1
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Liang X, Wen Y, Feng C, Xu L, Xian Y, Xie H, Huang J, Huang Y, Zhao X, Gao X. Neuroglobin protects dopaminergic neurons in a Parkinson's cell model by interacting with mitochondrial complex NDUFA10. Neuroscience 2024; 562:43-53. [PMID: 39454716 DOI: 10.1016/j.neuroscience.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
The study aimed to validate the protective effect of neuroglobin (Ngb) in a cell model of Parkinson's disease (PD) and explore its therapeutic potential. Lentivirus-Ngb (LvNgb) and siRNA-Ngb (siNgb) were used to achieve Ngb overexpression and knockdown, respectively, in a sporadic PD cell model. Apoptosis was evaluated by flow cytometry-based Annexin V/propidium iodide assays. Activation of the pro-apoptotic factor, Caspase-9, was detected by immunoblotting, and Complex I activities were detected by using enzyme-linked immunosorbent assay (ELISA). Mitochondrial dysfunction was examined by measuring the mitochondrial membrane potential (MMP), NAD+/NADH ratios, and reactive oxygen species (ROS) levels. Additionally, coimmunoprecipitation (Co-IP) assays were conducted in mouse neuroblastoma cell line 9D (MN9D) cells to determine the interactions of Ngb with the Complex I subunit NDUFA10. The results showed that Ngb overexpression reduced the percentages of apoptotic cells, total caspase-9 levels and restored Complex I activities in the PD cell model. Conversely, knockdown of Ngb resulted in an increase in apoptotic cells, higher total caspase-9 levels, and decreased Complex I activities. Furthermore, Ngb overexpression restored MMP and NAD+/NADH ratios and alleviated ROS-mediated oxidative stress in MN9D cells. Finally, Co-IP confirmed the interaction between Ngb and NDUFA10 in MN9D cells. In conclusion, Ngb protects MN9D cells against apoptosis by interacting with Complex I subunit NDUFA10, rescuing its activity and inhibiting the mitochondrial pathway of apoptosis in the MPP+-mediated PD model.
Collapse
Affiliation(s)
- Xiaomei Liang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Yutong Wen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Cuilian Feng
- Department of Pediatric Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Lan Xu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Ying Xian
- Department of General Intensive Care Unit, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Haiting Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jianou Huang
- Department of Neurology, Fifth Affiliated Hospital of Southern Medical University, Conghua, Guangdong 510900, China
| | - Yihong Huang
- Department of Spine Surgery, Foshan Fosun Chancheng Hospital, Foshan, Guangdong 510000, China.
| | - Xiaodong Zhao
- Department of Neurology, Fifth Affiliated Hospital of Southern Medical University, Conghua, Guangdong 510900, China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Pediatric Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
3
|
Wankhede NL, Rajendra Kopalli S, Dhokne MD, Badnag DJ, Chandurkar PA, Mangrulkar SV, Shende PV, Taksande BG, Upaganlawar AB, Umekar MJ, Koppula S, Kale MB. Decoding mitochondrial quality control mechanisms: Identifying treatment targets for enhanced cellular health. Mitochondrion 2024; 78:101926. [PMID: 38944367 DOI: 10.1016/j.mito.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Mitochondria are singular cell organelles essential for many cellular functions, which includes responding to stress, regulating calcium levels, maintaining protein homeostasis, and coordinating apoptosis response. The vitality of cells, therefore, hinges on the optimal functioning of these dynamic organelles. Mitochondrial Quality Control Mechanisms (MQCM) play a pivotal role in ensuring the integrity and functionality of mitochondria. Perturbations in these mechanisms have been closely associated with the pathogenesis of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Compelling evidence suggests that targeting specific pathways within the MQCM could potentially offer a therapeutic avenue for rescuing mitochondrial integrity and mitigating the progression of neurodegenerative diseases. The intricate interplay of cellular stress, protein misfolding, and impaired quality control mechanisms provides a nuanced understanding of the underlying pathology. Consequently, unravelling the specific MQCM dysregulation in neurodegenerative disorders becomes paramount for developing targeted therapeutic strategies. This review delves into the impaired MQCM pathways implicated in neurodegenerative disorders and explores emerging therapeutic interventions. By shedding light on pharmaceutical and genetic manipulations aimed at restoring MQCM efficiency, the discussion aims to provide insights into novel strategies for ameliorating the progression of neurodegenerative diseases. Understanding and addressing mitochondrial quality control mechanisms not only underscore their significance in cellular health but also offer a promising frontier for advancing therapeutic approaches in the realm of neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh (UP) - 226002, India.
| | - Dishant J Badnag
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Pranali A Chandurkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Shubhada V Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad- 423101, Nashik, Maharashtra, India.
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| |
Collapse
|
4
|
Lee IH, Kim DK. Head and Neck Cancer: A Potential Risk Factor for Parkinson's Disease? Cancers (Basel) 2024; 16:2486. [PMID: 39001548 PMCID: PMC11240437 DOI: 10.3390/cancers16132486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
Head and neck cancers (HNC) are frequently associated with neurodegeneration. However, the association between HNC and Parkinson's disease (PD) remains unclear. This study aimed to clarify the relationship between HNC and subsequent PD. This retrospective study used data from a nationally representative cohort. Patients with HNC were identified based on the presence of corresponding diagnostic codes. Participants without cancer were selected using 4:1 propensity score matching based on sociodemographic factors and year of enrollment; 2296 individuals without HNC and 574 individuals with HNC were included in the study. Hazard ratios (HR) for the incidence of PD in patients with HNC were calculated using 95% confidence intervals (CI). The incidence of PD was 4.17 and 2.18 per 1000 person-years in the HNC and control groups, respectively (adjusted HR = 1.89, 95% CI = 1.08-3.33). The HNC group also showed an increased risk of subsequent PD development. The risk of PD was higher in middle-aged (55-69 years) patients with HNC and oral cavity cancer. Our findings suggest that middle-aged patients with HNC have an increased incidence of PD, specifically those with oral cavity cancer. Therefore, our findings provide new insights into the development of PD in patients with HNC.
