1
|
Vakilzadeh H, Varshosaz J, Dinari M, Mirian M, Soghrati S. Co-delivery of Interferon Regulatory Factor 5 (IRF5) siRNA and dasatinib by a disulfide bond bearing polymeric carrier for enhanced anti-inflammatory effects. Int J Biol Macromol 2024; 282:137094. [PMID: 39486736 DOI: 10.1016/j.ijbiomac.2024.137094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Co-delivery of chemical drugs and nucleic acids has attracted a great interest recently for treatment of inflammatory diseases. Dasatinib (DB), a tyrosine kinase inhibitor with anti-cancer effects, and Interferon Regulatory Factor 5 (IRF5) siRNA have shown anti-inflammatory effects. In the present study, a novel redox-responsive polymeric micelle was designed for co-delivery of DB and IRF5 siRNA-expressing plasmid (psiRF5) to enhance anti-inflammatory effects on macrophages. psiRF5 was condensed efficiently to redox-responsive micelles of DB-conjugated chitosan (CN) composed of disulfide bond, from different molecular weights of CN to form CN-SS-DB/psiRF5 micelles. The micelles with optimum N/P ratios had particle sizes of 287.8 and 245.4 nm and positive zeta potentials. The disulfide bond bearing micelles showed a redox-responsive drug release, protected the plasmid from being dissociated or degraded in exposure with heparin, serum and DNase I, and significantly enhanced the transfection efficiency and IRF5-gene silencing compared to naked psiRF5. The optimum micelles exhibited a dramatic reduction in IRF5 expression and revealed a notably higher anti-inflammatory effect than either DB or psiRF5, as indicated by more IL-10 and less IL-6 and TNF-α production by LPS-stimulated RAW264.7 macrophages incubated with the co-delivery system. The resultant nanocarriers might be promising for more effective treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hamed Vakilzadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sahel Soghrati
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Feng S, Cai K, Lin S, Chen X, Luo Y, Wang J, Lian G, Lin Z, Xie L. Exploring potential therapeutic agents for lipopolysaccharide-induced septic cardiomyopathy based on transcriptomics using bioinformatics. Sci Rep 2023; 13:20589. [PMID: 37996554 PMCID: PMC10667505 DOI: 10.1038/s41598-023-47699-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Septic cardiomyopathy (SCM) is a common and severe complication of sepsis, characterized by left ventricular dilation and reduced ejection fraction leading to heart failure. The pathogenesis of SCM remains unclear. Understanding the SCM pathogenesis is essential in the search for effective therapeutic agents for SCM. This study was to investigate the pathophysiology of SCM and explore new therapeutic drugs by bioinformatics. An SCM rat model was established by injection of 10 mg/kg lipopolysaccharide (LPS) for 24 h, and the myocardial tissues were collected for RNA sequencing. The differentially expressed genes (DEGs) between LPS rats and control (Ctrl) with the thresholds of |log2fold change|≥ 1 and P < 0.05. A protein-protein interaction (PPI) network was constructed based on the DEGs. The hub genes were identified using five algorithms of Cytoscape in the PPI networks and validated in the GSE185754 dataset and by RT-qPCR. The hub genes were analyzed by Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG), as well as Gene set enrichment analyses (GSEA). In addition, the miRNAs of hub genes were predicted through miRWalk, and the candidate therapeutic drugs were identified using the Connectivity Map (CMAP) database. This study revealed the identified hub genes (Itgb1, Il1b, Rac2, Vegfa) and key miRNAs (rno-miR-541-5p, rno-miR-487b-3p, rno-miR-1224, rno-miR-378a-5p, rno-miR-6334, and rno-miR-466b-5p), which were potential biological targets and biomarkers of SCM. Anomalies in cytokine-cytokine receptor interactions, complement and coagulation cascades, chemokine signaling pathways, and MAPK signaling pathways also played vital roles in SCM pathogenesis. Two high-confidence candidate compounds (KU-0063794 and dasatinib) were identified from the CMAP database as new therapeutic drugs for SCM. In summary, these four identified hub genes and enrichment pathways may hold promise for diagnosing and treating SCM.
Collapse
Affiliation(s)
- Shaodan Feng
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
| | - Kexin Cai
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
| | - Siming Lin
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
| | - Xiaojun Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, 350212, China
| | - Yuqing Luo
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
| | - Jing Wang
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
| | - Zhihong Lin
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
| | - Liangdi Xie
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, 350212, China.
| |
Collapse
|
3
|
Dasatinib attenuates airway inflammation of asthma exacerbation in mice induced by house dust mites and dsRNA. Biochem Biophys Rep 2023; 33:101402. [DOI: 10.1016/j.bbrep.2022.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
|
4
|
Vakilzadeh H, Varshosaz J, Dinari M, Mirian M, Hajhashemi V, Shamaeizadeh N, Sadeghi HMM. Smart redox-sensitive micelles based on chitosan for dasatinib delivery in suppressing inflammatory diseases. Int J Biol Macromol 2023; 229:696-712. [PMID: 36529222 DOI: 10.1016/j.ijbiomac.2022.12.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Dasatinib (DAS) exhibits anti-inflammatory effects by retrieving the balance between inflammatory and anti-inflammatory cytokines secreted by macrophages. The aim of this study was the development of redox-responsive micelles with the potential of passive targeting and on-demand drug release for DAS delivery to macrophages. For this purpose, two molecular weights of chitosan (CHIT) were conjugated to DAS at different molar ratios using 3,3'-dithiodipropionic anhydride (DTDPA) as disulfide bond containing linker to synthesize a series of CHIT-S-S-DAS amphiphilic conjugates. Micelles obtained by the sonication method had particle sizes of 129.3-172.2 nm, zeta potentials of +17.5 to +20.9 mV, drug contents of 0.90-7.20 %, CMC values of 35.3-96.6 μg/ml, and exhibited redox-responsive in vitro drug release. Optimized micelles were non-toxic and dramatically more efficient than non-redox responsive micelles in reducing TNF-α and IL-6 and increasing IL-10 secretion from LPS-stimulated RAW264.7 cells. Furthermore, the redox-responsive micelles were able to reduce the mice paw edema, reduce the plasma levels of pro-inflammatory cytokines and increase plasma level of IL-10, considerably more than free DAS and non-redox responsive micelles in carrageenan-induced mice paw edema model of inflammation.
Collapse
Affiliation(s)
- Hamed Vakilzadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Valiollah Hajhashemi
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahal Shamaeizadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mir-Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Nishimoto Y, Kimura G, Ito K, Kizawa Y. [Anti-inflammatory Effects of a Src Inhibitor on the Murine Model of Asthma Exacerbation Induced by Ovalbumin and Lipopolysaccharide]. YAKUGAKU ZASSHI 2023; 143:191-197. [PMID: 36724932 DOI: 10.1248/yakushi.22-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Asthma is often exacerbated by airway infection, and some patients with severe asthma may be unresponsive to conventional corticosteroid treatment. Src family kinases (SFKs) were recently implicated in the inflammatory responses of mice induced by allergen and bacterial toxin lipopolysaccharide (LPS). Therefore, we examined the effects of dasatinib (DAS), a Src inhibitor, on airway inflammation in mice induced by ovalbumin (OVA) and LPS. Male A/J mice were sensitized to OVA Day -14 and -7, challenged with intranasal OVA on Day 0, 2, 4, 6 and 8, and on Day 10, mice were also challenged with OVA via inhalation. Mice were treated intranasally with DAS or fluticasone propionate (FP), a glucocorticoid, twice daily for 3 d starting 1 d after OVA inhalation. Moreover, some mice were also administrated LPS 2 h after DAS or FP treatment to model of asthma exacerbation. One day after the last intervention, lung tissue and bronchoalveolar lavage fluid (BALF) were collected. DAS attenuated the accumulation of inflammatory cells and cytokines/chemokines in BALF induced by both OVA and OVA+LPS, while FP did not reduce accumulations induced by OVA+LPS. Therefore, targeting SFKs may be a superior therapeutic approach for asthma exacerbation by infection.
