disruption and TC development/progression, highlighting its potential implications for TC prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- School of Human and Social Sciences, “Kore” University of Enna, 94100 Enna, Italy; (R.M.); (V.C.F.); (T.R.); (M.C.P.)
| | - Caterina Ledda
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, 95100 Catania, Italy;
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.P.)
| | - Francesco Frasca
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy;
| | - Vincenzo Cristian Francavilla
- School of Human and Social Sciences, “Kore” University of Enna, 94100 Enna, Italy; (R.M.); (V.C.F.); (T.R.); (M.C.P.)
| | - Tiziana Ramaci
- School of Human and Social Sciences, “Kore” University of Enna, 94100 Enna, Italy; (R.M.); (V.C.F.); (T.R.); (M.C.P.)
| | - Maria Chiara Parisi
- School of Human and Social Sciences, “Kore” University of Enna, 94100 Enna, Italy; (R.M.); (V.C.F.); (T.R.); (M.C.P.)
| | - Venerando Rapisarda
- Department of Clinical and Experimental Medicine, Occupational Medicine, University of Catania, 95100 Catania, Italy;
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.P.)
| |
Collapse
|
3
|
García-García A, Méndez-Ferrer S. The Autonomic Nervous System Pulls the Strings to Coordinate Circadian HSC Functions. Front Immunol 2020; 11:956. [PMID: 32508835 PMCID: PMC7251159 DOI: 10.3389/fimmu.2020.00956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022] Open
Abstract
As for many other adult stem cells, the behavior of hematopoietic stem and progenitor cells (HSPCs) is subjected to circadian regulatory patterns. Multiple HSPC functions, such as proliferation, differentiation or trafficking exhibit time-dependent patterns that require a tight coordination to ensure daily blood cell production. The autonomic nervous system, together with circulating hormones, relay circadian signals from the central clock-the suprachiasmatic nucleus in the brain-to synchronize HSC niche physiology according to light/darkness cycles. Research over the last 20 years has revealed how specific neural signals modulate certain aspects of circadian HSC biology. However, only recently some studies have started to decipher the cellular and molecular mechanisms that orchestrate this complex regulation in a time-dependent fashion. Here we firstly review some of the recent key findings illustrating how different neural signals (catecholaminergic or cholinergic) regulate circadian HSC egress, homing, maintenance, proliferation, and differentiation. In particular, we highlight the critical role of different neurotransmitter receptors in the bone marrow microenvironment to channel these neural signals and regulate antagonistic processes according to circadian cues and organismal demands. Then, we discuss the potential biological meaning of HSC circadian regulation and its possible utility for clinical purposes. Finally, we offer our perspective on emerging concepts in HSC chronobiology.
Collapse
Affiliation(s)
- Andrés García-García
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Parasram K, Karpowicz P. Time after time: circadian clock regulation of intestinal stem cells. Cell Mol Life Sci 2020; 77:1267-1288. [PMID: 31586240 PMCID: PMC11105114 DOI: 10.1007/s00018-019-03323-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Daily fluctuations in animal physiology, known as circadian rhythms, are orchestrated by a conserved molecular timekeeper, known as the circadian clock. The circadian clock forms a transcription-translation feedback loop that has emerged as a central biological regulator of many 24-h processes. Early studies of the intestine discovered that many digestive functions have a daily rhythm and that intestinal cell production was similarly time-dependent. As genetic methods in model organisms have become available, it has become apparent that the circadian clock regulates many basic cellular functions, including growth, proliferation, and differentiation, as well as cell signalling and stem cell self-renewal. Recent connections between circadian rhythms and immune system function, and between circadian rhythms and microbiome dynamics, have also been revealed in the intestine. These processes are highly relevant in understanding intestinal stem cell biology. Here we describe the circadian clock regulation of intestinal stem cells primarily in two model organisms: Drosophila melanogaster and mice. Like all cells in the body, intestinal stem cells are subject to circadian timing, and both cell-intrinsic and cell-extrinsic circadian processes contribute to their function.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Phillip Karpowicz
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
5
|
Golan K, Kollet O, Markus RP, Lapidot T. Daily light and darkness onset and circadian rhythms metabolically synchronize hematopoietic stem cell differentiation and maintenance: The role of bone marrow norepinephrine, tumor necrosis factor, and melatonin cycles. Exp Hematol 2019; 78:1-10. [PMID: 31494174 DOI: 10.1016/j.exphem.2019.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are essential for daily mature blood cell production, host immunity, and osteoclast-mediated bone turnover. The timing at which stem cells give rise to mature blood and immune cells while maintaining the bone marrow (BM) reservoir of undifferentiated HSPCs and how these opposite tasks are synchronized are poorly understood. Previous studies revealed that daily light onset activates norepinephrine (NE)-induced BM CXCL12 downregulation, followed by CXCR4+ HSPC release to the circulation. Recently, we reported that daily light onset induces transient elevations of BM NE and tumor necrosis factor (TNF), which metabolically program BM HSPC differentiation and recruitment to replenish the blood. In contrast, darkness onset induces lower elevations of BM NE and TNF, activating melatonin production, which metabolically reprograms HSPCs, increasing their short- and long-term repopulation potential, and BM maintenance. How the functions of BM-retained HSPCs are influenced by daily light and darkness cycles and their clinical potential are further discussed.
