1
|
Nasr W, Filippi MD. Acquired and hereditary bone marrow failure: A mitochondrial perspective. Front Oncol 2022; 12:1048746. [PMID: 36408191 PMCID: PMC9666693 DOI: 10.3389/fonc.2022.1048746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
The disorders known as bone marrow failure syndromes (BMFS) are life-threatening disorders characterized by absence of one or more hematopoietic lineages in the peripheral blood. Myelodysplastic syndromes (MDS) are now considered BMF disorders with associated cellular dysplasia. BMFs and MDS are caused by decreased fitness of hematopoietic stem cells (HSC) and poor hematopoiesis. BMF and MDS can occur de novo or secondary to hematopoietic stress, including following bone marrow transplantation or myeloablative therapy. De novo BMF and MDS are usually associated with specific genetic mutations. Genes that are commonly mutated in BMF/MDS are in DNA repair pathways, epigenetic regulators, heme synthesis. Despite known and common gene mutations, BMF and MDS are very heterogenous in nature and non-genetic factors contribute to disease phenotype. Inflammation is commonly found in BMF and MDS, and contribute to ineffective hematopoiesis. Another common feature of BMF and MDS, albeit less known, is abnormal mitochondrial functions. Mitochondria are the power house of the cells. Beyond energy producing machinery, mitochondrial communicate with the rest of the cells via triggering stress signaling pathways and by releasing numerous metabolite intermediates. As a result, mitochondria play significant roles in chromatin regulation and innate immune signaling pathways. The main goal of this review is to investigate BMF processes, with a focus mitochondria-mediated signaling in acquired and inherited BMF.
Collapse
Affiliation(s)
- Waseem Nasr
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States,University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States,University of Cincinnati College of Medicine, Cincinnati, OH, United States,*Correspondence: Marie-Dominique Filippi,
| |
Collapse
|
2
|
Filanovsky K, Haran M, Mirkin V, Braester A, Shevetz O, Stanevsky A, Sigler E, Votinov E, Zaltsman-Amir Y, Berrebi A, Gross A, Shvidel L. Peripheral Blood Cell Mitochondrial Dysfunction in Myelodysplastic Syndrome Can Be Improved by a Combination of Coenzyme Q10 and Carnitine. Mediterr J Hematol Infect Dis 2020; 12:e2020072. [PMID: 33194146 PMCID: PMC7643803 DOI: 10.4084/mjhid.2020.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/03/2020] [Indexed: 11/08/2022] Open
Abstract
Structural mitochondrial abnormalities and genetic aberrations in mitochondrial proteins have been known in Myelodysplastic syndrome (MDS), yet there is currently little data regarding MDS's metabolic properties and energy production cells. In the current study, we used state-of-the-art methods to assess OXPHOS in peripheral blood cells obtained from MDS patients and healthy controls. We then assessed the effect of food supplements-Coenzyme Q10 and carnitine on mitochondrial function and hematological response. We show here for the first time that there is a significant impairment of mitochondrial respiration in peripheral blood cells in low-risk MDS, which can be improved with food supplements. We also show that these supplements may improve the cytopenia and quality of life.
Collapse
Affiliation(s)
- Kalman Filanovsky
- Hematology Institute, Kaplan medical center, Rehovot, Israel, affiliated with the Hebrew University, Jerusalem, Israel
| | - Michal Haran
- Hematology Institute, Kaplan medical center, Rehovot, Israel, affiliated with the Hebrew University, Jerusalem, Israel
| | - Vita Mirkin
- Hematology Institute, Kaplan medical center, Rehovot, Israel, affiliated with the Hebrew University, Jerusalem, Israel
| | - Andrei Braester
- Hematology institute, Galilee medical center, Nahariya, Israel
| | - Olga Shevetz
- Hematology Institute, Kaplan medical center, Rehovot, Israel, affiliated with the Hebrew University, Jerusalem, Israel
| | - Anfisa Stanevsky
- Hematology Institute, Kaplan medical center, Rehovot, Israel, affiliated with the Hebrew University, Jerusalem, Israel
| | - Erica Sigler
- Hematology Institute, Kaplan medical center, Rehovot, Israel, affiliated with the Hebrew University, Jerusalem, Israel
| | - Ekaterina Votinov
- Hematology Institute, Kaplan medical center, Rehovot, Israel, affiliated with the Hebrew University, Jerusalem, Israel
| | | | - Alain Berrebi
- Hematology Institute, Kaplan medical center, Rehovot, Israel, affiliated with the Hebrew University, Jerusalem, Israel
| | - Atan Gross
- Dept. of biological regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lev Shvidel
- Hematology Institute, Kaplan medical center, Rehovot, Israel, affiliated with the Hebrew University, Jerusalem, Israel
| |
Collapse
|
3
|