Collapse
Affiliation(s)
- Yuki Nishimoto
- Laboratory of Physiology and Anatomy, School of pharmacy, Nihon University
| | - Genki Kimura
- Laboratory of Physiology and Anatomy, School of pharmacy, Nihon University
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London
| | - Yasuo Kizawa
- Laboratory of Physiology and Anatomy, School of pharmacy, Nihon University
| |
Collapse
|
6
|
Liu Z, Chen S, Zhang X, Liu F, Yang K, Du G, Rui X. Dasatinib protects against acute respiratory distress syndrome via Nrf2-regulated M2 macrophages polarization. Drug Dev Res 2021; 82:1247-1257. [PMID: 34105172 DOI: 10.1002/ddr.21839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023]
Abstract
Dasatinib, a tyrosine kinase inhibitor, has a protective effect on experimental acute respiratory distress syndrome (ARDS). This study investigated the effect and mechanism of dasatinib in ARDS. C57BL/6 mice were administered with dasatinib (1 and 10 mg/kg) after lipopolysaccharide (LPS) treatment to evaluate the effect of dasatinib on white blood cells (WBC), neutrophils, lymphocytes and macrophages in bronchoalveolar lavage fluid (BALF). The levels and mRNA expressions of inflammation-related cytokines in lung tissues and RAW 264.7 cells were detected by enzyme-linked immunosorbent assay and quantitative real-time PCR, respectively. The protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO1) were determined by Western blot. MTT assay was performed to detect the viability of RAW 264.7 cell. Rescue experiments were used to assess the effect of Nrf2 silencing on the LPS- and dasatinib-treated mice. Under LPS treatment, levels of the WBC, neutrophils, lymphocytes and macrophages in BALF and mRNA expressions of IL-6, TNF-α and IL-10 as well as expression of iNOS were increased, but the expression of arginase-1 was inhibited, while no obvious changes of the protein expressions of Nrf2 and HO1 were observed. Dasatinib partially reversed the effects of LPS above, and further promoted the mRNA expression of IL-10 and the protein expressions of Nrf2 and HO1, while Nrf2 silencing counteracted the effect of dasatinib. Dasatinib induced the polarization of M2 subtype of macrophages and alleviated LPS-induced ARDS through activating Nrf2 signaling pathway, which may provide a new strategy for the treatment of ARDS.
Collapse
Affiliation(s)
- Zishuang Liu
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Shanshan Chen
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Xinfeng Zhang
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Fangfang Liu
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Kai Yang
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Ge Du
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Xi Rui
- Intensive Care Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Reverte M, Eren RO, Jha B, Desponds C, Snäkä T, Prevel F, Isorce N, Lye LF, Owens KL, Gazos Lopes U, Beverley SM, Fasel N. The antioxidant response favors Leishmania parasites survival, limits inflammation and reprograms the host cell metabolism. PLoS Pathog 2021; 17:e1009422. [PMID: 33765083 PMCID: PMC7993605 DOI: 10.1371/journal.ppat.1009422] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
The oxidative burst generated by the host immune system can restrict intracellular parasite entry and growth. While this burst leads to the induction of antioxidative enzymes, the molecular mechanisms and the consequences of this counter-response on the life of intracellular human parasites are largely unknown. The transcription factor NF-E2-related factor (NRF2) could be a key mediator of antioxidant signaling during infection due to the entry of parasites. Here, we showed that NRF2 was strongly upregulated in infection with the human Leishmania protozoan parasites, its activation was dependent on a NADPH oxidase 2 (NOX2) and SRC family of protein tyrosine kinases (SFKs) signaling pathway and it reprogrammed host cell metabolism. In inflammatory leishmaniasis caused by a viral endosymbiont inducing TNF-α in chronic leishmaniasis, NRF2 activation promoted parasite persistence but limited TNF-α production and tissue destruction. These data provided evidence of the dual role of NRF2 in protecting both the invading pathogen from reactive oxygen species and the host from an excess of the TNF-α destructive pro-inflammatory cytokine.
Collapse
Affiliation(s)
- Marta Reverte
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Remzi Onur Eren
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Baijayanti Jha
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prevel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Isorce
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Lon-Fye Lye
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, Missouri, United States of America
| | - Katherine L. Owens
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, Missouri, United States of America
| | - Ulisses Gazos Lopes
- Carlos Chagas Filho Biophysics Institute, Center of Health Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephen M. Beverley
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, Missouri, United States of America
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
8
|
Inoue H, Taji H, Yamada K, Iriyama C, Saito T, Kato H, Yanada M, Yamamoto K, Matsukawa N. Dasatinib-induced Reversible Demyelinating Peripheral Neuropathy and Successful Conversion to Nilotinib in Chronic Myelogenous Leukemia. Intern Med 2020; 59:2419-2421. [PMID: 32611965 PMCID: PMC7644482 DOI: 10.2169/internalmedicine.4824-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 11/10/2022] Open
Abstract
Dasatinib, a tyrosine kinase inhibitor, is commonly used in the treatment of chronic myelogenous leukemia. A rare side effect is peripheral neuropathy. A 54-year-old woman experienced gradually accelerated dysesthesia and hypoesthesia in her extremities, 2 months following treatment with dasatinib. Nerve conduction studies revealed a prolonged conduction velocity with temporal dispersion, indicating demyelinating peripheral neuropathy. After changing dasatinib to nilotinib, both her clinical symptoms and electrophysiological data gradually improved. We herein report the findings of this case with a review of the pertinent literature.
