1
|
Zhang L, Meng J, Li H, Tang M, Zhou Z, Zhou X, Feng L, Li X, Guo Y, He Y, He W, Huang X. Hippocampal adaptation to high altitude: a neuroanatomic profile of hippocampal subfields in Tibetans and acclimatized Han Chinese residents. Front Neuroanat 2022; 16:999033. [DOI: 10.3389/fnana.2022.999033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
The hippocampus is highly plastic and vulnerable to hypoxia. However, it is unknown whether and how it adapts to chronic hypobaric hypoxia in humans. With a unique sample of Tibetans and acclimatized Han Chinese individuals residing on the Tibetan plateau, we aimed to build a neuroanatomic profile of the altitude-adapted hippocampus by measuring the volumetric differences in the whole hippocampus and its subfields. High-resolution T1-weighted magnetic resonance imaging was performed in healthy Tibetans (TH, n = 72) and healthy Han Chinese individuals living at an altitude of more than 3,500 m (HH, n = 27). In addition, healthy Han Chinese individuals living on a plain (HP, n = 72) were recruited as a sea-level reference group. Whereas the total hippocampal volume did not show a significant difference across groups when corrected for age, sex, and total intracranial volume, subfield-level differences within the hippocampus were found. Post hoc analyses revealed that Tibetans had larger core hippocampal subfields (bilateral CA3, right CA4, right dentate gyrus); a larger right hippocampus–amygdala transition area; and smaller bilateral presubiculum, right subiculum, and bilateral fimbria, than Han Chinese subjects (HH and/or HP). The hippocampus and all its subfields were found to be slightly and non-significantly smaller in HH subjects than in HP subjects. As a primary explorational study, our data suggested that while the overall hippocampal volume did not change, the core hippocampus of Tibetans may have an effect of adaptation to chronic hypobaric hypoxia. However, this adaptation may have required generations rather than mere decades to accumulate in the population.
Collapse
|
2
|
Choi YK, Kim YM. Beneficial and Detrimental Roles of Heme Oxygenase-1 in the Neurovascular System. Int J Mol Sci 2022; 23:ijms23137041. [PMID: 35806040 PMCID: PMC9266949 DOI: 10.3390/ijms23137041] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heme oxygenase (HO) has both beneficial and detrimental effects via its metabolites, including carbon monoxide (CO), biliverdin or bilirubin, and ferrous iron. HO-1 is an inducible form of HO that is upregulated by oxidative stress, nitric oxide, CO, and hypoxia, whereas HO-2 is a constitutive form that regulates vascular tone and homeostasis. In brains injured by trauma, ischemia-reperfusion, or Alzheimer’s disease (AD), the long-term expression of HO-1 can be detected, which can lead to cytotoxic ferroptosis via iron accumulation. In contrast, the transient induction of HO-1 in the peri-injured region may have regenerative potential (e.g., angiogenesis, neurogenesis, and mitochondrial biogenesis) and neurovascular protective effects through the CO-mediated signaling pathway, the antioxidant properties of bilirubin, and the iron-mediated ferritin synthesis. In this review, we discuss the dual roles of HO-1 and its metabolites in various neurovascular diseases, including age-related macular degeneration, ischemia-reperfusion injury, traumatic brain injury, Gilbert’s syndrome, and AD.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| |
Collapse
|
3
|
Effects of datumetine on hippocampal NMDAR activity. Toxicol Rep 2021; 8:1131-1142. [PMID: 34150523 PMCID: PMC8190477 DOI: 10.1016/j.toxrep.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
The usage (abuse) of Datura metel is becoming increasingly worrisome among the Nigerian populace especially among the youth considering its side effects such as hallucination. This work was designed to identify the phytochemicals in datura plant that potentially interact with NMDAR as it affects the electrical and memory activities of the brain. Ligand-protein interaction was assessed using autodock vina to identify phytochemicals that can interact with NMDAR. Datumetine was found to have the best interaction fit with NMDAR at both allosteric and orthosteric binding sites. Furthermore, using electrophysiological, behavioural and western blotting techniques, it was observed that the administration of datumetine positively modulates the NMDAR current by prolonging burst duration and interspike interval, induces seizures in C57BL/6 mice. Acute exposure leads to memory deficit on NOR and Y-maze test while immunoblotting results showed increased expression of GluN1 and CamKIIα while pCamKIIα-T286, CREB and BDNF were downregulated. The results showed that the memory deficit seen in datura intoxication is possibly the effects of datumetine on NMDAR.
Collapse
|
4
|
Sankorrakul K, Qian L, Thangnipon W, Coulson EJ. Is there a role for the p75 neurotrophin receptor in mediating degeneration during oxidative stress and after hypoxia? J Neurochem 2021; 158:1292-1306. [PMID: 34109634 DOI: 10.1111/jnc.15451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
Cholinergic basal forebrain (cBF) neurons are particularly vulnerable to degeneration following trauma and in neurodegenerative conditions. One reason for this is their characteristic expression of the p75 neurotrophin receptor (p75NTR ), which is up-regulated and mediates neuronal death in a range of neurological and neurodegenerative conditions, including dementia, stroke and ischaemia. The signalling pathway by which p75NTR signals cell death is incompletely characterised, but typically involves activation by neurotrophic ligands and signalling through c-Jun kinase, resulting in caspase activation via mitochondrial apoptotic signalling pathways. Less well appreciated is the link between conditions of oxidative stress and p75NTR death signalling. Here, we review the literature describing what is currently known regarding p75NTR death signalling in environments of oxidative stress and hypoxia to highlight the overlap in signalling pathways and the implications for p75NTR signalling in cBF neurons. We propose that there is a causal relationship and define key questions to test this assertion.
Collapse
Affiliation(s)
- Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Lei Qian
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| |
Collapse
|
5
|
Barhwal KK, Biswal S, Chandra Nag T, Chaurasia OP, Hota SK. Class switching of carbonic anhydrase isoforms mediates remyelination in CA3 hippocampal neurons during chronic hypoxia. Free Radic Biol Med 2020; 161:102-114. [PMID: 33035636 DOI: 10.1016/j.freeradbiomed.2020.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
Chronic exposure to hypoxia results in cerebral white matter hyperintensities, increased P300 latency, delayed response and impairment in working memory. Despite burgeoning evidence on role of myelination in nerve conduction, the effect of chronic hypoxia on myelination of hippocampal neurons has been less studied. The present study provides novel evidence on alterations in myelination of hippocampal CA3 neurons following chronic hypoxic exposure. Sprague Dawley rats exposed to global hypobaric hypoxia simulating altitude of 25,000 ft showed progressive demyelination in CA3 hippocampal neurons on 14 days followed by remyelination on 21 and 28 days. The demyelination of CA3 neurons was associated with increased apoptosis of both oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (OLs), peroxidation of myelin lipids, and nitration induced reduced expression of Carbonic Anhydrase II (CAII). Prolonged hypoxic exposure of 21 and 28 days on the other hand resulted in peroxisome proliferator-activated receptor alpha (PPARα) induced upregulation of Carbonic Anhydrase IV (CAIV) expression in mature oligodendrocytes through iNOS mediated mechanisms along with reduction in lipid peroxidation and remyelination. Inhibition of carbonic anhydrase activity on the other hand prevented remyelination of CA3 neurons. Based on these findings we propose a novel iNOS mediated mechanism for regulation of myelination in hypoxic hippocampal neurons through class switching of carbonic anhydrases.
