1
|
Jha R, Kinna A, Hotblack A, Bughda R, Bulek A, Gannon I, Ilca T, Allen C, Lamb K, Dolor A, Scott I, Parekh F, Sillibourne J, Cordoba S, Onuoha S, Thomas S, Ferrari M, Pule M. Designer Small-Molecule Control System Based on Minocycline-Induced Disruption of Protein-Protein Interaction. ACS Chem Biol 2024; 19:308-324. [PMID: 38243811 PMCID: PMC10877577 DOI: 10.1021/acschembio.3c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
A versatile, safe, and effective small-molecule control system is highly desirable for clinical cell therapy applications. Therefore, we developed a two-component small-molecule control system based on the disruption of protein-protein interactions using minocycline, an FDA-approved antibiotic with wide availability, excellent biodistribution, and low toxicity. The system comprises an anti-minocycline single-domain antibody (sdAb) and a minocycline-displaceable cyclic peptide. Here, we show how this versatile system can be applied to OFF-switch split CAR systems (MinoCAR) and universal CAR adaptors (MinoUniCAR) with reversible, transient, and dose-dependent suppression; to a tunable T cell activation module based on MyD88/CD40 signaling; to a controllable cellular payload secretion system based on IL12 KDEL retention; and as a cell/cell inducible junction. This work represents an important step forward in the development of a remote-controlled system to precisely control the timing, intensity, and safety of therapeutic interventions.
Collapse
Affiliation(s)
- Ram Jha
- Autolus
Therapeutics, London W12 7FP, U.K.
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| | | | - Alastair Hotblack
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| | | | - Anna Bulek
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | - Tudor Ilca
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | | | | | - Ian Scott
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | | | | | | | | | | | - Martin Pule
- Autolus
Therapeutics, London W12 7FP, U.K.
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| |
Collapse
|
2
|
Bergold PJ, Furhang R, Lawless S. Treating Traumatic Brain Injury with Minocycline. Neurotherapeutics 2023; 20:1546-1564. [PMID: 37721647 PMCID: PMC10684850 DOI: 10.1007/s13311-023-01426-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury (TBI) results in both rapid and delayed brain damage. The speed, complexity, and persistence of TBI present large obstacles to drug development. Preclinical studies from multiple laboratories have tested the FDA-approved anti-microbial drug minocycline (MINO) to treat traumatic brain injury. At concentrations greater than needed for anti-microbial action, MINO readily inhibits microglial activation. MINO has additional pleotropic effects including anti-inflammatory, anti-oxidant, and anti-apoptotic activities. MINO inhibits multiple proteins that promote brain injury including metalloproteases, caspases, calpain, and polyADP-ribose-polymerase-1. At these elevated doses, MINO is well tolerated and enters the brain even when the blood-brain barrier is intact. Most preclinical studies with a first dose of MINO at less than 1 h after injury have shown improved multiple outcomes after TBI. Fewer studies with more delayed dosing have yielded similar results. A small number of clinical trials for TBI have established the safety of MINO and suggested some drug efficacy. Studies are also ongoing that either improve MINO pharmacology or combine MINO with other drugs to increase its therapeutic efficacy against TBI. This review builds upon a previous, recent review by some of the authors (Lawless and Bergold, Neural Regen Res 17:2589-92, 2022). The present review includes the additional preclinical studies examining the efficacy of minocycline in preclinical TBI models. This review also includes recommendations for a clinical trial to test MINO to treat TBI.
Collapse
Affiliation(s)
- Peter J Bergold
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA.
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA.
| | - Rachel Furhang
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA
| | - Siobhán Lawless
- Graduate Programs in Neural and Behavioral Sciences, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, New York, NY, 11203, USA
| |
Collapse
|
3
|
Ni RJ, Wang YY, Gao TH, Wang QR, Wei JX, Zhao LS, Ma YR, Ma XH, Li T. Depletion of microglia with PLX3397 attenuates MK-801-induced hyperactivity associated with regulating inflammation-related genes in the brain. Zool Res 2023; 44:543-555. [PMID: 37147908 PMCID: PMC10236309 DOI: 10.24272/j.issn.2095-8137.2022.389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Acute administration of MK-801 (dizocilpine), an N-methyl-D-aspartate receptor (NMDAR) antagonist, can establish animal models of psychiatric disorders. However, the roles of microglia and inflammation-related genes in these animal models of psychiatric disorders remain unknown. Here, we found rapid elimination of microglia in the prefrontal cortex (PFC) and hippocampus (HPC) of mice following administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor PLX3397 (pexidartinib) in drinking water. Single administration of MK-801 induced hyperactivity in the open-field test (OFT). Importantly, PLX3397-induced depletion of microglia prevented the hyperactivity and schizophrenia-like behaviors induced by MK-801. However, neither repopulation of microglia nor inhibition of microglial activation by minocycline affected MK-801-induced hyperactivity. Importantly, microglial density in the PFC and HPC was significantly correlated with behavioral changes. In addition, common and distinct glutamate-, GABA-, and inflammation-related gene (116 genes) expression patterns were observed in the brains of PLX3397- and/or MK-801-treated mice. Moreover, 10 common inflammation-related genes ( CD68, CD163, CD206, TMEM119, CSF3R, CX3CR1, TREM2, CD11b, CSF1R, and F4/80) with very strong correlations were identified in the brain using hierarchical clustering analysis. Further correlation analysis demonstrated that the behavioral changes in the OFT were most significantly associated with the expression of inflammation-related genes ( NLRP3, CD163, CD206, F4/80, TMEM119, and TMEM176a), but not glutamate- or GABA-related genes in PLX3397- and MK-801-treated mice. Thus, our results suggest that microglial depletion via a CSF1R/c-Kit kinase inhibitor can ameliorate the hyperactivity induced by an NMDAR antagonist, which is associated with modulation of immune-related genes in the brain.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Yi-Yan Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Tian-Hao Gao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Qi-Run Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Jin-Xue Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Lian-Sheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Yang-Rui Ma
- Golden Apple Jincheng NO.1 Secondary School, Chengdu, Sichuan 610213, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China. E-mail:
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310014, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510799, China. E-mail:
| |
Collapse
|
4
|
Hotblack A, Kokalaki EK, Palton MJ, Cheung GWK, Williams IP, Manzoor S, Grothier TI, Piapi A, Fiaccadori V, Wawrzyniecka P, Roddy HA, Agliardi G, Roddie C, Onuoha S, Thomas S, Cordoba S, Pule M. Tunable control of CAR T cell activity through tetracycline mediated disruption of protein-protein interaction. Sci Rep 2021; 11:21902. [PMID: 34754016 PMCID: PMC8578617 DOI: 10.1038/s41598-021-01418-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells are a promising form of cancer immunotherapy, although they are often associated with severe toxicities. Here, we present a split-CAR design incorporating separate antigen recognition and intracellular signaling domains. These exploit the binding between the tetracycline repressor protein and a small peptide sequence (TIP) to spontaneously assemble as a functional CAR. Addition of the FDA-approved, small molecule antibiotic minocycline, acts as an "off-switch" by displacing the signaling domain and down-tuning CAR T activity. Here we describe the optimization of this split-CAR approach to generate a CAR in which cytotoxicity, cytokine secretion and proliferation can be inhibited in a dose-dependent and reversible manner. Inhibition is effective during on-going CAR T cell activation and inhibits activation and tumor control in vivo. This work shows how optimization of split-CAR structure affects function and adds a novel design allowing easy CAR inhibition through an FDA-approved small molecule.
Collapse
Affiliation(s)
- Alastair Hotblack
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK
| | | | - Morgan J Palton
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK
| | - Gordon Weng-Kit Cheung
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK
| | - Iwan P Williams
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK
| | | | | | - Alice Piapi
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK
| | - Valeria Fiaccadori
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK
| | - Patrycja Wawrzyniecka
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK
| | - Harriet A Roddy
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK
| | - Giulia Agliardi
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK
| | - Claire Roddie
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK
| | | | | | | | - Martin Pule
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London, WC1E 6DD, UK. .,Autolus Therapeutics, White City, London, UK.
| |
Collapse
|
5
|
Holmkvist AD, Agorelius J, Forni M, Nilsson UJ, Linsmeier CE, Schouenborg J. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J Nanobiotechnology 2020; 18:27. [PMID: 32024534 PMCID: PMC7003334 DOI: 10.1186/s12951-020-0585-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neural interfaces often elicit inflammatory responses and neuronal loss in the surrounding tissue which adversely affect the function and longevity of the implanted device. Minocycline, an anti-inflammatory pharmaceutics with neuroprotective properties, may be used for reducing the acute brain tissue responses after implantation. However, conventional administration routes require high doses which can cause adverse systemic side effects. Therefore, the aim of this study was to develop and evaluate a new drug-delivery-system for local and sustained administration of minocycline in the brain. METHODS Stainless steel needles insulated with Parylene-C were dip-coated with non-crosslinked gelatin and minocycline-loaded PLGA nanoparticles (MC-NPs) were incorporated into the gelatin-coatings by an absorption method and subsequently trapped by drying the gelatin. Parylene-C insulated needles coated only with gelatin were used as controls. The expression of markers for activated microglia (CD68), all microglia (CX3CR1-GFP), reactive astrocytes (GFAP), neurons (NeuN) and all cell nuclei (DAPI) surrounding the implantation sites were quantified at 3 and 7 days after implantation in mice. RESULTS MC-NPs were successfully incorporated into gelatin-coatings of neural implants by an absorption method suitable for thermosensitive drug-loads. Immunohistochemical analysis of the in vivo brain tissue responses, showed that MC-NPs significantly attenuate the activation of microglial cells without effecting the overall population of microglial cells around the implantation sites. A delayed but significant reduction of the astrocytic response was also found in comparison to control implants. No effect on neurons or total cell count was found which may suggest that the MC-NPs are non-toxic to the central nervous system. CONCLUSIONS A novel drug-nanoparticle-delivery-system was developed for neural interfaces and thermosensitive drug-loads. The local delivery of MC-NPs was shown to attenuate the acute brain tissue responses nearby an implant and therefore may be useful for improving biocompatibility of implanted neuro-electronic interfaces. The developed drug-delivery-system may potentially also be used for other pharmaceutics to provide highly localized and therefore more specific effects as compared to systemic administration.
