1
|
Functions of subventricular zone neural precursor cells in stroke recovery. Behav Brain Res 2019; 376:112209. [PMID: 31493429 DOI: 10.1016/j.bbr.2019.112209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/11/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
The proliferation and ectopic migration of neural precursor cells (NPCs) in response to ischemic brain injury was first reported two decades ago. Since then, studies of brain injury-induced subventricular zone cytogenesis, primarily in rodent models, have provided insight into the cellular and molecular determinants of this phenomenon and its modulation by various factors. However, despite considerable correlational evidence-and some direct evidence-to support contributions of NPCs to behavioral recovery after stroke, the causal mechanisms have not been identified. Here we discuss the subventricular zone cytogenic response and its possible roles in brain injury and disease, focusing on rodent models of stroke. Emerging evidence suggests that NPCs can modulate harmful responses and enhance reparative responses to neurologic diseases. We speculatively identify four broad functions of NPCs in the context of stroke: cell replacement, cytoprotection, remodeling of residual tissue, and immunomodulation. Thus, NPCs may have pleiotropic functions in supporting behavioral recovery after stroke.
Collapse
|
2
|
Biochemical re-programming of human dermal stem cells to neurons by increasing mitochondrial membrane potential. Cell Death Differ 2018; 26:1048-1061. [PMID: 30154448 DOI: 10.1038/s41418-018-0182-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 01/07/2023] Open
Abstract
Stem cells are generally believed to contain a small number of mitochondria, thus accounting for their glycolytic phenotype. We demonstrate here, however, that despite an indispensable glucose dependency, human dermal stem cells (hDSCs) contain very numerous mitochondria. Interestingly, these stem cells segregate into two distinct subpopulations. One exhibits high, the other low-mitochondrial membrane potentials (Δψm). We have made the same observations with mouse neural stem cells (mNSCs) which serve here as a complementary model to hDSCs. Strikingly, pharmacologic inhibition of phosphoinositide 3-kinase (PI3K) increased the overall Δψm, decreased the dependency on glycolysis and led to formation of TUJ1 positive, electrophysiologically functional neuron-like cells in both mNSCs and hDSCs, even in the absence of any neuronal growth factors. Furthermore, of the two, it was the Δψm-high subpopulation which produced more mitochondrial reactive oxygen species (ROS) and showed an enhanced neuronal differentiation capacity as compared to the Δψm-low subpopulation. These data suggest that the Δψm-low stem cells may function as the dormant stem cell population to sustain future neuronal differentiation by avoiding excessive ROS production. Thus, chemical modulation of PI3K activity, switching the metabotype of hDSCs to neurons, may have potential as an autologous transplantation strategy for neurodegenerative diseases.
Collapse
|
3
|
Li MZ, Zhang Y, Zou HY, Ouyang JY, Zhan Y, Yang L, Cheng BCY, Wang L, Zhang QX, Lei JF, Zhao YY, Zhao H. Investigation of Ginkgo biloba extract (EGb 761) promotes neurovascular restoration and axonal remodeling after embolic stroke in rat using magnetic resonance imaging and histopathological analysis. Biomed Pharmacother 2018; 103:989-1001. [DOI: 10.1016/j.biopha.2018.04.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
|
4
|
Yang XT, Huang GH, Li HJ, Sun ZL, Xu NJ, Feng DF. Rac1 Guides Porf-2 to Wnt Pathway to Mediate Neural Stem Cell Proliferation. Front Mol Neurosci 2017. [PMID: 28626389 PMCID: PMC5454044 DOI: 10.3389/fnmol.2017.00172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The molecular and cellular mechanisms underlying the anti-proliferative effects of preoptic regulator factor 2 (Porf-2) on neural stem cells (NSCs) remain largely unknown. Here, we found that Porf-2 inhibits the activity of ras-related C3 botulinum toxin substrate 1 (Rac1) protein in hippocampus-derived rat NSCs. Reduced Rac1 activity impaired the nuclear translocation of β-catenin, ultimately causing a repression of NSCs proliferation. Porf-2 knockdown enhanced NSCs proliferation but not in the presence of small molecule inhibitors of Rac1 or Wnt. At the same time, the repression of NSCs proliferation caused by Porf-2 overexpression was counteracted by small molecule activators of Rac1 or Wnt. By using a rat optic nerve crush model, we observed that Porf-2 knockdown enhanced the recovery of visual function. In particular, optic nerve injury in rats led to increased Wnt family member 3a (Wnt3a) protein expression, which we found responsible for enhancing Porf-2 knockdown-induced NSCs proliferation. These findings suggest that Porf-2 exerts its inhibitory effect on NSCs proliferation via Rac1-Wnt/β-catenin pathway. Porf-2 may therefore represent and interesting target for optic nerve injury recovery and therapy.
Collapse
Affiliation(s)
- Xi-Tao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China.,Department of Interventional Radiotherapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Nan-Jie Xu
- Neuroscience Division, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of MedicineShanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of MedicineShanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
5
|
Volpe G, Bernstock JD, Peruzzotti-Jametti L, Pluchino S. Modulation of host immune responses following non-hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis. J Neuroimmunol 2016; 331:11-27. [PMID: 28034466 DOI: 10.1016/j.jneuroim.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
There exists an urgent need for effective treatments for those patients suffering from chronic/progressive multiple sclerosis (MS). Accordingly, it has become readily apparent that different classes of stem cell-based therapies must be explored at both the basic science and clinical levels. Herein, we provide an overview of the basic mechanisms underlying the pre-clinical benefits of exogenously delivered non-hematopoietic stem cells (nHSCs) in animal models of MS. Further, we highlight a number of early clinical trials in which nHSCs have been used to treat MS. Finally, we identify a series of challenges that must be met and ultimately overcome if such promising therapeutics are to be advanced from the bench to the bedside.
Collapse
Affiliation(s)
- Giulio Volpe
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; University of Cambridge, Clifford Allbutt Building - Cambridge Biosciences Campus, Hills Road, CB2 0AH Cambridge, UK.
| | - Joshua D Bernstock
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA.