Collapse
Affiliation(s)
- Kalpana Kumari Barhwal
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India.
| | - Suryanarayan Biswal
- Centre for Brain Development and Repair, Institute of Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India; Defence Institute of High Altitude Research, DRDO, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Om Prakash Chaurasia
- Defence Institute of High Altitude Research, DRDO, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Sunil Kumar Hota
- O/o Director General (Life Sciences), DRDO Head Quarters, Rajaji Marg, New Delhi, 110011, India
| |
Collapse
|
6
|
Piotrowicz Z, Chalimoniuk M, Płoszczyca K, Czuba M, Langfort J. Exercise-Induced Elevated BDNF Level Does Not Prevent Cognitive Impairment Due to Acute Exposure to Moderate Hypoxia in Well-Trained Athletes. Int J Mol Sci 2020; 21:ijms21155569. [PMID: 32759658 PMCID: PMC7432544 DOI: 10.3390/ijms21155569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Exposure to acute hypoxia causes a detrimental effect on the brain which is also manifested by a decrease in the ability to perform psychomotor tasks. Conversely, brain-derived neurotrophic factor (BDNF), whose levels are elevated in response to exercise, is a well-known factor in improving cognitive function. Therefore, the aim of our study was to investigate whether the exercise under hypoxic conditions affects psychomotor performance. For this purpose, 11 healthy young athletes performed a graded cycloergometer exercise test to volitional exhaustion under normoxia and acute mild hypoxia (FiO2 = 14.7%). Before, immediately after exercise and after a period of recovery, choice reaction time (CRT) and number of correct reactions (NCR) in relation to changes in serum BDNF were examined. Additionally, other selected factors which may modify BDNF production, i.e., cortisol (C), nitrite, catecholamines (adrenalin-A, noradrenaline-NA, dopamine-DA, serotonin-5-HT) and endothelin-1 (ET-1), were also measured. Exercise in hypoxic conditions extended CRT by 13.8% (p < 0.01) and decreased NCR (by 11.5%) compared to rest (p < 0.05). During maximal workload, NCR was lower by 9% in hypoxia compared to normoxia (p < 0.05). BDNF increased immediately after exercise in normoxia (by 29.3%; p < 0.01), as well as in hypoxia (by 50.0%; p < 0.001). There were no differences in BDNF between normoxia and hypoxia. Considering the fact that similar levels of BDNF were seen in both conditions but cognitive performance was suppressed in hypoxia, acute elevation of BDNF did not compensate for hypoxia-induced cognition impairment. Moreover, neither potentially negative effects of C nor positive effects of A, DA and NO on the brain were observed in our study.
Collapse
Affiliation(s)
- Zofia Piotrowicz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
- Correspondence:
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biała Podlaska, The Józef Piłsudski University of Physical Education, 00-968 Warsaw, Poland;
| | - Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland; (K.P.); (M.C.)
| | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland; (K.P.); (M.C.)
- Faculty of Health Sciences, Jan Dlugosz University, 42-200 Czestochowa, Poland
| | - Józef Langfort
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
| |
Collapse
|
7
|
Cognitive Protective Mechanism of Crocin Pretreatment in Rat Submitted to Acute High-Altitude Hypoxia Exposure. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3409679. [PMID: 32596298 PMCID: PMC7303745 DOI: 10.1155/2020/3409679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Inadequate oxygen availability at high altitude leads to oxidative stress, resulting in hippocampal neurodegeneration and memory impairment. In our previous study, we found that the cognitive dysfunction occurred when male SD rat was rapidly exposed to 4200 m of high altitude for 3 days. And we also found that crocin showed a cognitive protective effect under hypoxia by regulating SIRT1/PGC-1α pathways in rat's hippocampus. In this article, focused on factors related to SIRT1/PGC-1α pathways, we proposed to further elucidate crocin's pharmacological mechanism. Adult male Sprague-Dawley rats were randomly divided into five groups: control group, hypoxia group (rats were rapidly transported to high altitude of 4200 m for 72 h), and crocins+hypoxia groups (pretreatment with crocin of 25, 50, and 100 mg/kg/d for 3 days). The learning and memory ability was tested by Morris water maze analysis. Hippocampal histopathological changes were observed by HE staining and Nissl staining. The expression of NRF1, TFAM, Bcl-2, Bax, and caspase-3 was detected by immunohistochemistry, RT-PCR, and western blotting test. The contents of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSHPx) were detected by the TBA, WST, and colorimetry method. Neuronal apoptosis was observed by TUNEL staining. After crocin pretreatment, the traveled distance was significantly reduced and the percentage of time in the target quadrant was significantly increased tested by Morris water maze. And neuronal damage in the hippocampus was also significantly ameliorated based on HE staining and Nissl staining. Furthermore, in hippocampus tissue, mitochondrial biosynthesis-related factors of NRF1, TFAM expression was increased; oxidative stress factors of SOD, GSH, and GSHPx expression level were increased, and MDA and glutathione disulfide (GSSG) level were decreased; antiapoptotic protein Bcl-2 expression was increased, and proapoptotic proteins Bax and caspase-3 expression were decreased, with a manner of crocin dose dependent. Therefore, the cognitive protective mechanism of crocin in rat under acute hypoxia was related to promoting mitochondrial biosynthesis, ameliorating oxidative stress injury, and decreasing neuronal apoptosis.