Collapse
Affiliation(s)
- Karin Golan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Kollet
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Stenzinger M, Karpova D, Unterrainer C, Harenkamp S, Wiercinska E, Hoerster K, Pfeffer M, Maronde E, Bonig H. Hematopoietic-Extrinsic Cues Dictate Circadian Redistribution of Mature and Immature Hematopoietic Cells in Blood and Spleen. Cells 2019; 8:E1033. [PMID: 31491915 PMCID: PMC6769956 DOI: 10.3390/cells8091033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
Circadian oscillations in circulating leukocyte subsets including immature hematopoietic cells have been appreciated; the origin and nature of these alterations remain elusive. Our analysis of wild-type C57BL/6 mice under constant darkness confirmed circadian fluctuations of circulating leukocytes and clonogenic cells in blood and spleen but not bone marrow. Clock gene deficient Bmal1-/- mice lacked this regulation. Cell cycle analyses in the different hematopoietic compartments excluded circadian changes in total cell numbers, rather favoring shifting hematopoietic cell redistribution as the underlying mechanism. Transplant chimeras demonstrate that circadian rhythms within the stroma mediate the oscillations independently of hematopoietic-intrinsic cues. We provide evidence of circadian CXCL12 regulation via clock genes in vitro and were able to confirm CXCL12 oscillation in bone marrow and blood in vivo. Our studies further implicate cortisol as the conveyor of circadian input to bone marrow stroma and mediator of the circadian leukocyte oscillation. In summary, we establish hematopoietic-extrinsic cues as causal for circadian redistribution of circulating mature/immature blood cells.
Collapse
Affiliation(s)
- Miriam Stenzinger
- Institute for Immunology, University Hospital Heidelberg and Institute for Clinical Transfusion Medicine and Cell Therapy, 69120 Heidelberg, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Darja Karpova
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christian Unterrainer
- Institute for Immunology, University Hospital Heidelberg and Institute for Clinical Transfusion Medicine and Cell Therapy, 69120 Heidelberg, Germany
| | - Sabine Harenkamp
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Eliza Wiercinska
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Keven Hoerster
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany
| | - Martina Pfeffer
- Institute for Anatomy II, Division of Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Erik Maronde
- Institute for Anatomy III, Goethe University, 60596 Frankfurt a. M., Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University and German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt a. M.; 60528 Frankfurt a. M., Germany.
| |
Collapse
|
7
|
Paatela E, Munson D, Kikyo N. Circadian Regulation in Tissue Regeneration. Int J Mol Sci 2019; 20:ijms20092263. [PMID: 31071906 PMCID: PMC6539890 DOI: 10.3390/ijms20092263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms regulate over 40% of protein-coding genes in at least one organ in the body through mechanisms tied to the central circadian clock and to cell-intrinsic auto-regulatory feedback loops. Distinct diurnal differences in regulation of regeneration have been found in several organs, including skin, intestinal, and hematopoietic systems. Each regenerating system contains a complex network of cell types with different circadian mechanisms contributing to regeneration. In this review, we elucidate circadian regeneration mechanisms in the three representative systems. We also suggest circadian regulation of global translational activity as an understudied global regulator of regenerative capacity. A more detailed understanding of the molecular mechanisms underlying circadian regulation of tissue regeneration would accelerate the development of new regenerative therapies.
Collapse
Affiliation(s)
- Ellen Paatela
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Dane Munson
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Rogers EH, Hunt JA, Pekovic-Vaughan V. Adult stem cell maintenance and tissue regeneration around the clock: do impaired stem cell clocks drive age-associated tissue degeneration? Biogerontology 2018; 19:497-517. [PMID: 30374678 PMCID: PMC6223734 DOI: 10.1007/s10522-018-9772-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Human adult stem cell research is a highly prolific area in modern tissue engineering as these cells have significant potential to provide future cellular therapies for the world's increasingly aged population. Cellular therapies require a smart biomaterial to deliver and localise the cell population; protecting and guiding the stem cells toward predetermined lineage-specific pathways. The cells, in turn, can provide protection to biomaterials and increase its longevity. The right combination of stem cells and biomaterials can significantly increase the therapeutic efficacy. Adult stem cells are utilised to target many changes that negatively impact tissue functions with age. Understanding the underlying mechanisms that lead to changes brought about by the ageing process is imperative as ageing leads to many detrimental effects on stem cell activation, maintenance and differentiation. The circadian clock is an evolutionarily conserved timing mechanism that coordinates physiology, metabolism and behavior with the 24 h solar day to provide temporal tissue homeostasis with the external environment. Circadian rhythms deteriorate with age at both the behavioural and molecular levels, leading to age-associated changes in downstream rhythmic tissue physiology in humans and rodent models. In this review, we highlight recent advances in our knowledge of the role of circadian clocks in adult stem cell maintenance, driven by both cell-autonomous and tissue-specific factors, and the mechanisms by which they co-opt various cellular signaling pathways to impose temporal control on stem cell function. Future research investigating pharmacological and lifestyle interventions by which circadian rhythms within adult stem niches can be manipulated will provide avenues for temporally guided cellular therapies and smart biomaterials to ameliorate age-related tissue deterioration and reduce the burden of chronic disease.