Collapse
Affiliation(s)
- Hiroyasu Inoue
- Department of Neurology, Nagoya City East Medical Center, Japan
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Hirofumi Taji
- Department of Hematology and Cell Therapy, Aichi Cancer Center Hospital, Japan
| | - Kentaro Yamada
- Department of Neurology, Nagoya City East Medical Center, Japan
| | - Chisako Iriyama
- Department of Hematology and Cell Therapy, Aichi Cancer Center Hospital, Japan
- Department of Hematology and Oncology, Fujita Health University, Japan
| | - Touko Saito
- Department of Hematology and Cell Therapy, Aichi Cancer Center Hospital, Japan
| | - Harumi Kato
- Department of Hematology and Cell Therapy, Aichi Cancer Center Hospital, Japan
| | - Masamitsu Yanada
- Department of Hematology and Cell Therapy, Aichi Cancer Center Hospital, Japan
| | - Kazuhito Yamamoto
- Department of Hematology and Cell Therapy, Aichi Cancer Center Hospital, Japan
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
9
|
Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, Wang J, Meng C, Buhrlage SJ, Gray N, Griffin JD. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res 2020; 37:167. [PMID: 32778962 PMCID: PMC7417114 DOI: 10.1007/s11095-020-02851-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an intense search for treatments by the scientific community. In the absence of a vaccine, the goal is to target the viral life cycle and alleviate the lung-damaging symptoms of infection, which can be life-threatening. There are numerous protein kinases associated with these processes that can be inhibited by FDA-approved drugs, the repurposing of which presents an alluring option as they have been thoroughly vetted for safety and are more readily available for treatment of patients and testing in clinical trials. Here, we characterize more than 30 approved kinase inhibitors in terms of their antiviral potential, due to their measured potency against key kinases required for viral entry, metabolism, or reproduction. We also highlight inhibitors with potential to reverse pulmonary insufficiency because of their anti-inflammatory activity, cytokine suppression, or antifibrotic activity. Certain agents are projected to be dual-purpose drugs in terms of antiviral activity and alleviation of disease symptoms, however drug combination is also an option for inhibitors with optimal pharmacokinetic properties that allow safe and efficacious co-administration with other drugs, such as antiviral agents, IL-6 blocking agents, or other kinase inhibitors.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Alexander Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Priscilla L Yang
- Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingwang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Ryu KY, Lee HJ, Woo H, Kang RJ, Han KM, Park H, Lee SM, Lee JY, Jeong YJ, Nam HW, Nam Y, Hoe HS. Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling. J Neuroinflammation 2019; 16:190. [PMID: 31655606 PMCID: PMC6815018 DOI: 10.1186/s12974-019-1561-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Background The FDA-approved small-molecule drug dasatinib is currently used as a treatment for chronic myeloid leukemia (CML). However, the effects of dasatinib on microglial and/or astrocytic neuroinflammatory responses and its mechanism of action have not been studied in detail. Methods BV2 microglial cells, primary astrocytes, or primary microglial cells were treated with dasatinib (100 or 250 nM) or vehicle (1% DMSO) for 30 min or 2 h followed by lipopolysaccharide (LPS; 200 ng/ml or 1 μg/ml) or PBS for 5.5 h. RT-PCR, real-time PCR; immunocytochemistry; subcellular fractionation; and immunohistochemistry were subsequently conducted to determine the effects of dasatinib on LPS-induced neuroinflammation. In addition, wild-type mice were injected with dasatinib (20 mg/kg, intraperitoneally (i.p.) daily for 4 days or 20 mg/kg, orally administered (p.o.) daily for 4 days or 2 weeks) or vehicle (4% DMSO + 30% polyethylene glycol (PEG) + 5% Tween 80), followed by injection with LPS (10 mg/kg, i.p.) or PBS. Then, immunohistochemistry was performed, and plasma IL-6, IL-1β, and TNF-α levels were analyzed by ELISA. Results Dasatinib regulates LPS-induced proinflammatory cytokine and anti-inflammatory cytokine levels in BV2 microglial cells, primary microglial cells, and primary astrocytes. In BV2 microglial cells, dasatinib regulates LPS-induced proinflammatory cytokine levels by regulating TLR4/AKT and/or TLR4/ERK signaling. In addition, intraperitoneal injection and oral administration of dasatinib suppress LPS-induced microglial/astrocyte activation, proinflammatory cytokine levels (including brain and plasma levels), and neutrophil rolling in the brains of wild-type mice. Conclusions Our results suggest that dasatinib modulates LPS-induced microglial and astrocytic activation, proinflammatory cytokine levels, and neutrophil rolling in the brain. Electronic supplementary material The online version of this article (10.1186/s12974-019-1561-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ka-Young Ryu
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Hanwoong Woo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Ri-Jin Kang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Kyung-Min Han
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, South Korea
| | - HyunHee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Sang Min Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Ju-Young Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Hyun-Wook Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Youngpyo Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea. .,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, South Korea.
| |
Collapse
|
11
|
Nishimoto Y, Yasuda H, Masuko K, Usui Y, Ueda K, Kimura G, Ito K, Kizawa Y. [The Involvement of Src in Airway Inflammation Induced by Repeated Exposure to Lipopolysaccharide in Mice]. YAKUGAKU ZASSHI 2019; 139:1211-1217. [PMID: 31189750 DOI: 10.1248/yakushi.19-00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corticosteroid insensitive airway inflammation is one of major barrier to effective managements of chronic airway diseases, such as chronic obstructive pulmonary disease (COPD) and severe asthma. The role of nonreceptor tyrosine kinase Src is important in airway inflammation in mice models of atopic asthma and COPD. Thus, in this study, we determined the effects of Src inhibitor, dasatinib, on airway inflammation induced by repeated intranasal exposure to lipopolysaccharide (LPS). Male mice (A/J strain, 5 weeks old) were intranasally exposed to LPS twice daily for 3 d, and dasatinib was intranasally treated 2 h prior to each LPS exposure. A day after the last stimulation, lungs and bronchoalveolar lavage fluid (BALF) were collected. Dasatinib attenuated the accumulation of inflammatory cells in lungs, and the increase in the numbers of inflammatory cells and the accumulation of cytokines/chemokines in BALF in a dose dependent manner. Therefore, this study suggested that targeting the Src can provide a new therapeutic approach for corticosteroid insensitive pulmonary diseases.
Collapse
Affiliation(s)
- Yuki Nishimoto
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Hironobu Yasuda
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Keita Masuko
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Yoshito Usui
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Keitaro Ueda
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Genki Kimura
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College London
| | - Yasuo Kizawa
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| |
Collapse
|
12
|
Guo K, Bu X, Yang C, Cao X, Bian H, Zhu Q, Zhu J, Zhang D. Treatment Effects of the Second-Generation Tyrosine Kinase Inhibitor Dasatinib on Autoimmune Arthritis. Front Immunol 2019; 9:3133. [PMID: 30687331 PMCID: PMC6335562 DOI: 10.3389/fimmu.2018.03133] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease that primarily manifests as persistent synovitis and progressive joint destruction. Imatinib exhibited a therapeutic effect in murine collagen-induced arthritis (CIA) via selective inhibition tyrosine kinases. The second-generation tyrosine kinase inhibitor dasatinib exhibits more durable hematological and cytogenetic effects and more potency compared to imatinib. However, the effect of dasatinib on CIA is poorly understood. The present study investigated the treatment effect of dasatinib on autoimmune arthritis. We demonstrated that dasatinib alleviated arthritis symptoms and histopathological destruction in CIA mice. Dasatinib treatment inhibited the production of proinflammatory cytokines including IL-1β, TNF-α, and IL-6, and promoted the production of the anti-inflammatory cytokine IL-10. Dasatinib treatment also suppressed the expression of anti-mouse CII antibodies including total IgG, IgG1, IgG2, and IgG2b, in CIA mice. We further demonstrated that dasatinib inhibited the migration and proliferation of fibroblast-like synoviocytes (FLS) from RA patients and promoted FLS apoptosis. The mRNA expression of MMP13, VEGF, FGF, and DKK1 was down-regulated in FLS treated with dasatinib. Our findings suggest that dasatinib exhibited treatment effects on CIA mice and that FLS are an important target cell of dasatinib treatment in autoimmune arthritis.
Collapse
Affiliation(s)
- Kai Guo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xin Bu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Chongfei Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaorui Cao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huan Bian
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Qingsheng Zhu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinyu Zhu
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Dawei Zhang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Phospholipid transfer protein and alpha-1 antitrypsin regulate Hck kinase activity during neutrophil degranulation. Sci Rep 2018; 8:15394. [PMID: 30337619 PMCID: PMC6193999 DOI: 10.1038/s41598-018-33851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/07/2018] [Indexed: 01/21/2023] Open
Abstract
Excessive neutrophil degranulation is a common feature of many inflammatory disorders, including alpha-1 antitrypsin (AAT) deficiency. Our group has demonstrated that phospholipid transfer protein (PLTP) prevents neutrophil degranulation but serine proteases, which AAT inhibits, cleave PLTP in diseased airways. We propose to identify if airway PLTP activity can be restored by AAT augmentation therapy and how PLTP subdues degranulation of neutrophils in AAT deficient subjects. Airway PLTP activity was lower in AAT deficient patients but elevated in the airways of patients on augmentation therapy. Functional AAT protein (from PiMM homozygotes) prevented PLTP cleavage unlike its mutated ZZ variant (PiZZ). PLTP lowered leukotriene B4 induced degranulation of primary, secondary and tertiary granules from neutrophils from both groups (n = 14/group). Neutrophils isolated from Pltp knockout mice have enhance neutrophil degranulation. Both AAT and PLTP reduced neutrophil degranulation and superoxide production, possibly though their inhibition of the Src tyrosine kinase, Hck. Src kinase inhibitors saracatinib and dasatinib reduced neutrophil degranulation and superoxide production. Therefore, AAT protects PLTP from proteolytic cleavage and both AAT and PLTP mediate degranulation, possibly via Hck tyrosine kinase inhibition. Deficiency of AAT could contribute to reduced lung PLTP activity and elevated neutrophil signaling associated with lung disease.