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; University of Cambridge, Clifford Allbutt Building - Cambridge Biosciences Campus, Hills Road, CB2 0AH Cambridge, UK.
| | - Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Zhang K, Chen C, Yang Z, He W, Liao X, Ma Q, Deng P, Lu J, Li J, Wang M, Li M, Zheng L, Zhou Z, Sun W, Wang L, Jia H, Yu Z, Zhou Z, Chen X. Sensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo. Cereb Cortex 2016; 26:3690-3704. [PMID: 27405333 PMCID: PMC5004757 DOI: 10.1093/cercor/bhw213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
Glial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration have been obtained under in vitro conditions using slice preparations, in vivo evidence for such integration is still lacking. Here, we utilized in vivo two-photon Ca2+ imaging along with immunohistochemistry, fluorescent indicator labeling-based axon tracing and correlated light/electron microscopy to analyze the profiles and the functional status of glial precursor cell-derived astrocytes in adult mouse neocortex. We show that after being transplanted into somatosensory cortex, precursor-derived astrocytes are able to survive for more than a year and respond with Ca2+ signals to sensory stimulation. These sensory-evoked responses are mediated by functionally-expressed nicotinic receptors and newly-established synaptic contacts with the host cholinergic afferents. Our results provide in vivo evidence for a functional integration of transplanted astrocytes into adult mammalian neocortex, representing a proof-of-principle for sensory cortex remodeling through addition of essential neural elements. Moreover, we provide strong support for the use of glial precursor transplantation to understand glia-related neural development in vivo.
Collapse
Affiliation(s)
- Kuan Zhang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Zhiqi Yang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China.,Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu 730050, China
| | - Wenjing He
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Jian Lu
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Jingcheng Li
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Meng Wang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Mingli Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lianghong Zheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Zhuan Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Wei Sun
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Liting Wang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Zhou Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, Chongqing 400038, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
7
|
Griffin TA, Anderson HC, Wolfe JH. Ex vivo gene therapy using patient iPSC-derived NSCs reverses pathology in the brain of a homologous mouse model. Stem Cell Reports 2015; 4:835-46. [PMID: 25866157 PMCID: PMC4437470 DOI: 10.1016/j.stemcr.2015.02.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 12/01/2022] Open
Abstract
Neural stem cell (NSC) transplantation is a promising strategy for delivering therapeutic proteins in the brain. We evaluated a complete process of ex vivo gene therapy using human induced pluripotent stem cell (iPSC)-derived NSC transplants in a well-characterized mouse model of a human lysosomal storage disease, Sly disease. Human Sly disease fibroblasts were reprogrammed into iPSCs, differentiated into a stable and expandable population of NSCs, genetically corrected with a transposon vector, and assessed for engraftment in NOD/SCID mice. Following neonatal intraventricular transplantation, the NSCs engraft along the rostrocaudal axis of the CNS primarily within white matter tracts and survive for at least 4 months. Genetically corrected iPSC-NSCs transplanted post-symptomatically into the striatum of adult Sly disease mice reversed neuropathology in a zone surrounding the grafts, while control mock-corrected grafts did not. The results demonstrate the potential for ex vivo gene therapy in the brain using human NSCs from autologous, non-neural tissues. Sly disease patient fibroblasts converted to iPSCs yield transplantable NSCs A PiggyBac transposon-based approach corrects the lysosomal enzyme deficiency Widespread migration of transplanted NSCs occurs in neonates, but not in adults Reversal of microglial pathology in a zone surrounding corrected grafts
Collapse
Affiliation(s)
- Tagan A Griffin
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hayley C Anderson
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John H Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Zhang S, Li J, Lea R, Vleminckx K, Amaya E. Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development. Development 2015; 141:4794-805. [PMID: 25468942 PMCID: PMC4299278 DOI: 10.1242/dev.115691] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Brain regionalisation, neuronal subtype diversification and circuit connectivity are crucial events in the establishment of higher cognitive functions. Here we report the requirement for the transcriptional repressor Fezf2 for proper differentiation of neural progenitor cells during the development of the Xenopus forebrain. Depletion of Fezf2 induces apoptosis in postmitotic neural progenitors, with concomitant reduction in forebrain size and neuronal differentiation. Mechanistically, we found that Fezf2 stimulates neuronal differentiation by promoting Wnt/β-catenin signalling in the developing forebrain. In addition, we show that Fezf2 promotes activation of Wnt/β-catenin signalling by repressing the expression of two negative regulators of Wnt signalling, namely lhx2 and lhx9. Our findings suggest that Fezf2 plays an essential role in controlling when and where neuronal differentiation occurs within the developing forebrain and that it does so by promoting local Wnt/β-catenin signalling via a double-repressor model.
Collapse
Affiliation(s)
- Siwei Zhang
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jingjing Li
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Robert Lea
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Kris Vleminckx
- Department for Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Enrique Amaya
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
9
|
Ivanov VN, Wen G, Hei TK. Sodium arsenite exposure inhibits AKT and Stat3 activation, suppresses self-renewal and induces apoptotic death of embryonic stem cells. Apoptosis 2013; 18:188-200. [PMID: 23143138 DOI: 10.1007/s10495-012-0779-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sodium arsenite exposure at concentration >5 μM may induce embryotoxic and teratogenic effects in animal models. Long-term health effects of sodium arsenite from contaminated drinking water may result in different forms of cancer and neurological abnormalities. As cancer development processes seem to be originated in stem cells, we have chosen to examine the effects of sodium arsenite on signaling pathways and the corresponding transcription factors that regulate cell viability and self-renewal in mouse embryonic stem cells (ESC) and mouse neural stem/precursor cells. We demonstrated that the crucial signaling pathway, which was substantially suppressed by sodium arsenite exposure (4 μM) in ESC, was the PI3K-AKT pathway linked with numerous downstream targets that control cell survival and apoptosis. Furthermore, the whole core transcription factor circuitry that control self-renewal of mouse ESC (Stat3-P-Tyr705, Oct4, Sox2 and Nanog) was strongly down-regulated by sodium arsenite (4 μM) exposure. This was followed by G2/M arrest and induction of the mitochondrial apoptotic pathway that might be suppressed by caspase-9 and caspase-3 inhibitors. In contrast to mouse ESC with very low endogenous IL6, mouse neural stem/precursor cells (C17.2 clone immortalized by v-myc) with high endogenous production of IL6 exhibited a strong resistance to cytotoxic effects of sodium arsenite that could be decreased by inhibitory anti-IL6 antibody or Stat3 inhibition. In summary, our data demonstrated suppression of self-renewal and induction of apoptosis in mouse ESC by sodium arsenite exposure, which was further accelerated due to simultaneous inhibition of the protective PI3K-AKT and Stat3-dependent pathways.