Collapse
|
8
|
Serum BDNF Levels Are Reduced in Patients with Disorders of Consciousness and Are Not Modified by Verticalization with Robot-Assisted Lower-Limb Training. Neural Plast 2020; 2020:5608145. [PMID: 32565776 PMCID: PMC7261323 DOI: 10.1155/2020/5608145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Little is known about plastic changes occurring in the brains of patients with severe disorders of consciousness (DOCs) caused by acute brain injuries at rest and during rehabilitative treatment. Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in neurogenesis and synaptic plasticity whose production is powerfully modulated by physical exercise. In this study, we compared serum BDNF levels in 18 patients with unresponsive wakefulness syndrome (UWS) and in a minimally conscious state (MCS) with those in 16 sex- and age-matched healthy controls. In 12 patients, serum BDNF levels before and after verticalization with ErigoPro robot-assisted lower-limb training were compared. Serum BDNF levels were significantly lower in patients (median, 1141 pg/ml; 25th and 75th percentiles, 1016 and 1704 pg/ml) than in controls (median, 2450 pg/ml; 25th and 75th percentiles, 2100 and 2875 pg/ml; p < 0.001). BDNF levels measured before and after verticalization with robot-assisted lower-limb training did not change (p = 0.5). Moreover, BDNF levels did not differ between patients with UWS and MCS (p = 0.2), or between patients with traumatic and nontraumatic brain injuries (p = 0.6). BDNF level correlated positively with the time since brain injury (p = 0.025). In conclusion, serum BDNF levels are reduced in patients with UWS and MCS and cannot be improved by verticalization associated with passive lower-limb training. Additional studies are needed to better understand the mechanisms underlying BDNF reduction in patients with DOCs and to determine the best rehabilitative strategies to promote restorative plastic changes in these patients.
Collapse
|
9
|
Dhar P, Das SK, Barhwal K, Hota SK, Mishra KP, Singh SB. Trans-Himalayan Phytococktail Confers Protection Against Hypobaric Hypoxia-Induced Hippocampal Neurodegeneration and Memory Impairment in Male Sprague Dawley Rats. High Alt Med Biol 2019; 20:279-292. [PMID: 31550185 DOI: 10.1089/ham.2019.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Exposure to hypobaric hypoxia (HH) has been reported to cause neurodegeneration and memory impairment. Hippophae rhamnoides, Prunus armeniaca, and Rhodiola imbricata, the indigenous plants of Indian Trans-Himalaya are widely used in traditional Tibetan and Amchi system of medicine. These are rich sources of diverse bioactive metabolites having prophylactic and therapeutic uses against a wide array of neurodegenerative diseases. The objective of this study was to elucidate the prophylactic and neuroprotective efficacy of formulated phytococktail (PC) against simulated HH-induced neurodegeneration in male Sprague Dawley (SD) rats. Materials and Methods: A PC containing H. rhamnoides fruit pulp, P. armeniaca fruit pulp, and R. imbricata dry root extract (100:50:1) was formulated. The neuroprotective efficacy of PC was evaluated in male SD rats following exposure to 7 day HH at simulated altitude (25,000 ft, 282 mm Hg). Rats were divided into four groups viz., normoxia group (NOR), normoxic group treated with PC (NORPC), 7 day hypoxic group treated with vehicle (7DH), and 7 day hypoxic group treated with PC (7DHPC). Memory impairment and neuromorphological alterations were measured. Targeted protein expression was analyzed by immunoblotting study. Results: PC supplementation significantly reduced the oxidative stress markers during exposure to HH. Spatial memory impairment by HH was significantly ameliorated by PC. HH-induced augmented pyknosis, decreased dendritic arborization, and increased Hoechst-positive neurons in hippocampal CA3 region were significantly ameliorated by PC. Immunoblotting study showed upregulation of BDNF and TrkB expression by PC. PC also prevented the hippocampal neurodegeneration by activating the PI3K/AKT signaling pathway, which leads to GSK-3β inactivation by its phosphorylation and alleviation of hippocampal Caspase3 expression leading to inhibition of apoptotic neuronal cell death. Conclusion: The present study advocates the potential role of PC as an effective neuroprotective supplement in preventing HH-induced neurodegeneration. Activation of the PI3K/Akt pathway through BDNF/TrkB interaction following PC supplementation after exposure to HH inhibits hippocampal neuronal apoptosis and memory impairment.
Collapse
Affiliation(s)
- Priyanka Dhar
- Defense Institute of High Altitude Research, Defense Research and Development Organization, Leh-Ladakh, India.,Department of Biotechnology, Techno India University, Salt Lake City, India
| | - Saroj Kumar Das
- Defense Institute of High Altitude Research, Defense Research and Development Organization, Leh-Ladakh, India.,Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Kalpana Barhwal
- Defense Institute of High Altitude Research, Defense Research and Development Organization, Leh-Ladakh, India.,All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sunil Kumar Hota
- Defense Institute of High Altitude Research, Defense Research and Development Organization, Leh-Ladakh, India
| | - Kamla Prasad Mishra
- Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Timarpur, India
| | - Shashi Bala Singh
- Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Timarpur, India.,National Institute of Pharmaceutical Education and Research, Balanagar, India
| |
Collapse
|
10
|
Zhang F, Niu L, Li S, Le W. Pathological Impacts of Chronic Hypoxia on Alzheimer's Disease. ACS Chem Neurosci 2019; 10:902-909. [PMID: 30412668 DOI: 10.1021/acschemneuro.8b00442] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic hypoxia is considered as one of the important environmental factors contributing to the pathogenesis of Alzheimer's disease (AD). Many chronic hypoxia-causing comorbidities, such as obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD), have been reported to be closely associated with AD. Increasing evidence has documented that chronic hypoxia may affect many pathological aspects of AD including amyloid β (Aβ) metabolism, tau phosphorylation, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial and synaptic dysfunction, which may collectively result in neurodegeneration in the brain. In this Review, we briefly summarize the effects of chronic hypoxia on AD pathogenesis and discuss the underlying mechanisms. Since chronic hypoxia is common in the elderly and may contribute to the pathogenesis of AD, prospective prevention and treatment targeting hypoxia may be helpful to delay or alleviate AD.