Cilloni D, Ravera S, Calabrese C, Gaidano V, Niscola P, Balleari E, Gallo D, Petiti J, Signorino E, Rosso V, Panuzzo C, Sabatini F, Andreani G, Dragani M, Finelli C, Poloni A, Crugnola M, Voso MT, Fenu S, Pelizzari A, Santini V, Saglio G, Podestà M, Frassoni F. Iron overload alters the energy metabolism in patients with myelodysplastic syndromes: results from the multicenter FISM BIOFER study. Sci Rep 2020; 10:9156. [PMID: 32514107 PMCID: PMC7280296 DOI: 10.1038/s41598-020-66162-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/11/2020] [Indexed: 11/30/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematological malignancies characterized by ineffective hematopoiesis and increased apoptosis in the bone marrow, which cause peripheral cytopenia. Mitochondria are key regulators of apoptosis and a site of iron accumulation that favors reactive oxygen species (ROS) production with detrimental effects on cell survival. Although the energy metabolism could represent an attractive therapeutic target, it was poorly investigated in MDS. The purpose of the study was to analyze how the presence of myelodysplastic hematopoiesis, iron overload and chelation impact on mitochondrial metabolism. We compared energy balance, OxPhos activity and efficiency, lactic dehydrogenase activity and lipid peroxidation in mononuclear cells (MNCs), isolated from 38 MDS patients and 79 healthy controls. Our data show that ATP/AMP ratio is reduced during aging and even more in MDS due to a decreased OxPhos activity associated with an increment of lipid peroxidation. Moreover, the lactate fermentation enhancement was observed in MDS and elderly subjects, probably as an attempt to restore the energy balance. The biochemical alterations of MNCs from MDS patients have been partially restored by the in vitro iron chelation, while only slight effects were observed in the age-matched control samples. By contrast, the addition of iron chelators on MNCs from young healthy subjects determined a decrement in the OxPhos efficiency and an increment of lactate fermentation and lipid peroxidation. In summary, MDS-MNCs display an altered energy metabolism associated with increased oxidative stress, due to iron accumulation. This condition could be partially restored by iron chelation.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Silvia Ravera
- Stem Cell and Cellular Therapy Laboratory, Institute G. Gaslini, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Valentina Gaidano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Enrico Balleari
- Department of Haematology and Oncology, IRCCS AOU San Martino - IST, Genova, Italy
| | - Daniela Gallo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Valentina Rosso
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federica Sabatini
- Stem Cell and Cellular Therapy Laboratory, Institute G. Gaslini, Genova, Italy
| | - Giacomo Andreani
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Matteo Dragani
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo Finelli
- Department of Haematology, S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Monica Crugnola
- Division of Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Universita' Tor Vergata, Rome, Italy
| | - Susanna Fenu
- Haematology Department, San Giovanni-Addolorata Hospital, Rome, Italy
| | | | - Valeria Santini
- Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Marina Podestà
- Stem Cell and Cellular Therapy Laboratory, Institute G. Gaslini, Genova, Italy
| | - Francesco Frassoni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Vannini N, Campos V, Girotra M, Trachsel V, Rojas-Sutterlin S, Tratwal J, Ragusa S, Stefanidis E, Ryu D, Rainer PY, Nikitin G, Giger S, Li TY, Semilietof A, Oggier A, Yersin Y, Tauzin L, Pirinen E, Cheng WC, Ratajczak J, Canto C, Ehrbar M, Sizzano F, Petrova TV, Vanhecke D, Zhang L, Romero P, Nahimana A, Cherix S, Duchosal MA, Ho PC, Deplancke B, Coukos G, Auwerx J, Lutolf MP, Naveiras O. The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance. Cell Stem Cell 2020; 24:405-418.e7. [PMID: 30849366 DOI: 10.1016/j.stem.2019.02.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/18/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
It has been recently shown that increased oxidative phosphorylation, as reflected by increased mitochondrial activity, together with impairment of the mitochondrial stress response, can severely compromise hematopoietic stem cell (HSC) regeneration. Here we show that the NAD+-boosting agent nicotinamide riboside (NR) reduces mitochondrial activity within HSCs through increased mitochondrial clearance, leading to increased asymmetric HSC divisions. NR dietary supplementation results in a significantly enlarged pool of progenitors, without concurrent HSC exhaustion, improves survival by 80%, and accelerates blood recovery after murine lethal irradiation and limiting-HSC transplantation. In immune-deficient mice, NR increased the production of human leucocytes from hCD34+ progenitors. Our work demonstrates for the first time a positive effect of NAD+-boosting strategies on the most primitive blood stem cells, establishing a link between HSC mitochondrial stress, mitophagy, and stem-cell fate decision, and unveiling the potential of NR to improve recovery of patients suffering from hematological failure including post chemo- and radiotherapy.
Collapse
Affiliation(s)
- Nicola Vannini
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland.