Collapse
Affiliation(s)
- Vladimir N Ivanov
- Department of Radiation Oncology, Center for Radiological Research, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
10
|
Wang J, Li X, Cheng H, Wang K, Lu W, Wen T. Overexpression of Rho-GDP-dissociation inhibitor-γ inhibits migration of neural stem cells. J Neurosci Res 2013; 91:1394-401. [PMID: 23996536 DOI: 10.1002/jnr.23261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/03/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
Neural stem cell (NSC) migration relies heavily on the regulation of actin and microtubule cytoskeletons by Rho GTPases, which are critical regulators of key steps during NSC migration. However, the migration mechanism remains unclear. Rho-GDP-dissociation inhibitor-γ (Rho-GDIγ) was identified as an important downregulator of the Rho family of GTPases, because of its ability to prevent nucleotide exchange and thus membrane association. This study investigates the role of Rho-GDIγ in neural stem cells migration. Our results indicate that the overexpression of Rho-GDIγ maintains NSCs in the stem cell state, meanwhile preventing NSC migration through inhibition of Rac1 expression, one of the Rho-family GTPases. This study provides the basis for further study of the molecular mechanism of NSC migration.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, Institute of Systems Biology, School of Life Sciences, Shanghai University, Shanghai, China; School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
11
|
Regulation of neural stem cell differentiation by transcription factors HNF4-1 and MAZ-1. Mol Neurobiol 2012; 47:228-40. [PMID: 22944911 DOI: 10.1007/s12035-012-8335-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
Neural stem cells (NSCs) are promising candidates for a variety of neurological diseases due to their ability to differentiate into neurons, astrocytes, and oligodentrocytes. During this process, Rho GTPases are heavily involved in neuritogenesis, axon formation and dendritic development, due to their effects on the cytoskeleton through downstream effectors. The activities of Rho GTPases are controlled by Rho-GDP dissociation inhibitors (Rho-GDIs). As shown in our previous study, these are also involved in the differentiation of NSCs; however, little is known about the underlying regulatory mechanism. Here, we describe how the transcription factors hepatic nuclear factor (HNF4-1) and myc-associated zinc finger protein (MAZ-1) regulate the expression of Rho-GDIγ in the stimulation of NSC differentiation. Using a transfection of cis-element double-stranded oligodeoxynucleotides (ODNs) strategy, referred to as "decoy" ODNs, we examined the effects of HNF4-1 and MAZ-1 on NSC differentiation in the NSC line C17.2. Our results show that HNF4-1 and MAZ-1 decoy ODNs significantly knock down Rho-GDIγ gene transcription, leading to NSC differentiation towards neurons. We observed that HNF4-1 and MAZ-1 decoy ODNs are able enter to the cell nucleolus and specifically bind to their target transcription factors. Furthermore, the expression of Rho-GDIγ-mediated genes was identified, suggesting that the regulatory mechanism for the differentiation of NSCs is triggered by the transcription factors MAZ-1 and HNF4-1. These findings indicate that HNF4-1 and MAZ-1 regulate the expression of Rho-GDIγ and contribute to the differentiation of NSCs. Our findings provide a new perspective within regulatory mechanism research during differentiation of NSCs, especially the clinical application of transcription factor decoys in vivo, suggesting potential therapeutic strategies for neurodegenerative disease.
Collapse
|
12
|
Reekmans K, Praet J, Daans J, Reumers V, Pauwels P, Van der Linden A, Berneman ZN, Ponsaerts P. Current challenges for the advancement of neural stem cell biology and transplantation research. Stem Cell Rev Rep 2012; 8:262-78. [PMID: 21537994 DOI: 10.1007/s12015-011-9266-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transplantation of neural stem cells (NSC) is hoped to become a promising primary or secondary therapy for the treatment of various neurodegenerative disorders of the central nervous system (CNS), as demonstrated by multiple pre-clinical animal studies in which functional recovery has already been demonstrated. However, for NSC therapy to be successful, the first challenge will be to define a transplantable cell population. In the first part of this review, we will briefly discuss the main features of ex vivo culture and characterisation of NSC. Next, NSC grafting itself may not only result in the regeneration of lost tissue, but more importantly has the potential to improve functional outcome through many bystander mechanisms. In the second part of this review, we will briefly discuss several pre-clinical studies that contributed to a better understanding of the therapeutic potential of NSC grafts in vivo. However, while many pre-clinical animal studies mainly report on the clinical benefit of NSC grafting, little is known about the actual in vivo fate of grafted NSC. Therefore, the third part of this review will focus on non-invasive imaging techniques for monitoring cellular grafts in the brain under in vivo conditions. Finally, as NSC transplantation research has evolved during the past decade, it has become clear that the host micro-environment itself, either in healthy or injured condition, is an important player in defining success of NSC grafting. The final part of this review will focus on the host environmental influence on survival, migration and differentiation of grafted NSC.