Collapse
Affiliation(s)
- Il Hwan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
5
|
Parate SS, Upadhyay SS, S A, Karthikkeyan G, Pervaje R, Abhinand CS, Modi PK, Prasad TSK. Comparative Metabolomics and Network Pharmacology Analysis Reveal Shared Neuroprotective Mechanisms of Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb. Mol Neurobiol 2024:10.1007/s12035-024-04223-3. [PMID: 38814535 DOI: 10.1007/s12035-024-04223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb., two nootropics, are recognized in Indian Ayurvedic texts. Studies have attempted to understand their action as memory enhancers and neuroprotectants, but many molecular aspects remain unknown. We propose that Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb. share common neuroprotective mechanisms. Mass spectrometry-based untargeted metabolomics and network pharmacology approach were used to identify potential protein targets for the metabolites from each extract. Phytochemical analyses and cell culture validation studies were also used to assess apoptosis and ROS activity using aqueous extracts prepared from both herbal powders. Further, docking studies were also performed using the LibDock protocol. Untargeted metabolomics and network pharmacology approach unveiled 2751 shared metabolites and 3439 and 2928 non-redundant metabolites from Bacopa monnieri and Centella asiatica extracts, respectively, suggesting a potential common neuroprotective mechanism among these extracts. Protein-target prediction highlighted 92.4% similarity among the proteins interacting with metabolites for these extracts. Among them, kinases mapped to MAPK, mTOR, and PI3K-AKT signaling pathways represented a predominant population. Our results highlight a significant similarity in the metabolome of Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb., and their potential protein targets may be attributed to their common neuroprotective functions.
Collapse
Affiliation(s)
- Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Amrutha S
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | | |
Collapse
|
6
|
Saadullah M, Tariq H, Chauhdary Z, Saleem U, Anwer Bukhari S, Sehar A, Asif M, Sethi A. Biochemical properties and biological potential of Syzygium heyneanum with antiparkinson's activity in paraquat induced rodent model. PLoS One 2024; 19:e0298986. [PMID: 38551975 PMCID: PMC10980224 DOI: 10.1371/journal.pone.0298986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024] Open
Abstract
Syzygium heyneanum is a valuable source of flavonoids and phenols, known for their antioxidant and neuroprotective properties. This research aimed to explore the potential of Syzygium heyneanum ethanol extract (SHE) in countering Parkinson's disease. The presence of phenols and flavonoids results in SHE displaying an IC50 value of 42.13 when assessed in the DPPH scavenging assay. Rats' vital organs (lungs, heart, spleen, liver, and kidney) histopathology reveals little or almost no harmful effect. The study hypothesized that SHE possesses antioxidants that could mitigate Parkinson's symptoms by influencing α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1β. Both in silico and in vivo investigations were conducted. The Parkinson's rat model was established using paraquat (1 mg/kg, i.p.), with rats divided into control, disease control, standard, and SHE-treated groups (150, 300, and 600 mg/kg) for 21 days. According to the ELISA statistics, the SHE treated group had lowers levels of IL-6 and TNF-α than the disease control group, which is a sign of neuroprotection. Behavioral and biochemical assessments were performed, alongside mRNA expression analyses using RT-PCR to assess SHE's impact on α-synuclein, AChE, TNF-α, and interleukins in brain homogenates. Behavioral observations demonstrated dose-dependent improvements in rats treated with SHE (600 > 300 > 150 mg/kg). Antioxidant enzyme levels (catalase, superoxide dismutase, glutathione) were significantly restored, particularly at a high dose, with notable reduction in malondialdehyde. The high dose of SHE notably lowered acetylcholinesterase levels. qRT-PCR results indicated reduced mRNA expression of IL-1β, α-synuclein, TNF-α, and AChE in SHE-treated groups compared to disease controls, suggesting neuroprotection. In conclusion, this study highlights Syzygium heyneanum potential to alleviate Parkinson's disease symptoms through its antioxidant and modulatory effects on relevant biomarkers.
Collapse
Affiliation(s)
- Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafsa Tariq
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shazia Anwer Bukhari
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amna Sehar
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Aisha Sethi
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
7
|
Ross JM, Olson L, Coppotelli G. Mitochondrial Dysfunction and Protein Homeostasis in Aging: Insights from a Premature-Aging Mouse Model. Biomolecules 2024; 14:162. [PMID: 38397399 PMCID: PMC10886786 DOI: 10.3390/biom14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial dysfunction has been implicated in aging and age-related disorders. Disturbed-protein homeostasis and clearance of damaged proteins have also been linked to aging, as well as to neurodegenerative diseases, cancers, and metabolic disorders. However, since mitochondrial oxidative phosphorylation, ubiquitin-proteasome, and autophagy-lysosome systems are tightly interdependent, it is not understood whether the facets observed in aging are the causes or consequences of one or all of these failed processes. We therefore used prematurely aging mtDNA-mutator mice and normally aging wild-type littermates to elucidate whether mitochondrial dysfunction per se is sufficient to impair cellular protein homeostasis similarly to that which is observed in aging. We found that both mitochondrial dysfunction and normal aging affect the ubiquitin-proteasome system in a tissue-dependent manner, whereas only normal aging markedly impairs the autophagy-lysosome system. Thus, our data show that the proteostasis network control in the prematurely aging mtDNA-mutator mouse differs in certain aspects from that found in normal aging. Taken together, our findings suggest that severe mitochondrial dysfunction drives an aging phenotype associated with the impairment of certain components of the protein homeostasis machinery, while others, such as the autophagy-lysosome system, are not affected or only minimally affected. Taken together, this shows that aging is a multifactorial process resulting from alterations of several integrated biological processes; thus, manipulating one process at the time might not be sufficient to fully recapitulate all changes associated with normal aging.