| | - Vasco Campos
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mukul Girotra
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland; Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vincent Trachsel
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shanti Rojas-Sutterlin
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Simone Ragusa
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland
| | - Evangelos Stefanidis
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland; Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pernille Y Rainer
- Laboratory of System Biology and Genetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gena Nikitin
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sonja Giger
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Terytty Y Li
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aikaterini Semilietof
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland; Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aurelien Oggier
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yannick Yersin
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Loïc Tauzin
- Flow Cytometry Platform, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eija Pirinen
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Wan-Chen Cheng
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland
| | - Joanna Ratajczak
- Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Carles Canto
- Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Federico Sizzano
- Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences. Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Dominique Vanhecke
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland
| | - Lianjun Zhang
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, Departments of Oncology and of Laboratories, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Stephane Cherix
- Service d'orthopédie et de traumatologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Michel A Duchosal
- Service and Central Laboratory of Hematology, Departments of Oncology and of Laboratories, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland
| | - Bart Deplancke
- Laboratory of System Biology and Genetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Epalinges 1066, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Service and Central Laboratory of Hematology, Departments of Oncology and of Laboratories, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
5
|
Koschade SE, Brandts CH. Selective Autophagy in Normal and Malignant Hematopoiesis. J Mol Biol 2020; 432:261-282. [DOI: 10.1016/j.jmb.2019.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
|
6
|
Yavuz B, Aydın S, Bozkurt S, Üner A, Büyükaşık Y. Determining the frequency of iron overload at diagnosis in de novo acute myeloid leukemia patients with multilineage dysplasia or myelodysplasia-related changes: a case control study. J Hematop 2019. [DOI: 10.1007/s12308-019-00362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
7
|
Expression of mitochondrial genes predicts survival in pediatric acute myeloid leukemia. Int J Hematol 2019; 110:205-212. [DOI: 10.1007/s12185-019-02666-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022]
|
8
|
Dunaiski CM, Janssen L, Erzinger H, Pieper M, Damaschek S, Schildgen O, Schildgen V. Inter-Specimen Imbalance of Mitochondrial Gene Copy Numbers Predicts Clustering of Pneumocystis jirovecii Isolates in Distinct Subgroups. J Fungi (Basel) 2018; 4:jof4030084. [PMID: 29996561 PMCID: PMC6162491 DOI: 10.3390/jof4030084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
The molecular detection of Pneumocystis jirovecii is an important therapy-relevant tool in microbiological diagnostics. However, the quantification of this pathogen in the past has revealed discordant results depending on the target gene. As the clinical variety of P. jirovecii infections ranges between life-threatening infections and symptom-free colonization, the question arises if qPCRs are reliable tools for quantitative diagnostics of P. jirovecii. P. jirovecii positive BALs were quantitatively tested for the copy numbers of one mitochondrial (COX-1) and two nuclear single-copy genes (KEX1 and DHPS) compared to the mitochondrial large subunit (mtLSU) by qPCR. Independent of the overall mtLSU copy number P. jirovecii clustered into distinct groups based on the ratio patterns of the respective qPCRs. This study, which compared different mitochondrial to nuclear gene ratio patterns of independent patients, shows that the mtLSU gene represents a highly sensitive qPCR tool for the detection of P. jirovecii, but does not display a reliable target for absolute quantification.
Collapse
Affiliation(s)
- Cara Mia Dunaiski
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke, 51109 Köln, Germany.
| | - Lena Janssen
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke, 51109 Köln, Germany.
| | - Hannah Erzinger
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke, 51109 Köln, Germany.
| | - Monika Pieper
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke, 51109 Köln, Germany.
| | - Sarah Damaschek
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke, 51109 Köln, Germany.
| | - Oliver Schildgen
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke, 51109 Köln, Germany.
| | - Verena Schildgen
- Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke, 51109 Köln, Germany.
| |
Collapse
|
9
|
Badie C, Blachowicz A, Barjaktarovic Z, Finnon R, Michaux A, Sarioglu H, Brown N, Manning G, Benotmane MA, Tapio S, Polanska J, Bouffler SD. Transcriptomic and proteomic analysis of mouse radiation-induced acute myeloid leukaemia (AML). Oncotarget 2018; 7:40461-40480. [PMID: 27250028 PMCID: PMC5130020 DOI: 10.18632/oncotarget.9626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/09/2016] [Indexed: 01/06/2023] Open
Abstract
A combined transcriptome and proteome analysis of mouse radiation-induced AMLs using two primary AMLs, cell lines from these primaries, another cell line and its in vivo passage is reported. Compared to haematopoietic progenitor and stem cells (HPSC), over 5000 transcriptome alterations were identified, 2600 present in all materials. 55 and 3 alterations were detected in the proteomes of the cell lines and primary/in vivo passage material respectively, with one common to all materials. In cell lines, approximately 50% of the transcriptome changes are related to adaptation to cell culture, and in the proteome this proportion was higher. An AML 'signature' of 17 genes/proteins commonly deregulated in primary AMLs and cell lines compared to HPSCs was identified and validated using human AML transcriptome data. This also distinguishes primary AMLs from cell lines and includes proteins such as Coronin 1, pontin/RUVBL1 and Myeloperoxidase commonly implicated in human AML. C-Myc was identified as having a key role in radiation leukaemogenesis. These data identify novel candidates relevant to mouse radiation AML pathogenesis, and confirm that pathways of leukaemogenesis in the mouse and human share substantial commonality.