Collapse
Affiliation(s)
- Kristien Reekmans
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chatonnet F, Guyot R, Picou F, Bondesson M, Flamant F. Genome-wide search reveals the existence of a limited number of thyroid hormone receptor alpha target genes in cerebellar neurons. PLoS One 2012; 7:e30703. [PMID: 22586439 PMCID: PMC3346809 DOI: 10.1371/journal.pone.0030703] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/28/2011] [Indexed: 01/21/2023] Open
Abstract
Thyroid hormone (T3) has a major influence on cerebellum post-natal development. The major phenotypic landmark of exposure to low levels of T3 during development (hypothyroidism) in the cerebellum is the retarded inward migration of the most numerous cell type, granular neurons. In order to identify the direct genetic regulation exerted by T3 on cerebellar neurons and their precursors, we used microarray RNA hybridization to perform a time course analysis of T3 induced gene expression in primary cultures of cerebellar neuronal cell. These experiments suggest that we identified a small set of genes which are directly regulated, both in vivo and in vitro, during cerebellum post-natal development. These modest changes suggest that T3 does not acts directly on granular neurons and mainly indirectly influences the cellular interactions taking place during development.
Collapse
Affiliation(s)
- Fabrice Chatonnet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
| | - Frédéric Picou
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
| | | | - Frederic Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
14
|
Adult-brain-derived neural stem cells grafting into a vein bridge increases postlesional recovery and regeneration in a peripheral nerve of adult pig. Stem Cells Int 2012; 2012:128732. [PMID: 22448170 PMCID: PMC3289924 DOI: 10.1155/2012/128732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
We attempted transplantation of adult neural stem cells (ANSCs) inside an autologous venous graft following surgical transsection of nervis cruralis with 30 mm long gap in adult pig. The transplanted cell suspension was a primary culture of neurospheres from adult pig subventricular zone (SVZ) which had been labeled in vitro with BrdU or lentivirally transferred fluorescent protein. Lesion-induced loss of leg extension on the thigh became definitive in controls but was reversed by 45–90 days after neurosphere-filled vein grafting. Electromyography showed stimulodetection recovery in neurosphere-transplanted pigs but not in controls. Postmortem immunohistochemistry revealed neurosphere-derived cells that survived inside the venous graft from 10 to 240 post-lesion days and all displayed a neuronal phenotype. Newly formed neurons were distributed inside the venous graft along the severed nerve longitudinal axis. Moreover, ANSC transplantation increased CNPase expression, indicating activation of intrinsic Schwann cells. Thus ANSC transplantation inside an autologous venous graft provides an efficient repair strategy.
Collapse
|
15
|
Kim MS, Park HR, Chung HY, Kim HS, Yu BP, Yang HS, Lee J. Organic solvent metabolite, 1,2-diacetylbenzene, impairs neural progenitor cells and hippocampal neurogenesis. Chem Biol Interact 2011; 194:139-47. [PMID: 22020177 DOI: 10.1016/j.cbi.2011.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/20/2011] [Accepted: 10/03/2011] [Indexed: 01/16/2023]
Abstract
1,2-Diacetylbenzene (DAB) is a neurotoxic minor metabolite of 1,2-diethylbenzene or naphthalene reaction product with OH radical. DAB causes central and peripheral neuropathies that lead to motor neuronal deficits. However, the potent effects and molecular mechanisms of DAB on neural progenitor cells and hippocampus are unknown. In the current study, we report the DAB damage at lower doses (less than 50 μM) to neural progenitor cell (NPC) invitro and hippocampal neurogenesis invivo. DAB significantly suppressed NPC proliferation with increased reactive oxygen species (ROS) production in a dose-dependent manner. The suppression of NPC proliferation was effectively blunted by the action of an antioxidant, N-acetyl cysteine. Six-week-old male C57BL/6 mice were treated with 1 or 5 mg/kg DAB for 2 weeks. DAB significantly suppressed NPC proliferation in the dentate gyrus of the hippocampus, indicating impaired hippocampal neurogenesis. Increased ROS production and the formation of oxidative stress-associated dinitrophenyl adducts were detected in the hippocampal homogenates of DAB-treated mice. DAB activated Mac-1-positive immune cells which are involved in inflammatory process in the hippocampus. Taken together, these results confirm that oxidative stress by DAB might be cause of adverse effects in NPC proliferation and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Felfly H, Xue J, Zambon AC, Muotri A, Zhou D, Haddad GG. Identification of a neuronal gene expression signature: role of cell cycle arrest in murine neuronal differentiation in vitro. Am J Physiol Regul Integr Comp Physiol 2011; 301:R727-45. [PMID: 21677276 PMCID: PMC3174756 DOI: 10.1152/ajpregu.00217.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/08/2011] [Indexed: 12/11/2022]
Abstract
Stem cells are a potential key strategy for treating neurodegenerative diseases in which the generation of new neurons is critical. A better understanding of the characteristics and molecular properties of neural stem cells (NSCs) and differentiated neurons can help with assessing neuronal maturity and, possibly, in devising better therapeutic strategies. We have performed an in-depth gene expression profiling study of murine NSCs and primary neurons derived from embryonic mouse brains. Microarray analysis revealed a neuron-specific gene expression signature that distinguishes primary neurons from NSCs, with elevated levels of transcripts involved in neuronal functions, such as neurite development and axon guidance in primary neurons and decreased levels of multiple cytokine transcripts. Among the differentially expressed genes, we found a statistically significant enrichment of genes in the ephrin, neurotrophin, CDK5, and actin pathways, which control multiple neuronal-specific functions. We then artificially blocked the cell cycle of NSCs with mitomycin C (MMC) and examined cellular morphology and gene expression signatures. Although these MMC-treated NSCs displayed a neuronal morphology and expressed some neuronal differentiation marker genes, their gene expression patterns were very different from primary neurons. We conclude that 1) fully differentiated mouse primary neurons display a specific neuronal gene expression signature; 2) cell cycle block at the S phase in NSCs with MMC does not induce the formation of fully differentiated neurons; 3) cytokines change their expression pattern during differentiation of NSCs into neurons; and 4) signaling pathways of ephrin, neurotrophin, CDK5, and actin, related to major neuronal features, are dynamically enriched in genes showing changes in expression level.