Collapse
Affiliation(s)
- Jaime M. Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden;
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
8
|
Bartošová T, Klempíř J, Hansíková H. Coenzyme Q10: A Biomarker in the Differential Diagnosis of Parkinsonian Syndromes. Antioxidants (Basel) 2023; 12:2104. [PMID: 38136223 PMCID: PMC10740444 DOI: 10.3390/antiox12122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple system atrophy (MSA) is generally a sporadic neurodegenerative disease which ranks among atypical Parkinson's syndromes. The main clinical manifestation is a combination of autonomic dysfunction and parkinsonism and/or cerebellar disability. The disease may resemble other Parkinsonian syndromes, such as Parkinson's disease (PD) or progressive supranuclear palsy (PSP), from which MSA could be hardly distinguishable during the first years of progression. Due to the lack of a reliable and easily accessible biomarker, the diagnosis is still based primarily on the clinical picture. Recently, reduced levels of coenzyme Q10 (CoQ10) were described in MSA in various tissues, including the central nervous system. The aim of our study was to verify whether the level of CoQ10 in plasma and lymphocytes could serve as an easily available diagnostic biomarker of MSA. The study reported significantly lower levels of CoQ10 in the lymphocytes of patients with MSA compared to patients with PD and controls. The reduction in CoQ10 levels in lymphocytes correlated with the increasing degree of clinical involvement of patients with MSA. CoQ10 levels in lymphocytes seem to be a potential biomarker of disease progression.
Collapse
Affiliation(s)
- Tereza Bartošová
- Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (T.B.); (J.K.)
| | - Jiří Klempíř
- Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (T.B.); (J.K.)
| | - Hana Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
9
|
Mendes D, Peixoto F, Oliveira MM, Andrade PB, Videira RA. Mitochondrial Dysfunction in Skeletal Muscle of Rotenone-Induced Rat Model of Parkinson's Disease: SC-Nanophytosomes as Therapeutic Approach. Int J Mol Sci 2023; 24:16787. [PMID: 38069110 PMCID: PMC10706108 DOI: 10.3390/ijms242316787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The development of new therapeutic options for Parkinson's disease (PD) requires formulations able to mitigate both brain degeneration and motor dysfunctions. SC-Nanophytosomes, an oral mitochondria-targeted formulation developed with Codium tomentosum membrane polar lipids and elderberry anthocyanin-enriched extract, promote significant brain benefits on a rotenone-induced rat model of PD. In the present work, the effects of SC-Nanophytosome treatment on the skeletal muscle tissues are disclosed. It is unveiled that the rotenone-induced PD rat model exhibits motor disabilities and skeletal muscle tissues with deficient activity of mitochondrial complexes I and II along with small changes in antioxidant enzyme activity and skeletal muscle lipidome. SC-Nanophytosome treatment mitigates the impairment of complexes I and II activity, improving the mitochondrial respiratory chain performance at levels that surpass the control. Therefore, SC-Nanophytosome competence to overcome the PD-related motor disabilities should be also associated with its positive outcomes on skeletal muscle mitochondria. Providing a cellular environment with more reduced redox potential, SC-Nanophytosome treatment improves the skeletal muscle tissue's ability to deal with oxidative stress stimuli. The PD-related small changes on skeletal muscle lipidome were also counteracted by SC-Nanophytosome treatment. Thus, the present results reinforces the concept of SC-Nanophytosomes as a mitochondria-targeted therapy to address the neurodegeneration challenge.
Collapse
Affiliation(s)
- Daniela Mendes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (D.M.); (P.B.A.)
| | - Francisco Peixoto
- Chemistry Center-Vila Real (CQ-VR), Biological and Environment Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, P.O. Box 1013, 5001-801 Vila Real, Portugal;
| | - Maria Manuel Oliveira
- Chemistry Center-Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, 5001-801 Vila Real, Portugal;
| | - Paula Branquinho Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (D.M.); (P.B.A.)
| | - Romeu António Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (D.M.); (P.B.A.)