Collapse
Affiliation(s)
- Christophe Badie
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - Agnieszka Blachowicz
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Techology, Gliwice, Poland
| | - Zarko Barjaktarovic
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Radiation Proteomics Group, Institute of Radiation Biology, Neuherberg, Germany
| | - Rosemary Finnon
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - Arlette Michaux
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•.CEN), Mol, Belgium
| | - Hakan Sarioglu
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Research Unit Protein Science, Neuherberg, Germany
| | - Natalie Brown
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - Grainne Manning
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - M Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•.CEN), Mol, Belgium
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Radiation Proteomics Group, Institute of Radiation Biology, Neuherberg, Germany
| | - Joanna Polanska
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Techology, Gliwice, Poland
| | - Simon D Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| |
Collapse
|
10
|
Mitochondrial UQCRB as a new molecular prognostic biomarker of human colorectal cancer. Exp Mol Med 2017; 49:e391. [PMID: 29147009 PMCID: PMC5704184 DOI: 10.1038/emm.2017.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
Ubiquinol cytochrome c reductase binding protein (UQCRB) is important for mitochondrial complex III stability, electron transport, cellular oxygen sensing and angiogenesis. However, its potential as a prognostic marker in colorectal cancer (CRC) remains unclear. The aim of this study was to determine whether UQCRB can be used as a diagnostic molecular marker for CRC. The correlation between the expression of three genes (UQCRB, UQCRFS1 and MT-CYB) in the mitochondrial respiratory chain complex III and clinico-pathological features was determined. Compared to non-tumor tissues, UQCRB gene expression was upregulated in CRC tissues. Gene and protein expression of the genes were positively correlated. Copy number variation (CNV) differences in UQCRB were observed in CRC tissues (1.32-fold) compared to non-tumor tissues. The CNV of UQCRB in CRC tissues increased proportionally with gene expression and clinical stage. Single-nucleotide polymorphisms in the 3′-untranslated region of UQCRB (rs7836698 and rs10504961) were investigated, and the rs7836698 polymorphism was associated with CRC clinical stage. DNA methylation of the UQCRB promoter revealed that most CRC patients had high methylation levels (12/15 patients) in CRC tissues compared to non-tumor tissues. UQCRB overexpression and CNV gain were correlated with specific CRC clinico-pathological features, indicating clinical significance as a prognostic predictor in CRC. Gene structural factors may be more important than gene transcription repression factors with respect to DNA methylation in UQCRB overexpression. Our results provide novel insights into the critical role of UQCRB in regulating CRC, supporting UQCRB as a new candidate for the development of diagnostics for CRC patients.
Collapse
|
11
|
Cantarella CD, Ragusa D, Giammanco M, Tosi S. Folate deficiency as predisposing factor for childhood leukaemia: a review of the literature. GENES & NUTRITION 2017; 12:14. [PMID: 28588742 PMCID: PMC5455200 DOI: 10.1186/s12263-017-0560-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Folic acid and its derivates, known as folates, are chemoprotective micronutrients of great interest because of their essential role in the maintenance of health and genomic integrity. The supplementation of folic acid during pregnancy has long been known to reduce the risk of neural tube defects (NTDs) in the foetus. Folate metabolism can be altered by many factors, including adequate intake through diet. Folate deficiency can compromise the synthesis, repair and methylation of DNA, with deleterious consequences on genomic stability and gene expression. These processes are known to be altered in chronic diseases, including cancer and cardiovascular diseases. MAIN BODY This review focuses on the association between folate intake and the risk of childhood leukaemia. Having compiled and analysed studies from the literature, we show the documented effects of folates on the genome and their role in cancer prevention and progression with particular emphasis on DNA methylation modifications. These changes are of crucial importance during pregnancy, as maternal diet has a profound impact on the metabolic and physiological functions of the foetus and the susceptibility to disease in later life. Folate deficiency is capable of modifying the methylation status of certain genes at birth in both animals and humans, with potential pathogenic and tumorigenic effects on the progeny. Pre-existing genetic polymorphisms can modify the metabolic network of folates and influence the risk of cancer, including childhood leukaemias. The protective effects of folic acid might be dose dependent, as excessive folic acid could have the adverse effect of nourishing certain types of tumours. CONCLUSION Overall, maternal folic acid supplementation before and during pregnancy seems to confer protection against the risk of childhood leukaemia in the offspring. The optimal folic acid requirements and supplementation doses need to be established, especially in conjunction with other vitamins in order to determine the most successful combinations of nutrients to maintain genomic health and wellbeing. Further research is therefore needed to uncover the role of maternal diet as a whole, as it represents a main factor capable of inducing permanent changes in the foetus.
Collapse
Affiliation(s)
- Catia Daniela Cantarella
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Denise Ragusa
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Marco Giammanco
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Sabrina Tosi
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| |
Collapse
|
12
|
Fang D, Zhang Z, Li H, Yu Q, Douglas JT, Bratasz A, Kuppusamy P, Yan SS. Increased Electron Paramagnetic Resonance Signal Correlates with Mitochondrial Dysfunction and Oxidative Stress in an Alzheimer's disease Mouse Brain. J Alzheimers Dis 2016; 51:571-80. [PMID: 26890765 DOI: 10.3233/jad-150917] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized clinically by cognitive decline and memory loss. The pathological features are amyloid-β peptide (Aβ) plaques and intracellular neurofibrillary tangles. Many studies have suggested that oxidative damage induced by reactive oxygen species (ROS) is an important mechanism for AD progression. Our recent study demonstrated that oxidative stress could further impair mitochondrial function. In the present study, we adopted a transgenic mouse model of AD (mAPP, overexpressing AβPP/Aβ in neurons) and performed redox measurements using in vivo electron paramagnetic resonance (EPR) imaging with methoxycarbamyl-proxyl (MCP) as a redox-sensitive probe for studying oxidative stress in an early stage of pathology in a transgenic AD mouse model. Through assessing oxidative stress, mitochondrial function and cognitive behaviors of mAPP mice at the age of 8-9 months, we found that oxidative stress and mitochondrial dysfunction appeared in the early onset of AD. Increased ROS levels were associated with defects of mitochondrial and cognitive dysfunction. Notably, the in vivo EPR method offers a unique way of assessing tissue oxidative stress in living animals under noninvasive conditions, and thus holds a potential for early diagnosis and monitoring the progression of AD.