Collapse
Affiliation(s)
- Alexander Dontsios Holmkvist
- Neuronano Research Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Medicon Village, Building 404 A2, Scheelevägen 2, 223 81, Lund, Sweden. .,Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.
| | - Johan Agorelius
- Neuronano Research Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Medicon Village, Building 404 A2, Scheelevägen 2, 223 81, Lund, Sweden.,NanoLund, Lund University, Professorsgatan 1, 223 63, Lund, Sweden
| | - Matilde Forni
- Neuronano Research Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Medicon Village, Building 404 A2, Scheelevägen 2, 223 81, Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Cecilia Eriksson Linsmeier
- Neuronano Research Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Medicon Village, Building 404 A2, Scheelevägen 2, 223 81, Lund, Sweden
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Medicon Village, Building 404 A2, Scheelevägen 2, 223 81, Lund, Sweden. .,NanoLund, Lund University, Professorsgatan 1, 223 63, Lund, Sweden.
| |
Collapse
|
6
|
Musolino ST, Schartner EP, Hutchinson MR, Salem A. Minocycline attenuates 3,4-methylenedioxymethamphetamine-induced hyperthermia in the rat brain. Eur J Pharmacol 2019; 858:172495. [PMID: 31238065 DOI: 10.1016/j.ejphar.2019.172495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
Hyperthermia is most dangerous clinical symptom of acute MDMA administration, and a key factor related to potentially life-threatening MDMA-induced complications. MDMA induces a consistently faster onset of brain hyperthermia when compared to a delayed and moderate hyperthermia in the body, and the most harmful effects of MDMA are related to its modulation of neural functions. The primary focus of this study was to investigate the effects of minocycline, a centrally acting tetracycline derivative on MDMA-induced brain hyperthermia at high ambient temperature. However, we also simultaneously recorded body temperature, heart rate, and locomotor activity changes, allowing us to gain a better understanding of the mechanisms underlying the MDMA-induced hyperthermic response. We also investigated the effects of MDMA at normal ambient temperature to provide further evidence as to the importance of environmental factors on the intensity of MDMA's temperature effects. At normal ambient temperature, MDMA (10 mg/kg, i.p.) induced a significant brain and body hypothermia for the first 90 min following drug administration, and significantly increased heart rate and locomotor activity compared to saline controls. At high ambient temperature however, MDMA (10 mg/kg, i.p.) induced a robust and extended brain and body hyperthermia, as well as significantly increased heart rate and locomotor activity. A 3-day minocycline (50 mg/kg, i.p.) pre-treatment significantly attenuated MDMA-induced increases in brain temperature, body temperature, heart rate, and locomotor activity. Our findings indicate that minocycline is more effective in attenuating the exacerbated MDMA-induced hyperthermic response in the brain compared to the body at high ambient temperature.
Collapse
Affiliation(s)
- Stefan T Musolino
- ARC Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Adelaide, SA, 5005, Australia; Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Erik P Schartner
- ARC Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Adelaide, SA, 5005, Australia; School of Physical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Adelaide, SA, 5005, Australia; Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Abdallah Salem
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
7
|
Desruelle AV, Louge P, Richard S, Blatteau JE, Gaillard S, De Maistre S, David H, Risso JJ, Vallée N. Demonstration by Infra-Red Imaging of a Temperature Control Defect in a Decompression Sickness Model Testing Minocycline. Front Physiol 2019; 10:933. [PMID: 31396102 PMCID: PMC6668502 DOI: 10.3389/fphys.2019.00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
The prevention, prognosis and resolution of decompression sickness (DCS) are not satisfactory. The etiology of DCS has highlighted thrombotic and inflammatory phenomena that could cause severe neurological disorders or even death. Given the immunomodulatory effects described for minocycline, an antibiotic in widespread use, we have decided to explore its effects in an experimental model for decompression sickness. 40 control mice (Ctrl) and 40 mice treated orally with 90 mg/kg of minocycline (MINO) were subjected to a protocol in a hyperbaric chamber, compressed with air. The purpose was to mimic a scuba dive to a depth of 90 msw and its pathogenic decompression phase. Clinical examinations and blood counts were conducted after the return to the surface. For the first time they were completed by a simple infrared (IR) imaging technique in order to assess feasibility and its clinical advantage in differentiating the sick mice (DCS) from the healthy mice (NoDCS). In this tudy, exposure to the hyperbaric protocol provoked a reduction in the number of circulating leukocytes. DCS in mice, manifesting itself by paralysis or convulsion for example, is also associated with a fall in platelets count. Cold areas ( < 25°C) were detected by IR in the hind paws and tail with significant differences (p < 0.05) between DCS and NoDCS. Severe hypothermia was also shown in the DCS mice. The ROC analysis of the thermograms has made it possible to determine that an average tail temperature below 27.5°C allows us to consider the animals to be suffering from DCS (OR = 8; AUC = 0.754, p = 0.0018). Minocycline modulates blood analysis and it seems to limit the mobilization of monocytes and granulocytes after the provocative dive. While a higher proportion of mice treated with minocycline experienced DCS symptoms, there is no significant difference. The infrared imaging has made it possible to show severe hypothermia. It suggests an modification of thermregulation in DCS animals. Surveillance by infrared camera is fast and it can aid the prognosis in the case of decompression sickness in mice.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Pierre Louge
- Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | | | - Jean-Eric Blatteau
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France.,Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | | | - Sébastien De Maistre
- Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | - Hélène David
- Apricot Inhalotherapeutics, Saint-Laurent-de-l'Île-d'Orléans, QC, Canada
| | - Jean-Jacques Risso
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Nicolas Vallée
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| |
Collapse
|
8
|
Poloyac SM, Bertz RJ, McDermott LA, Marathe P. Pharmacological Optimization for Successful Traumatic Brain Injury Drug Development. J Neurotrauma 2019; 37:2435-2444. [PMID: 30816062 DOI: 10.1089/neu.2018.6295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The purpose of this review is to highlight the pharmacological barrier to drug development for traumatic brain injury (TBI) and to discuss best practice strategies to overcome such barriers. Specifically, this article will review the pharmacological considerations of moving from the disease target "hit" to the "lead" compound with drug-like and central nervous system (CNS) penetrant properties. In vitro assessment of drug-like properties will be detailed, followed by pre-clinical studies to ensure adequate pharmacokinetic and pharmacodynamic characteristics of response. The importance of biomarker development and utilization in both pre-clinical and clinical studies will be detailed, along with the importance of identifying diagnostic, pharmacodynamic/response, and prognostic biomarkers of injury type or severity, drug target engagement, and disease progression. This review will detail the important considerations in determining in vivo pre-clinical dose selection, as well as cross-species and human equivalent dose selection. Specific use of allometric scaling, pharmacokinetic and pharmacodynamic criteria, as well as incorporation of biomarker assessments in human dose selection for clinical trial design will also be discussed. The overarching goal of this review is to detail the pharmacological considerations in the drug development process as a method to improve both pre-clinical and clinical study design as we evaluate novel therapies to improve outcomes in patients with TBI.
Collapse
Affiliation(s)
- Samuel M Poloyac
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Richard J Bertz
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Lee A McDermott
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|
9
|
Zhang G, Zha J, Liu J, Di J. Minocycline impedes mitochondrial-dependent cell death and stabilizes expression of hypoxia inducible factor-1α in spinal cord injury. Arch Med Sci 2019; 15:475-483. [PMID: 30899301 PMCID: PMC6425201 DOI: 10.5114/aoms.2018.73520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 01/01/2018] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION One of the crucial mechanisms following spinal cord injury is mitochondria-associated cell death. Minocycline, an anti-inflammatory drug, is well known to impede mitochondrial cell death. However, there has been no study on the effect of minocycline linking Fas cell surface death receptor (FAS)-mediated cell death and hypoxia inducible factor (HIF-1α), the targets involved in mitochondrial cell death. MATERIAL AND METHODS Male Sprague Dawley rats (N = 15, divided into three groups) were subjected to traumatic spinal cord injury and were injected with minocycline (n = 5) (90 mg/kg and later a 45 mg/kg dose twice a day (every 12 h)). Injection with sterile PBS in injured animals served as the vehicle (n = 5) and another group comprised healthy animals (n = 5). TUNEL assay was used to quantify cell death. The release of Smac/Diablo, cytochrome-c (cyt-c), HIF-1α, FAS ligand (FASL) and tumour necrosis factor-α (TNF-α) was measured using ELISA. Expression of HIF-1α, FASL and other cell death associated factors was quantified at the mRNA and protein level and confirmed with immunohistochemistry. RESULTS There was a marked reduction in the HIF-1α and FASL expression levels in the minocycline-treated group compared to the vehicle. The reduction of HIF-1α and FASL was associated with other factors linked to cell death (Smac/Diablo, cyt-c, TNF-α, p53, caspase-8 and BH3 interacting domain death agonist (BID)) (p < 0.5; *p < 0.05 vs. vehicle group, **p < 0.01 vs. vehicle group). CONCLUSIONS The present study focuses on the investigation of minocycline in inhibiting mitochondria-associated cell death by modulating FASL and HIF-1α expression, which are seemingly interlinked mechanisms contributing to cell death.
Collapse
Affiliation(s)
- Guolei Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junpu Zha
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junchuan Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Di
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, Fu T, Worringer K, Brown HE, Wang J, Kaykas A, Karmacharya R, Goold CP, Sheridan SD, Perlis RH. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 2019; 22:374-385. [PMID: 30718903 DOI: 10.1038/s41593-018-0334-7] [Citation(s) in RCA: 483] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
Synapse density is reduced in postmortem cortical tissue from schizophrenia patients, which is suggestive of increased synapse elimination. Using a reprogrammed in vitro model of microglia-mediated synapse engulfment, we demonstrate increased synapse elimination in patient-derived neural cultures and isolated synaptosomes. This excessive synaptic pruning reflects abnormalities in both microglia-like cells and synaptic structures. Further, we find that schizophrenia risk-associated variants within the human complement component 4 locus are associated with increased neuronal complement deposition and synapse uptake; however, they do not fully explain the observed increase in synapse uptake. Finally, we demonstrate that the antibiotic minocycline reduces microglia-mediated synapse uptake in vitro and its use is associated with a modest decrease in incident schizophrenia risk compared to other antibiotics in a cohort of young adults drawn from electronic health records. These findings point to excessive pruning as a potential target for delaying or preventing the onset of schizophrenia in high-risk individuals.