| |
Collapse
|
10
|
Lombardi P, Karadayian AG, Guerra JI, Bustamante J, Rodríguez de Lores Arnaiz G, Lores-Arnaiz S. Mitochondrial bioenergetics and cytometric characterization of a synaptosomal preparation from mouse brain cortex. Mitochondrion 2023; 73:95-107. [PMID: 37944836 DOI: 10.1016/j.mito.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/06/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Mitochondrial function at synapses can be assessed in isolated nerve terminals. Synaptosomes are structures obtained in vitro by detaching the nerve endings from neuronal bodies under controlled homogenization conditions. Several protocols have been described for the preparation of intact synaptosomal fractions. Herein a fast and economical method to obtain synaptosomes with optimal intrasynaptic mitochondria functionality was described. Synaptosomal fractions were obtained from mouse brain cortex by differential centrifugation followed by centrifugation in a Ficoll gradient. The characteristics of the subcellular particles obtained were analyzed by flow cytometry employing specific tools. Integrity and specificity of the obtained organelles were evaluated by calcein and SNAP-25 probes. The proportion of positive events of the synaptosomal preparation was 75 ± 2 % and 48 ± 7% for calcein and Synaptosomal-Associated Protein of 25 kDa (SNAP-25), respectively. Mitochondrial integrity was evaluated by flow cytometric analysis of cardiolipin content, which indicated that 73 ± 1% of the total events were 10 N-nonylacridine orange (NAO)-positive. Oxygen consumption, ATP production and mitochondrial membrane potential determinations showed that mitochondria inside synaptosomes remained functional after the isolation procedure. Mitochondrial and synaptosomal enrichment were determined by measuring synaptosomes/ homogenate ratio of specific markers. Functionality of synaptosomes was verified by nitric oxide detection after glutamate addition. As compared with other methods, the present protocol can be performed briefly, does not imply high economic costs, and provides an useful tool for the isolation of a synaptosomal preparation with high mitochondrial respiratory capacity and an adequate integrity and function of intraterminal mitochondria.
Collapse
Affiliation(s)
- Paulina Lombardi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular "Profesor Alberto Boveris" (IBIMOL), Buenos Aires, Argentina
| | - Analía G Karadayian
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular "Profesor Alberto Boveris" (IBIMOL), Buenos Aires, Argentina
| | - Juan I Guerra
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular "Profesor Alberto Boveris" (IBIMOL), Buenos Aires, Argentina
| | | | - Georgina Rodríguez de Lores Arnaiz
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular "Profesor Alberto Boveris" (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
11
|
Dilnashin H, Birla H, Keswani C, Singh SS, Zahra W, Rathore AS, Singh R, Keshri PK, Singh SP. Neuroprotective Effects of Tinospora cordifolia via Reducing the Oxidative Stress and Mitochondrial Dysfunction against Rotenone-Induced PD Mice. ACS Chem Neurosci 2023; 14:3077-3087. [PMID: 37579290 DOI: 10.1021/acschemneuro.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Oxidative stress and mitochondrial dysfunction are leading mechanisms that play a crucial role in the progression of Parkinson's disease (PD). Tinospora cordifolia shows a wide range of biological activities including immunomodulatory, antimicrobial, antioxidant, and anti-inflammatory properties. This study explored the neuroprotective activities of T. cordifolia ethanolic extract (TCE) against Rotenone (ROT)-intoxicated Parkinsonian mice. Four experimental groups of mice were formed: control, ROT (2 mg/kg body wt, subcutaneously), TCE (200 mg/kg body wt, oral) + ROT, and TCE only. Mice were pretreated with TCE for a week and then simultaneously injected with ROT for 35 days. Following ROT-intoxication, motor activities, antioxidative potential, and mitochondrial dysfunction were analyzed. Decrease in the activity of the mitochondrial electron transport chain (mETC) complex, loss of mitochondrial membrane potential (Ψm), increase in Bax/Bcl-2 (B-cell lymphoma 2) ratio, and caspase-3 expression are observed in the ROT-intoxicated mice group. Our results further showed ROT-induced reactive oxygen species (ROS)-mediated alpha-synuclein (α-syn) accumulation and mitochondrial dysfunction. However, pre- and cotreatment with TCE along with ROT-intoxication significantly reduced α-syn aggregation and improved mitochondrial functioning in cells by altering mitochondrial potential and increasing mETC activity. TCE also decreases the Bax/Bcl-2 ratio and also the expression of caspase-3, thus reducing apoptosis of the cell. Altogether, TCE is effective in protecting neurons from rotenone-induced cytotoxicity in the Parkinsonian mouse model by modulating oxidative stress, ultimately reducing mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| |
Collapse
|
12
|
Xiang L, Wang Y, Liu S, Liu B, Jin X, Cao X. Targeting Protein Aggregates with Natural Products: An Optional Strategy for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11275. [PMID: 37511037 PMCID: PMC10379780 DOI: 10.3390/ijms241411275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-β, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingzhi Xiang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
13
|
Yang J, Prescott SA. Homeostatic regulation of neuronal function: importance of degeneracy and pleiotropy. Front Cell Neurosci 2023; 17:1184563. [PMID: 37333893 PMCID: PMC10272428 DOI: 10.3389/fncel.2023.1184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Neurons maintain their average firing rate and other properties within narrow bounds despite changing conditions. This homeostatic regulation is achieved using negative feedback to adjust ion channel expression levels. To understand how homeostatic regulation of excitability normally works and how it goes awry, one must consider the various ion channels involved as well as the other regulated properties impacted by adjusting those channels when regulating excitability. This raises issues of degeneracy and pleiotropy. Degeneracy refers to disparate solutions conveying equivalent function (e.g., different channel combinations yielding equivalent excitability). This many-to-one mapping contrasts the one-to-many mapping described by pleiotropy (e.g., one channel affecting multiple properties). Degeneracy facilitates homeostatic regulation by enabling a disturbance to be offset by compensatory changes in any one of several different channels or combinations thereof. Pleiotropy complicates homeostatic regulation because compensatory changes intended to regulate one property may inadvertently disrupt other properties. Co-regulating multiple properties by adjusting pleiotropic channels requires greater degeneracy than regulating one property in isolation and, by extension, can fail for additional reasons such as solutions for each property being incompatible with one another. Problems also arise if a perturbation is too strong and/or negative feedback is too weak, or because the set point is disturbed. Delineating feedback loops and their interactions provides valuable insight into how homeostatic regulation might fail. Insofar as different failure modes require distinct interventions to restore homeostasis, deeper understanding of homeostatic regulation and its pathological disruption may reveal more effective treatments for chronic neurological disorders like neuropathic pain and epilepsy.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Steven A. Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
15