Collapse
Affiliation(s)
- Du Fang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Zhihua Zhang
- School of Life Sciences, Beijing Normal University, Beijing, China.,Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Hang Li
- School of Life Sciences, Beijing Normal University, Beijing, China
| | - Qing Yu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - Justin T Douglas
- Nuclear Magnetic Resonance Laboratory, Molecular Structures Group, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Anna Bratasz
- Small Animal Imaging Core, Ohio State University, Columbus, OH, USA
| | - Periannan Kuppusamy
- Department of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
13
|
Gonçalves AC, Cortesão E, Oliveiros B, Alves V, Espadana AI, Rito L, Magalhães E, Lobão MJ, Pereira A, Nascimento Costa JM, Mota-Vieira L, Sarmento-Ribeiro AB. Oxidative stress and mitochondrial dysfunction play a role in myelodysplastic syndrome development, diagnosis, and prognosis: A pilot study. Free Radic Res 2015; 49:1081-94. [PMID: 25968944 DOI: 10.3109/10715762.2015.1035268] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The imbalance between reactive oxygen species (ROS) production and their elimination by antioxidants leads to oxidative stress. Depending on their concentration, ROS can trigger apoptosis or stimulate cell proliferation. We hypothesized that oxidative stress and mitochondrial dysfunction may participate not only in apoptosis detected in some myelodysplastic syndrome (MDS) patients, but also in increasing proliferation in other patients. We investigated the involvement of oxidative stress and mitochondrial dysfunction in MDS pathogenesis, as well as assessed their diagnostic and prognostic values. Intracellular peroxides, superoxide, superoxide/peroxides ratio, reduced glutathione (GSH), and mitochondrial membrane potential (Δψ(mit)) levels were analyzed in bone marrow cells from 27 MDS patients and 12 controls, by flow cytometry. We observed that all bone marrow cell types from MDS patients had increased intracellular peroxide levels and decreased GSH content, compared with control cells. Moreover, oxidative stress levels were MDS subtype- and risk group-dependent. Low-risk patients had the highest ROS levels, which can be related with their high apoptosis; and intermediate-2-risk patients had high Δψ(mit) that may be associated with their proliferative potential. GSH levels were negatively correlated with transfusion dependency, and peroxide levels were positively correlated with serum ferritin level. GSH content proved to be an accurate parameter to discriminate patients from controls. Finally, patients with high ROS or low GSH levels, as well as high superoxide/peroxides ratio had lower overall survival. Our results suggest that oxidative stress and mitochondrial dysfunction are involved in MDS development, and that oxidative stress parameters may constitute novel diagnosis and/or prognosis biomarkers for MDS.
Collapse
Affiliation(s)
- A C Gonçalves
- Laboratory of Oncobiology and Hematology, FMUC - Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Increased expression of interferon signaling genes in the bone marrow microenvironment of myelodysplastic syndromes. PLoS One 2015; 10:e0120602. [PMID: 25803272 PMCID: PMC4372597 DOI: 10.1371/journal.pone.0120602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/24/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction The bone marrow (BM) microenvironment plays an important role in the pathogenesis of myelodysplastic syndromes (MDS) through a reciprocal interaction with resident BM hematopoietic cells. We investigated the differences between BM mesenchymal stromal cells (MSCs) in MDS and normal individuals and identified genes involved in such differences. Materials and Methods BM-derived MSCs from 7 MDS patients (3 RCMD, 3 RAEB-1, and 1 RAEB-2) and 7 controls were cultured. Global gene expression was analyzed using a microarray. Result We found 314 differentially expressed genes (DEGs) in RCMD vs. control, 68 in RAEB vs. control, and 51 in RAEB vs. RCMD. All comparisons were clearly separated from one another by hierarchical clustering. The overall similarity between differential expression signatures from the RCMD vs. control comparison and the RAEB vs. control comparison was highly significant (p = 0), which indicates a common transcriptomic response in these two MDS subtypes. RCMD and RAEB simultaneously showed an up-regulation of interferon alpha/beta signaling and the ISG15 antiviral mechanism, and a significant fraction of the RAEB vs. control DEGs were also putative targets of transcription factors IRF and ICSBP. Pathways that involved RNA polymerases I and III and mitochondrial transcription were down-regulated in RAEB compared to RCMD. Conclusion Gene expression in the MDS BM microenvironment was different from that in normal BM and exhibited altered expression according to disease progression. The present study provides genetic evidence that inflammation and immune dysregulation responses that involve the interferon signaling pathway in the BM microenvironment are associated with MDS pathogenesis, which suggests BM MSCs as a possible therapeutic target in MDS.