Collapse
|
14
|
Kostenko S, Heu CC, Yaron JR, Singh G, de Oliveira C, Muller WJ, Singh VP. c-Src regulates cargo transit via the Golgi in pancreatic acinar cells. Sci Rep 2018; 8:11903. [PMID: 30093675 PMCID: PMC6085363 DOI: 10.1038/s41598-018-30370-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
The exocrine pancreatic acinar cell is unique for its rapid protein synthesis and packaging in zymogen granules (ZGs). However, while crucial to the pathogenesis of pancreatitis, the signaling involved in the transit of proteins via the Golgi is poorly understood in these cells. Noting the evidence of c-Src in regulating transit of cargo via the Golgi in other systems, we explored this in acinar cells. Stimulation of ZG formation with dexamethasone activated Src and increased the Golgi area in acinar cells. c-Src localized to the microsomes of acinar cells on immunofluorescence and subcellular fractionation. While other Src family members had no effect on the Golgi markers P115 and GM130, active c-Src increased the Golgi area these stained, extending them into the ER. Src inhibition reduced amylase staining outside the Golgi and increased it in a stack like Golgi morphology. In vivo pharmacologic inhibition or acinar specific genetic deletion of c-Src reduced ZG number and staining of amylase in ZGs along with increasing amylase retention in the microsomal fraction. Morphologically this was associated with smaller Golgi stacks, and dilation of the endoplasmic reticulum. Therefore the role c-Src regulated Golgi function, ZG formation and microsomal zymogen transit in acinar cells needs to be explored in pancreatitis.
Collapse
Affiliation(s)
- Sergiy Kostenko
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Chan C Heu
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Jordan R Yaron
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Garima Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - William J Muller
- Goodman Cancer Research Center and Department of Biology, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Vijay P Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA.
| |
Collapse
|
15
|
Gonçalves-de-Albuquerque CF, Rohwedder I, Silva AR, Ferreira AS, Kurz ARM, Cougoule C, Klapproth S, Eggersmann T, Silva JD, de Oliveira GP, Capelozzi VL, Schlesinger GG, Costa ER, Estrela Marins RDCE, Mócsai A, Maridonneau-Parini I, Walzog B, Macedo Rocco PR, Sperandio M, de Castro-Faria-Neto HC. The Yin and Yang of Tyrosine Kinase Inhibition During Experimental Polymicrobial Sepsis. Front Immunol 2018; 9:901. [PMID: 29760707 PMCID: PMC5936983 DOI: 10.3389/fimmu.2018.00901] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022] Open
Abstract
Neutrophils are the first cells of our immune system to arrive at the site of inflammation. They release cytokines, e.g., chemokines, to attract further immune cells, but also actively start to phagocytose and kill pathogens. In the case of sepsis, this tightly regulated host defense mechanism can become uncontrolled and hyperactive resulting in severe organ damage. Currently, no effective therapy is available to fight sepsis; therefore, novel treatment targets that could prevent excessive inflammatory responses are warranted. Src Family tyrosine Kinases (SFK), a group of tyrosine kinases, have been shown to play a major role in regulating immune cell recruitment and host defense. Leukocytes with SFK depletion display severe spreading and migration defects along with reduced cytokine production. Thus, we investigated the effects of dasatinib, a tyrosine kinase inhibitor, with a strong inhibitory capacity on SFKs during sterile inflammation and polymicrobial sepsis in mice. We found that dasatinib-treated mice displayed diminished leukocyte adhesion and extravasation in tumor necrosis factor-α-stimulated cremaster muscle venules in vivo. In polymicrobial sepsis, sepsis severity, organ damage, and clinical outcome improved in a dose-dependent fashion pointing toward an optimal therapeutic window for dasatinib dosage during polymicrobial sepsis. Dasatinib treatment may, therefore, provide a balanced immune response by preventing an overshooting inflammatory reaction on the one side and bacterial overgrowth on the other side.
Collapse
Affiliation(s)
- Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany.,Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ina Rohwedder
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Angela R M Kurz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Klapproth
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Tanja Eggersmann
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Pena de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Laboratório de Genômica Pulmonar, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Edlaine Rijo Costa
- Laboratorio de Farmacologia, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita de Cassia Elias Estrela Marins
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Attila Mócsai
- MTA-SE "Lendület" Inflammation Physiology Research Group, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Barbara Walzog
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Markus Sperandio
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | | |
Collapse
|
16
|
Haguet H, Douxfils J, Chatelain C, Graux C, Mullier F, Dogné JM. BCR-ABL Tyrosine Kinase Inhibitors: Which Mechanism(s) May Explain the Risk of Thrombosis? TH OPEN 2018; 2:e68-e88. [PMID: 31249931 PMCID: PMC6524858 DOI: 10.1055/s-0038-1624566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Imatinib, the first-in-class BCR-ABL tyrosine kinase inhibitor (TKI), had been a revolution for the treatment of chronic myeloid leukemia (CML) and had greatly enhanced patient survival. Second- (dasatinib, nilotinib, and bosutinib) and third-generation (ponatinib) TKIs have been developed to be effective against BCR-ABL mutations making imatinib less effective. However, these treatments have been associated with arterial occlusive events. This review gathers clinical data and experiments about the pathophysiology of these arterial occlusive events with BCR-ABL TKIs. Imatinib is associated with very low rates of thrombosis, suggesting a potentially protecting cardiovascular effect of this treatment in patients with BCR-ABL CML. This protective effect might be mediated by decreased platelet secretion and activation, decreased leukocyte recruitment, and anti-inflammatory or antifibrotic effects. Clinical data have guided mechanistic studies toward alteration of platelet functions and atherosclerosis development, which might be secondary to metabolism impairment. Dasatinib, nilotinib, and ponatinib affect endothelial cells and might induce atherogenesis through increased vascular permeability. Nilotinib also impairs platelet functions and induces hyperglycemia and dyslipidemia that might contribute to atherosclerosis development. Description of the pathophysiology of arterial thrombotic events is necessary to implement risk minimization strategies.