Collapse
Affiliation(s)
- Carl M Sellgren
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA. .,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Jessica Gracias
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bradley Watmuff
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jonathan D Biag
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jessica M Thanos
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Ting Fu
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Hannah E Brown
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer Wang
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ajamete Kaykas
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rakesh Karmacharya
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | | | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Yew WP, Djukic ND, Jayaseelan JSP, Walker FR, Roos KAA, Chataway TK, Muyderman H, Sims NR. Early treatment with minocycline following stroke in rats improves functional recovery and differentially modifies responses of peri-infarct microglia and astrocytes. J Neuroinflammation 2019; 16:6. [PMID: 30626393 PMCID: PMC6325745 DOI: 10.1186/s12974-018-1379-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Altered neuronal connectivity in peri-infarct tissue is an important contributor to both the spontaneous recovery of neurological function that commonly develops after stroke and improvements in recovery that have been induced by experimental treatments in animal models. Microglia and astrocytes are primary determinants of the environment in peri-infarct tissue and hence strongly influence the potential for neuronal plasticity. However, the specific roles of these cells and the timing of critical changes in their function are not well understood. Minocycline can protect against ischemic damage and promote recovery. These effects are usually attributed, at least partially, to the ability of this drug to suppress microglial activation. This study tested the ability of minocycline treatment early after stroke to modify reactive responses in microglia and astrocytes and improve recovery. METHODS Stroke was induced by photothrombosis in the forelimb sensorimotor cortex of Sprague-Dawley rats. Minocycline was administered for 2 days after stroke induction and the effects on forelimb function assessed up to 28 days. The responses of peri-infarct Iba1-positive cells and astrocytes were evaluated using immunohistochemistry and Western blots. RESULTS Initial characterization showed that the numbers of Iba1-positive microglia and macrophages decreased in peri-infarct tissue at 24 h then increased markedly over the next few days. Morphological changes characteristic of activation were readily apparent by 3 h and increased by 24 h. Minocycline treatment improved the rate of recovery of motor function as measured by a forelimb placing test but did not alter infarct volume. At 3 days, there were only minor effects on core features of peri-infarct microglial reactivity including the morphological changes and increased density of Iba1-positive cells. The treatment caused a decrease of 57% in the small subpopulation of cells that expressed CD68, a marker of phagocytosis. At 7 days, the expression of glial fibrillary acidic protein and vimentin was markedly increased by minocycline treatment, indicating enhanced reactive astrogliosis. CONCLUSIONS Early post-stroke treatment with minocycline improved recovery but had little effect on key features of microglial activation. Both the decrease in CD68-positive cells and the increased activation of astrogliosis could influence neuronal plasticity and contribute to the improved recovery.
Collapse
Affiliation(s)
- Wai Ping Yew
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Natalia D Djukic
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Jaya S P Jayaseelan
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Frederick R Walker
- Hunter Medical Research Institute; School of Biomedical Medical Sciences and Pharmacy, University of Newcastle Priority Research Centre in Stroke and Traumatic Brain Injury, Newcastle, NSW, Australia
| | - Karl A A Roos
- Hunter Medical Research Institute; School of Biomedical Medical Sciences and Pharmacy, University of Newcastle Priority Research Centre in Stroke and Traumatic Brain Injury, Newcastle, NSW, Australia
| | - Timothy K Chataway
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Hakan Muyderman
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Neil R Sims
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| |
Collapse
|
12
|
Sonzogni M, Wallaard I, Santos SS, Kingma J, du Mee D, van Woerden GM, Elgersma Y. A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel Ube3a mutants. Mol Autism 2018; 9:47. [PMID: 30220990 PMCID: PMC6137919 DOI: 10.1186/s13229-018-0231-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
Background Angelman syndrome (AS) is a neurodevelopmental disorder caused by mutations affecting UBE3A function. AS is characterized by intellectual disability, impaired motor coordination, epilepsy, and behavioral abnormalities including autism spectrum disorder features. The development of treatments for AS heavily relies on the ability to test the efficacy of drugs in mouse models that show reliable, and preferably clinically relevant, phenotypes. We previously described a number of behavioral paradigms that assess phenotypes in the domains of motor performance, repetitive behavior, anxiety, and seizure susceptibility. Here, we set out to evaluate the robustness of these phenotypes when tested in a standardized test battery. We then used this behavioral test battery to assess the efficacy of minocycline and levodopa, which were recently tested in clinical trials of AS. Methods We combined data of eight independent experiments involving 111 Ube3a mice and 120 wild-type littermate control mice. Using a meta-analysis, we determined the statistical power of the subtests and the effect of putative confounding factors, such as the effect of sex and of animal weight on rotarod performance. We further assessed the robustness of these phenotypes by comparing Ube3a mutants in different genetic backgrounds and by comparing the behavioral phenotypes of independently derived Ube3a-mutant lines. In addition, we investigated if the test battery allowed re-testing the same animals, which would allow a within-subject testing design. Results We find that the test battery is robust across different Ube3a-mutant lines, but confirm and extend earlier studies that several phenotypes are very sensitive to genetic background. We further found that the audiogenic seizure susceptibility phenotype is fully reversible upon pharmacological treatment and highly suitable for dose-finding studies. In agreement with the clinical trial results, we found that minocycline and levodopa treatment of Ube3a mice did not show any sign of improved performance in our test battery. Conclusions Our study provides a useful tool for preclinical drug testing to identify treatments for Angelman syndrome. Since the phenotypes are observed in several independently derived Ube3a lines, the test battery can also be employed to investigate the effect of specific Ube3a mutations on these phenotypes.
Collapse
Affiliation(s)
- Monica Sonzogni
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ilse Wallaard
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sara Silva Santos
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jenina Kingma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Dorine du Mee
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Geeske M. van Woerden
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
13
|
Drenger B, Blanck TJJ, Piskoun B, Jaffrey E, Recio-Pinto E, Sideris A. Minocycline Before Aortic Occlusion Reduces Hindlimb Motor Impairment, Attenuates Spinal Cord Damage and Spinal Astrocytosis, and Preserve Neuronal Cytoarchitecture in the Rat. J Cardiothorac Vasc Anesth 2018; 33:1003-1011. [PMID: 30195965 DOI: 10.1053/j.jvca.2018.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Spinal cord ischemia secondary to trauma or a vascular occlusive event is a threatening phenomenon. The neuroprotective properties of minocycline have been shown in several models of central nervous system diseases and after spinal cord ischemia; however, the benefit of using the drug requires additional confirmation in different animal models. Astrocytes are essential as regulators of neuronal functions and for providing nutrients. The authors hypothesized that astrocytes in the spinal cord may be an important target for minocycline action after ischemia and thus in the prevention of secondary spreading damage. DESIGN A prospective, randomized animal study. SETTING University research laboratory, single institution. PARTICIPANTS Adult male Sprague Dawley rats, weighing between 400 and 450 g. INTERVENTIONS A model of spinal cord ischemia in the rat was used for this study to determine whether a single, high-dose (10 mg/kg) of minocycline protects against damage to the neuronal cytoskeleton, both in the white and gray matter, and whether it reduces glial fibrillary acidic protein levels, which is an index for prevention of astrocyte activation during ischemia. Thirty minutes before thoracic aorta occlusion, minocycline was administered for 18 minutes using a 2 F Fogarty catheter. MEASUREMENTS AND MAIN RESULTS Minocycline given prophylactically significantly mitigated severe hindlimb motor impairment and reduced glial fibrillary acidic protein plus astrocytosis in both the white and gray matter of the spinal cord, caudal to the occlusion. Neuronal histologic cytoarchitecture, which was severely and significantly compromised in control animals, was preserved in the minocycline-treated animals. CONCLUSIONS This study's data imply that minocycline may attenuate reactive astrocytosis in response to injury with better neurologic outcome in a model of spinal cord ischemia in rats. The data suggest that future use of minocycline, clinically, might be advantageous in surgeries with a potential risk for paraplegia due to spinal cord ischemia.
Collapse
Affiliation(s)
- Benjamin Drenger
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Thomas J J Blanck
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| | - Boris Piskoun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| | - E Jaffrey
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY
| | - Alexandra Sideris
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY; Department of Perioperative Care and Pain Medicine, New York University Langone Medical Center, New York, NY
| |
Collapse
|
14
|
Abstract
Sepsis-associated encephalopathy is a major complication during sepsis, and an effective treatment remains unknown. Although minocycline (MINO) has neuroprotective effects and is an attractive candidate for treating sepsis-associated encephalopathy, the effect of MINO on synaptic plasticity during sepsis is still unclear. In the present study, we investigated the effects of MINO on long-term potentiation (LTP) in the hippocampus in a cecal ligation and puncture (CLP) mouse model. We divided mice into four groups; sham + vehicle, sham + MINO (60 mg/kg, i.p. for 3 consecutive days before slice preparation), CLP + vehicle, and CLP + MINO. We tested LTP in the CA1 region of the hippocampus, using slices taken 24 h after surgery. Because MINO is also anti-inflammatory, LTP was analyzed following 30 min of IL-1 receptor antagonist (IL-1ra) perfusion. The endotoxin level in the blood was increased at 24 h after CLP operations regardless of MINO administrations, and LTP in the CLP + vehicle group mice was severely impaired (P < 0.05). High doses of MINO prevented the LTP impairment during sepsis in the CLP + MINO group. Interleukin (IL)-1ra administration ameliorated LTP impairment only in the CLP + vehicle group (P < 0.05); it had no additional effects on LTP in the CLP + MINO group. In conclusion, we have provided the first evidence that MINO prevents impaired LTP related to sepsis-induced encephalopathy in the mouse hippocampus, and that mechanisms associated with IL-1 receptor activity may be involved.