Collapse
Affiliation(s)
- Eve H Rogers
- Institute of Ageing and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - John A Hunt
- School of Science and Technology, Nottingham Trent University, Clifton Campus, College Drive, Nottingham, NG11 8NS, UK
| | - Vanja Pekovic-Vaughan
- Institute of Ageing and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
9
|
Marichal-Cancino BA, Fajardo-Valdez A, Ruiz-Contreras AE, Mendez-Díaz M, Prospero-García O. Advances in the Physiology of GPR55 in the Central Nervous System. Curr Neuropharmacol 2018; 15:771-778. [PMID: 27488130 PMCID: PMC5771053 DOI: 10.2174/1570159x14666160729155441] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/08/2016] [Accepted: 07/20/2016] [Indexed: 01/18/2023] Open
Abstract
Background: The G protein-coupled receptor 55 (GPR55) is a mammalian orphan receptor that awaits a formal classification. There are an increasing number of reports directed to know the physiology and pathophysiology of this receptor. Lamentably, its functions in the central nervous system (CNS) have been scarcely elucidated. Methods: A bibliographic search in PubMed database about GPR55 actions in the CNS was made. The information was grouped for brain structures to facilitate the interpretation. Finally, we constructed a schematic representation of the current knowledge about the potential participation of GPR55 in some physiological and pathophysiological events. Results: Seventy nine papers were included in the review. Only few of them showed data about GPR55 (mRNA/protein) expression in multiple brain areas. The rest showed findings in different preparations both in vitro and in vivo conditions that allowed us to speculate a potential activity of GPR55 in the different brain areas. Conclusion: GPR55 mRNA is expressed in several brain areas as the hippocampus, hypothalamus, frontal cortex and cerebellum; but due to the lack of information, only some speculative information about its function in these regions has been suggested. Therefore, this review provide relevant information to motivate further research about GPR55 physiology/pathophysiology in the CNS.
Collapse
Affiliation(s)
| | - Alfonso Fajardo-Valdez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico; Mexico City. Mexico
| | - Alejandra E Ruiz-Contreras
- Coordination of Psychobiology, School of Psychology, National Autonomous University of Mexico, Mexico City. Mexico
| | - Monica Mendez-Díaz
- Department of Physiology, Faculty of Medicine, UNAM, P.O. Box: 70-250, Mexico City. Mexico
| | - Oscar Prospero-García
- Department of Physiology, Faculty of Medicine, UNAM, P.O. Box: 70-250, Mexico City. Mexico
| |
Collapse
|
10
|
McQueen CM, Schmitt EE, Sarkar TR, Elswood J, Metz RP, Earnest D, Rijnkels M, Porter WW. PER2 regulation of mammary gland development. Development 2018; 145:dev.157966. [PMID: 29490985 PMCID: PMC5897596 DOI: 10.1242/dev.157966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/19/2018] [Indexed: 12/24/2022]
Abstract
The molecular clock plays key roles in daily physiological functions, development and cancer. Period 2 (PER2) is a repressive element, which inhibits transcription activated by positive clock elements, resulting in diurnal cycling of genes. However, there are gaps in our understanding of the role of the clock in normal development outside of its time-keeping function. Here, we show that PER2 has a noncircadian function that is crucial to mammalian mammary gland development. Virgin Per2-deficient mice, Per2-/- , have underdeveloped glands, containing fewer bifurcations and terminal ducts than glands of wild-type mice. Using a transplantation model, we show that these changes are intrinsic to the gland and further identify changes in cell fate commitment. Per2-/- mouse mammary glands have a dual luminal/basal phenotypic character in cells of the ductal epithelium. We identified colocalization of E-cadherin and keratin 14 in luminal cells. Similar results were demonstrated using MCF10A and shPER2 MCF10A human cell lines. Collectively this study reveals a crucial noncircadian function of PER2 in mammalian mammary gland development, validates the Per2-/- model, and describes a potential role for PER2 in breast cancer.
Collapse
Affiliation(s)
- Cole M McQueen
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Emily E Schmitt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tapasree R Sarkar
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jessica Elswood
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Richard P Metz
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - David Earnest
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Weston W Porter
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Sun Q, Zhao Y, Yang Y, Yang X, Li M, Xu X, Wen D, Wang J, Zhang J. Loss of the clock protein PER2 shortens the erythrocyte life span in mice. J Biol Chem 2017; 292:12679-12690. [PMID: 28607147 DOI: 10.1074/jbc.m117.783985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/04/2017] [Indexed: 11/06/2022] Open
Abstract
Cell proliferation and release from the bone marrow have been demonstrated to be controlled by circadian rhythms in both humans and mice. However, it is unclear whether local circadian clocks in the bone marrow influence physiological functions and life span of erythrocytes. Here, we report that loss of the clock gene Per2 significantly decreased erythrocyte life span. Mice deficient in Per2 were more susceptible to acute stresses in the erythrocytes, becoming severely anemic upon phenylhydrazine, osmotic, and H2O2 challenges. 1H NMR-based metabolomics analysis revealed that the Per2 depletion causes significant changes in metabolic profiles of erythrocytes, including increased lactate and decreased ATP levels compared with wild-type mice. The lower ATP levels were associated with hyperfunction of Na+/K+-ATPase activity in Per2-null erythrocytes, and inhibition of Na+/K+-ATPase activity by ouabain efficiently rescued ATP levels. Per2-null mice displayed increased levels of Na+/K+-ATPase α1 (ATP1A1) in the erythrocyte membrane, and transfection of Per2 cDNA into the erythroleukemic cell line TF-1 inhibited Atp1a1 expression. Furthermore, we observed that PER2 regulates Atp1a1 transcription through interacting with trans-acting transcription factor 1 (SP1). Our findings reveal that Per2 function in the bone marrow is required for the regulation of life span in circulating erythrocytes.