Collapse
Affiliation(s)
- Hady Felfly
- Department of Pediatrics, School of Medicine, University of California San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Patkar S, Tate R, Modo M, Plevin R, Carswell HVO. Conditionally immortalised neural stem cells promote functional recovery and brain plasticity after transient focal cerebral ischaemia in mice. Stem Cell Res 2011; 8:14-25. [PMID: 22099017 DOI: 10.1016/j.scr.2011.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/27/2011] [Accepted: 07/19/2011] [Indexed: 11/27/2022] Open
Abstract
Cell therapy has enormous potential to restore neurological function after stroke. The present study investigated effects of conditionally immortalised neural stem cells (ciNSCs), the Maudsley hippocampal murine neural stem cell line clone 36 (MHP36), on sensorimotor and histological outcome in mice subjected to transient middle cerebral artery occlusion (MCAO). Adult male C57BL/6 mice underwent MCAO by intraluminal thread or sham surgery and MHP36 cells or vehicle were implanted into ipsilateral cortex and caudate 2 days later. Functional recovery was assessed for 28 days using cylinder and ladder rung tests and tissue analysed for plasticity, differentiation and infarct size. MHP36-implanted animals showed accelerated and augmented functional recovery and an increase in neurons (MAP-2), synaptic plasticity (synaptophysin) and axonal projections (GAP-43) but no difference in astrocytes (GFAP), oligodendrocytes (CNPase), microglia (IBA-1) or lesion volumes when compared to vehicle group. This is the first study showing a potential functional benefit of the ciNSCs, MHP36, after focal MCAO in mice, which is probably mediated by promoting neuronal differentiation, synaptic plasticity and axonal projections and opens up opportunities for future exploitation of genetically altered mice for dissection of mechanisms of stem cell based therapy.
Collapse
Affiliation(s)
- Shalmali Patkar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | | | | | | | | |
Collapse
|
18
|
Diaferia GR, Conti L, Redaelli S, Cattaneo M, Mutti C, DeBlasio P, Dalprà L, Cattaneo E, Biunno I. Systematic chromosomal analysis of cultured mouse neural stem cell lines. Stem Cells Dev 2011; 20:1411-23. [PMID: 21275879 DOI: 10.1089/scd.2010.0359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potential use of neural stem cells (NSCs) in basic research, drug testing, and for the development of therapeutic strategies is dependent on their large scale in vitro amplification which, however, introduces considerable risks of genetic instability and transformation. NSCs have been derived from different sources, but the occurrence of chromosomal instability has been monitored only to a limited extent in relationship to the source of derivation, growth procedure, long-term culture, and genetic manipulation. Here we have systematically investigated the effect of these parameters on the chromosomal stability of pure populations of mouse NSCs obtained after neuralization from embryonic stem cells (ESCs) or directly from fetal or adult mouse brain. We found that the procedure of NSCs establishment is not accompanied by genetic instability and chromosomal aberration. On the contrary, we observed that a composite karyotype appears in NSCs above extensive passaging. This phenomenon is more evident in ESC- and adult sub-ventricular zone-derived NSCs and further deteriorates after genetic engineering of the cells. Fetal-derived NSCs showed the greatest euploidy state with negligible clonal structural aberrations, but persistent clonal numerical abnormalities. It was previously published that long-term passaged ESC- and adult sub-ventricular zone-derived NSCs did not show any defects in the cells' proliferative and differentiative capacity nor induced in vivo tumour formation, although we here report on the chromosomal abnormalities of these cells. Although chromosomal aberrations are known to occur less frequently in human cells, studies performed on murine stem cells provide an important complement to understand the biological events occurring in human lines.
Collapse
|
19
|
Latchney SE, Lioy DT, Henry EC, Gasiewicz TA, Strathmann FG, Mayer-Pröschel M, Opanashuk LA. Neural precursor cell proliferation is disrupted through activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Stem Cells Dev 2010; 20:313-26. [PMID: 20486776 DOI: 10.1089/scd.2009.0529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neurogenesis involves the proliferation of multipotent neuroepithelial stem cells followed by differentiation into lineage-restricted neural precursor cells (NPCs) during the embryonic period. Interestingly, these progenitor cells express robust levels of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that regulates expression of genes important for growth regulation, and xenobiotic metabolism. Upon binding 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a pervasive environmental contaminant and potent AhR ligand, AhR, is activated and disrupts gene expression patterns to produce cellular toxicity. Because of its widespread distribution in the brain during critical proliferative phases of neurogenesis, it is conceivable that AhR participates in NPC expansion. Therefore, this study tested the hypothesis that AhR activation by TCDD disrupts signaling events that regulate NPC proliferation. The C17.2 NPC line served as a model system to (1) assess whether NPCs are targets for TCDD-induced neurotoxicity and (2) characterize the effects of TCDD on NPC proliferation. We demonstrated that C17.2 NPCs express an intact AhR signaling pathway that becomes transcriptionally active after TCDD exposure. (3)H-thymidine and alamar blue reduction assays indicated that TCDD suppresses NPC proliferation in a concentration-dependent manner without the loss of cell viability. Cell cycle distribution analysis by flow cytometry revealed that TCDD-induced growth arrest results from an impaired G1 to S cell cycle transition. Moreover, TCDD exposure altered p27( kip1) and cyclin D1 cell cycle regulatory protein expression levels consistent with a G1 phase arrest. Initial studies in primary NPCs isolated from the ventral forebrain of embryonic mice demonstrated that TCDD reduced cell proliferation through a G1 phase arrest, corroborating our findings in the C17.2 cell line. Together, these observations suggest that the inappropriate or sustained activation of AhR by TCDD during neurogenesis can interfere with signaling pathways that regulate neuroepithelial stem cell/NPC proliferation, which could adversely impact final cell number in the brain and lead to functional impairments.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Vukicevic V, Jauch A, Dinger TC, Gebauer L, Hornich V, Bornstein SR, Ehrhart-Bornstein M, Müller AM. Genetic instability and diminished differentiation capacity in long-term cultured mouse neurosphere cells. Mech Ageing Dev 2010; 131:124-32. [DOI: 10.1016/j.mad.2010.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 12/20/2009] [Accepted: 01/06/2010] [Indexed: 12/25/2022]
|
21
|
Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 2009; 37:275-83. [PMID: 19822211 DOI: 10.1016/j.nbd.2009.10.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/30/2009] [Accepted: 10/02/2009] [Indexed: 12/22/2022] Open
Abstract
Stem cell transplantation has evolved as a promising experimental treatment approach for stroke. In this review, we address the major hurdles for successful translation from basic research into clinical applications and discuss possible strategies to overcome these issues. We summarize the results from present pre-clinical and clinical studies and focus on specific areas of current controversy and research: (i) the therapeutic time window for cell transplantation; (ii) the selection of patients likely to benefit from such a therapy; (iii) the optimal route of cell delivery to the ischemic brain; (iv) the most suitable cell types and sources; (v) the potential mechanisms of functional recovery after cell transplantation; and (vi) the development of imaging techniques to monitor cell therapy.