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
16
|
Lee TK, Ashok Kumar K, Huang CY, Liao PH, Ho TJ, Kuo WW, Liao SC, Hsieh DJY, Chiu PL, Chang YM, Ju DT. Garcinol protects SH-SY5Y cells against MPP+-induced cell death by activating DJ-1/SIRT1 and PGC-1α mediated antioxidant pathway in sequential stimulation of p-AMPK mediated autophagy. ENVIRONMENTAL TOXICOLOGY 2023; 38:857-866. [PMID: 36629037 DOI: 10.1002/tox.23737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/14/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD), a chronic and progressive neurodegenerative disease, can reduce the population of dopaminergic neurons in the substantia nigra. The cause of this neuronal death remains unclear. 1-Methyl-4-phenylpyridinium ion (MPP+) is a potent neurotoxin that can destroy dopaminergic (DA) neurons and promote PD. Garcinol, a polyisoprenylated benzophenone derivative, was extracted from Garcinia indica and is an important active compound it has been used as an anticancer, antioxidant, and anti-inflammatory, agent and it can suppress reactive oxygen species (ROS) mediated cell death in a PD model. Human neuroblastoma (SH-SY5Y) cells (1 × 105 cells) were treated with MPP+ (1 mM) for 24 h to induce cellular ROS production. The formation of ROS was suppressed by pretreatment with different concentrations of garcinol (0.5 and 1.0 μM) for 3 h in SH-SY5Y cells. The present study found that MPP+ treatment increased the formation of reactive oxygen species (ROS), and the increased ROS began to promote cell death in SH-SY5Y cells. However, our natural compound garcinol effectively blocked MPP+-mediated ROS formation by activating the DJ-1/SIRT1 and PGC-1α mediated antioxidant pathway. Further findings indicate that the activated SIRT1 can also regulate p-AMPK-mediated autophagy to protect the neurons from the damage it concludes that garcinol sub-sequential regulates intracellular autophagy in this model, and the productive efficacy of garcinol was confirmed by western blot analysis and MitoSOX DCFDA and MTT assays. The results showed garcinol increased protection due to the prevention of MPP+-induced ROS and the promotion of cell survival.
Collapse
Affiliation(s)
- Tian-Kuo Lee
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - K Ashok Kumar
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology|, Chung Shan Medical University, Taichung, Taiwan
| | | | - Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
- 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
17
|
Recent Advances in the Treatment of Genetic Forms of Parkinson's Disease: Hype or Hope? Cells 2023; 12:cells12050764. [PMID: 36899899 PMCID: PMC10001341 DOI: 10.3390/cells12050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Parkinson's disease (PD) is a multifarious neurodegenerative disease. Its pathology is characterized by a prominent early death of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies with aggregated α-synuclein. Although the α-synuclein pathological aggregation and propagation, induced by several factors, is considered one of the most relevant hypotheses, PD pathogenesis is still a matter of debate. Indeed, environmental factors and genetic predisposition play an important role in PD. Mutations associated with a high risk for PD, usually called monogenic PD, underlie 5% to 10% of all PD cases. However, this percentage tends to increase over time because of the continuous identification of new genes associated with PD. The identification of genetic variants that can cause or increase the risk of PD has also given researchers the possibility to explore new personalized therapies. In this narrative review, we discuss the recent advances in the treatment of genetic forms of PD, focusing on different pathophysiologic aspects and ongoing clinical trials.
Collapse
|
18
|
Khan MM, Paez HG, Pitzer CR, Alway SE. The Therapeutic Potential of Mitochondria Transplantation Therapy in Neurodegenerative and Neurovascular Disorders. Curr Neuropharmacol 2023; 21:1100-1116. [PMID: 36089791 PMCID: PMC10286589 DOI: 10.2174/1570159x05666220908100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative and neurovascular disorders affect millions of people worldwide and account for a large and increasing health burden on the general population. Thus, there is a critical need to identify potential disease-modifying treatments that can prevent or slow the disease progression. Mitochondria are highly dynamic organelles and play an important role in energy metabolism and redox homeostasis, and mitochondrial dysfunction threatens cell homeostasis, perturbs energy production, and ultimately leads to cell death and diseases. Impaired mitochondrial function has been linked to the pathogenesis of several human neurological disorders. Given the significant contribution of mitochondrial dysfunction in neurological disorders, there has been considerable interest in developing therapies that can attenuate mitochondrial abnormalities and proffer neuroprotective effects. Unfortunately, therapies that target specific components of mitochondria or oxidative stress pathways have exhibited limited translatability. To this end, mitochondrial transplantation therapy (MTT) presents a new paradigm of therapeutic intervention, which involves the supplementation of healthy mitochondria to replace the damaged mitochondria for the treatment of neurological disorders. Prior studies demonstrated that the supplementation of healthy donor mitochondria to damaged neurons promotes neuronal viability, activity, and neurite growth and has been shown to provide benefits for neural and extra-neural diseases. In this review, we discuss the significance of mitochondria and summarize an overview of the recent advances and development of MTT in neurodegenerative and neurovascular disorders, particularly Parkinson's disease, Alzheimer's disease, and stroke. The significance of MTT is emerging as they meet a critical need to develop a diseasemodifying intervention for neurodegenerative and neurovascular disorders.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hector G. Paez
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Christopher R. Pitzer
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Stephen E. Alway
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Tennessee Institute of Regenerative Medicine, 910 Madison Avenue, Memphis, TN, 38163, USA
| |
Collapse
|
19
|
Cha Y, Park TY, Leblanc P, Kim KS. Current Status and Future Perspectives on Stem Cell-Based Therapies for Parkinson's Disease. J Mov Disord 2023; 16:22-41. [PMID: 36628428 PMCID: PMC9978267 DOI: 10.14802/jmd.22141] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 1%-2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantly escalate. Although symptom reduction by currently available pharmacological and/or surgical treatments improves the quality of life of many PD patients, there are no treatments that can slow down, halt, or reverse disease progression. Because the loss of a specific cell type, midbrain dopamine neurons in the substantia nigra, is the main cause of motor dysfunction in PD, it is considered a promising target for cell replacement therapy. Indeed, numerous preclinical and clinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells remains fraught with controversy due to fundamental ethical, practical, and clinical limitations. Groundbreaking work on human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, coupled with extensive basic research in the stem cell field offers promising potential for hPSC-based cell replacement to become a realistic treatment regimen for PD once several major issues can be successfully addressed. In this review, we will discuss the prospects and challenges of hPSC-based cell therapy for PD.