Collapse
Affiliation(s)
- Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Yue Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Xiao Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Minghui Li
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Dan Wen
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China.
| |
Collapse
|
12
|
Time related variations in stem cell harvesting of umbilical cord blood. Sci Rep 2016; 6:21404. [PMID: 26906327 PMCID: PMC4764902 DOI: 10.1038/srep21404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
Umbilical cord blood (UCB) contains hematopoietic stem cells and multipotent
mesenchymal cells useful for treatment in malignant/nonmalignant
hematologic-immunologic diseases and regenerative medicine. Transplantation outcome
is correlated with cord blood volume (CBV), number of total nucleated cells (TNC),
CD34+ progenitor cells and colony forming units in UCB donations. Several studies
have addressed the role of maternal/neonatal factors associated with the
hematopoietic reconstruction potential of UCB, including: gestational age, maternal
parity, newborn sex and birth weight, placental weight, labor duration and mode of
delivery. Few data exist regarding as to how time influences UCB collection and
banking patterns. We retrospectively analyzed 17.936 cord blood donations collected
from 1999 to 2011 from Tuscany and Apulia Cord Blood Banks. Results from generalized
multivariable linear mixed models showed that CBV, TNC and CD34+ cell were
associated with known obstetric and neonatal parameters and showed rhythmic patterns
in different time domains and frequency ranges. The present findings confirm that
volume, total nucleated cells and stem cells of the UCB donations are hallmarked by
rhythmic patterns in different time domains and frequency ranges and suggest that
temporal rhythms in addition to known obstetric and neonatal parameters influence
CBV, TNC and CD34+ cell content in UBC units.
Collapse
|
13
|
Virag JAI, Lust RM. Circadian influences on myocardial infarction. Front Physiol 2014; 5:422. [PMID: 25400588 PMCID: PMC4214187 DOI: 10.3389/fphys.2014.00422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/12/2014] [Indexed: 11/13/2022] Open
Abstract
Components of circadian rhythm maintenance, or "clock genes," are endogenous entrainable oscillations of about 24 h that regulate biological processes and are found in the suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are influenced by external cues, or Zeitgebers, such as light and heat, and can influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial cells. While it is known that the central master clock in the SCN synchronizes peripheral physiologic rhythms, the mechanisms by which the information is transmitted are complex and may include hormonal, metabolic, and neuronal inputs. Whether circadian patterns are causally related to the observed periodicity of events, or whether they are simply epi-phenomena is not well established, but a few studies suggest that the circadian effects likely are real in their impact on myocardial infarct incidence. Cycle disturbances may be harbingers of predisposition and subsequent response to acute and chronic cardiac injury, and identifying the complex interactions of circadian rhythms and myocardial infarction may provide insights into possible preventative and therapeutic strategies for susceptible populations.
Collapse
Affiliation(s)
- Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Robert M Lust
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
14
|
Day-night cycles and the sleep-promoting factor, Sleepless, affect stem cell activity in the Drosophila testis. Proc Natl Acad Sci U S A 2014; 111:3026-31. [PMID: 24516136 DOI: 10.1073/pnas.1316552111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult stem cells maintain tissue integrity and function by renewing cellular content of the organism through regulated mitotic divisions. Previous studies showed that stem cell activity is affected by local, systemic, and environmental cues. Here, we explore a role of environmental day-night cycles in modulating cell cycle progression in populations of adult stem cells. Using a classic stem cell system, the Drosophila spermatogonial stem cell niche, we reveal daily rhythms in division frequencies of germ-line and somatic stem cells that act cooperatively to produce male gametes. We also examine whether behavioral sleep-wake cycles, which are driven by the environmental day-night cycles, regulate stem cell function. We find that flies lacking the sleep-promoting factor Sleepless, which maintains normal sleep in Drosophila, have increased germ-line stem cell (GSC) division rates, and this effect is mediated, in part, through a GABAergic signaling pathway. We suggest that alterations in sleep can influence the daily dynamics of GSC divisions.