Collapse
Affiliation(s)
- Hélène Haguet
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| | - Jonathan Douxfils
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
- QUALIblood s.a., Namur, Belgium
| | - Christian Chatelain
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
| | - Carlos Graux
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Department of Hematology, Yvoir, Belgium
| | - François Mullier
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| | - Jean-Michel Dogné
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
| |
Collapse
|
17
|
Wie SM, Wellberg E, Karam SD, Reyland ME. Tyrosine Kinase Inhibitors Protect the Salivary Gland from Radiation Damage by Inhibiting Activation of Protein Kinase C-δ. Mol Cancer Ther 2017. [PMID: 28637715 DOI: 10.1158/1535-7163.mct-17-0267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In patients undergoing irradiation (IR) therapy, injury to nontumor tissues can result in debilitating, and sometimes permanent, side effects. We have defined protein kinase C-δ (PKCδ) as a regulator of DNA damage-induced apoptosis and have shown that phosphorylation of PKCδ by c-Abl and c-Src activates its proapoptotic function. Here, we have explored the use of tyrosine kinase inhibitors (TKI) of c-Src and c-Abl to block activation of PKCδ for radioprotection of the salivary gland. Dasatinib, imatinib, and bosutinib all suppressed tyrosine phosphorylation of PKCδ and inhibited IR-induced apoptosis in vitro To determine whether TKIs can provide radioprotection of salivary gland function in vivo, mice were treated with TKIs and a single or fractionated doses of irradiation. Delivery of dasatinib or imatinib within 3 hours of a single or fractionated dose of irradiation resulted in >75% protection of salivary gland function at 60 days. Continuous dosing with dasatinib extended protection to at least 5 months and correlated with histologic evidence of salivary gland acinar cell regeneration. Pretreatment with TKIs had no impact on clonogenic survival of head and neck squamous cell carcinoma (HNSCC) cells, and in mice harboring HNSCC cell-derived xenografts, combining dasatinib or imatinib with fractionated irradiation did not enhance tumor growth. Our studies indicate that TKIs may be useful clinically to protect nontumor tissue in HNC patients undergoing radiotherapy, without negatively impacting cancer treatment. Mol Cancer Ther; 16(9); 1989-98. ©2017 AACR.
Collapse
Affiliation(s)
- Sten M Wie
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth Wellberg
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Department of IR Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
18
|
Mohammadalipour A, Karimi J, Khodadadi I, Solgi G, Hashemnia M, Sheikh N, Bahabadi M. Dasatinib prevent hepatic fibrosis induced by carbon tetrachloride (CCl4) via anti-inflammatory and antioxidant mechanism. Immunopharmacol Immunotoxicol 2016; 39:19-27. [DOI: 10.1080/08923973.2016.1263860] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Adel Mohammadalipour
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| | - Nasrin Sheikh
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Majid Bahabadi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
19
|
Schiffer CA, Cortes JE, Hochhaus A, Saglio G, le Coutre P, Porkka K, Mustjoki S, Mohamed H, Shah NP. Lymphocytosis after treatment with dasatinib in chronic myeloid leukemia: Effects on response and toxicity. Cancer 2016; 122:1398-407. [PMID: 26998677 PMCID: PMC5071708 DOI: 10.1002/cncr.29933] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND The proliferation of clonal cytotoxic T‐cells or natural killer cells has been observed after dasatinib treatment in small studies of patients with chronic myeloid leukemia (CML). METHODS The incidence of lymphocytosis and its association with response, survival, and side effects were assessed in patients from 3 large clinical trials. Overall, 1402 dasatinib‐treated patients with newly diagnosed CML in chronic phase (CML‐CP), CML‐CP refractory/intolerant to imatinib, or with CML in accelerated or myeloid‐blast phase were analyzed. RESULTS Lymphocytosis developed in 32% to 35% of patients and persisted for >12 months. This was not observed in the patients who received treatment with imatinib. Dasatinib‐treated patients in all stages of CML who developed lymphocytosis were more likely to achieve a complete cytogenetic response, and patients who had CML‐CP with lymphocytosis were more likely to achieve major and deep molecular responses. Progression‐free and overall survival rates were significantly longer in patients with CML‐CP who were refractory to or intolerant of imatinib and had lymphocytosis. Pleural effusions developed more commonly in patients with lymphocytosis. CONCLUSIONS Overall, lymphocytosis occurred and persisted in many dasatinib‐treated patients in all phases of CML. Its presence was associated with higher response rates, significantly longer response durations, and increased overall survival, suggesting an immunomodulatory effect. Prospective studies are warranted to characterize the functional activity of these cells and to assess whether an immunologic effect against CML is detectable. Cancer 2016;122:1398–1407. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. Lymphocytosis develops frequently after treatment of chronic myeloid leukemia with dasatinib and is associated with higher response rates, significantly longer response durations, and increased overall survival. Prospective studies are warranted to assess whether dasatinib produces an immunomodulatory effect against chronic myeloid leukemia.
Collapse
Affiliation(s)
- Charles A Schiffer
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Jorge E Cortes
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Giuseppe Saglio
- San Luigi Gonaga Hospital, University of Turin, Orbassano-Turin, Italy
| | - Philipp le Coutre
- Charite-Campus Virchow Clinic, Berlin Medical University, Berlin, Germany
| | - Kimmo Porkka
- Department of Hematology and Hematology Research Unit, Helsinki University Central Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Department of Hematology and Hematology Research Unit, Helsinki University Central Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | | | - Neil P Shah
- University of California, San Francisco School of Medicine, San Francisco, California
| |
Collapse
|
20
|
Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis. PLoS One 2016; 11:e0147005. [PMID: 26789403 PMCID: PMC4720427 DOI: 10.1371/journal.pone.0147005] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis.
Collapse
|
21
|
Azizi G, Goudarzvand M, Afraei S, Sedaghat R, Mirshafiey A. Therapeutic effects of dasatinib in mouse model of multiple sclerosis. Immunopharmacol Immunotoxicol 2015; 37:287-94. [PMID: 25975582 DOI: 10.3109/08923973.2015.1028074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Experimental autoimmune encephalomyelitis (EAE) is a mouse model for multiple sclerosis (MS). EAE is mainly mediated by adaptive and innate immune responses that lead to an inflammatory demyelination and axonal damage. Dasatinib (Sprycel) is a selective protein tyrosine kinase inhibitor with immunomodulatory properties that abrogates multiple signal transduction pathways in immune cells. In the present research, our aim was to test the therapeutic efficacy of dasatinib in experimental model of MS. METHODS We performed EAE induction in female C57BL/6 mice by myelin oligodendrocyte glycoprotein(35-55) (MOG(35-55)) in Complete Freund's Adjuvant (CFA) emulsion, and used dasatinib for the treatment of EAE. During the course of study, clinical evaluation was assessed, and on day 21 post-immunization blood samples were taken from the heart of mice for tumor necrosis factor-alpha (TNF-α), nitric oxide (NO) and antioxidants capacity evaluation. The mice were sacrificed and brains and cerebellums of mice were removed for histological analysis. Also for in vitro analysis, we used C6 astrocytoma cell line to evaluate the inhibitory effects of dasatinib in cell proliferation and matrix metalloproteinase-2 (MMP-2) activity. RESULTS Our findings demonstrated that dasatinib had beneficial effects on EAE by lower incidence, attenuation in the severity and a delay in the onset of disease. The serum level of NO and TNF-α in dasatinib treated mice was significantly lower than control mice. In vitro, dasatinib inhibited cell proliferation and MMP-2 activity. CONCLUSION Dasatinib with its potential therapeutic effects and immunomodulatory properties may be recommended, after additional necessary tests and trials, for the treatment of MS.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences , Karaj , Iran
| | | | | | | | | |
Collapse
|
22
|
The clinically approved drugs dasatinib and bosutinib induce anti-inflammatory macrophages by inhibiting the salt-inducible kinases. Biochem J 2015; 465:271-9. [PMID: 25351958 PMCID: PMC4286194 DOI: 10.1042/bj20141165] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophages switch to an anti-inflammatory, ‘regulatory’-like phenotype characterized by the production of high levels of interleukin (IL)-10 and low levels of pro-inflammatory cytokines to promote the resolution of inflammation. A potential therapeutic strategy for the treatment of chronic inflammatory diseases would be to administer drugs that could induce the formation of ‘regulatory’-like macrophages at sites of inflammation. In the present study, we demonstrate that the clinically approved cancer drugs bosutinib and dasatinib induce several hallmark features of ‘regulatory’-like macrophages. Treatment of macrophages with bosutinib or dasatinib elevates the production of IL-10 while suppressing the production of IL-6, IL-12p40 and tumour necrosis factor α (TNFα) in response to Toll-like receptor (TLR) stimulation. Moreover, macrophages treated with bosutinib or dasatinib express higher levels of markers of ‘regulatory’-like macrophages including LIGHT, SPHK1 and arginase 1. Bosutinib and dasatinib were originally developed as inhibitors of the protein tyrosine kinases Bcr-Abl and Src but we show that, surprisingly, the effects of bosutinib and dasatinib on macrophage polarization are the result of the inhibition of the salt-inducible kinases. Consistent with the present finding, bosutinib and dasatinib induce the dephosphorylation of CREB-regulated transcription co-activator 3 (CRTC3) and its nuclear translocation where it induces a cAMP-response-element-binding protein (CREB)-dependent gene transcription programme including that of IL-10. Importantly, these effects of bosutinib and dasatinib on IL-10 gene expression are lost in macrophages expressing a drug-resistant mutant of salt-inducible kinase 2 (SIK2). In conclusion, our study identifies the salt-inducible kinases as major targets of bosutinib and dasatinib that mediate the effects of these drugs on the innate immune system and provides novel mechanistic insights into the anti-inflammatory properties of these drugs. We have discovered that bosutinib and dasatinib, which are protein tyrosine kinase inhibitors used in the clinic to treat human cancer, induce anti-inflammatory but block pro-inflammatory cytokine production by inhibiting the serine/threonine kinases known as the salt-inducible kinases.