Collapse
Affiliation(s)
- Young Cha
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Tae-Yoon Park
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Pierre Leblanc
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
20
|
Tonner H, Hunn S, Auler N, Schmelter C, Pfeiffer N, Grus FH. Dynamin-like Protein 1 (DNML1) as a Molecular Target for Antibody-Based Immunotherapy to Treat Glaucoma. Int J Mol Sci 2022; 23:ijms232113618. [PMID: 36362420 PMCID: PMC9654827 DOI: 10.3390/ijms232113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Slow and progressive loss of retinal ganglion cells (RGCs) is the main characteristic of glaucoma, the second leading cause of blindness worldwide. Previous studies have shown that impaired mitochondrial dynamics could facilitate retinal neurodegeneration. Mitochondrial dynamics are regulated directly (fission) or more indirectly (fusion) by dynamin-like protein 1 (DNML1). Therefore, DNM1L might be a promising target for an antibody-based approach to treat glaucoma. The consequences of targeting endogenous DNM1L by antibodies in a glaucoma animal model have not been investigated yet. Here, we show that the intravitreal application of an anti-DNM1L antibody showed protective effects regarding the survival of RGCs and their axons in the retinal nerve fiber layer (RNFL). Antibody treatment also improved retinal functionality, as observed by electroretinography (Ganzfeld ERG). Western blot analysis revealed altered DNM1L phosphorylation and altered expression of proteins related to apoptosis suggesting a decreased apoptosis rate. Mass spectrometry analysis revealed 28 up-regulated and 21 down-regulated proteins (p < 0.05) in both experimental groups. Protein pathway analysis showed that many proteins interacted directly with the target protein DNM1L and could be classified into three main protein clusters: Vesicle traffic-associated (NSF, SNCA, ARF1), mitochondrion-associated (HSP9A, SLC25A5/ANT2, GLUD1) and cytoskeleton-associated (MAP1A) signaling pathway. Our results demonstrate that DNM1L is a promising target for an antibody-based approach to glaucoma therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Franz H. Grus
- Correspondence: ; Tel.: +49-6131-17-3328; Fax: +49-6131-4970563
| |
Collapse
|
21
|
Snoderly-Foster LJ, Olivas WM. Regulation of Parkinson's disease-associated genes by Pumilio proteins and microRNAs in SH-SY5Y neuronal cells. PLoS One 2022; 17:e0275235. [PMID: 36174040 PMCID: PMC9522289 DOI: 10.1371/journal.pone.0275235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease is the second most common age-related, neurodegenerative disease. A small collection of genes has been linked to Parkinson's disease including LRRK2, SAT1, and SNCA, the latter of which encodes the protein alpha-synuclein that aggregates in Lewy bodies as a hallmark of the disease. Overexpression of even wild-type versions of these genes can lead to pathogenesis, yet the regulatory mechanisms that control protein production of the genes are not fully understood. Pumilio proteins belong to the highly conserved PUF family of eukaryotic RNA-binding proteins that post-transcriptionally regulate gene expression through binding conserved motifs in the 3' untranslated region (UTR) of mRNA targets known as PUF Recognition Elements (PREs). The 3'UTRs of LRRK2, SNCA and SAT1 each contain multiple putative PREs. Knockdown (KD) of the two human Pumilio homologs (Pumilio 1 and Pumilio 2) in a neurodegenerative model cell line, SH-SY5Y, resulted in increased SNCA and LRRK2 mRNA, as well as alpha-synuclein levels, suggesting these genes are normally repressed by the Pumilio proteins. Some studies have indicated a relationship between Pumilio and microRNA activities on the same target, especially when their binding sites are close together. LRRK2, SNCA, and SAT1 each contain several putative microRNA-binding sites within the 3'UTR, some of which reside near PREs. Small RNA-seq and microRNA qPCR assays were performed in both wild type and Pumilio KD SH-SY5Y cells to analyze global and differential microRNA expression. One thousand four hundred and four microRNAs were detected across wild type and Pumilio KD cells. Twenty-one microRNAs were differentially expressed between treatments, six of which were previously established to be altered in Parkinson's disease patient samples or research models. Expression of ten miRs predicted to target LRRK2 and SNCA was verified by RT-qPCR. Collectively, our results demonstrate that Pumilios and microRNAs play a multi-faceted role in regulating Parkinson's disease-associated genes.