Collapse
|
22
|
Magnetic resonance imaging detects differences in migration between primary and immortalized neural stem cells. Acad Radiol 2008; 15:1269-81. [PMID: 18790399 DOI: 10.1016/j.acra.2008.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 12/30/2022]
Abstract
RATIONALE AND OBJECTIVES The study was performed to evaluate the effect of magnetic resonance imaging (MRI) contrast agent (super paramagnetic iron oxide [SPIO]) on differentiation and migration of primary murine neural stem cells (NSCs) in comparison to a neural stem cell line (C17.2). Because detection of labeled cells depends on the concentration of SPIO particles per imaging voxel, the study was performed at various concentrations of SPIO particles to determine the concentration that could be used for in vivo detection of small clusters of grafted cells. MATERIALS AND METHODS Murine primary NSCs or C17.2 cells were labeled with different concentrations of SPIO particles (0, 25, 100, and 250 microg Fe/mL) and in vitro assays were performed to assess cell differentiation. In vivo MRI was performed 7 weeks after neonatal transplantation of labeled cells to evaluate the difference in migration capability of the two cell populations. RESULTS Both the primary NSCs and the C17.2 cells differentiated to similar number of neurons (Map2ab-positive cells). Similar patterns of engraftment of C17.2 cells were seen in transplanted mice regardless of the SPIO concentration used. In vivo MRI detection of grafted primary and C17.2 cells was only possible when cells were incubated with 100 microg/mL or higher concentration of SPIO. Extensive migration of C17.2 cells throughout the brain was observed, whereas the migration of the primary NSCs was more restricted. CONCLUSIONS Engraftment of primary NSCs can be detected noninvasively by in vivo MRI, and the presence of SPIO particles do not affect the viability, differentiation, or engraftment pattern of the donor cells.
Collapse
|
23
|
Guzman R, Bliss T, De Los Angeles A, Moseley M, Palmer T, Steinberg G. Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J Neurosci Res 2008; 86:873-82. [PMID: 17975825 DOI: 10.1002/jnr.21542] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endogenous neural stem cells normally reside in their niche, the subventricular zone, in the uninjured rodent brain. Upon stroke, these cells become more proliferative and migrate away from the subventricular zone into the surrounding parenchyma. It is not known whether this stroke-induced behavior is due to changes in the niche or introduction of attractive cues in the infarct zone, or both. A related question is how transplanted neural stem cells respond to subsequent insults, including whether exogenous stem cells have the plasticity to respond to subsequent injuries after engraftment. We addressed this issue by transplanting neural progenitor cells (NPCs) into the uninjured brain and then subjecting the animal to stroke. We were able to follow the transplanted NPCs in vivo by labeling them with superparamagnetic iron oxide particles and imaging them via high-resolution magnetic resonance imaging (MRI) during engraftment and subsequent to stroke. We find that transplanted NPCs that are latent can be activated in response to stroke and exhibit directional migration into the parenchyma, similar to endogenous neural NPCs, without a niche environment.
Collapse
Affiliation(s)
- Raphael Guzman
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5327, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hua Y, Xiao–wei C, Zhi–qiang G. Recent progresses in stem cell research and hearing restoration. J Otol 2008. [DOI: 10.1016/s1672-2930(08)50001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
25
|
Lorico A, Mercapide J, Soloduschko V, Alexeyev M, Fodstad O, Rappa G. Primary neural stem/progenitor cells expressing endostatin or cytochrome P450 for gene therapy of glioblastoma. Cancer Gene Ther 2008; 15:605-15. [DOI: 10.1038/cgt.2008.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Abstract
New fundamental results on stem cell biology have been obtained in the past 15 years. These results allow us to reinterpret the functioning of the cerebral tissue in health and disease. Proliferating stem cells have been found in the adult brain, which can be involved in postinjury repair and can replace dead cells under specific conditions. Numerous genomic mechanisms controlling stem cell proliferation and differentiation have been identified. The involvement of stem cells in the genesis of malignant tumors has been demonstrated. Neural stem cell tropism toward tumors has been shown. These findings suggest new lines of research on brain functioning and development. Stem cells can be used to develop radically new treatments of neurodegenerative and cancer diseases of the brain.
Collapse
|
27
|
Intracarotid Injection of Fluorescence Activated Cell-Sorted CD49d-Positive Neural Stem Cells Improves Targeted Cell Delivery and Behavior After Stroke in a Mouse Stroke Model. Stroke 2008; 39:1300-6. [DOI: 10.1161/strokeaha.107.500470] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Pavlova GV, Okhotin VE, Korochkin LI, Revishchin AV. Genomic regulation of neural stem cells in mammals. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, Martin DC. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res A 2008; 83:636-45. [PMID: 17508416 DOI: 10.1002/jbm.a.31285] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nerve injury, a significant cause of disability, may be treated more effectively using nerve guidance channels containing longitudinally aligned fibers. Aligned, electrospun nanofibers direct the neurite growth of immortalized neural stem cells, demonstrating potential for directing regenerating neurites. However, no study of neurite guidance on these fibers has yet been performed with primary neurons. Here, we examined neurites from dorsal root ganglia explants on electrospun poly-L-lactate nanofibers of high, intermediate, and random alignment. On aligned fibers, neurites grew radially outward from the ganglia and turned to follow the fibers upon contact. Neurite guidance was robust, with neurites never leaving the fibers to grow on the surrounding cover slip. To compare the alignment of neurites to that of the nanofiber substrates, Fourier methods were used to quantify the alignment. Neurite alignment, however striking, was inferior to fiber alignment on all but the randomly aligned fibers. Neurites on highly aligned substrates were 20 and 16% longer than neurites on random and intermediate fibers, respectively. Schwann cells on fibers assumed a very narrow morphology compared to those on the surrounding coverslip. The robust neurite guidance demonstrated here is a significant step toward the use of aligned, electrospun nanofibers for nerve regeneration. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007.