Collapse
|
15
|
Germing U, Kobbe G, Haas R, Gattermann N. Myelodysplastic syndromes: diagnosis, prognosis, and treatment. DEUTSCHES ARZTEBLATT INTERNATIONAL 2015; 110:783-90. [PMID: 24300826 DOI: 10.3238/arztebl.2013.0783] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are malignant stem-cell diseases that are usually diagnosed in elderly patients who present with anemia or, less commonly, bi- or pancytopenia. Their incidence in persons over age 80 is above 50 new cases per 100,000 persons per year. Their clinical course is highly variable. About one-quarter of all patients with MDS develop acute leukemia. The median survival time from the moment of diagnosis is about 30 months. METHOD We selectively searched the PubMed database for pertinent articles and guidelines from the years 2000-2013. We used the search term "myelodysplastic syndromes." RESULTS MDS are diagnosed by cytology, with consideration of the degree of dysplasia and the percentage of blast cells in the blood and bone marrow, and on a cytogenetic basis, as recommended in the WHO classification. In particular, chromosomal analysis is necessary for prognostication. The Revised International Prognosis Scoring System (IPSS-R) enables more accurate prediction of the course of disease by dividing patients into a number of low- and high-risk groups. The median survival time ranges from a few months to many years. The approved treatments, aside from transfusion therapy, include iron depletion therapy for low-risk patients, lenalidomide for low-risk patients with a deletion on the long arm of chromosome 5, and 5-azacytidine for high-risk patients. High-risk patients up to age 70 who have no major accompanying illnesses should be offered allogenic stem-cell transplantation with curative intent. The cure rates range from 30% to 50%. Mucositis, hemorrhages, infections, and graft-versus-host diseases are the most common complications of this form of treatment. CONCLUSION Myelodysplastic syndromes are treated on an individualized, risk-adapted basis after precise diagnostic evaluation and after assessment of the prognosis. More studies are needed so that stage-adapted treatment can be improved still further.
Collapse
Affiliation(s)
- Ulrich Germing
- Department of Haematology, Oncology and Clinical Immunology, Düsseldorf University Hospital
| | | | | | | |
Collapse
|
16
|
Abstract
Somatic mitochondrial DNA (mtDNA) mutations contribute to the pathogenesis of age-related disorders, including myelodysplastic syndromes (MDS). The accumulation of mitochondria harboring mtDNA mutations in patients with these disorders suggests a failure of normal mitochondrial quality-control systems. The mtDNA-mutator mice acquire somatic mtDNA mutations via a targeted defect in the proofreading function of the mtDNA polymerase, PolgA, and develop macrocytic anemia similar to that of patients with MDS. We observed an unexpected defect in clearance of dysfunctional mitochondria at specific stages during erythroid maturation in hematopoietic cells from aged mtDNA-mutator mice. Mechanistically, aberrant activation of mechanistic target of rapamycin signaling and phosphorylation of uncoordinated 51-like kinase (ULK) 1 in mtDNA-mutator mice resulted in proteasome-mediated degradation of ULK1 and inhibition of autophagy in erythroid cells. To directly evaluate the consequence of inhibiting autophagy on mitochondrial function in erythroid cells harboring mtDNA mutations in vivo, we deleted Atg7 from erythroid progenitors of wild-type and mtDNA-mutator mice. Genetic disruption of autophagy did not cause anemia in wild-type mice but accelerated the decline in mitochondrial respiration and development of macrocytic anemia in mtDNA-mutator mice. These findings highlight a pathological feedback loop that explains how dysfunctional mitochondria can escape autophagy-mediated degradation and propagate in cells predisposed to somatic mtDNA mutations, leading to disease.
Collapse
|
17
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:541230. [PMID: 24876913 PMCID: PMC4024404 DOI: 10.1155/2014/541230] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/24/2014] [Indexed: 02/07/2023]
Abstract
Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients.
Collapse
Affiliation(s)
- Giovanni Pagano
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Annarita Aiello Talamanca
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Giuseppe Castello
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Mario D. Cordero
- Research Laboratory, Dental School, Sevilla University, 41009 Sevilla, Spain
| | - Marco d'Ischia
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, 70126 Bari, Italy
| | | | - Sandra Petrović
- “Vinca” Institute of Nuclear Sciences, University of Belgrade, 11070 Belgrade, Serbia
| | - Luca Tiano
- Department of Clinical and Dental Sciences, Polytechnical University of Marche, 60100 Ancona, Italy
| | | |
Collapse
|
18
|
Differential TGFB1-Signalling in Endometrium from Women with Endometriosis: Importance of Appropriate Housekeeping Genes. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2014. [DOI: 10.5301/je.5000171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purpose Endometriosis is characterised by inflammation, fibrosis and scarring, all processes known to involve transforming growth factor-β1 (TGFB1). We examined the expression of genes involved in TGFB1 signalling in epithelium and stroma from eutopic versus ectopic endometrium in women with endometriosis. Methods Eutopic and ectopic endometrium was collected during laparoscopy from women with endometriosis (n = 4 proliferative, n = 7 secretory). Laser capture microdissection was used to collect glandular epithelium and CD10-positive stroma from ectopic lesions and eutopic endometrium. Quantitative real-time RT-PCR was used to examine TGFB1, SMAD family member-2 (SMAD2), SMAD3 and SMAD4 mRNA. Expression of mRNA was relative to an RNA-spike. B2M and RPL13A mRNA, and 18S rRNA were also examined; however, expression varied between eutopic and ectopic sites making them unsuitable housekeeping genes in this model. Results TGFB1, SMAD3 and SMAD4 mRNA expression was significantly higher in eutopic versus ectopic glandular epithelium; SMAD3 expression was significantly higher in secretory versus proliferative phase eutopic epithelium. TGFB1 expression was significantly higher in eutopic versus ectopic stroma. Conclusions Variations in TGFB1, SMAD3 and SMAD4 mRNA expression in eutopic relative to ectopic tissues are consistent with a specific function in eutopic endometrium not replicated in lesions. We suggest that TGFB1-mediated activity is altered in ectopic lesions relative to eutopic endometrium in women with endometriosis, which may affect lesion maintenance. Further research examining the functional consequences of TGFB1 signalling variations is required, including extension of these studies to women without the disorder. Further studies must also carefully consider their housekeeping method and its impact on data and conclusions.