Collapse
|
15
|
Harper KM, Knapp DJ, Park MA, Breese GR. Differential effects of single versus repeated minocycline administration-Lack of significant interaction with chronic alcohol history. Pharmacol Biochem Behav 2018; 168:33-42. [PMID: 29572015 DOI: 10.1016/j.pbb.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/16/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Neuroimmune cytokines are increased with alcohol withdrawal and may mediate clinical responses associated with alcoholism. Because minocycline regulates the level of cytokines, it has been suggested as a therapeutic for disorders associated with alcohol. Male Wistar rats were exposed to chronic intermittent alcohol (CIA) comprising three 5-day cycles of ethanol liquid diet separated by 2 days of withdrawal. Rats were tested on social interaction, a measure of anxiety-like behavior, followed immediately by collection of amygdala tissue to measure CCL2 and TNFα or collection of the blood to measure corticosterone (CORT). One group received a single minocycline injection 3 h into the final CIA withdrawal and was tested 2 h later. A second group received injections during each of the three withdrawals and was similarly tested during the final acute withdrawal. A third group received a single injection at 23 h into withdrawal (extended withdrawal) and was tested 6 h later. Results showed that CIA withdrawal increased anxiety-like behavior. A single injection of minocycline during the final acute withdrawal increased anxiety-like behavior in rats that consumed liquid diet with or without alcohol, but this effect disappeared with repeated injections of minocycline. Differences in alcohol intake, blood alcohol level, and plasma CORT levels did not explain results. Only repeated injections of minocycline decreased TNFα mRNA levels in rats that consumed liquid diet with or without alcohol. When a single injection of minocycline was given during extended withdrawal, it decreased CCL2 mRNA levels, but did not reverse the elevation of CCL2 protein. These results suggest that minocycline has actions in brain and on behavior, but minocycline does not significantly impact these actions in relation to alcohol withdrawal.
Collapse
Affiliation(s)
- Kathryn M Harper
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA.
| | - Meredith A Park
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - George R Breese
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Zhang G, Zha J, Liu J, Di J. WITHDRAWN: Minocycline an antimicrobial agent attenuates the mitochondrial dependent cell death and stabilizes the expression of HIF-1α in spinal cord injury. Microb Pathog 2018:S0882-4010(18)30284-5. [PMID: 29530807 DOI: 10.1016/j.micpath.2018.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Guolei Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Junpu Zha
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Junchuan Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jun Di
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
17
|
Dai C, Ciccotosto GD, Cappai R, Wang Y, Tang S, Xiao X, Velkov T. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress. J Antimicrob Chemother 2017; 72:1635-1645. [PMID: 28204513 DOI: 10.1093/jac/dkx037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Abstract
Background Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. Methods The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Results Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. Conclusions To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Giuseppe D Ciccotosto
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
18
|
Schimmel SJ, Acosta S, Lozano D. Neuroinflammation in traumatic brain injury: A chronic response to an acute injury. Brain Circ 2017; 3:135-142. [PMID: 30276315 PMCID: PMC6057689 DOI: 10.4103/bc.bc_18_17] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Every year, approximately 1.4 million US citizens visit emergency rooms for traumatic brain injuries. Formerly known as an acute injury, chronic neurodegenerative symptoms such as compromised motor skills, decreased cognitive abilities, and emotional and behavioral changes have caused the scientific community to consider chronic aspects of the disorder. The injury causing impact prompts multiple cell death processes, starting with neuronal necrosis, and progressing to various secondary cell death mechanisms. Secondary cell death mechanisms, including excitotoxicity, oxidative stress, mitochondrial dysfunction, blood-brain barrier disruption, and inflammation accompany chronic traumatic brain injury (TBI) and often contribute to long-term disabilities. One hallmark of both acute and chronic TBI is neuroinflammation. In acute stages, neuroinflammation is beneficial and stimulates an anti-inflammatory response to the damage. Conversely, in chronic TBI, excessive inflammation stimulates the aforementioned secondary cell death. Converting inflammatory cells from pro-inflammatory to anti-inflammatory may expand the therapeutic window for treating TBI, as inflammation plays a role in all stages of the injury. By expanding current research on the role of inflammation in TBI, treatment options and clinical outcomes for afflicted individuals may improve. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
| | - Sandra Acosta
- Center of Excellence for Aging and Brain, Tampa, FL, USA
| | - Diego Lozano
- School of Medicine, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
19
|
Simon DW, Aneja RK, Alexander H, Bell MJ, Bayır H, Kochanek PM, Clark RSB. Minocycline Attenuates High Mobility Group Box 1 Translocation, Microglial Activation, and Thalamic Neurodegeneration after Traumatic Brain Injury in Post-Natal Day 17 Rats. J Neurotrauma 2017; 35:130-138. [PMID: 28699371 DOI: 10.1089/neu.2017.5093] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In response to cell injury, the danger signal high mobility group box-1 (HMGB) is released, activating macrophages by binding pattern recognition receptors. We investigated the role of the anti-inflammatory drug minocycline in attenuating HMGB1 translocation, microglial activation, and neuronal injury in a rat model of pediatric traumatic brain injury (TBI). Post-natal day 17 Sprague-Dawley rats underwent moderate-severe controlled cortical impact (CCI). Animals were randomized to treatment with minocycline (90 mg/kg, intraperitoneally) or vehicle (saline) at 10 min and 20 h after injury. Shams received anesthesia and craniotomy. We analyzed HMGB1 translocation (protein fractionation and Western blotting), microglial activation (Iba-1 immunohistochemistry), neuronal death (Fluoro-Jade-B [FJB] immunofluorescence), and neuronal cell counts (unbiased stereology). Behavioral assessments included motor and Morris-water maze testing. Nuclear to cytosolic translocation of HMGB1 in the injured brain was attenuated in minocycline versus vehicle-treated rats at 24 h (p < 0.001). Treatment with minocycline reduced microglial activation in the ipsilateral cortex, hippocampus, and thalamus (p < 0.05 vs. vehicle, all regions); attenuated neurodegeneration (FJB-positive neurons) at seven days (p < 0.05 vs. vehicle); and increased thalamic neuronal survival at 14 days (naïve 22773 ± 1012 cells/mm3, CCI + vehicle 11753 ± 464, CCI + minocycline 17047 ± 524; p < 0.001). Minocycline-treated rats demonstrated delayed motor recovery early after injury but had no injury effect on Morris-water maze whereas vehicle-treated rats performed worse than sham on the final two days of testing (both p < 0.05 vs. vehicle). Minocycline globally attenuated HMGB1 translocation and microglial activation in injured brain in a pediatric TBI model and afforded selective thalamic neuroprotection. The HMGB1 translocation and thalamic injury may represent novel mechanistic and regional therapeutic targets in pediatric TBI.
Collapse
Affiliation(s)
- Dennis W Simon
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,7 Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Rajesh K Aneja
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Henry Alexander
- 7 Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Michael J Bell
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Neurological Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Hülya Bayır
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,5 Department of Environmental and Occupational Health, and the University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Department of Anesthesiology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,7 Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Robert S B Clark
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Department of Anesthesiology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,6 Department of Clinical and Translational Science Institute, University of Pittsburgh School of Medicine; and the University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,7 Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Velkov T, Dai C, Ciccotosto GD, Cappai R, Hoyer D, Li J. Polymyxins for CNS infections: Pharmacology and neurotoxicity. Pharmacol Ther 2017; 181:85-90. [PMID: 28750947 DOI: 10.1016/j.pharmthera.2017.07.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Central nervous system (CNS) infections caused by multi-drug resistant (MDR) Gram-negative bacteria present a major health and economic burden worldwide. Due to the nearly empty antibiotic discovery pipeline, polymyxins (i.e. polymyxin B and colistin) are used as the last-line therapy against Gram-negative 'superbugs' when all other treatment modalities have failed. The treatment of CNS infections due to multi-drug resistant Gram-negative bacteria is problematic and associated with high mortality rates. Colistin shows significant efficacy for the treatment of CNS infections caused by MDR Gram-negative bacteria that are resistant to all other antibiotics. In particular, MDR Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae which are resistant to expanded-spectrum and fourth-generation cephalosporins, carbapenems and aminoglycosides, represent a major therapeutic challenge, although they can be treated with colistin or polymyxin B. However, current dosing recommendations of intrathecal/intraventricular polymyxins are largely empirical, as we have little understanding of the pharmacokinetics/pharmacodynamics and, importantly, we are only starting to understand the mechanisms of potential neurotoxicity. This review covers the current knowledge-base on the mechanisms of disposition and potential neurotoxicity of polymyxins as well as the combined use of neuroprotective agents to alleviate polymyxins-related neurotoxicity. Progress in this field will provide the urgently needed pharmacological information for safer and more efficacious intrathecal/intraventricular polymyxin therapy against life-threatening CNS infections caused by Gram-negative 'superbugs'.
Collapse
Affiliation(s)
- Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, PR China
| | - Giuseppe D Ciccotosto
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia; Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
21
|
Extracellular matrix inflammation in vascular cognitive impairment and dementia. Clin Sci (Lond) 2017; 131:425-437. [PMID: 28265034 DOI: 10.1042/cs20160604] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
Vascular cognitive impairment and dementia (VCID) include a wide spectrum of chronic manifestations of vascular disease related to large vessel strokes and small vessel disease (SVD). Lacunar strokes and white matter (WM) injury are consequences of SVD. The main vascular risk factor for SVD is brain hypoperfusion from cerebral blood vessel narrowing due to chronic hypertension. The hypoperfusion leads to activation and degeneration of astrocytes with the resulting fibrosis of the extracellular matrix (ECM). Elasticity is lost in fibrotic cerebral vessels, reducing the response of stiffened blood vessels in times of increased metabolic need. Intermittent hypoxia/ischaemia activates a molecular injury cascade, producing an incomplete infarction that is most damaging to the deep WM, which is a watershed region for cerebral blood flow. Neuroinflammation caused by hypoxia activates microglia/macrophages to release proteases and free radicals that perpetuate the damage over time to molecules in the ECM and the neurovascular unit (NVU). Matrix metalloproteinases (MMPs) secreted in an attempt to remodel the blood vessel wall have the undesired consequences of opening the blood-brain barrier (BBB) and attacking myelinated fibres. This dual effect of the MMPs causes vasogenic oedema in WM and vascular demyelination, which are the hallmarks of the subcortical ischaemic vascular disease (SIVD), which is the SVD form of VCID also called Binswanger's disease (BD). Unravelling the complex pathophysiology of the WM injury-related inflammation in the small vessel form of VCID could lead to novel therapeutic strategies to reduce damage to the ECM, preventing the progressive damage to the WM.