Collapse
Affiliation(s)
- Feng Zhang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| |
Collapse
|
11
|
Sharma D, Barhwal KK, Biswal SN, Srivastava AK, Bhardwaj P, Kumar A, Chaurasia OP, Hota SK. Hypoxia-mediated alteration in cholesterol oxidation and raft dynamics regulates BDNF signalling and neurodegeneration in hippocampus. J Neurochem 2018; 148:238-251. [DOI: 10.1111/jnc.14609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Deepti Sharma
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| | | | - Surya Narayan Biswal
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| | | | - Pushpendar Bhardwaj
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| | - Ashish Kumar
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| | - Om Prakash Chaurasia
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| | - Sunil Kumar Hota
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| |
Collapse
|
12
|
Das D, Biswal S, Barhwal KK, Chaurasia OP, Hota SK. Kaempferol Inhibits Extra-synaptic NMDAR-Mediated Downregulation of TRkβ in Rat Hippocampus During Hypoxia. Neuroscience 2018; 392:77-91. [DOI: 10.1016/j.neuroscience.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
13
|
Gandhi S, Koundal S, Kaur T, Khushu S, Singh AK. WITHDRAWN: Correlative 1H MRS and High Resolution NMR Metabolomics to study Neurometabolic alterations in Rat Brain due to Chronic Hypobaric Hypoxia. Brain Res 2018:S0006-8993(18)30448-7. [PMID: 30153457 DOI: 10.1016/j.brainres.2018.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Sonia Gandhi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - Sunil Koundal
- Department of Anesthesiology and Pediatric Anesthesiology, Yale University, New Haven, CT, United States
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - Ajay Kumar Singh
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
14
|
Dheer A, Jain V, Kushwah N, Kumar R, Prasad D, Singh S. Temporal and Spatial Changes in Glial Cells During Chronic Hypobaric Hypoxia: Role in Neurodegeneration. Neuroscience 2018; 383:235-246. [DOI: 10.1016/j.neuroscience.2018.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 01/05/2023]
|
15
|
Sun J, Pan X, Christiansen LI, Yuan XL, Skovgaard K, Chatterton DEW, Kaalund SS, Gao F, Sangild PT, Pankratova S. Necrotizing enterocolitis is associated with acute brain responses in preterm pigs. J Neuroinflammation 2018; 15:180. [PMID: 29885660 PMCID: PMC5994241 DOI: 10.1186/s12974-018-1201-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) is an acute gut inflammatory disorder that occurs in preterm infants in the first weeks after birth. Infants surviving NEC often show impaired neurodevelopment. The mechanisms linking NEC lesions with later neurodevelopment are poorly understood but may include proinflammatory signaling in the immature brain. Using preterm pigs as a model for preterm infants, we hypothesized that severe intestinal NEC lesions are associated with acute effects on the developing hippocampus. Methods Cesarean-delivered preterm pigs (n = 117) were reared for 8 days and spontaneously developed variable severity of NEC lesions. Neonatal arousal, physical activity, and in vitro neuritogenic effects of cerebrospinal fluid (CSF) were investigated in pigs showing NEC lesions in the colon (Co-NEC) or in the small intestine (Si-NEC). Hippocampal transcriptome analysis and qPCR were used to assess gene expressions and their relation to biological processes, including neuroinflammation, and neural plasticity. Microglia activation was quantified by stereology. The neuritogenic response to selected proteins was investigated in primary cultures of hippocampal neurons. Results NEC development rapidly reduced the physical activity of pigs, especially when lesions occurred in the small intestine. Si-NEC and Co-NEC were associated with 27 and 12 hippocampal differentially expressed genes (DEGs), respectively. These included genes related to neuroinflammation (i.e., S100A8, S100A9, IL8, IL6, MMP8, SAA, TAGLN2) and hypoxia (i.e., PDK4, IER3, TXNIP, AGER), and they were all upregulated in Si-NEC pigs. Genes related to protection against oxidative stress (HBB, ALAS2) and oligodendrocytes (OPALIN) were downregulated in Si-NEC pigs. CSF collected from NEC pigs promoted neurite outgrowth in vitro, and the S100A9 and S100A8/S100A9 proteins may mediate the neuritogenic effects of NEC-related CSF on hippocampal neurons. NEC lesions did not affect total microglial cell number but markedly increased the proportion of Iba1-positive amoeboid microglial cells. Conclusions NEC lesions, especially when present in the small intestine, are associated with changes to hippocampal gene expression that potentially mediate neuroinflammation and disturbed neural circuit formation via enhanced neuronal differentiation. Early brain-protective interventions may be critical for preterm infants affected by intestinal NEC lesions to reduce their later neurological dysfunctions. Electronic supplementary material The online version of this article (10.1186/s12974-018-1201-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Sun
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark
| | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark
| | - Line I Christiansen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark
| | - Xiao-Long Yuan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Dereck E W Chatterton
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark.,Department of Food Science, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Sanne S Kaalund
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospitals, DK-2400, Copenhagen, Denmark
| | - Fei Gao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518000, Shenzhen, China
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark. .,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Stanislava Pankratova
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark. .,Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
16
|
Lu HY, Wang W, Zhou Z, Liu CY, Liu Y, Xiao W, Dong FS, Wang J. Treatment of obstructive sleep apnoea–hypopnea syndrome by mandible advanced device reduced neuron apoptosis in frontal cortex of rabbits. Eur J Orthod 2017; 40:273-280. [DOI: 10.1093/ejo/cjx060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hai-yan Lu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Wen Wang
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Zheng Zhou
- Department of Periodontology, University of Detroit Mercy, Detroit, MI, USA
| | - Chun-yan Liu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Ye Liu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Wei Xiao
- Department of Stomatology, FengTai Hospital, Beijing, P.R. of China
| | - Fu-sheng Dong
- Department of Oral and Maxillofacial Surgery, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Jie Wang
- Department of Oral Pathology, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| |
Collapse
|
17
|
Estrogen Receptor β Mediated Neuroprotective Efficacy of Cicer microphyllum Seed Extract in Global Hypoxia. Neurochem Res 2017; 42:3474-3489. [DOI: 10.1007/s11064-017-2395-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
|
18
|
Qaid E, Zakaria R, Sulaiman SF, Yusof NM, Shafin N, Othman Z, Ahmad AH, Aziz CA. Insight into potential mechanisms of hypobaric hypoxia-induced learning and memory deficit - Lessons from rat studies. Hum Exp Toxicol 2017; 36:1315-1325. [PMID: 28111974 DOI: 10.1177/0960327116689714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impairment of memory is one of the most frequently reported symptoms during sudden hypoxia exposure in human. Cortical atrophy has been linked to the impaired memory function and is suggested to occur with chronic high-altitude exposure. However, the precise molecular mechanism(s) of hypoxia-induced memory impairment remains an enigma. In this work, we review hypoxia-induced learning and memory deficit in human and rat studies. Based on data from rat studies using different protocols of continuous hypoxia, we try to elicit potential mechanisms of hypobaric hypoxia-induced memory deficit.