Collapse
|
15
|
Shiozawa Y, Taichman RS. Getting blood from bone: an emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche. Exp Hematol 2012; 40:685-94. [PMID: 22640993 PMCID: PMC3419274 DOI: 10.1016/j.exphem.2012.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/03/2012] [Accepted: 05/15/2012] [Indexed: 12/20/2022]
Abstract
Blood and bone are dynamic tissues that are continuously renewed throughout life. Early observations based upon the proximity of bone and hematopoietic progenitor populations in marrow suggested that interactions between skeletal and hematopoietic elements are likely to be crucial in the development and function of each system. As a result of these morphologic observations, several groups have demonstrated that the osteoblasts play an important role in hematopoiesis by serving as a specific local microenvironment, or niche, for hematopoietic stem cells. Significant new developments in this area of active investigation have emerged since our last examination of this area in 2005. Here we discuss these new insights into the function and morphology of the hematopoietic stem cell niche, with a particular focus on cells of the osteoblastic lineage.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.
| | | |
Collapse
|
16
|
Jolma IW, Laerum OD, Lillo C, Ruoff P. Circadian oscillators in eukaryotes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:533-549. [PMID: 20836046 DOI: 10.1002/wsbm.81] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The biological clock, present in nearly all eukaryotes, has evolved such that organisms can adapt to our planet's rotation in order to anticipate the coming day or night as well as unfavorable seasons. As all modern high-precision chronometers, the biological clock uses oscillation as a timekeeping element. In this review, we describe briefly the discovery, historical development, and general properties of circadian oscillators. The issue of temperature compensation (TC) is discussed, and our present understanding of the underlying genetic and biochemical mechanisms in circadian oscillators are described with special emphasis on Neurospora crassa, mammals, and plants.
Collapse
Affiliation(s)
- Ingunn W Jolma
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ole Didrik Laerum
- The Gade Institute, Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Cathrine Lillo
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Peter Ruoff
- Centre of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
17
|
Abstract
Many circadian rhythms are controlled by the central clock of the suprachiasmatic nucleus of the hypothalamus, as well as clocks located in other brain regions and most peripheral tissues. These central and peripheral clocks are based on clock genes and their protein products. In recent years, the expression of clock genes has started to be investigated in human samples, primarily white blood cells, but also skin, oral mucosa, colon cells, adipose tissue as well as post-mortem brain tissue. The expression of clock genes in those peripheral tissues offers a way to monitor human peripheral clocks and to compare their function and regulation with those of the central clock, which is followed by markers such as melatonin, cortisol and core body temperature. We have recently used such an approach to compare central and peripheral rhythms in subjects under different lighting conditions. In particular, we have monitored the entrainment of the clock of blood cells in subjects undergoing a simulated night shift protocol with bright light treatment, known to efficiently reset the central clock. This line of research will be helpful for learning more about the human circadian system and to find ways to alleviate health problems of shift workers, and other populations experiencing altered circadian rhythms.
Collapse
Affiliation(s)
- N Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | | |
Collapse
|
18
|
Gimble JM, Floyd ZE, Bunnell BA. The 4th dimension and adult stem cells: Can timing be everything? J Cell Biochem 2009; 107:569-78. [PMID: 19384905 DOI: 10.1002/jcb.22153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The rotation of the earth on its axis influences the physiology of all organisms. A highly conserved set of genes encoding the core circadian regulatory proteins (CCRP) has evolved across species. The CCRP acts through transcriptional and post-transcriptional mechanisms to direct the oscillatory expression of genes essential for key metabolic events. In addition to the light:dark cycle, the CCRP expression can be entrained by changes in feeding and physical activity patterns. While mammalian CCRP were originally associated with the central clock located within the suprachiasmatic nucleus of the brain, there is a growing body of evidence documenting the presence of the CCRP in peripheral tissues. It is now evident that the CCRP play a role in regulating the proliferation, differentiation, and function of adult stem cells in multiple organs. This concise review highlights findings concerning the role of the CCRP in modulating the adult stem cell activities. Although the manuscript focuses on hematopoietic stem cells (HSCs), bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived stem cells (ASCs) and cancer stem cells, it is likely that the contribution of the CCRP merits consideration and evaluation in all stem cell pathways.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Hematopoiesis is tightly regulated in the bone marrow through the microenvironment, soluble factors from the circulation, and neural inputs from the autonomic nervous system. Most physiological processes are not uniform but rather vary according to the time of day. There is increasing evidence showing the impact of biological rhythms on the traffic of hematopoietic stem cells (HSCs) and their proliferation and differentiation capacities. RECENT FINDINGS Recent evidence supports the role of the sympathetic nervous system in the regulation of HSC behavior, both directly and through supporting stromal cells. In addition, the sympathetic nervous system transduces circadian information from the central pacemaker in the brain, the suprachiasmatic nucleus, to the bone marrow microenvironment, directing circadian oscillations in hematopoiesis and HSC migration. SUMMARY HSC traffic and hematopoiesis do not escape the circadian regulation that controls most physiological processes. Clinically, the timing of stem cell harvest or infusion may impact the yield or engraftment, respectively, and may result in better therapeutic outcomes.