Collapse
|
23
|
Small-molecule screening identifies inhibition of salt-inducible kinases as a therapeutic strategy to enhance immunoregulatory functions of dendritic cells. Proc Natl Acad Sci U S A 2014; 111:12468-73. [PMID: 25114223 DOI: 10.1073/pnas.1412308111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic alterations that reduce the function of the immunoregulatory cytokine IL-10 contribute to colitis in mouse and man. Myeloid cells such as macrophages (MΦs) and dendritic cells (DCs) play an essential role in determining the relative abundance of IL-10 versus inflammatory cytokines in the gut. As such, using small molecules to boost IL-10 production by DCs-MΦs represents a promising approach to increase levels of this cytokine specifically in gut tissues. Toward this end, we screened a library of well-annotated kinase inhibitors for compounds that enhance production of IL-10 by murine bone-marrow-derived DCs stimulated with the yeast cell wall preparation zymosan. This approach identified a number of kinase inhibitors that robustly up-regulate IL-10 production including the Food and Drug Administration (FDA)-approved drugs dasatinib, bosutinib, and saracatinib that target ABL, SRC-family, and numerous other kinases. Correlating the kinase selectivity profiles of the active compounds with their effect on IL-10 production suggests that inhibition of salt-inducible kinases (SIKs) mediates the observed IL-10 increase. This was confirmed using the SIK-targeting inhibitor HG-9-91-01 and a series of structural analogs. The stimulatory effect of SIK inhibition on IL-10 is also associated with decreased production of the proinflammatory cytokines IL-1β, IL-6, IL-12, and TNF-α, and these coordinated effects are observed in human DCs-MΦs and anti-inflammatory CD11c(+) CX3CR1(hi) cells isolated from murine gut tissue. Collectively, these studies demonstrate that SIK inhibition promotes an anti-inflammatory phenotype in activated myeloid cells marked by robust IL-10 production and establish these effects as a previously unidentified activity associated with several FDA-approved multikinase inhibitors.
Collapse
|
24
|
Jaini R, Rayman P, Cohen PA, Finke JH, Tuohy VK. Combination of sunitinib with anti-tumor vaccination inhibits T cell priming and requires careful scheduling to achieve productive immunotherapy. Int J Cancer 2013; 134:1695-705. [PMID: 24105638 DOI: 10.1002/ijc.28488] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 02/02/2023]
Abstract
Sunitinib, a protein tyrosine kinase inhibitor is the frontline therapy for renal and gastrointestinal cancers. We hypothesized that by virtue of its well documented tumor apoptosis and immune adjuvant properties, combination of Sunitinib with anti-tumor immunotherapeutics will provide synergistic inhibition of tumor growth. Our study was designed to evaluate the impact of Sunitinib on immunotherapy mediated anti-tumor immune responses and evaluate its efficacy as a combinatorial therapy with tumor targeted immunotherapeutic vaccination. Mice immunized with recombinant α-lactalbumin, a lactation protein expressed on majority of breast tumors were treated with 1 mg of Sunitinib for seven consecutive days beginning (1) concurrently, on the day of α-lactalbumin immunization or (2) sequentially, on day 9 after immunization. Ten-day lymph nodes or 21 day spleens were tested by ELISPOT assays and flow cytometry to evaluate responsiveness to α-lactalbumin immunization in presence of Sunitinib and distribution of cells involved in T cell antigen priming and proliferation in different lymphoid compartments. In addition, therapeutic efficacy of the α-lactalbumin/ Sunitinib combination was evaluated by monitoring tumor growth in the 4T1 transplanted tumor model. Our studies reveal that concurrent administration of Sunitinib with active vaccination against a targeted tumor antigen inhibits priming to the immunogen due to a drastic decrease in CD11b+CD11c+ antigen presenting cells, leading to failure of vaccination. However, sequential delivery of Sunitinib timed to avoid the priming phase of vaccination results in the desired vaccination mediated boost in immune responses.
Collapse
Affiliation(s)
- Ritika Jaini
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | | | | | | | | |
Collapse
|
25
|
Jung SH, Sun X, Ryu WS, Yang BS. Topical administration of the pan-Src kinase inhibitors, dasatinib and LCB 03-0110, prevents allergic contact dermatitis in mice. Br J Dermatol 2013; 168:112-9. [PMID: 23020072 DOI: 10.1111/bjd.12069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Allergic contact dermatitis (ACD) is a delayed type of T cell-mediated cutaneous inflammatory response, in which multiple cell types are involved. Dasatinib and LCB 03-0110 are small molecule multityrosine kinase inhibitors, and they share remarkably similar target kinases such as the c-Src family, Btk and Syk, which play key roles in the cell signalling of T cells and other inflammatory cells. OBJECTIVES To test the anti-ACD activity of dasatinib and LCB 03-0110 and compare it with that of tacrolimus (FK506) and triamcinolone acetonide (a glucocorticoid), which are widely used for topical treatment of ACD, and to examine the two compounds for their capacity to induce skin atrophy, a side-effect. METHODS ACD was induced on the ears of mice by repeated topical application of oxazolone. Each test compound was then topically applied on the ear. Ear swelling, epidermal thickness and levels of inflammatory cytokines were measured. The skin atrophy induced by the compounds was tested during prolonged application on the dorsal skin of hairless mice, followed by haematoxylin and eosin staining. RESULTS Dasatinib and LCB 03-0110 suppressed the symptoms of ACD such as ear swelling, increase in epidermal thickness and synthesis of inflammatory cytokines (i.e. interleukin-1β, tumour necrosis factor-α and interferon-γ) in a dose-dependent manner. The two compounds showed near-equal potency to tacrolimus; however, their potency was lower than that of triamcinolone acetonide. Prolonged treatment with the two compounds did not induce any skin atrophy, whereas use of steroidal agents induced severe atrophy. CONCLUSIONS Dasatinib and LCB 03-0110 could be used as effective agents for the treatment of ACD without the adverse side-effect of skin atrophy.