Collapse
|
19
|
Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood 2013; 122:3322-30. [DOI: 10.1182/blood-2013-04-491944] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Key Points
More than 60% of primary AML blasts constitutively produce high levels of NOX-derived reactive oxygen species (ROS), which drives AML proliferation. High ROS AMLs show depleted antioxidant defenses but evade the oxidative stress response through suppression of p38MAPK signaling.
Collapse
|
20
|
Abstract
Hematopoietic stem cells (HSCs) are inherently quiescent and self-renewing, yet can differentiate and commit to multiple blood cell types. Intracellular mitochondrial content is dynamic, and there is an increase in mitochondrial content during differentiation and lineage commitment in HSCs. HSCs reside in a hypoxic niche within the bone marrow and rely heavily on glycolysis, while differentiated and committed progenitors rely on oxidative phosphorylation. Increased oxidative phosphorylation during differentiation and commitment is not only due to increased mitochondrial content but also due to changes in mitochondrial cytosolic distribution and efficiency. These changes in the intracellular mitochondrial landscape contribute signals toward regulating differentiation and commitment. Thus, a functional relationship exists between the mitochondria in HSCs and the state of the HSCs (i.e., stemness vs. differentiated). This review focuses on how autophagy-mediated mitochondrial clearance (i.e., mitophagy) may affect HSC mitochondrial content, thereby influencing the fate of HSCs and maintenance of hematopoietic homeostasis.
Collapse
Affiliation(s)
- Aashish Joshi
- Department of Pathology; St. Jude Children's Research Hospital; Memphis, TN USA
| | | |
Collapse
|
21
|
Silkjaer T, Nyvold CG, Juhl-Christensen C, Hokland P, Nørgaard JM. Mitochondrial cytochrome c oxidase subunit II variations predict adverse prognosis in cytogenetically normal acute myeloid leukaemia. Eur J Haematol 2013; 91:295-303. [PMID: 23826975 DOI: 10.1111/ejh.12166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2013] [Indexed: 12/31/2022]
Abstract
Alterations in the two catalytic genes cytochrome c oxidase subunits I and II (COI and COII) have recently been suggested to have an adverse impact on prognosis in patients with acute myeloid leukaemia (AML). In order to explore this in further detail, we sequenced these two mitochondrial genes in diagnostic bone marrow or blood samples in 235 patients with AML. In 37 (16%) patients, a non-synonymous variation in either COI or COII could be demonstrated. No patients harboured both COI and COII non-synonymous variations. Twenty-four (10%) patients had non-synonymous variations in COI, whereas 13 (6%) patients had non-synonymous variations in COII. The COI and COII are essential subunits of cytochrome c oxidase that is the terminal enzyme in the oxidative phosphorylation complexes. In terms of disease course, we observed that in patients with a normal cytogenetic analysis at disease presentation (CN-AML) treated with curative intent, the presence of a non-synonymous variation in the COII was an adverse prognostic marker for both overall survival and disease-free survival (DFS) in both univariate (DFS; hazard ratio (HR) 4.4, P = 0.006) and multivariate analyses (DFS; HR 7.2, P = 0.001). This is the first demonstration of a mitochondrial aberration playing an adverse prognostic role in adult AML, and we argue that its role as a potentially novel adverse prognostic marker in the subset of CN-AML should be explored further.