Collapse
|
22
|
Lu Y, Lei S, Wang N, Lu P, Li W, Zheng J, Giri PK, Lu H, Chen X, Zuo Z, Liu Y, Zhang P. Protective Effect of Minocycline Against Ketamine-Induced Injury in Neural Stem Cell: Involvement of PI3K/Akt and Gsk-3 Beta Pathway. Front Mol Neurosci 2016; 9:135. [PMID: 28066173 PMCID: PMC5167749 DOI: 10.3389/fnmol.2016.00135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/22/2016] [Indexed: 01/14/2023] Open
Abstract
It has been suggested that ketamine cause injury during developing brain. Minocycline (MC) could prevent neuronal cell death through the activation of cell survival signals and the inhibition of apoptotic signals in models of neurodegenerative diseases. Here we investigated the protective effect of MC against ketamine-induced injury in neural stem cells (NSCs) from neonatal rat. Ketamine (100 μM/L) significantly inhibited NSC proliferation, promoted their differentiation into astrocytes and suppressed neuronal differentiation of NSCs. Moreover, the apoptotic level was increased following ketamine exposure. MC pretreatment greatly enhanced cell viability, decreased caspase-3-like activity, even reversed the differentiation changes caused by ketamine. To elucidate a possible mechanism of MC' neuroprotective effect, we investigated the phosphatidylinositol 3-kinase (PI3K) pathway using LY294002, a specific PI3K inhibitor. Immunoblotting revealed that MC enhanced the phosphorylation/activation of Akt and phosphorylation/inactivation of glycogen synthase kinase-3beta (Gsk-3β). Our results suggest that PI3K/Akt and Gsk-3β pathway are involved in the neuroprotective effect of MC.
Collapse
Affiliation(s)
- Yang Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Shan Lei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Ning Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Pan Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Weisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Juan Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Praveen K Giri
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University Xi'an, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University Xi'an, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| |
Collapse
|
23
|
Apoorv TS, Babu PP. Minocycline prevents cerebral malaria, confers neuroprotection and increases survivability of mice during Plasmodium berghei ANKA infection. Cytokine 2016; 90:113-123. [PMID: 27865203 DOI: 10.1016/j.cyto.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/29/2016] [Accepted: 11/05/2016] [Indexed: 11/28/2022]
Abstract
Cerebral malaria (CM) is a neurological complication arising due to Plasmodium falciparum or Plasmodium vivax infection. Minocycline, a semi-synthetic tetracycline, has been earlier reported to have a neuroprotective role in several neurodegenerative diseases. In this study, we investigated the effect of minocycline treatment on the survivability of mice during experimental cerebral malaria (ECM). The currently accepted mouse model, C57BL/6 mice infected with Plasmodium berghei ANKA, was used for the study. Infected mice were treated with an intra-peritoneal dose of minocycline hydrochloride, 45mg/kg daily for ten days that led to parasite clearance in blood, brain, liver and spleen on 7th day post-infection; and the mice survived until experiment ended (90days) without parasite recrudescence. Evans blue extravasation assay showed that blood-brain barrier integrity was maintained by minocycline. The tumor necrosis factor-alpha protein level and caspase activity, which is related to CM pathogenesis, was significantly reduced in the minocycline-treated group. Fluoro-Jade® C and hematoxylin-eosin staining of the brains of minocycline group revealed a decrease in degenerating neurons and absence of hemorrhages respectively. Minocycline treatment led to decrease in gene expressions of inflammatory mediators like interferon-gamma, CXCL10, CCL5, CCL2; receptors CXCR3 and CCR2; and hence decrease in T-cell-mediated cerebral inflammation. We also proved that this reduction in gene expressions is irrespective of the anti-parasitic property of minocycline. The distinct ability of minocycline to modulate gene expressions of CXCL10 and CXCR3 makes it effective than doxycycline, a tetracycline used as chemoprophylaxis. Our study shows that minocycline is highly effective in conferring neuroprotection during ECM.
Collapse
Affiliation(s)
- Thittayil Suresh Apoorv
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana State, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana State, India.
| |
Collapse
|
24
|
Minocycline does not evoke anxiolytic and antidepressant-like effects in C57BL/6 mice. Behav Brain Res 2016; 301:96-101. [DOI: 10.1016/j.bbr.2015.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 12/15/2022]
|
25
|
Suppression of microglia activation after hypoxia-ischemia results in age-dependent improvements in neurologic injury. J Neuroimmunol 2015; 291:18-27. [PMID: 26857490 DOI: 10.1016/j.jneuroim.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
We previously found increased microglial proliferation and pro-inflammatory cytokine release in infant mice compared to juvenile mice after hypoxia-ischemia (HI). The aim of the current study was to assess for differences in the effect of microglial suppression on HI-induced brain injury in infant and juvenile mice. HI was induced in neonatal (P9) and juvenile (P30) mice and minocycline or vehicle was administered at 2h and 24h post-HI. P9 minocycline-treated mice demonstrated early but transient improvements in neurologic injury, while P30 minocycline-treated mice demonstrated sustained improvements in cerebral atrophy and Morris Water Maze performance at 60days post-HI.
Collapse
|
26
|
Munyeza CF, Shobo A, Baijnath S, Bratkowska D, Naiker S, Bester LA, Singh SD, Maguire GEM, Kruger HG, Naicker T, Govender T. Rapid and widespread distribution of doxycycline in rat brain: a mass spectrometric imaging study. Xenobiotica 2015; 46:385-92. [DOI: 10.3109/00498254.2015.1081307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Zhang Z, Nong J, Zhong Y. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants. J Neural Eng 2015; 12:046015. [DOI: 10.1088/1741-2560/12/4/046015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Yan P, Zhu A, Liao F, Xiao Q, Kraft A, Gonzales E, Perez R, Greenberg SM, Holtzman D, Lee JM. Minocycline reduces spontaneous hemorrhage in mouse models of cerebral amyloid angiopathy. Stroke 2015; 46:1633-1640. [PMID: 25944329 DOI: 10.1161/strokeaha.115.008582] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral amyloid angiopathy (CAA) is a common cause of recurrent intracerebral hemorrhage in the elderly. Previous studies have shown that CAA induces inflammation and expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 (gelatinases) in amyloid-laden vessels. Here, we inhibited both using minocycline in CAA mouse models to determine whether spontaneous intracerebral hemorrhage could be reduced. METHODS Tg2576 (n=16) and 5xFAD/ApoE4 knockin mice (n=16), aged 17 and 12 months, respectively, were treated with minocycline (50 mg/kg, IP) or saline every other day for 2 months. Brains were extracted and stained with X-34 (to quantify amyloid), Perls' blue (to quantify hemorrhage), and immunostained to examined β-amyloid peptide load, gliosis (glial fibrillary acidic protein [GFAP], Iba-1), and vascular markers of blood-brain barrier integrity (zonula occludins-1 [ZO-1] and collagen IV). Brain extracts were used to quantify mRNA for a variety of inflammatory genes. RESULTS Minocycline treatment significantly reduced hemorrhage frequency in the brains of Tg2576 and 5xFAD/ApoE4 mice relative to the saline-treated mice, without affecting CAA load. Gliosis (GFAP and Iba-1 immunostaining), gelatinase activity, and expression of a variety of inflammatory genes (matrix metalloproteinase-9, NOX4, CD45, S-100b, and Iba-1) were also significantly reduced. Higher levels of microvascular tight junction and basal lamina proteins were found in the brains of minocycline-treated Tg2576 mice relative to saline-treated controls. CONCLUSIONS Minocycline reduced gliosis, inflammatory gene expression, gelatinase activity, and spontaneous hemorrhage in 2 different mouse models of CAA, supporting the importance of matrix metalloproteinase-related and inflammatory pathways in intracerebral hemorrhage pathogenesis. As a Food and Drug Administration-approved drug, minocycline might be considered for clinical trials to test efficacy in preventing CAA-related intracerebral hemorrhage.
Collapse
Affiliation(s)
- Ping Yan
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alec Zhu
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Fan Liao
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qingli Xiao
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew Kraft
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ernie Gonzales
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ron Perez
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Steven M Greenberg
- Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Holtzman
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jin-Moo Lee
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol 2015; 2015:103969. [PMID: 25861156 PMCID: PMC4377385 DOI: 10.1155/2015/103969] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Methamphetamine (METH) is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level.
Collapse
|
30
|
Lozano D, Gonzales-Portillo GS, Acosta S, de la Pena I, Tajiri N, Kaneko Y, Borlongan CV. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr Dis Treat 2015; 11:97-106. [PMID: 25657582 PMCID: PMC4295534 DOI: 10.2147/ndt.s65815] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious public health problem accounting for 1.4 million emergency room visits by US citizens each year. Although TBI has been traditionally considered an acute injury, chronic symptoms reminiscent of neurodegenerative disorders have now been recognized. These progressive neurodegenerative-like symptoms manifest as impaired motor and cognitive skills, as well as stress, anxiety, and mood affective behavioral alterations. TBI, characterized by external bumps or blows to the head exceeding the brain's protective capacity, causes physical damage to the central nervous system with accompanying neurological dysfunctions. The primary impact results in direct neural cell loss predominantly exhibiting necrotic death, which is then followed by a wave of secondary injury cascades including excitotoxicity, oxidative stress, mitochondrial dysfunction, blood-brain barrier disruption, and inflammation. All these processes exacerbate the damage, worsen the clinical outcomes, and persist as an evolving pathological hallmark of what we now describe as chronic TBI. Neuroinflammation in the acute stage of TBI mobilizes immune cells, astrocytes, cytokines, and chemokines toward the site of injury to mount an antiinflammatory response against brain damage; however, in the chronic stage, excess activation of these inflammatory elements contributes to an "inflamed" brain microenvironment that principally contributes to secondary cell death in TBI. Modulating these inflammatory cells by changing their phenotype from proinflammatory to antiinflammatory would likely promote therapeutic effects on TBI. Because neuroinflammation occurs at acute and chronic stages after the primary insult in TBI, a treatment targeting neuroinflammation may have a wider therapeutic window for TBI. To this end, a better understanding of TBI etiology and clinical manifestations, especially the pathological presentation of chronic TBI with neuroinflammation as a major component, will advance our knowledge on inflammation-based disease mechanisms and treatments.