Collapse
Affiliation(s)
- Lisa J. Snoderly-Foster
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| | - Wendy M. Olivas
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
22
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
23
|
Fox SN, McMeekin LJ, Savage CH, Joyce KL, Boas SM, Simmons MS, Farmer CB, Ryan J, Pereboeva L, Becker K, Auwerx J, Sudarshan S, Ma J, Lee A, Roberts RC, Crossman DK, Kralli A, Cowell RM. Estrogen-related receptor gamma regulates mitochondrial and synaptic genes and modulates vulnerability to synucleinopathy. NPJ Parkinsons Dis 2022; 8:106. [PMID: 35982091 PMCID: PMC9388660 DOI: 10.1038/s41531-022-00369-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Many studies implicate mitochondrial dysfunction as a key contributor to cell loss in Parkinson disease (PD). Previous analyses of dopaminergic (DAergic) neurons from patients with Lewy-body pathology revealed a deficiency in nuclear-encoded genes for mitochondrial respiration, many of which are targets for the transcription factor estrogen-related receptor gamma (Esrrg/ERRγ). We demonstrate that deletion of ERRγ from DAergic neurons in adult mice was sufficient to cause a levodopa-responsive PD-like phenotype with reductions in mitochondrial gene expression and number, that partial deficiency of ERRγ hastens synuclein-mediated toxicity, and that ERRγ overexpression reduces inclusion load and delays synuclein-mediated cell loss. While ERRγ deletion did not fully recapitulate the transcriptional alterations observed in postmortem tissue, it caused reductions in genes involved in synaptic and mitochondrial function and autophagy. Altogether, these experiments suggest that ERRγ-deficient mice could provide a model for understanding the regulation of transcription in DAergic neurons and that amplifying ERRγ-mediated transcriptional programs should be considered as a strategy to promote DAergic maintenance in PD.
Collapse
Affiliation(s)
- S N Fox
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - L J McMeekin
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - C H Savage
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
| | - K L Joyce
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - S M Boas
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - M S Simmons
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - C B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Ryan
- NeuroInitiative, LLC, Jacksonville, FL, 32207, USA
| | - L Pereboeva
- Department of Pediatrics, Infectious Disease, Neuroscience Vector and Virus Core, University of Alabama at Birmingham, Birmingham, AL, 35223, USA
| | - K Becker
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - J Auwerx
- Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - S Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - A Lee
- NeuroInitiative, LLC, Jacksonville, FL, 32207, USA
| | - R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - R M Cowell
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA.
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Neuroprotective effect of geraniol on neurological disorders: a review article. Mol Biol Rep 2022; 49:10865-10874. [PMID: 35900613 DOI: 10.1007/s11033-022-07755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neurological disorders are structural, biochemical, and electrical abnormalities that affect the peripheral and central nervous systems. Paralysis, muscle weakness, tremors, spasms, and partial or complete loss of sensation are some symptoms of these disorders. Neurorehabilitation is the main treatment for neurological disorders. Treatments can improve the quality of life of patients. Neuroprotective substances of natural origin are used for the treatments of these disorders. METHODS AND RESULTS Online databases, such as Google Scholar, PubMed, ScienceDirect, and Scopus were searched to evaluate articles from 1981-2021 using the Mesh words of geraniol (GER), neurological disorders, epilepsy, spinal cord injury (SCI), Parkinson's diseases (PD), and depression. A total of 87 studies were included in this review. GER with antioxidant, anti-inflammatory, and neuroprotective effects can improve the symptoms and reduce the progression of neurological diseases. GER exhibits neuroprotective effects by binding to GABA and glycine receptors as well as by inhibiting the activation of nuclear factor kappa B (NF-κB) pathway and regulating the expression of nucleotide-binding oligomerization of NLRP3 inflammasome. In this study, the effect of GER was investigated on neurological disorders, such as epilepsy, SCI, PD, and depression. CONCLUSION Although the medicinal uses of GER have been reported, more clinical and experimental studies are needed to investigate the effect of using traditional medicine on improving lifethreatening diseases and the quality of life of patients.