Collapse
Affiliation(s)
- Eya Qaid
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - R Zakaria
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - S F Sulaiman
- 2 School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Na Mohd Yusof
- 3 Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - N Shafin
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Z Othman
- 4 Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - A H Ahmad
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Cb Abd Aziz
- 1 Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
19
|
Epigenetic Regulation of SNAP25 Prevents Progressive Glutamate Excitotoxicty in Hypoxic CA3 Neurons. Mol Neurobiol 2016; 54:6133-6147. [PMID: 27699604 DOI: 10.1007/s12035-016-0156-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/22/2016] [Indexed: 01/31/2023]
Abstract
Exposure to global hypoxia and ischemia has been reported to cause neurodegeneration in the hippocampus with CA3 neurons. This neuronal damage is progressive during the initial phase of exposure but maintains a plateau on prolonged exposure. The present study on Sprague Dawley rats aimed at understanding the underlying molecular and epigenetic mechanisms that lead to hypoxic adaptation of CA3 neurons on prolonged exposure to a global hypoxia. Our results show stagnancy in neurodegeneration in CA3 region beyond 14 days of chronic exposure to hypobaria simulating an altitude of 25,000 ft. Despite increased synaptosomal glutamate and higher expression of NR1 subunit of NMDA receptors, we observed decrease in post-synaptic density and accumulation of synaptic vesicles at the pre-synaptic terminals. Molecular investigations involving western blot and real-time PCR showed duration-dependent decrease in the expression of SNAP-25 resulting in reduced vesicular docking and synaptic remodeling. ChIP assays for epigenetic factors showed decreased expression of H3K9Ac and H3K14Ac resulting in SNAP-25 promoter silencing during prolonged hypoxia. Administration of sodium butyrate, a non-specific HDAC inhibitor, during 21 days hypoxic exposure prevented SNAP-25 downregulation but increased CA3 neurodegeneration. This epigenetic regulation of SNAP-25 promoter was independent of increased DNMT3b expression and promoter methylation. Our findings provide a novel insight into epigenetic factors-mediated synaptic remodeling to prevent excitotoxic neurodegeneration on prolonged exposure to global hypobaric hypoxia.
Collapse
|
20
|
Manso-Calderón R, González-Sarmiento R. Genetic susceptibility to vascular cognitive impairment: a pathophysiological view. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl-2016-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterogeneity of the vascular cognitive impairment (VCI) creates challenges for research on its genetic basis and pathophysiology. Despite well-known monogenic forms may be useful to understand some pathogenic mechanisms leading to VCI, most of VCIs are sporadic disorders resulting from the interaction between environmental, vascular and genetic factors. Genetic investigation for VCI may encompass both candidate genes that affect critical biological processes to VCI and common and rare genetic variants identified across the entire genome study technology, thereby enabling us to confirm or expose new biological mechanisms in VCI and develop new therapeutic and preventive approaches. Notwithstanding genetic susceptibility to VCI remains largely unknown owing to methodological issues. Collaborative efforts emerge as an interesting strategy to overcome these problems.
Collapse
Affiliation(s)
- Raquel Manso-Calderón
- Department of Neurology, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca-CSIC-SACYL, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca-CSIC-SACYL, Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine & Institute of Molecular & Cellular Biology of Cancer (IBMCC). University of Salamanca-CSIC, Salamanca, Spain
| |
Collapse
|
21
|
Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 2015; 59:208-37. [PMID: 26562682 DOI: 10.1016/j.neubiorev.2015.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure-function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure-function of dendritic spine, a "hot site" of synaptic plasticity.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - G Ilavazhagan
- Hindustan University, Rajiv Gandhi Salai (OMR), Padur, Kelambakam, Chennai, TN, India.
| | - Julien Rossignol
- Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA; College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| |
Collapse
|
22
|
Das SK, Barhwal K, Hota SK, Thakur MK, Srivastava RB. Disrupting monotony during social isolation stress prevents early development of anxiety and depression like traits in male rats. BMC Neurosci 2015; 16:2. [PMID: 25880744 PMCID: PMC4336522 DOI: 10.1186/s12868-015-0141-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/21/2015] [Indexed: 01/11/2023] Open
Abstract
Background Although there have been several reports on social isolation induced mood alterations, the independent contribution of monotonous environment in mediating mood alterations has been less studied. In view of the above, the present study is aimed at investigating the relative contribution of monotony towards mood alterations during isolation stress. Monotony was induced in a specially designed isolation chamber in male Sprague-Dawley rats in the presence or absence of isolation by housing animals singly (SH) or in pairs (PH). Novel objects were introduced to disrupt monotony in singly housed animals (SHNO) or paired housed animals (PHNO). Behavioural alterations were assessed using Open field test (OFT), Elevated Plus Maze (EPM) and Forced Swim Test (FST). Neuro-morphological changes in the CA3 region of hippocampus were studied by cresyl violet and golgi-cox staining. Hippocampal serotonin and 5-hydroxy indole acetic acid (5-HIAA) levels were estimated along with the expression of phospho-insulin like growth factor-1 receptor (pIGF-1R) and phospho cyclic AMP response-element binding protein (pCREB). Serotonin was depleted by administering Para-chlorophenylalanine (PCPA) to a separate PH group (PHPCPA), PHNO group (PHNOPCPA) and SHNO group (SHNOPCPA) to determine the role of serotonin in mediating monotony induced emotional mal-adaptations. Results The results showed anxiety and depression like traits in both PH and SH groups during behavioural test such as OFT, EPM and FST. Pyknosis along with decrease in apical dendritic arborization was observed in the CA3 region of SH group along with decrease in serotonin and reduced expression of pIGF-1R and pCREB. Disrupting monotony through intervention of novel objects in PHNO and SHNO groups ameliorated anxiety and depression like traits and augmented pIGF-1R along with increase in serotonin level. Depletion of hippocampal serotonin level by PCPA administration in PHNOPCPA and SHNOPCPA groups on the other hand resulted in altered mood state despite disruption of monotony by novel objects intervention. Conclusion The findings of our study suggest that monotonous environment independently contributes to impairment in mood state and disrupting monotony by intervention of novel objects during social isolation prevents mood disorders and emotional maladaptation through up regulation of hippocampal pIGF-1R and increase in serotonin.
Collapse
Affiliation(s)
- Saroj Kumar Das
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| | - Kalpana Barhwal
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| | - Sunil Kumar Hota
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| | | | - Ravi Bihari Srivastava
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| |
Collapse
|
23
|
Koundal S, Gandhi S, Kaur T, Trivedi R, Khushu S. Investigation of prolonged hypobaric hypoxia-induced change in rat brain using T2 relaxometry and diffusion tensor imaging at 7T. Neuroscience 2015; 289:106-13. [PMID: 25592421 DOI: 10.1016/j.neuroscience.2014.12.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
The present study examines the change in water diffusion properties of the corpus callosum (CC) and the hippocampus, in response to prolonged hypobaric hypoxia (HH) stress, using in vivo magnetic resonance imaging (MRI) modalities such as T2 relaxometry and diffusion tensor imaging (DTI). Three groups of rats (n=7/group) were exposed to a simulated altitude of 6700m above sea level for the duration of 7, 14 and 21days, respectively. Data were acquired pre-exposure, post-exposure and after 1week of normoxic follow-up in each group. The increment in T2 values with no apparent diffusion coefficient (ADC) change in the CC after 7 and 14days of HH exposure indicated mixed (vasogenic and cytotoxic) edema formation. After 1week of normoxia, 7-day HH-exposed rats showed a decrease in ADC values in the CC, probably due to cytotoxic edema. A delayed decrease in ADC values was observed in the hippocampus after 1week normoxic follow-up in 7- and 14-day HH groups giving an insight of cytotoxic edema formation. Interestingly, 21-day HH-exposed rats did not show change in ADC values. The decrease in T2 values after 14 and 21days in the hippocampal region depicts iron deposition, which was confirmed by histopathology. This study successfully demonstrated the use of MRI modality to trace water diffusion changes in the brain due to prolonged HH exposure.