Collapse
|
20
|
Huang TS, Grodeland G, Sleire L, Wang MY, Kvalheim G, Laerum OD. Induction of circadian rhythm in cultured human mesenchymal stem cells by serum shock and cAMP analogs in vitro. Chronobiol Int 2009; 26:242-57. [PMID: 19212839 DOI: 10.1080/07420520902766025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Circadian clocks have been shown to operate developmentally in mouse and human hematopoietic stem and progenitor cells in vivo, but little is known about their possible oscillations in vitro. Here, we show that repeated circadian oscillations could be induced in both cultured bone marrow-derived mesenchymal- and adipose-derived stem cells (MSCs and ASCs, respectively) by serum shock. In particular, the novel finding of rhythmic clock gene expression induced by cAMP analogs showed similarities as well as differences to serum-induced oscillations. Rhythmic PER1 expression was found in serum-shocked MSCs, suggesting the phosphorylation status of PER1 is important for its activity in circadian rhythms. Furthermore, immunofluoresent staining showed that the localization of PER1 was dependent on the level of PER1 expression. These inducible self-sustained circadian clocks in primary cultures of human MSCs in vitro with rhythmic changes in expression levels, phosphorylation, and localization of clock protein, PER1, may be of importance for maintaining the induced oscillations in stem cells. Therefore, the established cell models described here appear to be valuable for studying the molecular mechanism driving and coordinating the circadian network between stem and stromal cells.
Collapse
Affiliation(s)
- Tien-Sheng Huang
- The Gade Institute, Section of Pathology; and Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Wu X, Yu G, Parks H, Hebert T, Goh BC, Dietrich MA, Pelled G, Izadpanah R, Gazit D, Bunnell BA, Gimble JM. Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone 2008; 42:861-70. [PMID: 18302991 PMCID: PMC2423188 DOI: 10.1016/j.bone.2007.12.226] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 12/21/2007] [Accepted: 12/28/2007] [Indexed: 01/22/2023]
Abstract
A core group of regulatory factors control circadian rhythms in mammalian cells. While the suprachiasmatic nucleus in the brain serves as the central core circadian oscillator, circadian clocks also exist within peripheral tissues and cells. A growing body of evidence has demonstrated that >20% of expressed mRNAs in bone and adipose tissues oscillate in a circadian manner. The current manuscript reports evidence of the core circadian transcriptional apparatus within primary cultures of murine and human bone marrow-derived mesenchymal stem cells (BMSCs). Exposure of confluent, quiescent BMSCs to dexamethasone synchronized the oscillating expression of the mRNAs encoding the albumin D binding protein (dbp), brain-muscle arnt-like 1 (bmal1), period 3 (per3), rev-erb alpha (Rev A), and rev-erb beta (Rev B). The genes displayed a mean oscillatory period of 22.2 to 24.3 h. The acrophase or peak expression of mRNAs encoding "positive" (bmal1) and "negative" (per3) components of the circadian regulatory apparatus were out of phase with each other by approximately 8-12 h, consistent with in vivo observations. In vivo, phosphyrylation by glycogen synthase kinase 3beta (GSK3beta) is known to regulate the turnover of per3 and components of the core circadian regulatory apparatus. In vitro addition of lithium chloride, a GSK3beta inhibitor, significantly shifted the acrophase of all genes by 4.2-4.7 h oscillation in BMSCs; however, only the male murine BMSCs displayed a significant increase in the length of the period of oscillation. We conclude that human and murine BMSCs represent a valid in vitro model for the analysis of circadian mechanisms in bone metabolism and stem cell biology.
Collapse
Affiliation(s)
- Xiying Wu
- Stem Cell Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Gang Yu
- Stem Cell Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Cell Biology Core Facility of the Clinical Nutrition Research Center, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Helen Parks
- Stem Cell Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Teddi Hebert
- Stem Cell Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Brian C. Goh
- Stem Cell Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Marilyn A. Dietrich
- Flow Cytometry Core, Department of Pathobiology, Louisiana State University-School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Gadi Pelled
- Skeletal Biotechnology Laboratory, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Reza Izadpanah
- International Stem Cell Institute - Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Gazit
- Skeletal Biotechnology Laboratory, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
- International Stem Cell Institute - Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Jeffrey M. Gimble
- Stem Cell Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Cell Biology Core Facility of the Clinical Nutrition Research Center, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
23
|
Tsinkalovsky O, Smaaland R, Rosenlund B, Sothern RB, Hirt A, Steine S, Badiee A, Abrahamsen JF, Eiken HG, Laerum OD. Circadian variations in clock gene expression of human bone marrow CD34+ cells. J Biol Rhythms 2007; 22:140-50. [PMID: 17440215 DOI: 10.1177/0748730406299078] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Time-dependent variations in clock gene expression have recently been observed in mouse hematopoietic cells, but the activity of these genes in human bone marrow (BM) has so far not been investigated. Since such data can be of considerable clinical interest for monitoring the dynamics in stem/progenitor cells, the authors have studied mRNA expression of the clock genes hPer1 , hPer2, hCry1, hCry2, hBmal1, hRev-erb alpha, and hClock in human hematopoietic CD34-positive (CD34( +)) cells. CD34(+) cells were isolated from the BM samples obtained from 10 healthy men at 6 times over 24 h. In addition, clock gene mRNA expression was analyzed in the whole BM in 3 subjects. Rhythms in serum cortisol, growth hormone, testosterone, and leukocyte counts documented that subjects exhibited standardized circadian patterns. All 7 clock genes were expressed both in CD34(+) cells and the whole BM, with some differences in magnitude between the 2 cell populations. A clear circadian rhythm was shown for hPer1, hPer2, and hCry2 expression in CD34(+) cells and for hPer1 in the whole BM, with maxima from early morning to midday. Similar to mouse hematopoietic cells, h Bmal1 was not oscillating rhythmically. The study demonstrates that clock gene expression in human BM stem/progenitor cells may be developmentally regulated, with strong or weaker circadian profiles as compared to those reported in other mature tissues.