Collapse
Affiliation(s)
- Joseph M Corey
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- M Knipper
- Molekulare Neurobiologie, Hörforschungszentrum Tübingen, Universitäts-Hals-Nasen-Ohren-Klinik, 72076, Tübingen.
| |
Collapse
|
31
|
Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Snyder EY, Cotanche DA. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res 2007; 232:29-43. [PMID: 17659854 PMCID: PMC2032013 DOI: 10.1016/j.heares.2007.06.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Revised: 06/06/2007] [Accepted: 06/08/2007] [Indexed: 11/27/2022]
Abstract
Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, spiral ganglion, and Schwann cells) and cells of the organ of Corti (hair cells, supporting cells). Additionally, noise-exposed, stem cell-injected animals exhibited a small but significant increase in the number of satellite cells and Type I spiral ganglion neurons compared to non-injected noise-exposed animals. These results indicate that cells of this neural stem cell line migrate from the scala tympani to Rosenthal's canal and the organ of Corti. Moreover, they suggest that cells of this neural stem cell line may derive some information needed from the microenvironment of the cochlea to differentiate into replacement cells in the cochlea.
Collapse
Affiliation(s)
- Mark A Parker
- Department of Communication Sciences and Disorders, Emerson College, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Park JH, Ahn JI, Kim SY, Park KS, Lee YD, Yamaguchi M, Chung HJ. Genetic modification does not affect the stemness of neural stem cells in nestin promoter-GFP transgenic mice. Neurosci Lett 2007; 421:185-90. [PMID: 17574339 DOI: 10.1016/j.neulet.2007.02.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/31/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Because nestin promoter-GFP mice have frequently been used in neural stem cell (NSC) research, it is essential to prove that there is no alteration in the stemness of NSCs derived from this transgenic model for the interpretation and validity of the data. We compared the stemness of NSCs derived from transgenic mice expressing GFP driven by the nestin enhancer with those from wild-type (C57BL/6) mice with respect to the general gene expression profile, expression of neural stem cell markers as nestin and Sox2, and responsiveness to neurotrophins (BDNF, PDGF-BB, and NT-3). The gene expression profile analysis showed that the coefficient of correlation between the two groups was very high (r=0.9865) in the total genes. We found that 23 genes were either up- or down-regulated more than two-fold in the NSCs from the transgenic mice (p<0.05), without any obvious functional relatedness among them. Likewise, there was no difference between the two mouse groups in the expression of nestin or Sox2, the ability to form neurospheres and the neuronal differentiation of NSCs by neurotrophins. Taken together, the self-renewal and neuronal differentiation ability of NSCs from the transgenic mice showed the great similarity to those from wild-type mice. Such information will be useful when the properties of NSCs are evaluated following genetic modification in such a nestin-GFP Tg model.
Collapse
Affiliation(s)
- Jae Hyun Park
- Department of Pharmacology, National Institute of Toxicological Research, 5 Nokbun-Dong, Eunpyung-Gu, Seoul 122-704, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
No treatment currently exists to restore lost neurological function after stroke. A growing number of studies highlight the potential of stem cell transplantation as a novel therapeutic approach for stroke. In this review we summarize these studies, discuss potential mechanisms of action of the transplanted cells, and emphasize the need to determine parameters that are critical for transplantation success.
Collapse
Affiliation(s)
- Tonya Bliss
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
34
|
Mi R, Chen W, Höke A. Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc Natl Acad Sci U S A 2007; 104:4664-9. [PMID: 17360581 PMCID: PMC1838658 DOI: 10.1073/pnas.0603243104] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Regeneration in the peripheral nervous system is poor after chronic denervation. Denervated Schwann cells act as a "transient target" by secreting growth factors to promote regeneration of axons but lose this ability with chronic denervation. We discovered that the mRNA for pleiotrophin (PTN) was highly up-regulated in acutely denervated distal sciatic nerves, but high levels of PTN mRNA were not maintained in chronically denervated nerves. PTN protected spinal motor neurons against chronic excitotoxic injury and caused increased outgrowth of motor axons out of the spinal cord explants and formation of "miniventral rootlets." In neonatal mice, PTN protected the facial motor neurons against cell death induced by deprivation from target-derived growth factors. Similarly, PTN significantly enhanced regeneration of myelinated axons across a graft in the transected sciatic nerve of adult rats. Our findings suggest a neurotrophic role for PTN that may lead to previously unrecognized treatment options for motor neuron disease and motor axonal regeneration.
Collapse
Affiliation(s)
- Ruifa Mi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Weiran Chen
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Ahmet Höke
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- *To whom correspondence should be addressed at:
Department of Neurology, Johns Hopkins University, 600 North Wolfe Street, Path 509, Baltimore, MD 21287. E-mail:
| |
Collapse
|
35
|
Abstract
Stroke causes cell death but also birth and migration of new neurons within sites of ischemic damage. The cellular environment that induces neuronal regeneration and migration after stroke has not been defined. We have used a model of long-distance migration of newly born neurons from the subventricular zone to cortex after stroke to define the cellular cues that induce neuronal regeneration after CNS injury. Mitotic, genetic, and viral labeling and chemokine/growth factor gain- and loss-of-function studies show that stroke induces neurogenesis from a GFAP-expressing progenitor cell in the subventricular zone and migration of newly born neurons into a unique neurovascular niche in peri-infarct cortex. Within this neurovascular niche, newly born, immature neurons closely associate with the remodeling vasculature. Neurogenesis and angiogenesis are causally linked through vascular production of stromal-derived factor 1 (SDF1) and angiopoietin 1 (Ang1). Furthermore, SDF1 and Ang1 promote post-stroke neuroblast migration and behavioral recovery. These experiments define a novel brain environment for neuronal regeneration after stroke and identify molecular mechanisms that are shared between angiogenesis and neurogenesis during functional recovery from brain injury.