Collapse
Affiliation(s)
- S H Jung
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-Dong, Sungbuk-Ku, Seoul 136-791, Korea
| | | | | | | |
Collapse
|
26
|
Hancz A, Koncz G, Szili D, Sármay G. TLR9-mediated signals rescue B-cells from Fas-induced apoptosis via inactivation of caspases. Immunol Lett 2012; 143:77-84. [PMID: 22553782 DOI: 10.1016/j.imlet.2012.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The death receptor, CD95/Fas, serves to eliminate potentially dangerous, self-reactive B cells. Engagement of B-cell receptors (BCR) on mature B-cells mediates the escape from cell death resulting in the activation and expansion of antigen specific clones. In addition to the antigen receptors, the receptors of B-cell activating factor belong to the tumor necrosis factor (TNF) family (BAFFR); moreover, the pattern recognition receptor, TLR9 may also deliver survival signals inhibiting Fas-mediated death of B-cells. Our aim was to compare the mechanism of BCR-induced and the BAFFR- or TLR9-stimulated rescue of B-cells from CD95/Fas-mediated apoptosis. We have found that BAFFR and TLR9 collaborate with BCR to protect B-cells from Fas-induced elimination and the rescue is independent of protein synthesis. The results revealed that the TLR9- and BCR-triggered rescue signals are transmitted through partially overlapping pathways; the protein kinase C (PKC) and the abl kinase induced phosphorylation may inactivate caspases in both CpG and anti-IgG stimulated cells. However, PI3-K activation is crucial upon the BCR driven anti-apoptotic effect, while p38 MAPK-mediated inactivation of caspases seems to play essential role in TLR9-mediated protection against Fas-induced programmed cell death.
Collapse
Affiliation(s)
- Anikó Hancz
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | |
Collapse
|
27
|
Brooks MB. Erlotinib appears to produce prolonged remission of insulin-requiring type 2 diabetes associated with metabolic syndrome and chronic kidney disease. ACTA ACUST UNITED AC 2012. [DOI: 10.1177/1474651412442694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with metabolic syndrome are at higher risk for type 2 diabetes and for chronic kidney disease. Metformin is the oral medication of choice for the treatment of type 2 diabetes in the absence of chronic kidney disease. There is a need for another oral glucose lowering agent for use in metabolic syndrome with type 2 diabetes and chronic kidney disease. We submit the first report of erlotinib, a once-daily oral medication for the treatment of non-small-cell lung cancer associated with specific genetic mutations, appearing to eliminate the need for insulin in insulin-requiring type 2 diabetes associated with metabolic syndrome and chronic kidney disease. The mechanism by which erlotinib, a tyrosine kinase inhibitor of the epidermal growth factor receptor may improve glycaemic control is unknown. Potential possibilities are explored.
Collapse
|
28
|
Abstract
It has recently become clear that the tumour microenvironment, and in particular the immune system, has a crucial role in modulating tumour progression and response to therapy. Indicators of an ongoing immune response, such as the composition of the intratumoural immune infiltrate, as well as polymorphisms in genes encoding immune modulators, have been correlated with therapeutic outcome. Moreover, several anticancer agents--including classical chemotherapeutics and targeted compounds--stimulate tumour-specific immune responses either by inducing the immunogenic death of tumour cells or by engaging immune effector mechanisms. Here, we discuss the molecular and cellular circuitries whereby cytotoxic agents can activate the immune system against cancer, and their therapeutic implications.
Collapse
|
29
|
p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes. Blood 2012; 119:1992-2002. [PMID: 22234699 DOI: 10.1182/blood-2011-06-354647] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fanconi anemia, complementation group C (FANCC)-deficient hematopoietic stem and progenitor cells are hypersensitive to a variety of inhibitory cytokines, one of which, TNFα, can induce BM failure and clonal evolution in Fancc-deficient mice. FANCC-deficient macrophages are also hypersensitive to TLR activation and produce TNFα in an unrestrained fashion. Reasoning that suppression of inhibitory cytokine production might enhance hematopoiesis, we screened small molecules using TLR agonist-stimulated FANCC- and Fanconi anemia, complementation group A (FANCA)-deficient macrophages containing an NF-κB/AP-1-responsive reporter gene (SEAP). Of the 75 small molecules screened, the p38 MAPK inhibitor BIRB 796 and dasatinib potently suppressed TLR8-dependent expression of the reporter gene. Fanconi anemia (FA) macrophages were hypersensitive to the TLR7/8 activator R848, overproducing SEAP and TNFα in response to all doses of the agonist. Low doses (50nM) of both agents inhibited p38 MAPK-dependent activation of MAPKAPK2 (MK2) and suppressed MK2-dependent TNFα production without substantially influencing TNFα gene transcription. Overproduction of TNFα by primary FA cells was likewise suppressed by these agents and involved inhibition of MK2 activation. Because MK2 is also known to influence production and/or sensitivity to 2 other suppressive factors (MIP-1α and IFNγ) to which FA hematopoietic progenitor cells are uniquely vulnerable, targeting of p38 MAPK in FA hematopoietic cells is a rational objective for preclinical evaluation.
Collapse
|
30
|
Sun X, Phan TN, Jung SH, Kim SY, Cho JU, Lee H, Woo SH, Park TK, Yang BS. LCB 03-0110, a novel pan-discoidin domain receptor/c-Src family tyrosine kinase inhibitor, suppresses scar formation by inhibiting fibroblast and macrophage activation. J Pharmacol Exp Ther 2011; 340:510-9. [PMID: 22128347 DOI: 10.1124/jpet.111.187328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Wound healing generally induces an inflammatory response associated with tissue fibrosis in which activated macrophage and myofibroblast cells are primarily involved. Although this is known to be the underlying mechanism for scarring and various fibrotic pathologies, no effective intervention is currently available. We identified (3-(2-(3-(morpholinomethyl)phenyl)thieno[3,2-b]pyridin-7-ylamino)phenol (LCB 03-0110), a thienopyridine derivative, as a potent inhibitor of discoidin domain receptor family tyrosine kinases and discovered that this compound strongly inhibits several tyrosine kinases, including the c-Src family, spleen tyrosine kinase, Bruton's tyrosine kinase, and vascular endothelial growth factor receptor 2, which are important for immune cell signaling and inflammatory reactions. LCB 03-0110 suppressed the proliferation and migration of primary dermal fibroblasts induced by transforming growth factor β1 and type I collagen, and this result correlated with the inhibition ability of the compound against enhanced expression of α-smooth muscle actin and activation of Akt1 and focal adhesion kinase. In J774A.1 macrophage cells activated by lipopolysaccharide LCB 03-0110 inhibited cell migration and nitric oxide, inducible nitric-oxide synthase, cyclooxygenase 2, and tumor necrosis factor-α synthesis. LCB 03-0110 applied topically to full excisional wounds on rabbit ears suppressed the accumulation of myofibroblast and macrophage cells in the healing wound and reduced hypertrophic scar formation after wound closing, without delaying the wound closing process. Taken together, the pharmacological activities of LCB 03-0110 suggest that it could be an effective agent for suppressing fibroinflammation by simultaneously targeting activated fibroblasts and macrophages.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Korea Institute of Science and Technology, 39-1, Hawolgok-Dong, Sungbuk-Ku, Seoul 136-791, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shieh MP, Mitsuhashi M, Lilly M. Moving on up: Second-Line Agents as Initial Treatment for Newly-Diagnosed Patients with Chronic Phase CML. Clin Med Insights Oncol 2011; 5:185-99. [PMID: 21792346 PMCID: PMC3140277 DOI: 10.4137/cmo.s6416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The treatment of chronic myelogenous leukemia (CML) was revolutionized by the development of imatinib mesylate, a small molecule inhibitor of several protein tyrosine kinases, including the ABL1 protein tyrosine kinase. The current second generation of FDA-approved ABL tyrosine kinase inhibitors, dasatinib and nilotinib, are more potent inhibitors of BCR-ABL1 kinase in vitro. Originally approved for the treatment of patients who were refractory to or intolerant of imatinib, dasatinib and nilotinib are now also FDA approved in the first-line setting. The choice of tyrosine kinase inhibitor (ie, standard or high dose imatinib, dasatinib, nilotinib) to use for initial therapy in chronic-phase CML (CML-CP) will not always be obvious. Therapy selection will depend on both clinical and molecular factors, which we will discuss in this review.