Collapse
Affiliation(s)
- Oleg Tsinkalovsky
- Stem Cell Research Group, the Gade Institute, Department of Pathology, Haukeland University Hosptial, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tsinkalovsky O, Vik-Mo AO, Ferreira S, Laerum OD, Fjose A. Zebrafish kidney marrow contains ABCG2-dependent side population cells exhibiting hematopoietic stem cell properties. Differentiation 2006; 75:175-83. [PMID: 17288542 DOI: 10.1111/j.1432-0436.2006.00130.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Zebrafish (Danio rerio) has emerged as a powerful genetic model for the study of vertebrate hematopoiesis. However, methods for detection and isolation of hematopoietic stem cells (HSCs) have not yet been reported. In mammals, the combination of Hoechst 33342 staining with flow cytometry can be used for separation of a bone marrow side population (SP), which is highly enriched for HSCs. We applied a similar procedure to hematopoietic kidney marrow cells from adult zebrafish, and identified a segregated cohort of SP cells, which demonstrate a set of features typical of stem cells. SP cells show extremely low scatter characteristics, and are small in size with a minimum of cytoplasm. Treatment of zebrafish kidney marrow cells with reserpine or fumitremorgin C, which inhibit the ABCG2 transporter responsible for Hoechst 33342 efflux, caused a clear reduction in the number of SP cells. Consistent with the quiescent state of HSCs, the SP cells are strongly resistant to the myelosuppressive agent 5-fluorouracil. In addition, SP cells specifically demonstrate higher expression of genes known to be markers of HSCs of mammals. Hence, our results show that the SP phenotype is conserved between mammals and teleosts, and the properties of the zebrafish SP cells indicate a significant enrichment for HSCs. These rapid flow cytometric methods for purification of HSCs from zebrafish may greatly facilitate genetic analysis of stem cells using the advantages of this vertebrate model.
Collapse
Affiliation(s)
- Oleg Tsinkalovsky
- Stem Cell Research Group, The Gade Institute, Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | | | | | | |
Collapse
|
25
|
Sun Y, Yang Z, Niu Z, Peng J, Li Q, Xiong W, Langnas AN, Ma MY, Zhao Y. MOP3, a component of the molecular clock, regulates the development of B cells. Immunology 2006; 119:451-60. [PMID: 16925591 PMCID: PMC2265824 DOI: 10.1111/j.1365-2567.2006.02456.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/18/2006] [Accepted: 07/18/2006] [Indexed: 02/06/2023] Open
Abstract
Differentiation and proliferation of haematopoietic progenitor cells occur in intimate contact with the bone marrow microenvironment which is composed of stromal cells and extracellular matrix proteins. MOP3 (also known as brain and muscle Arnt-like protein-1, BMAL1), a master regulator of circadian rhythm, plays important roles in the regulation of cell differentiation and general physical functions. In the present studies, MOP3-deficient mice had significantly reduced levels of B cells in the peripheral blood, spleen and bone marrow compared MOP3(+/-) or MOP3(+/+) littermates. Flow cytometry analysis showed the levels of pre-B cells in bone marrow of MOP3(-/-) mice were similar as that in control mice. Adoptive transfer of MOP3(-/-) bone marrow cells (BMC) to lethally irradiated BALB/c Rag2(-/-) recipients, normal T and B cell development was observed, whereas Adoptive transfer of BALB/c BMC to lethally irradiated MOP3(-/-) recipients, B-cell development was significantly impaired. These results presented herein with MOP3-deficient mice reveal the involvement of MOP3 in the development of B cells, but not other immune cells. The effect of MOP3 on the differentiation of pre-B cells to mature B cells might be mediated by the bone marrow microenvironment. This study also showed a connection between a master regular of circadian rhythm with B-cell development in mice.