Collapse
Affiliation(s)
- S Koundal
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India; Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - S Gandhi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - T Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - R Trivedi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - S Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|
24
|
Zhao HW, Gu XQ, Chailangkarn T, Perkins G, Callacondo D, Appenzeller O, Poulsen O, Zhou D, Muotri AR, Haddad GG. Altered iPSC-derived neurons' sodium channel properties in subjects with Monge's disease. Neuroscience 2015; 288:187-99. [PMID: 25559931 DOI: 10.1016/j.neuroscience.2014.12.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/17/2022]
Abstract
Monge's disease, also known as chronic mountain sickness (CMS), is a disease that potentially threatens more than 140 million highlanders during extended time living at high altitudes (over 2500m). The prevalence of CMS in Andeans is about 15-20%, suggesting that the majority of highlanders (non-CMS) are rather healthy at high altitudes; however, CMS subjects experience severe hypoxemia, erythrocytosis and many neurologic manifestations including migraine, headache, mental fatigue, confusion, and memory loss. The underlying mechanisms of CMS neuropathology are not well understood and no ideal treatment is available to prevent or cure CMS, except for phlebotomy. In the current study, we reprogrammed fibroblast cells from both CMS and non-CMS subjects' skin biopsies into the induced pluripotent stem cells (iPSCs), then differentiated into neurons and compared their neuronal properties. We discovered that CMS neurons were much less excitable (higher rheobase) than non-CMS neurons. This decreased excitability was not caused by differences in passive neuronal properties, but instead by a significantly lowered Na(+) channel current density and by a shift of the voltage-conductance curve in the depolarization direction. Our findings provide, for the first time, evidence of a neuronal abnormality in CMS subjects as compared to non-CMS subjects, hoping that such studies can pave the way to a better understanding of the neuropathology in CMS.
Collapse
Affiliation(s)
- H W Zhao
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - X Q Gu
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - T Chailangkarn
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - G Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - D Callacondo
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima 36, Peru
| | - O Appenzeller
- New Mexico Health Enhancement and Marathon Clinics Research Foundation, Albuquerque, NM 87122, USA
| | - O Poulsen
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - D Zhou
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - A R Muotri
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; The Rady Children's Hospital, San Diego, CA 92123, USA
| | - G G Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; The Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
25
|
Koundal S, Gandhi S, Kaur T, Khushu S. Neurometabolic and structural alterations in rat brain due to acute hypobaric hypoxia: in vivo 1H MRS at 7 T. NMR IN BIOMEDICINE 2014; 27:341-347. [PMID: 24395642 DOI: 10.1002/nbm.3068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
In response to hypobaric hypoxia (HH), which occurs at high altitude, the brain undergoes deleterious changes at the structural and metabolite level. In vivo T2 weighted imaging (T2WI) and (1)H-MRS was performed to understand the structural and metabolic changes in the hippocampus region of rat brain. Data were acquired pre-exposure (baseline controls), immediately after exposure and subsequently at the first, fourth, seventh and 14th days post exposure at normoxia. T2 weighted images of rat brain showed hyperintensity in the CA2/CA3 region of the hippocampus 7 d after acute HH, which persisted till 14 d, probably indicating structural changes in the hippocampus. (1)H-MRS results showed no change in metabolite level immediately after acute HH exposure, but on the first day of normoxia the myo-inositol level was significantly decreased, possibly due to altered astrocyte metabolism. Metabolic alterations showing an increase in choline and decrease in glutamate on the fourth day of normoxia may be seen as a process of demyelination and loss of glutamate pool respectively. On the seventh and 14th days of normoxia, decreases in N-acetylaspartate, creatine and glutamine + glutamate were observed, which might be due to decreased viability of glutamatergic neurons. In vivo (1)H-MRS demonstrated early neurometabolic changes prior to probable structural changes post acute HH exposure. The extension of these studies will help in early risk assessment, developing intervention and strategies for combating HH related changes.
Collapse
Affiliation(s)
- Sunil Koundal
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Timarpur, Delhi, India
| | | | | | | |
Collapse
|
26
|
Brose SA, Marquardt AL, Golovko MY. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia. J Neurochem 2013; 129:400-12. [PMID: 24266789 DOI: 10.1111/jnc.12617] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/27/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022]
Abstract
Hypoxia is involved in many neuronal and non-neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined incorporation of Gln/Glu and other lipogenic substrates into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non-neuronal primary cells and non-neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0- and 3.0-fold for Gln and Glu, respectively) and immortalized cultures (3.5- and 8.0-fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non-neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, triacylglycerols, diacylglycerols, free FA, and phospholipids, with the highest rate of incorporation into triacylglycerols. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia. We identified a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid biosynthesis from glutamine and glutamate (Gln/Glu) followed by esterification into lipids. All other non-neuronal cells tested demonstrated decreased or unchanged lipid synthesis from Gln/Glu under hypoxia. Incorporation of other lipogenic substrates into lipids was decreased under hypoxia in neuronal cells. We believe that this finding will provide a novel strategy for treatment of oxygen and energy deficient conditions in the neuronal system.
Collapse
Affiliation(s)
- Stephen A Brose
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, ND, USA
| | | | | |
Collapse
|
27
|
Abstract
In times of fiscal austerity, the tendency is to seek instant, inexpensive gratification. In the case of biomedical research, this means the shortest path to practical clinical implementation. But fueling the translational pipeline with discovery depends critically on allowing the biomedical research community to follow their science where it takes them. Fiscal constraints carry with them the risk of squelching creativity and forfeiting the power of serendipity to provide the substrate for the translational engine in the future.