Collapse
Affiliation(s)
- Marie P Shieh
- Division of Hematology-Oncology, Department of Medicine, and Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
32
|
Controversies in the treatment of CML in children and adolescents: TKIs versus BMT? Biol Blood Marrow Transplant 2011; 17:S115-22. [PMID: 21195300 DOI: 10.1016/j.bbmt.2010.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/08/2010] [Indexed: 11/22/2022]
Abstract
Chronic myeloid leukemia (CML) is a relatively rare hematopoietic malignancy in the pediatric and adolescent population. This makes it difficult to perform clinic trials that can define the best therapeutic option when considering the impact of tyrosine kinase inhibitors (TKIs) versus the established approach of allogeneic hematopoietic cell transplantation (HCT). With the relatively low toxicity of TKIs, there are little data regarding when HCT or long-term TKI therapy is a better option. There are even less data regarding the duration of TKI treatment in the pediatric CML in chronic phase (CML-CP) patients who may receive over 60 years of therapy. As children and adolescent are treated for longer times with TKIs, it has become clear that toxicities may make long-term TKI therapy less attractive compared to allogeneic HCT. HCT has the long-term complications of growth failure, infertility, chronic graft-versus-host disease (GVHD), metabolic syndrome, and secondary malignancies, whereas prolonged TKIs may cause growth failure, hepatic, and cardiac complications. Moreover, HCT is a potentially curative intervention, whereas TKI is not curative, requiring prolonged exposure. In this article, we discuss the relative merit of the 2 therapeutic approaches and recommend that all children and adolescents with CML-CP should initially be treated with imatinib and maintained with TKI therapy indefinitely if there is a good response. We recommend that allogeneic HCT with an HLA-identical sibling donor or closely matched unrelated donor be considered for patients with treatment failure or recurrence after receiving salvage second-generation TKI treatment. We also conclude that randomized international trials are urgently needed to evaluate the best therapies for pediatric CML.
Collapse
|
33
|
Schultz KR, Prestidge T, Camitta B. Philadelphia chromosome-positive acute lymphoblastic leukemia in children: new and emerging treatment options. Expert Rev Hematol 2011; 3:731-42. [PMID: 21091149 DOI: 10.1586/ehm.10.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL) in children and adolescents has, until recently, been considered one of the poorest-risk subgroups of ALL. With chemotherapy alone, only 20-30% of children with Ph(+) ALL are cured. Allogeneic hematopoietic cell transplantation in first complete remission cures 60% of patients with a closely matched donor. Although targeted tyrosine kinase inhibitors (TKIs) have limited activity against Ph(+) ALL as a single agent, they have been evaluated in combination with chemotherapy with promising results. The early results of Children's Oncology Group trial AALL0031 have shown 88% 3-year event-free survival for Ph(+) patients treated with intensive chemotherapy plus continuous-dosing imatinib. This suggests that chemotherapy plus TKIs may be the initial treatment of choice for Ph(+) ALL in children. However, the numbers are small in this trial and confirmatory results are not yet available from the European Intergroup Study on Post Induction Treatment of Philadelphia Positive Acute Lymphoblastic Leukaemia with Imatinib trial. Additional issues include determining the most effective TKI (imatinib, dasatinib or nilotinib) and the most effective, least toxic chemotherapy backbone. The experience of adding a targeted agent such as a TKI to the standard chemotherapy regimen suggests that this strategy might be applied to other ALL subtypes to achieve both increased efficacy and decreased toxicity.
Collapse
Affiliation(s)
- Kirk R Schultz
- Division of Pedatric Hematology, Oncology, Blood and Marrow Transplantation, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
34
|
Nishioka Y, Aono Y, Sone S. Role of tyrosine kinase inhibitors in tumor immunology. Immunotherapy 2011; 3:107-16. [PMID: 21174561 DOI: 10.2217/imt.10.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Various immune cells are involved in both innate and acquired immunity against tumors. NK cells and cytotoxic T lymphocytes play a role as effector cells to directly kill tumor cells. On the other hand, antigen-presenting cells, particularly dendritic cells, control tumor-specific immune responses. In addition, much focus has been paid on the immune regulatory cells in tumor sites, including CD4(+)CD25(+) regulatory T cells and myeloid-derived suppressor cells. The recent advances in molecular-targeted therapy for cancer have provided small-molecule kinase inhibitors, which are effective for several hematopoietic malignancies as well as solid tumors in the clinical setting. Most drugs generally have inhibitory effects on several kinases, including tyrosine kinases, which are critical molecules for the survival, proliferation, migration and invasion of tumor cells. Since the host immune surveillance against tumors affects tumor progression, it is of interest to understand how these molecular-targeted drugs affect immune function in the tumor-bearing host. Besides this, there are emerging findings that myeloid cells could be involved in tumor angiogenesis. In this article, we address the role of tyrosine kinase inhibitors in tumor immunology by summarizing their effects on myeloid cells, such as antigen-presenting cells and regulatory cells, and their role in tumor immunity and angiogenesis.
Collapse
Affiliation(s)
- Yasuhiko Nishioka
- Department of Respiratory Medicine & Rheumotology, The Univeristy of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | | | |
Collapse
|
35
|
de Lavallade H, Garland P, Sekine T, Hoschler K, Marin D, Stringaris K, Loucaides E, Howe K, Szydlo R, Kanfer E, Macdonald D, Kelleher P, Cooper N, Khoder A, Gabriel IH, Milojkovic D, Pavlu J, Goldman JM, Apperley JF, Rezvani K. Repeated vaccination is required to optimize seroprotection against H1N1 in the immunocompromised host. Haematologica 2010; 96:307-14. [PMID: 20971824 DOI: 10.3324/haematol.2010.032664] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND In 2009 the declaration by the World Health Organization of a global pandemic of influenza-H1N1 virus led to a vaccination campaign to ensure protection for immunocompromised patients. The goal of this study was to determine the efficacy of the 2009 H1N1 vaccine in patients with hematologic malignancies. DESIGN AND METHODS We evaluated humoral and cellular immune responses to 2009 H1N1 vaccine in 97 adults with hematologic malignancies and compared these responses with those in 25 adult controls. Patients received two injections of vaccine 21 days apart and the controls received one dose. Antibody titers were measured using a hemagglutination-inhibition assay on days 0, 21 and 49 after injection of the first dose. Cellular immune responses to H1N1 were determined on days 0 and 49. RESULTS By day 21 post-vaccination, protective antibody titers of 1:32 or more were seen in 100% of controls compared to 39% of patients with B-cell malignancies (P<0.001), 46% of allogeneic stem cell transplant recipients (P<0.001) and 85% of patients with chronic myeloid leukemia (P=0.086). After a second dose, seroprotection rates increased to 68%, (P=0.008), 73%, (P=0.031), and 95% (P=0.5) in patients with B-cell malignancies, after allogeneic stem cell transplantation and with chronic myeloid leukemia, respectively. On the other hand, T-cell responses to H1N1 vaccine were not significantly different between patients and controls. CONCLUSIONS These data demonstrate the efficacy of H1N1 vaccine in most patients with hematologic malignancies and support the recommendation for the administration of two doses of vaccine in immunocompromised patients. These results may contribute towards the development of evidence-based guidelines for influenza vaccination in such patients in the future.
Collapse
Affiliation(s)
- Hugues de Lavallade
- Department of Haematology, Imperial College, Hammersmith Campus, 4th Floor Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|