Collapse
Affiliation(s)
- Yimin Sun
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hadnagy A, Gaboury L, Beaulieu R, Balicki D. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006; 312:3701-10. [PMID: 17046749 DOI: 10.1016/j.yexcr.2006.08.030] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/27/2006] [Accepted: 08/31/2006] [Indexed: 02/07/2023]
Abstract
Side populations (SP), as defined by Hoechst exclusion in flow cytometry, have been described a few years ago. While they represent only a small fraction of the whole cell population, their properties confer an important place in several investigations. SP cells express high levels of various members of ABC transporters family, such as MDR1 and BCRP, which are responsible for drug resistance. Targeting SP could improve cancer therapy by blocking these transporters. In addition, SP appear to be enriched in stem cells, cells that play a pivotal role in normal development and cancer biology. Thus, they could provide a useful tool and a readily accessible source for stem cell studies in both the normal and cancerous settings. However, these cells are poorly defined and pose challenges in their identification and isolation, particularly since they are few in number. Thus, better characterization of SP will advance our understanding of stem cells and will provide us an accessible target for drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Annamaria Hadnagy
- Research Centre and Department of Medicine, Hôtel-Dieu du Centre hospitalier de l'Université de Montréal (CHUM), Canada
| | | | | | | |
Collapse
|
27
|
Tsinkalovsky O, Filipski E, Rosenlund B, Sothern RB, Eiken HG, Wu MW, Claustrat B, Bayer J, Lévi F, Laerum OD. Circadian expression of clock genes in purified hematopoietic stem cells is developmentally regulated in mouse bone marrow. Exp Hematol 2006; 34:1249-61. [PMID: 16939818 DOI: 10.1016/j.exphem.2006.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/11/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Clock genes are known to mediate circadian rhythms in the central nervous system and peripheral organs. Although they are expressed in mouse hematopoietic progenitor and stem cells, it is unknown if they are related to circadian rhythms in these cells. We therefore investigated the 24-hour patterns in the activity of several clock genes in the bone marrow (BM) side population (SP) primitive stem cells, and compared these 24-hour patterns to clock gene variations in the whole BM and liver. METHODS Cells were obtained from 84 B6D2F(1) mice in three replicate experiments on the second day after release into constant darkness from a standardizing light-dark schedule. mRNA expression of clock genes was measured with quantitative reverse transcriptase polymerase chain reaction. RESULTS mPer2 displayed circadian rhythms in SP cells, whole BM, and liver cells. mPer1 and mRev-erb alpha showed a circadian rhythm in whole BM and liver, but not SP cells. mBmal1 was not expressed rhythmically in SP cells, nor in the whole BM, contrary to rhythms observed in the liver. CONCLUSIONS With the exception of mPer2, most clock genes studied in primitive hematopoietic SP stem cells were not oscillating in a fully organized circadian manner, which is similar to immature cells in rapidly proliferating organs, such as the testis and thymus. These findings indicate that circadian clock gene expression variations in BM are developmentally regulated.
Collapse
Affiliation(s)
- Oleg Tsinkalovsky
- Stem Cell Research Group, The Gade Institute, Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Costea DE, Tsinkalovsky O, Vintermyr OK, Johannessen AC, Mackenzie IC. Cancer stem cells – new and potentially important targets for the therapy of oral squamous cell carcinoma. Oral Dis 2006; 12:443-54. [PMID: 16910914 DOI: 10.1111/j.1601-0825.2006.01264.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
There is increasing evidence that the growth and spread of cancers is driven by a small subpopulation of cancer stem cells (CSCs) - the only cells that are capable of long-term self-renewal and generation of the phenotypically diverse tumour cell population. Current failure of cancer therapies may be due to their lesser effect on potentially quiescent CSCs which remain vital and retain their full capacity to repopulate the tumour. Treatment strategies for the elimination of cancer therefore need to consider the consequences of the presence of CSCs. However, the development of new CSC-targeted strategies is currently hindered by the lack of reliable markers for the identification of CSCs and the poor understanding of their behaviour and fate determinants. Recent studies of cell lines derived from oral squamous cell carcinoma (OSCC) indicate the presence of subpopulations of cells with phenotypic and behavioural characteristics corresponding to both normal epithelial stem cells and to cells capable of initiating tumours in vivo. The present review discusses the relevance to OSCC of current CSC concepts, the state of various methods for CSC identification, characterization and isolation (clonal functional assay, cell sorting based on surface markers or uptake of Hoechst dye), and possible new approaches to therapy.
Collapse
Affiliation(s)
- D E Costea
- Bergen Oral Cancer Group, Department of Oral Sciences, Oral Pathology and Forensic Odontology, University of Bergen, Bergen, Norway.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Garrett RW, Gasiewicz TA. The aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin alters the circadian rhythms, quiescence, and expression of clock genes in murine hematopoietic stem and progenitor cells. Mol Pharmacol 2006; 69:2076-83. [PMID: 16556773 DOI: 10.1124/mol.105.021006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) agonist, has been identified as a potent immunohematopoietic toxicant with the ability to alter the number of Lin(-) Sca-1(+) cKit(+) (LSK) bone marrow cells, a population enriched for murine hematopoietic stem cells. The biology of these cells is governed by circadian rhythms and TCDD has been shown to disrupt circadian rhythms of other biological endpoints. We investigated the effect of TCDD on the circadian rhythms of hematopoietic precursors. Female C57BL/6 mice were treated with a single oral dose of 10 mug/kg TCDD. Five days later, bone marrow was harvested every 4 h for 24 h and stained for specific hematopoietic populations using fluorescently labeled antibodies. In addition, cells were placed into semisolid culture to measure different functionally defined populations. Activation of the AhR by TCDD elicited disruptions in the rhythms of LSK cell numbers and phenotypically defined myeloid and erythroid precursors. Simultaneous DNA and RNA staining revealed an abnormal in vivo rhythm of percentage of total number of LSK cells in G(0) phase of the cell cycle, suggesting disruption of stem cell quiescence. Finally, quantitative reverse transcription-polymerase chain reaction revealed that expression of AhR and Arnt mRNA within enriched hematopoietic precursors oscillates with a circadian period. Modest changes in the 24-h expression of mPer1 and mPer2 mRNA and increased AhR repressor mRNA after TCDD exposure suggest a direct effect on the molecular machinery responsible for these rhythms. Together, these data demonstrate that activation of the AhR by TCDD disrupts the circadian rhythms associated with murine hematopoietic precursors.
Collapse
Affiliation(s)
- Russell W Garrett
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box EHSC, Rochester, NY 14642, USA
| | | |
Collapse
|