Collapse
Affiliation(s)
- Nina F Schor
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
28
|
Jain V, Baitharu I, Prasad D, Ilavazhagan G. Enriched environment prevents hypobaric hypoxia induced memory impairment and neurodegeneration: role of BDNF/PI3K/GSK3β pathway coupled with CREB activation. PLoS One 2013; 8:e62235. [PMID: 23704876 PMCID: PMC3660501 DOI: 10.1371/journal.pone.0062235] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/18/2013] [Indexed: 11/28/2022] Open
Abstract
Adverse environmental conditions such as hypobaric hypoxia (HH) cause memory impairment by affecting cellular machinery leading to neurodegeneration. Providing enriched environment (EE) is found to be beneficial for curing several neurodegenerative disorders. The protective role of EE in preventing HH induced neuronal death has been reported previously but the involved mechanism is still not clearly understood. The present study is an attempt to verify the impact of EE on spatial memory during HH and also to explore the possible role of neurotrophin in EE mediated neuroprotection. Signaling mechanism involved in neuroprotection was also explored. Male Sprague Dawley rats were simulated to HH condition in an Animal Decompression Chamber at an altitude of 25000 feet in standard and enriched cages for 7 days. Spatial memory was assessed through Morris Water Maze. Role of different neurotrophins was explored by gene silencing and inhibitors for their respective receptors. Further, using different blockers signaling pathway was also explored. Finding of the present study suggested that EE prevents HH mediated memory impairment and neurodegeneration. Also brain-derived neurotrophic factor (BDNF) plays a major role in EE mediated neuroprotection and it effectively prevented neurodegeneration by activating PI3K/AKT pathway resulting in GSK3β inactivation which further inhibits apoptosis. Moreover GSK3β phosphorylation and hence its inactivation upregulates CREB phosphorylation which may also accounts for activation of survival machinery in cells and provides neuroprotection. From these observations it can be postulated that EE has a therapeutic potential in amelioration of HH induced memory impairment and neurodegeneration. Hence it may be used as a non invasive and non pharmacological intervention against various neurological disorders.
Collapse
Affiliation(s)
- Vishal Jain
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Iswar Baitharu
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Dipti Prasad
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | | |
Collapse
|
29
|
Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: implication for neuroprotective therapies. Cell Death Dis 2013; 4:e595. [PMID: 23598407 PMCID: PMC3641339 DOI: 10.1038/cddis.2013.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuroprotective therapies based on brain-derived neurotrophic factor (BDNF) administration have been proposed for Huntington's disease (HD) treatment. However, our group has recently reported reduced levels of TrkB in HD mouse models and HD human brain suggesting that besides a decrease on BDNF levels a reduction of TrkB expression could also contribute to diminished neurotrophic support in HD. BDNF can also bind to p75 neurotrophin receptor (p75NTR) modulating TrkB signaling. Therefore, in this study we have analyzed the levels of p75NTR in several HD models, as well as in HD human brain. Our data demonstrates a p75NTR/TrkB imbalance in the striatum of two different HD mouse models, HdhQ111/111 homozygous knockin mice and R6/1 mice that was also manifested in the putamen of HD patients. The imbalance between TrkB and p75NTR levels in a HD cellular model did not affect BDNF-mediated TrkB activation of prosurvival pathways but induced activation of apoptotic cascades as demonstrated by increased JNK phosphorylation. Moreover, BDNF failed to protect mutant huntingtin striatal cells transfected with p75NTR against NMDA-mediated excitotoxicity, which was associated with decreased Akt phosphorylation. Interestingly, lack of Akt activation following BDNF and NMDA treatment correlated with increased PP1 levels. Accordingly, pharmacological inhibition of PP1 by okadaic acid (OA) prevented mutant huntingtin striatal cell death induced by NMDA and BDNF. Altogether, our findings demonstrate that the p75NTR/TrkB imbalance induced by mutant huntingtin in striatal cells associated with the aberrant activity of PP1 disturbs BDNF neuroprotection likely contributing to increasing striatal vulnerability in HD. On the basis of this data we hypothesize that normalization of p75NTR and/or TrkB expression or their signaling will improve BDNF neuroprotective therapies in HD.
Collapse
|
30
|
Lin C, Wu CJ, Wei IH, Tsai MH, Chang NW, Yang TT, Kuo YM. Chronic treadmill running protects hippocampal neurons from hypobaric hypoxia-induced apoptosis in rats. Neuroscience 2013; 231:216-24. [DOI: 10.1016/j.neuroscience.2012.11.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022]
|
31
|
Jain V, Baitharu I, Barhwal K, Prasad D, Singh SB, Ilavazhagan G. Enriched environment prevents hypobaric hypoxia induced neurodegeneration and is independent of antioxidant signaling. Cell Mol Neurobiol 2012; 32:599-611. [PMID: 22331403 DOI: 10.1007/s10571-012-9807-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 01/19/2012] [Indexed: 01/16/2023]
Abstract
Hypobaric hypoxia (HH) induced neurodegeneration has been attributed to several factors including increased oxidative stress, glutamate excitotoxicity, decreased growth factors, apoptosis, etc. Though enriched environment (EE) has been known to have beneficial effects in various neurological disorders, its effect on HH mediated neurodegeneration remains to be studied. Therefore, the present study was conducted to explore the effect of EE on HH induced neurodegeneration. Male Sprague-Dawley rats were placed in enriched and standard conditions during exposure to HH (7 days) equivalent to an altitude of 25,000 ft. The effect of EE on oxidative stress markers, apoptosis, and corticosterone level in hippocampus was investigated. EE during exposure to HH was found to decrease neurodegeneration as evident from decreased caspase 3 expression and LDH leakage. However, no significant changes were observed in ROS, MDA, and antioxidant status of hippocampus. HH elevates corticosterone level and affected the diurnal corticoid rhythm which may contribute to neurodegeneration, whereas EE ameliorate this effect. Because of the association of neurotrophins and stress and/or corticosterone the BDNF and NGF levels were also examined and it was found that HH decreases their level but concurrent exposure to EE maintains their level. Moreover, inhibition of Tyrosine kinase receptor (Trk) with K252a nullifies the protective effect of EE, whereas Trk activation with agonist, amitriptyline showed protective effect similar to EE. Taken together, we conclude that EE has a potential to ameliorate HH mediated neuronal degeneration which may act through antioxidant independent pathway by modulation of neurotrophins.
Collapse
Affiliation(s)
- Vishal Jain
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| | | | | | | | | | | |
Collapse
|
32
|
Enciu AM, Constantinescu SN, Popescu LM, Mureşanu DF, Popescu BO. Neurobiology of vascular dementia. J Aging Res 2011; 2011:401604. [PMID: 21876809 PMCID: PMC3160011 DOI: 10.4061/2011/401604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 01/22/2023] Open
Abstract
Vascular dementia is, in its current conceptual form, a distinct type of dementia with a spectrum of specific clinical and pathophysiological features. However, in a very large majority of cases, these alterations occur in an already aged brain, characterized by a milieu of cellular and molecular events common for different neurodegenerative diseases. The cell signaling defects and molecular dyshomeostasis might lead to neuronal malfunction prior to the death of neurons and the alteration of neuronal networks. In the present paper, we explore some of the molecular mechanisms underlying brain malfunction triggered by cerebrovascular disease and risk factors. We suggest that, in the age of genetic investigation and molecular diagnosis, the concept of vascular dementia needs a new approach.