Collapse
Affiliation(s)
- Diego Lozano
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Gabriel S Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sandra Acosta
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ike de la Pena
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
31
|
Ali S, Driscoll HE, Newton VL, Gardiner NJ. Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration. Exp Neurol 2014; 261:654-65. [PMID: 25158309 PMCID: PMC4199570 DOI: 10.1016/j.expneurol.2014.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 12/13/2022]
Abstract
Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using minocycline to treat diabetic neuropathy. MMP-2, but not MMP-9, is constitutively expressed in the adult rat sciatic nerve. Levels of cleaved active MMP-2 are reduced in sciatic nerve of diabetic rats. Active MMP-2 potentiates neurite outgrowth from sensory neurons. Minocycline reduces levels of MMP-2 mRNA and impairs NGF-induced neurite growth. Minocycline did not prevent nerve dysfunction in experimental diabetic neuropathy.
Collapse
Affiliation(s)
- Sumia Ali
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Heather E Driscoll
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Victoria L Newton
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Natalie J Gardiner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
32
|
Nagpal K, Singh SK, Mishra DN. Minocycline encapsulated chitosan nanoparticles for central antinociceptive activity. Int J Biol Macromol 2014; 72:131-5. [PMID: 25111492 DOI: 10.1016/j.ijbiomac.2014.07.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/27/2014] [Accepted: 07/31/2014] [Indexed: 11/18/2022]
Abstract
The purpose of the study is to explore the central anti-nociceptive activity of brain targeted nanoparticles (NP) of minocycline hydrochloride (MH). The NP were formulated using the modified ionotropic gelation method (MHNP) and were coated with Tween 80 (T80) to target them to brain (cMHNP). The formulated nanoparticles have already been characterized for particle size, zeta potential, drug entrapment efficiency and in vitro drug release. The nanoparticles were then evaluated for pharmacodynamic activity using thermal methods. The pure drug and the formulation, MHNP were not able to show a statistically significant central analgesic activity. cMHNP on the other hand evidenced a significant central analgesic activity. Animal models evidenced that brain targeted nanoparticles may be utilized for effective delivery of central anti-nociceptive effect of MH. Further clinical studies are required to explore the activity for mankind.
Collapse
Affiliation(s)
- Kalpana Nagpal
- Division of Research and Development, Lovely Professional University, Punjab 144411, India.
| | - S K Singh
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - D N Mishra
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science & Technology, Hisar, Haryana, 125001, India
| |
Collapse
|
33
|
Abstract
On average, every four minutes an individual dies from a stroke, accounting for 1 out of every 18 deaths in the United States. Approximately 795,000 Americans have a new or recurrent stroke each year, with just over 600,000 of these being first attack [1]. There have been multiple animal models of stroke demonstrating that novel therapeutics can help improve the clinical outcome. However, these results have failed to show the same outcomes when tested in human clinical trials. This review will discuss the current in vivo animal models of stroke, advantages and limitations, and the rationale for employing these animal models to satisfy translational gating items for examination of neuroprotective, as well as neurorestorative strategies in stroke patients. An emphasis in the present discussion of therapeutics development is given to stem cell therapy for stroke.
Collapse
|
34
|
Zhu F, Zhang L, Ding YQ, Zhao J, Zheng Y. Neonatal intrahippocampal injection of lipopolysaccharide induces deficits in social behavior and prepulse inhibition and microglial activation in rats: Implication for a new schizophrenia animal model. Brain Behav Immun 2014; 38:166-74. [PMID: 24530999 DOI: 10.1016/j.bbi.2014.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/18/2014] [Accepted: 01/24/2014] [Indexed: 12/25/2022] Open
Abstract
Several lines of evidence have suggested that the dysregulation of immune system is involved in the pathogenesis of schizophrenia. Microglia are the resident macrophage of the brain and the major player in innate immunity in the brain. We hypothesized that microglia activation may be closely associated with the neuropathology of schizophrenia. Neonatal intrahippocampal injection of lipopolysaccharide (LPS), an activator of microglia, was performed in rats at postnatal day 7 (PD7), and they were separately treated with saline or minocycline for consecutive 3days. Behavioral changes (locomotor activity, social interaction and prepulse inhibition) were examined in adulthood, and the number of microglia was assessed using immunohistochemistry at PD9, PD21 and PD67. The adult rats in LPS-injected group showed obvious behavioral alterations (deficits in social behavior and prepulse inhibition) and a persistently dramatic increase of number of activated microglial cells in the hippocampus, cerebral cortex and thalamus compared to those in saline-injected group. Interestingly, pretreatment with minocycline could significantly rescue the behavioral deficits and prevent microglia activation. Our results suggest that neonatal intrahippocampal LPS injection may serve as a potential schizophrenia animal model, and inhibition of microglia activation may be a potential treatment strategy for schizophrenia.
Collapse
Affiliation(s)
- Furong Zhu
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, China
| | - Lulu Zhang
- Brain Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510370, China
| | - Yu-qiang Ding
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, China
| | - Jingping Zhao
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, China.
| | - Yingjun Zheng
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, China; Brain Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510370, China
| |
Collapse
|
35
|
Chew DJ, Carlstedt T, Shortland PJ. The effects of minocycline or riluzole treatment on spinal root avulsion-induced pain in adult rats. THE JOURNAL OF PAIN 2014; 15:664-75. [PMID: 24667712 DOI: 10.1016/j.jpain.2014.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 02/13/2014] [Accepted: 03/06/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED Spinal root avulsion produces tactile and thermal hypersensitivity, neurodegeneration, and microglial and astrocyte activation in both the deafferented and the adjacent intact spinal cord segments. Following avulsion of the fifth lumbar spinal root, immediate and prolonged treatment with riluzole or minocycline for 2 weeks altered the development of behavioral hypersensitivity. Riluzole delayed the onset of thermal and tactile hypersensitivity and partially reversed established pain behavior. Minocycline effectively prevented and reversed both types of behavioral change. Histologic analysis revealed that both drugs reduced microglial staining in the spinal cord, with minocycline being more effective than riluzole. Astrocyte activation was ameliorated to a lesser extent. Surprisingly, neither drug provided a neuroprotective effect on avulsed motoneurons. PERSPECTIVE Immediate treatment of spinal root avulsion injuries with minocycline or riluzole prevents the onset of evoked pain hypersensitivity by reducing microglial cell activation. When treatment is delayed, minocycline, but not riluzole, reverses pre-established hypersensitivity. Thus, these drugs may provide a new translational treatment option for chronic avulsion injury pain.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Thomas Carlstedt
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Peter J Shortland
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
36
|
Drabek T, Janata A, Wilson CD, Stezoski J, Janesko-Feldman K, Tisherman SA, Foley LM, Verrier J, Kochanek PM. Minocycline attenuates brain tissue levels of TNF-α produced by neurons after prolonged hypothermic cardiac arrest in rats. Resuscitation 2014; 85:284-91. [PMID: 24513126 PMCID: PMC3952024 DOI: 10.1016/j.resuscitation.2013.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 12/14/2022]
Abstract
Neuro-cognitive disabilities are a well-recognized complication of hypothermic circulatory arrest. We and others have reported that prolonged cardiac arrest (CA) produces neuronal death and microglial proliferation and activation that are only partially mitigated by hypothermia. Microglia, and possibly other cells, are suggested to elaborate tumor necrosis factor alpha (TNF-α), which can trigger neuronal death cascades and exacerbate edema after CNS insults. Minocycline is neuroprotective in some brain ischemia models in part by blunting the microglial response. We tested the hypothesis that minocycline would attenuate neuroinflammation as reflected by brain tissue levels of TNF-α after hypothermic CA in rats. Rats were subjected to rapid exsanguination, followed by a 6 min normothermic CA. Hypothermia (30 °C) was then induced by an aortic saline flush. After a total of 20 min CA, resuscitation was achieved via cardiopulmonary bypass (CPB). After 5 min reperfusion, minocycline (90 mg kg−1; n = 6) or vehicle (PBS; n = 6) was given. Hypothermia (34 °C) was maintained for 6 h. Rats were sacrificed at 6 or 24 h. TNF-α was quantified (ELISA) in four brain regions (cerebellum, CEREB; cortex, CTX; hippocampus, HIP; striatum, STRI). Naïve rats (n = 6) and rats subjected to the same anesthesia and CPB but no CA served as controls (n = 6). Immunocytochemistry was used to localize TNF-α. Naïve rats and CPB controls had no detectable TNF-α in any brain region. CA markedly increased brain TNF-α. Regional differences were seen, with the highest TNF-α levels in striatum in CA groups (10-fold higher, P < 0.05 vs. all other brain regions). TNF-α was undetectable at 24 h. Minocycline attenuated TNF-α levels in CTX, HIP and STRI (P < 0.05). TNF-α showed unique co-localization with neurons. In conclusion, we report region-dependent early increases in brain TNF-α levels after prolonged hypothermic CA, with maximal increases in striatum. Surprisingly, TNF-α co-localized in neurons and not microglia. Minocycline attenuated TNF-α by approximately 50% but did not totally ablate its production. That minocycline decreased brain TNF-α levels suggests that it may represent a therapeutic adjunct to hypothermia in CA neuroprotection. University of Pittsburgh IACUC 0809278B-3.
Collapse
Affiliation(s)
- Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andreas Janata
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caleb D. Wilson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samuel A. Tisherman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lesley M. Foley
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jonathan Verrier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
Vonder Haar C, Anderson GD, Elmore BE, Moore LH, Wright AM, Kantor ED, Farin FM, Bammler TK, MacDonald JW, Hoane MR. Comparison of the effect of minocycline and simvastatin on functional recovery and gene expression in a rat traumatic brain injury model. J Neurotrauma 2014; 31:961-75. [PMID: 24308531 DOI: 10.1089/neu.2013.3119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to compare the effects of minocycline and simvastatin on functional recovery and brain gene expression after a cortical contusion impact (CCI) injury. Dosage regimens were designed to provide serum concentrations in a rat model in the range obtained with clinically approved doses; minocycline 60 mg/kg q12h and simvastatin 10 mg/kg q12h for 72 h. Functional recovery was assessed using motor and spatial learning tasks and neuropathological measurements. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h, and 7 days post-CCI. Gene Ontology analysis (GOA) was used to evaluate the effect on relevant biological pathways. Both minocycline and simvastatin improved fine motor function, but not gross motor or cognitive function. Minocycline modestly decreased lesion size with no effect of simvastatin. At 24 h post-CCI, GOA identified a significant effect of minocycline on chemotaxis, blood circulation, immune response, and cell to cell signaling pathways. Inflammatory pathways were affected by minocycline only at the 72 h time point. There was a minimal effect of simvastatin on gene expression 24 h after injury, with increasing effects at 72 h and 7 days. GOA identified a significant effect of simvastatin on inflammatory response at 72 h and 7 days. In conclusion, treatment with minocycline and simvastatin resulted in significant effects on gene expression in the brain reflecting adequate brain penetration without producing significant neurorestorative effects.