Collapse
Affiliation(s)
- John J. Ohab
- Department of Neurology, University of California, Los Angeles, Los Angeles, California 90095-1735, and
| | - Sheila Fleming
- Department of Neurology, University of California, Los Angeles, Los Angeles, California 90095-1735, and
| | - Armin Blesch
- Department of Neuroscience, University of California, San Diego, La Jolla, California 92093-0626
| | - S. Thomas Carmichael
- Department of Neurology, University of California, Los Angeles, Los Angeles, California 90095-1735, and
| |
Collapse
|
36
|
Li H, Grumet M. BMP and LIF signaling coordinately regulate lineage restriction of radial glia in the developing forebrain. Glia 2007; 55:24-35. [PMID: 17001659 DOI: 10.1002/glia.20434] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The earliest radial glia are neural stem cells that guide neural cell migration away from ventricular zones. Subsequently, radial glia become lineage restricted during development before they differentiate into more mature cell types in the CNS. We have previously shown that subpopulations of radial glial cells express markers for glial and neuronal restricted precursors (GRPs and NRPs) in expression patterns that are temporally and spatially regulated during CNS development. To characterize further the mechanism of this regulation in rat forebrain, we tested whether secreted factors that are present during development effect lineage restriction of radial glia. We show here that in radial glial cultures LIF/CNTF up-regulates, whereas BMP2 down-regulates GRP antigens recognized by monoclonal antibodies A2B5/4D4. These activities combined with secretion of BMPs dorsally and LIF/CNTF from the choroid plexus provide an explanation for the graded distribution pattern of A2B5/4D4 in dorso-lateral ventricular regions in vivo. The regulation by LIF/CNTF of A2B5/4D4 is mediated through the JAK-STAT pathway. BMP2 promotes expression on radial glial cells of the NRP marker polysialic acid most likely by regulating N-CAM expression itself, as well as at least one polysialyl transferase responsible for synthesis of polysialic acid on N-CAM. Taken together, these results suggest that generation of lineage-restricted precursors is coordinately regulated by gradients of the secreted factors BMPs and LIF/CNTF during development of dorsal forebrain.
Collapse
Affiliation(s)
- Hedong Li
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA
| | | |
Collapse
|
37
|
Watson DJ, Walton RM, Magnitsky SG, Bulte JWM, Poptani H, Wolfe JH. Structure-specific patterns of neural stem cell engraftment after transplantation in the adult mouse brain. Hum Gene Ther 2006; 17:693-704. [PMID: 16839269 DOI: 10.1089/hum.2006.17.693] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transplantation of neural stem cells (NSCs) may be useful for delivering exogenous gene products to the diseased CNS. When NSCs are transplanted into the developing mouse brain, they can migrate extensively and differentiate into cells appropriate to the sites of engraftment, in response to the normal signals directing endogenous cells to their appropriate fates. Much of the prior work on NSC migration in the adult brain has examined directed migration within or toward focal areas of injury such as ischemia, brain tumors, or 6-hydroxydopamine (6-OHDA) lesions. However, treatment of many genetic disorders that affect the CNS will require widespread dissemination of the donor cells in the postnatal brain, because the lesions are typically distributed globally. We therefore tested the ability of NSCs to migrate in the unlesioned adult mouse brain after stereotaxic transplantation into several structures including the cortex and hippocampus. NSC engraftment was monitored in live animals by magnetic resonance imaging (MRI) after superparamagnetic iron oxide (SPIO) labeling of cells. Histological studies demonstrated that the cells engrafted in significantly different patterns within different regions of the brain. In the cerebral cortex, donor cells migrated in all directions from the injection site. The cells maintained an immature phenotype and cortical migration was enhanced by trypsin treatment of the cells, indicating a role for cell surface proteins. In the hippocampus, overall cell survival and migration were lower but there was evidence of neuronal differentiation. In the thalamus, the transplanted cells remained in a consolidated mass at the site of injection. These variations in pattern of engraftment should be taken into account when designing treatment approaches in nonlesion models of neurologic disease.
Collapse
Affiliation(s)
- Deborah J Watson
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | |
Collapse
|
38
|
Watson DJ, Walton RM, Magnitsky SG, Bulte JW, Poptani H, Wolfe JH. Structure-Specific Patterns of Neural Stem Cell Engraftment After Transplantation in the Adult Mouse Brain. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Navarro-Galve B, Martinez-Serrano A. “Is there any need to argue…” about the nature and genetic signature of in vitro neural stem cells? Exp Neurol 2006; 199:20-5. [PMID: 16740262 DOI: 10.1016/j.expneurol.2006.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 03/05/2006] [Indexed: 01/23/2023]
Affiliation(s)
- Beatriz Navarro-Galve
- Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa", Laboratory CX-450, Autonomous University of Madrid and Spanish Council for Research [UAM-CSIC], Campus Cantoblanco, 28049-Madrid, Spain
| | | |
Collapse
|
40
|
Abstract
Neural stem cells are a self-renewing population that generates the neurons and glia of the developing brain. They can be isolated, proliferated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or pathologically altered CNS. Neural stem cells have been considered for use in cell replacement therapies in various neurodegenerative diseases, and an unexpected and potentially valuable characteristic of these cells has recently been revealed--they are highly migratory and seem to be attracted to areas of brain pathology such as ischaemic and neoplastic lesions. Here, we speculate on the ways in which neural stem cells might be exploited as delivery vehicles for gene therapy in the CNS.
Collapse
|