Collapse
Affiliation(s)
- Ana-Maria Enciu
- Department of Cellular and Molecular Medicine, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, 8 Eroilor Sanitari, Sector 5, 050474 Bucharest, Romania
| | | | | | | | | |
Collapse
|
33
|
Griesmaier E, Schlager G, Wegleiter K, Hermann M, Urbanek M, Simbruner G, Keller M. Role of p75NTR in NMDAR-mediated excitotoxic brain injury in neonatal mice. Brain Res 2010; 1355:31-40. [PMID: 20692240 DOI: 10.1016/j.brainres.2010.07.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 07/21/2010] [Accepted: 07/27/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Perinatal brain injury in preterm infants is a major cause of neurological handicap. The role of the neurotrophin receptor p75 (p75(NTR)) in the pathogenesis and repair of neonatal excitotoxic brain injury is unknown. Depending on a complex interplay of neurotrophin signalling, p75(NTR) can, in addition to its trophic function, also induce apoptosis. HYPOTHESIS We hypothesised that excitotoxicity increases p75(NTR) expression and p75(NTR) knockout (KO) mice have a significantly smaller lesion size upon excitotoxicity as compared to wild-type (WT) mice. METHODS We used an established animal model of neonatal excitotoxic brain injury mimicking several key aspects of human preterm brain damage. We subjected five-day-old WT and KO mice to excitotoxic injury by means of a single intracranial ibotenate injection (N-methyl-D-aspartate receptor agonist, NMDAR) into one brain hemisphere. Lesion size, number of activated caspase-3- and apoptosis-inducing factor (AIF)-positive cells were determined as outcome parameters. Gender analyses were taken into account retrospectively. RESULTS NMDAR-mediated excitotoxicity induced an upregulation of p75(NTR) expression in the peri-lesion area. Lesion size was significantly increased in female KO as compared to male KO animals. Knockout of p75(NTR) reduced the number of activated caspase-3 but not AIF-positive cells after NMDAR-mediated excitotoxic injury independently of gender. CONCLUSION Since NMDAR-mediated excitotoxic brain injury induced p75(NTR) expression and caspase-3-activated apoptosis in p75(NTR) KO animals was decreased, we conclude that activation of p75(NTR) contributes to NMDAR-mediated apoptosis in the neonatal brain. An increase in lesion size in female animals after excitotoxic brain injury suggests that in females p75(NTR) seems to play a dual role.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Apoptosis/physiology
- Brain Injury, Chronic/chemically induced
- Brain Injury, Chronic/metabolism
- Brain Injury, Chronic/pathology
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Knockout
- Neurotoxins/toxicity
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/physiology
Collapse
Affiliation(s)
- Elke Griesmaier
- Department of Paediatrics IV, Neonatology, Neuropaediatrics and Metabolic Diseases, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
34
|
Hota SK, Hota KB, Prasad D, Ilavazhagan G, Singh SB. Oxidative-stress-induced alterations in Sp factors mediate transcriptional regulation of the NR1 subunit in hippocampus during hypoxia. Free Radic Biol Med 2010; 49:178-91. [PMID: 20381604 DOI: 10.1016/j.freeradbiomed.2010.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/16/2010] [Accepted: 03/30/2010] [Indexed: 11/23/2022]
Abstract
Ascent to high altitude is associated with tissue hypoxia resulting from the decrease in partial pressure of atmospheric oxygen. The hippocampus, in particular, is highly vulnerable to hypoxic insult, which at least in part can be attributed to the occurrence of glutamate excitotoxicity. Although this excitotoxic damage is often related to increased NMDA receptor activation and subsequent calcium-mediated free radical generation, the mechanisms involving the transcriptional regulation of NMDA receptor subunit expression by hypoxic stress remains to be explored. Our study reveals a novel mechanism for the regulation of expression of the NR1 subunit of NMDA receptors by the Sp family of transcription factors through an oxidative-stress-mediated mechanism that also involves the molecular chaperone Hsp90. The findings not only show the occurrence of lipid peroxidation and DNA damage in hippocampal cells exposed to hypoxia but also reveal a calcium-independent mechanism of selective oxidation and degradation of Sp3 by the 20S proteasome. This along with increased DNA binding activity of Sp1 leads to NR1 upregulation in the hippocampus during hypoxic stress. The study therefore provides evidence for free radical-mediated regulation of gene expression in hypoxia and the scope of the use of antioxidants in preventing excitotoxic neuronal damage during hypoxia.
Collapse
Affiliation(s)
- Sunil Kumar Hota
- Defence Institute of High Altitude Research, Leh, Ladakh, Jammu and Kashmir, India
| | | | | | | | | |
Collapse
|
35
|
Barhwal K, Hota SK, Baitharu I, Prasad D, Singh SB, Ilavazhagan G. Isradipine antagonizes hypobaric hypoxia induced CA1 damage and memory impairment: Complementary roles of L-type calcium channel and NMDA receptors. Neurobiol Dis 2009; 34:230-44. [PMID: 19385055 DOI: 10.1016/j.nbd.2009.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hypobaric hypoxia leads to cognitive dysfunctions due to increase in intracellular calcium through ion channels. The purpose of this study was to examine the temporal contribution of L-type calcium channels and N-methyl-D-aspartate receptors (NMDARs) in mediating neuronal death in male Sprague Dawley rats exposed to hypobaric hypoxia simulating an altitude of 25,000 ft for different durations. Decreasing exogenous calcium loads by blocking voltage-gated calcium influx with isradipine (2.5 mg kg(-1)), and its efficacy in providing neuroprotection and preventing memory impairment following hypoxic exposure was also investigated. Effect of isradipine on calcium-dependent enzymes mediating oxidative stress and apoptotic cell death was also studied. Blocking of L-type calcium channels with isradipine reduced hypoxia-induced activation of calcium dependent xanthine oxidases, monoamine oxidases, cytosolic phospholipase A(2) and cycloxygenases (COX-2) along with concomitant decrease in free radical generation and cytochrome c release. Increased expression of calpain and caspase 3 was also observed following exposure to hypobaric hypoxia along with augmented neurodegeneration and memory impairment which was adequately prevented by isradipine administration. Administration of isradipine during hypoxic exposure protected the hippocampal neurons following 3 and 7 days of exposure to hypobaric hypoxia along with improvement in spatial memory.
Collapse
Affiliation(s)
- Kalpana Barhwal
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Timarpur, Delhi, India
| | | | | | | | | | | |
Collapse
|