Collapse
Affiliation(s)
- Trine Silkjaer
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
22
|
Claus C, Schönefeld K, Hübner D, Chey S, Reibetanz U, Liebert UG. Activity increase in respiratory chain complexes by rubella virus with marginal induction of oxidative stress. J Virol 2013; 87:8481-92. [PMID: 23720730 PMCID: PMC3719815 DOI: 10.1128/jvi.00533-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are important for the viral life cycle, mainly by providing the energy required for viral replication and assembly. A highly complex interaction with mitochondria is exerted by rubella virus (RV), which includes an increase in the mitochondrial membrane potential as a general marker for mitochondrial activity. We aimed in this study to provide a more comprehensive picture of the activity of mitochondrial respiratory chain complexes I to IV. Their activities were compared among three different cell lines. A strong and significant increase in the activity of mitochondrial respiratory enzyme succinate:ubiquinone oxidoreductase (complex II) and a moderate increase of ubiquinol:cytochrome c oxidoreductase (complex III) were detected in all cell lines. In contrast, the activity of mitochondrial respiratory enzyme cytochrome c oxidase (complex IV) was significantly decreased. The effects on mitochondrial functions appear to be RV specific, as they were absent in control infections with measles virus. Additionally, these alterations of the respiratory chain activity were not associated with an elevated transcription of oxidative stress proteins, and reactive oxygen species (ROS) were induced only marginally. Moreover, protein and/or mRNA levels of markers for mitochondrial biogenesis and structure were elevated, such as nuclear respiratory factors (NRFs) and mitofusin 2 (Mfn2). Together, these results establish a novel view on the regulation of mitochondrial functions by viruses.
Collapse
Affiliation(s)
- C. Claus
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - K. Schönefeld
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - D. Hübner
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - S. Chey
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - U. Reibetanz
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - U. G. Liebert
- Institute of Virology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Kamiński MM, Röth D, Krammer PH, Gülow K. Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications. Arch Immunol Ther Exp (Warsz) 2013; 61:367-84. [PMID: 23749029 DOI: 10.1007/s00005-013-0235-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/13/2013] [Indexed: 12/22/2022]
Abstract
Early scientific reports limited the cell biological role of reactive oxygen species (ROS) to the cause of pathological damage. However, extensive research performed over the last decade led to a wide recognition of intracellular oxidative/redox signaling as a crucial mechanism of homeostatic regulation. Amongst different cellular processes known to be influenced by redox signaling, T-cell activation is one of the most established. Numerous studies reported an indispensible role for ROS as modulators of T-cell receptor-induced transcription. Nevertheless, mechanistic details regarding signaling pathways triggered by ROS are far from being delineated. The nature and interplay between enzymatic sources involved in the generation of "oxidative signals" are also a matter of ongoing research. In particular, active participation of the mitochondrial respiratory chain as ROS producer constitutes an intriguing issue with various implications for bioenergetics of activated T cells as well as for T-cell-mediated pathologies. The aim of the current review is to address these interesting concepts.
Collapse
Affiliation(s)
- Marcin M Kamiński
- Tumour Immunology Program, Division of Immunogenetics (D030), German Cancer Research Center (DKFZ), Heidelberg, Germany,
| | | | | | | |
Collapse
|
24
|
Piazzi M, Blalock WL, Bavelloni A, Faenza I, D'Angelo A, Maraldi NM, Cocco L. Phosphoinositide-specific phospholipase C β 1b (PI-PLCβ1b) interactome: affinity purification-mass spectrometry analysis of PI-PLCβ1b with nuclear protein. Mol Cell Proteomics 2013; 12:2220-35. [PMID: 23665500 DOI: 10.1074/mcp.m113.029686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two isoforms of inositide-dependent phospholipase C β1 (PI-PLCβ1) are generated by alternative splicing (PLCβ1a and PLCβ1b). Both isoforms are present within the nucleus, but in contrast to PLCβ1a, the vast majority of PLCβ1b is nuclear. In mouse erythroid leukemia cells, PI-PLCβ1 is involved in the regulation of cell division and the balance between cell proliferation and differentiation. It has been demonstrated that nuclear localization is crucial for the enzymatic function of PI-PLCβ1, although the mechanism by which this nuclear import occurs has never been fully characterized. The aim of this study was to characterize both the mechanism of nuclear localization and the molecular function of nuclear PI-PLCβ1 by identifying its interactome in Friend's erythroleukemia isolated nuclei, utilizing a procedure that coupled immuno-affinity purification with tandem mass spectrometry analysis. Using this procedure, 160 proteins were demonstrated to be in association with PI-PLCβ1b, some of which have been previously characterized, such as the splicing factor SRp20 (Srsf3) and Lamin B (Lmnb1). Co-immunoprecipitation analysis of selected proteins confirmed the data obtained via mass spectrometry. Of particular interest was the identification of the nuclear import proteins Kpna2, Kpna4, Kpnb1, Ran, and Rangap1, as well as factors involved in hematological malignancies and several anti-apoptotic proteins. These data give new insight into possible mechanisms of nuclear trafficking and functioning of this critical signaling molecule.
Collapse
Affiliation(s)
- Manuela Piazzi
- Cell Signaling Laboratory, Department of Biomedical Science DIBINEM, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Silkjaer T, Nørgaard JM, Aggerholm A, Ebbesen LH, Kjeldsen E, Hokland P, Nyvold CG. Characterization and prognostic significance of mitochondrial DNA variations in acute myeloid leukemia. Eur J Haematol 2013; 90:385-96. [DOI: 10.1111/ejh.12090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Trine Silkjaer
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | | - Anni Aggerholm
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | | - Eigil Kjeldsen
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | - Peter Hokland
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | |
Collapse
|
26
|
Horan MP, Pichaud N, Ballard JWO. Review: Quantifying Mitochondrial Dysfunction in Complex Diseases of Aging. ACTA ACUST UNITED AC 2012; 67:1022-35. [DOI: 10.1093/gerona/glr263] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|