Collapse
Affiliation(s)
- Cole Vonder Haar
- 1 Restorative Neuroscience Laboratory, Center for Integrated Research in Cognitive and Neural Sciences, Department of Psychology, Southern Illinois University , Carbondale, Illinois
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Suarez-Roca H, Quintero L, Avila R, Medina S, De Freitas M, Cárdenas R. Central immune overactivation in the presence of reduced plasma corticosterone contributes to swim stress-induced hyperalgesia. Brain Res Bull 2013; 100:61-9. [PMID: 24316519 DOI: 10.1016/j.brainresbull.2013.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/24/2013] [Accepted: 11/16/2013] [Indexed: 12/30/2022]
Abstract
Although it is widely known that immunological, hormonal and nociceptive mechanisms are altered by exposure to repeated stress, the interplaying roles of each function in the development of post-stress hyperalgesia are not completely clear. Thus, we wanted to establish how interleukin 1-beta (IL-1β), corticosterone and microglia interact to contribute in the development of hyperalgesia following repeated forced swim. Rats were subjected to either forced swim, sham swim or non-conditioned. Each group was then treated with minocycline, ketoconazole, or saline. Thermal nociception was measured via the hot plate test, before and after the behavioral conditioning, whereas blood and lumbar spinal cord tissue samples were obtained at the end of the protocol. Serum levels of corticosterone, spinal tissue concentration of IL-1β and spinal OX-42 labeling (microglial marker) were determined. Rats exposed to forced swim stress developed thermal hyperalgesia along with elevated spinal tissue IL-1β, increased OX-42 labeling and relatively diminished serum corticosterone. Pre-treatment with minocycline and ketoconazole prevented the development of thermal hyperalgesia and the increase in IL-1β, without significantly modifying serum corticosterone. These results suggest that the development of forced swim-induced thermal hyperalgesia requires the simultaneous presence of increased spinal IL-1β, microglial activation, and relatively decreased serum corticosterone.
Collapse
Affiliation(s)
- H Suarez-Roca
- Sección de Neurofarmacología y Neurociencias, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Apartado Postal 23, Maracaibo 4001-A, Venezuela.
| | - L Quintero
- Sección de Neurofarmacología y Neurociencias, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Apartado Postal 23, Maracaibo 4001-A, Venezuela
| | - R Avila
- Cátedra de Farmacología, Facultad de Medicina, Universidad del Zulia, Apartado Postal 23, Maracaibo 4001-A, Venezuela
| | - S Medina
- Instituto Venezolano de Investigaciones Clínicas (IVIC), Centro de Investigaciones Biomédicas, Laboratorio de Neurobiología, Maracaibo, Venezuela
| | - M De Freitas
- Cátedra de Farmacología, Facultad de Medicina, Universidad del Zulia, Apartado Postal 23, Maracaibo 4001-A, Venezuela
| | - R Cárdenas
- Sección de Neurofarmacología y Neurociencias, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Apartado Postal 23, Maracaibo 4001-A, Venezuela
| |
Collapse
|
39
|
Schönfeld P, Siemen D, Kreutzmann P, Franz C, Wojtczak L. Interaction of the antibiotic minocycline with liver mitochondria - role of membrane permeabilization in the impairment of respiration. FEBS J 2013; 280:6589-99. [DOI: 10.1111/febs.12563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/29/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Schönfeld
- Institute of Biochemistry and Cell Biology; Otto-von-Guericke-University; Magdeburg Germany
| | - Detlef Siemen
- Department of Neurology; Otto-von-Guericke-University; Magdeburg Germany
| | - Peter Kreutzmann
- Institute of Biochemistry and Cell Biology; Otto-von-Guericke-University; Magdeburg Germany
| | - Claudia Franz
- Institute of Biochemistry and Cell Biology; Otto-von-Guericke-University; Magdeburg Germany
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology; Warsaw Poland
| |
Collapse
|
40
|
Nagpal K, Singh SK, Mishra D. Evaluation of safety and efficacy of brain targeted chitosan nanoparticles of minocycline. Int J Biol Macromol 2013; 59:20-8. [DOI: 10.1016/j.ijbiomac.2013.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
|
41
|
Kay GW, Palmer DN. Chronic oral administration of minocycline to sheep with ovine CLN6 neuronal ceroid lipofuscinosis maintains pharmacological concentrations in the brain but does not suppress neuroinflammation or disease progression. J Neuroinflammation 2013; 10:97. [PMID: 23899308 PMCID: PMC3733893 DOI: 10.1186/1742-2094-10-97] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/16/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The neuronal ceroid lipofuscinoses (NCLs; or Batten disease) are fatal inherited human neurodegenerative diseases affecting an estimated 1:12,500 live births worldwide. They are caused by mutations in at least 11 different genes. Currently, there are no effective treatments. Progress into understanding pathogenesis and possible therapies depends on studying animal models. The most studied animals are the CLN6 South Hampshire sheep, in which the course of neuropathology closely follows that in affected children. Neurodegeneration, a hallmark of the disease, has been linked to neuroinflammation and is consequent to it. Activation of astrocytes and microglia begins prenatally, starting from specific foci associated with the later development of progressive cortical atrophy and the development of clinical symptoms, including the occipital cortex and blindness. Both neurodegeneration and neuroinflammation generalize and become more severe with increasing age and increasing clinical severity. The purpose of this study was to determine if chronic administration of an anti-inflammatory drug, minocycline, from an early age would halt or reverse the development of disease. METHOD Minocycline, a tetracycline family antibiotic with activity against neuroinflammation, was tested by chronic oral administration of 25 mg minocycline/kg/day to presymptomatic lambs affected with CLN6 NCL at 3 months of age to 14 months of age, when clinical symptoms are obvious, to determine if this would suppress neuroinflammation or disease progression. RESULTS Minocycline was absorbed without significant rumen biotransformation to maintain pharmacological concentrations of 1 μM in plasma and 400 nM in cerebrospinal fluid, but these did not result in inhibition of microglial activation or astrocytosis and did not change the neuronal loss or clinical course of the disease. CONCLUSION Oral administration is an effective route for drug delivery to the central nervous system in large animals, and model studies in these animals should precede highly speculative procedures in humans. Minocycline does not inhibit a critical step in the neuroinflammatory cascade in this form of Batten disease. Identification of the critical steps in the neuroinflammatory cascade in neurodegenerative diseases, and targeting of specific drugs to them, will greatly increase the likelihood of success.
Collapse
Affiliation(s)
- Graham W Kay
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| |
Collapse
|
42
|
Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat. Spine (Phila Pa 1976) 2013; 38:1253-9. [PMID: 23370685 DOI: 10.1097/brs.0b013e3182895587] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective, randomized experimental research. OBJECTIVE To evaluate the short- and long-term neuroprotective effects of minocycline on the secondary injury process of an experimental traumatic spinal cord injury (SCI) model. SUMMARY OF BACKGROUND DATA Traumatic SCI is a devastating problem of health that results in high morbidity and mortality rates. The loss of function after SCI results from both the primary mechanical insult and the subsequent, multifaceted secondary response. METHODS A total of 80 adult male Spraque-Dawley rats (breeded by the Baskent University Animal Research Center) were randomly divided into 4 groups. A T10 contusion injury was produced by using modified Allen technique in all groups except the control group. No medication was administered to the rats in the trauma group. Minocycline was administered intraperitoneally and intravenously to the treatment groups. Short-term and/or long-term neuroprotective effects of minocycline on the lipid peroxidation (malondialdehyde, glutathione), apoptosis (terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate-biotin nick end labeling), ultrastructure of spinal cord (tissue electron microscopy), and behavioral assessments (Basso-Beattie-Bresnahan) were evaluated. RESULTS As compared with the trauma group, tissue malondialdehyde and glutathione levels demonstrated that minocycline significantly diminishes lipid peroxidation. Electromicroscopic study showed that minocycline preserves the ultrastructure of spinal cord tissue in the early post-traumatic period. Minocycline treatment significantly reduced the number of terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate-biotin nick end labeling positive cells both 1 day and 28 days after SCI. Behavioral assessments showed significant improvement in the hind limb functions of minocycline receiving rats starting 7 days after the SCI. Any statistically significant difference was not found between intraperitoneal or intravenous routes for minocycline injection. CONCLUSION Minocycline is neuroprotective and contributes to functional improvement after traumatic SCI by eliminating the destructive process of secondary injury. Having both satisfying anti-inflammatory and antiapoptotic effects in experimental models, it promises to be of therapeutic use in human SCI.
Collapse
|
43
|
Bartel DL, Finger TE. Reactive microglia after taste nerve injury: comparison to nerve injury models of chronic pain. F1000Res 2013; 2:65. [PMID: 24358861 PMCID: PMC3782356 DOI: 10.12688/f1000research.2-65.v1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2013] [Indexed: 12/31/2022] Open
Abstract
The chorda tympani (CT), which innervates taste buds on the anterior portion of the tongue, is susceptible to damage during inner ear surgeries. Injury to the CT causes a disappearance of taste buds, which is concurrent with significant microglial responses at central nerve terminals in the nucleus of the solitary tract (nTS). The resulting taste disturbances that can occur may persist for months or years, long after the nerve and taste buds have regenerated. These persistent changes in taste sensation suggest alterations in central functioning and may be related to the microglial responses. This is reminiscent of nerve injuries that result in chronic pain, where microglial reactivity is essential in maintaining the altered sensation (i.e., pain). In these models, methods that diminish microglial responses also diminish the corresponding pain behavior. Although the CT nerve does not contain nociceptive pain fibers, the microglial reactivity after CT damage is similar to that described in pain models. Therefore, methods that decrease microglial responses in pain models were used here to test if they could also affect microglial reactivity after CT injury. Treatment with minocycline, an antibiotic that dampens pain responsive microglia, was largely ineffective in diminishing microglial responses after CT injury. In addition, signaling through the toll-like 4 receptor (TLR4) does not seem to be required after CT injury as blocking or deleting TLR4 had no effect on microglial reactivity. These results suggest that microglial responses following CT injury rely on different signaling mechanisms than those described in nerve injuries resulting in chronic pain.
Collapse
Affiliation(s)
- Dianna L Bartel
- Rocky Mountain Taste & Smell Center, Neuroscience Program, Department of Cellular and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Finger
- Rocky Mountain Taste & Smell Center, Neuroscience Program, Department of Cellular and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
44
|
Nagpal K, Singh SK, Mishra DN. Formulation, Optimization, in Vivo Pharmacokinetic, Behavioral and Biochemical Estimations of Minocycline Loaded Chitosan Nanoparticles for Enhanced Brain Uptake. Chem Pharm Bull (Tokyo) 2013; 61:258-72. [DOI: 10.1248/cpb.c12-00732] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kalpana Nagpal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology
| | - Shailendra Kumar Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology
| | - Dina Nath Mishra
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology
| |
Collapse
|
45
|
Tao T, Xu G, Si Chen C, Feng J, Kong Y, Qin X. Minocycline promotes axonal regeneration through suppression of RGMa in rat MCAO/reperfusion model. Synapse 2012. [PMID: 23184880 DOI: 10.1002/syn.21629] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Minocycline has been recently implicated in protection against focal cerebral ischemia reperfusion (I/R), but the protective effects on neurobehavioral abnormalities remains contradictory. In the present study, we investigate whether minocycline improves axonal regeneration and neurological function recovery by inhibiting the expression of the repulsive guidance molecular A (RGMa) after focal cerebral ischemia reperfusion. Male Sprague-Dawley (SD) rats were subjected to occlusion of the right middle cerebral artery (MCAO) for 2 h and 3 mg kg⁻¹ minocycline was injected intravenously immediately after reperfusion twice a day for 14 days. The staircase test and modified neurological severity score (mNSS) were performed to evaluate functional outcome and blood-brain barrier (BBB) permeability was assessed by Evan's blue dye extravasation (EB) at the expected time point. The expression of RGMa in ischemic cortex was measured by immunohistochemical staining and Western blot 2 weeks after MCAO. Neurofilament protein 200 (NF-200) immunohistochemical staining was used to assess axonal damage. Treatment with minocycline at a dose of 3 mg kg⁻¹ via the caudal vein significantly reduced the extravasation of EB, elevated mNSS and improved forelimb motor function as assessed by the staircase test when compared to the I/R group (P < 0.05). Moreover, axonal regrowth was enhanced in the minocycline treatment group when compared to the I/R group (P < 0.05). In addition, minocycline significantly reduced the expression of RGMa protein 2 weeks after MCAO as assessed by both immunostaining and Western blot. Our studies suggest that early minocycline treatment promotes neurological functional recovery and axonal regeneration in rats after MCAO, which might be mediated by down-regulating RGMa expression.
Collapse
Affiliation(s)
- Tao Tao
- Department of Neurology and Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | |
Collapse
|
46
|
Xu H, Tan G, Zhang S, Zhu H, Liu F, Huang C, Zhang F, Wang Z. Minocycline reduces reactive gliosis in the rat model of hydrocephalus. BMC Neurosci 2012; 13:148. [PMID: 23217034 PMCID: PMC3529686 DOI: 10.1186/1471-2202-13-148] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/23/2012] [Indexed: 11/16/2022] Open
Abstract
Background Reactive gliosis had been implicated in injury and recovery patterns associated with hydrocephalus. Our aim is to determine the efficacy of minocycline, an antibiotic known for its anti-inflammatory properties, to reduce reactive gliosis and inhibit the development of hydrocephalus. Results The ventricular dilatation were evaluated by MRI at 1-week post drugs treated, while GFAP and Iba-1were detected by RT-PCR, Immunohistochemistry and Western blot. The expression of GFAP and Iba-1 was significantly higher in hydrocephalic group compared with saline control group (p < 0.05). Minocycline treatment of hydrocephalic animals reduced the expression of GFAP and Iba-1 significantly (p < 0.05). Likewise, the severity of ventricular dilatation is lower in minocycline treated hydrocephalic animals compared with the no minocycline group (p < 0.05). Conclusion Minocycline treatment is effective in reducing the gliosis and delaying the development of hydrocephalus with prospective to be the auxiliary therapeutic method of hydrocephalus.
Collapse
Affiliation(s)
- Hao Xu
- Department of Neurosurgery, First Affiliate Hospital of Xiamen University, Xiamen, Fujian Province 361003, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Watanabe K, Kawaguchi M, Kitagawa K, Inoue S, Konishi N, Furuya H. Evaluation of the Neuroprotective Effect of Minocycline in a Rabbit Spinal Cord Ischemia Model. J Cardiothorac Vasc Anesth 2012; 26:1034-8. [DOI: 10.1053/j.jvca.2012.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Indexed: 11/11/2022]
|
48
|
Rueger MA, Muesken S, Walberer M, Jantzen SU, Schnakenburg K, Backes H, Graf R, Neumaier B, Hoehn M, Fink GR, Schroeter M. Effects of minocycline on endogenous neural stem cells after experimental stroke. Neuroscience 2012; 215:174-83. [PMID: 22542871 DOI: 10.1016/j.neuroscience.2012.04.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 04/13/2012] [Indexed: 01/09/2023]
Abstract
Minocycline has been reported to reduce infarct size after focal cerebral ischemia, due to an attenuation of microglia activation and prevention of secondary damage from stroke-induced neuroinflammation. We here investigated the effects of minocycline on endogenous neural stem cells (NSCs) in vitro and in a rat stroke model. Primary cultures of fetal rat NSCs were exposed to minocycline to characterize its effects on cell survival and proliferation. To assess these effects in vivo, permanent cerebral ischemia was induced in adult rats, treated systemically with minocycline or placebo. Imaging 7 days after ischemia comprised (i) Magnetic Resonance Imaging (MRI), assessing the extent of infarcts, (ii) Positron Emission Tomography (PET) with [(11)C]PK11195, characterizing neuroinflammation, and (iii) PET with 3'-deoxy-3'-[(18)F]fluoro-L-thymidine ([(18)F]FLT), detecting proliferating endogenous NSCs. Immunohistochemistry was used to verify ischemic damage and characterize cellular inflammatory and repair processes in more detail. In vitro, specific concentrations of minocycline significantly increased NSC numbers without increasing their proliferation, indicating a positive effect of minocycline on NSC survival. In vivo, endogenous NSC activation in the subventricular zone (SVZ) measured by [(18)F]FLT PET correlated well with infarct volumes. Similar to in vitro findings, minocycline led to a specific increase in endogenous NSC activity in both the SVZ as well as the hippocampus. [(11)C]PK11195 PET detected neuroinflammation in the infarct core as well as in peri-infarct regions, with both its extent and location independent of the infarct size. The data did not reveal an effect of minocycline on stroke-induced neuroinflammation. We show that multimodal PET imaging can be used to characterize and quantify complex cellular processes occurring after stroke, as well as their modulation by therapeutic agents. We found minocycline, previously implied in attenuating microglial activation, to have positive effects on endogenous NSC survival. These findings hold promise for the development of novel treatments in stroke therapy.
Collapse
Affiliation(s)
- M A Rueger
- Department of Neurology, University Hospital of Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hess DC, Fagan SC. Repurposing an old drug to improve the use and safety of tissue plasminogen activator for acute ischemic stroke: minocycline. Pharmacotherapy 2012; 30:55S-61S. [PMID: 20575623 DOI: 10.1592/phco.30.pt2.55s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tissue plasminogen activator (tPA) is the only drug approved by the United States Food and Drug Administration for treatment of acute ischemic stroke. Because the drug must be used soon after symptom onset and is associated with intracerebral hemorrhage, tPA remains underutilized. Research has therefore focused on identifying other drugs that can be used concomitantly with tPA to improve the odds of a favorable recovery and to reduce the risk of intracerebral hemorrhage. Minocycline is a broad-spectrum antibiotic that has been found to be a neuroprotective agent in preclinical ischemic stroke models. Minocycline inhibits matrix metalloproteinase-9, a biomarker for intracerebral hemorrhage associated with tPA use. Minocycline is also an antiinflammatory agent and inhibits poly(ADP-ribose) polymerase-1. Minocycline has been safe and well tolerated in clinical trials. Additional safety and efficacy data are needed, and a phase III trial of minocycline with tPA in patients experiencing acute ischemic stroke is planned.
Collapse
Affiliation(s)
- David C Hess
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | |
Collapse
|
50
|
Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer's disease-like amyloid pathology. J Neuroinflammation 2012; 9:62. [PMID: 22472085 PMCID: PMC3352127 DOI: 10.1186/1742-2094-9-62] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/02/2012] [Indexed: 12/20/2022] Open
Abstract
Background A growing body of evidence indicates that inflammation is one of the earliest neuropathological events in Alzheimer's disease. Accordingly, we have recently shown the occurrence of an early, pro-inflammatory reaction in the hippocampus of young, three-month-old transgenic McGill-Thy1-APP mice in the absence of amyloid plaques but associated with intracellular accumulation of amyloid beta petide oligomers. The role of such a pro-inflammatory process in the progression of the pathology remained to be elucidated. Methods and results To clarify this we administered minocycline, a tetracyclic derivative with anti-inflammatory and neuroprotective properties, to young, pre-plaque McGill-Thy1-APP mice for one month. The treatment ended at the age of three months, when the mice were still devoid of plaques. Minocycline treatment corrected the up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 observed in young transgenic placebo mice. Furthermore, the down-regulation of inflammatory markers correlated with a reduction in amyloid precursor protein levels and amyloid precursor protein-related products. Beta-site amyloid precursor protein cleaving enzyme 1 activity and levels were found to be up-regulated in transgenic placebo mice, while minocycline treatment restored these levels to normality. The anti-inflammatory and beta-secretase 1 effects could be partly explained by the inhibition of the nuclear factor kappa B pathway. Conclusions Our study suggests that the pharmacological modulation of neuroinflammation might represent a promising approach for preventing or delaying the development of Alzheimer's disease neuropathology at its initial, pre-clinical stages. The results open new vistas to the interplay between inflammation and amyloid pathology.
Collapse
Affiliation(s)
- Maria Teresa Ferretti
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|