Collapse
|
25
|
Ayed-Boussema I, Hamdi H, Chaabani H, M’nassri A, Mokni M, Abid S. Fenpyroximate induced cytotoxicity and genotoxicity in Wistar rat brain and in human neuroblastoma (SH-SY5Y) cells: involvement of oxidative stress and apoptosis. Neurotoxicology 2022; 91:177-187. [DOI: 10.1016/j.neuro.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
|
26
|
Selenium Effects on Oxidative Stress-Induced Calcium Signaling Pathways in Parkinson’s Disease. Indian J Clin Biochem 2022; 37:257-266. [DOI: 10.1007/s12291-022-01031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
27
|
Luo H, Peng C, Xu X, Peng Y, Shi F, Li Q, Dong J, Chen M. The Protective Effects of Mogroside V Against Neuronal Damages by Attenuating Mitochondrial Dysfunction via Upregulating Sirtuin3. Mol Neurobiol 2022; 59:2068-2084. [PMID: 35040040 DOI: 10.1007/s12035-021-02689-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction and oxidative stress are thought to play a dominant role in the pathogenesis of Parkinson's disease (PD). Mogroside V (MV), extracted from Siraitia grosvenorii, exhibits antioxidant-like activities. The aim of this study was to investigate the function of MV in neuroprotection in PD and to reveal its mechanism of action. To that end, we firstly set up mice models of PD with unilateral striatum injection of 0.25 mg/kg rotenone (Rot) and co-treated with 2.5 mg/kg, 5 mg/kg, and 10 mg/kg MV by gavage. Results showed that Rot-induced motor impairments and dopaminergic neuronal damage were reversed by treatment of 10 mg/kg MV. Then, we established cellular models of PD using Rot-treated SH-SY5Y cells, which were divided into six groups, including control, Rot, and co-enzyme Q10 (CQ10), as well as MV groups, MV25, MV50, and MV100 treated with 25 μM, 50 μM, and 100 μM MV doses, respectively. Results demonstrated that MV effectively attenuates Rot neurotoxicity through a ROS-related intrinsic mitochondrial pathway. MV reduced overproduction of reactive oxygen species (ROS), recovered the mitochondrial membrane potential (MMP), and increased the oxygen consumption rate and adenosine triphosphate (ATP) production in a dose-dependent manner. Hence, treatment with MV led to a reduction in the number of apoptotic cells, as reflected by Annexin-V/propidium iodide co-staining using flow cytometry and TdT-mediated dUTP Nick-End Labeling (TUNEL) assay. In addition, the Sirtuin3 (SIRT3) protein level and activity were decreased upon exposure to Rot both in substantia nigra (SN) of mice and SH-SY5Y cells. SIRT3 impairment hyperacetylated a key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2). MV alleviates SIRT3 and SOD2 molecular changes. However, after successfully inhibiting SIRT3 by its specific inhibitor 3-1H-1, 2, 3-triazol-4-yl pyridine (3TYP), MV was not able to reduce ROS levels, reverse abnormal MMP, or decrease apoptotic cells. Motor impairments and dopaminergic neuronal injury in the SN were alleviated with the oral administration of MV in Rot-treated PD mice, indicating a relationship between protection against defective motility and preservation of dopaminergic neurons. Therefore, we conclude that MV can alleviate Rot-induced neurotoxicity in a PD model, and that SIRT3 may be an important regulator in the protection of MV.
Collapse
Affiliation(s)
- Hanjiang Luo
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Caixia Peng
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Xiaofeng Xu
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yuntao Peng
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Fang Shi
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qinghua Li
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, College of Biotechnology, Guilin Medical University, Guilin, 541004, Guangxi, China.
| | - Min Chen
- Laboratory of Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China. .,Guangxi Key Laboratory Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, Guangxi, China.
| |
Collapse
|
28
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
29
|
Are We What We Eat? Impact of Diet on the Gut-Brain Axis in Parkinson's Disease. Nutrients 2022; 14:nu14020380. [PMID: 35057561 PMCID: PMC8780419 DOI: 10.3390/nu14020380] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease is characterized by motor and non-motor symptoms, such as defects in the gut function, which may occur before the motor symptoms. To date, there are therapies that can improve these symptoms, but there is no cure to avoid the development or exacerbation of this disorder. Dysbiosis of gut microbiota could have a crucial role in the gut–brain axis, which is a bidirectional communication between the central nervous system and the enteric nervous system. Diet can affect the microbiota composition, impacting gut–brain axis functionality. Gut microbiome restoration through probiotics, prebiotics, synbiotics or other dietary means could have the potential to slow PD progression. In this review, we will discuss the influence of diet on the bidirectional communication between gut and brain, thus supporting the hypothesis that this disorder could begin in the gut. We also focus on how food-based therapies might then have an influence on PD and could ameliorate non-motor as well as motor symptoms.
Collapse
|
30
|
Thamaraikani T, Karnam M, Velapandian C. In Silico Docking of Novel Phytoalkaloid Camalexin in the Management of Benomyl Induced Parkinson's Disease and its In Vivo Evaluation by Zebrafish Model. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:343-353. [PMID: 34477539 DOI: 10.2174/1871527320666210903091447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Parkinson's Disease (PD) exhibits the extrapyramidal symptoms caused due to the dopaminergic neuronal degeneration in the substantia nigra of the brain and depletion of Aldehyde Dehydrogenase (ALDH) enzyme. OBJECTIVE This study was designed to enlighten the importance of the Aldehyde dehydrogenase enzyme in protecting the dopamine levels in a living system. Camalexin, a potentially active compound, has been evaluated for its dopamine enhancing and aldehyde dehydrogenase protecting role in pesticide-induced Parkinson's disease. METHODS AutoDock 4.2 software was employed to perform the docking simulations between the ligand camalexin and standard drugs Alda-1, Ropirinole with three proteins 4WJR, 3INL, 5AER. Consequently, the compound was evaluated for its in vivo neuroprotective role in the zebrafish model by attaining Institutional Animal Ethical Committee permission. The behavioral assessments and catecholamine analysis in zebrafish were performed. RESULTS The Autodock result shows that the ligand camalexin has a lower binding energy (-3.84) that indicates a higher affinity with the proteins when compared to the standard drug of proteins (-3.42). In the zebrafish model, behavioral studies provided evidence that camalexin helps in the improvement of motor functions and cognition. The catecholamine assay has proved that there is an enhancement in dopamine levels, as well as an improvement in aldehyde dehydrogenase enzyme. CONCLUSION The novel compound, camalexin, offers a protective role in Parkinson's disease model by its interaction with neurochemical proteins and also in alternative in vivo model.
Collapse
Affiliation(s)
- Tamilanban Thamaraikani
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India
| | - Manasa Karnam
- Department of Pharmacology, SRM College of Pharmacy,SRMIST, Kattankulathur-603203,Tamilnadu, India
| | - Chitra Velapandian
- Department of Pharmacology, SRM College of Pharmacy,SRMIST, Kattankulathur-603203,Tamilnadu, India
| |
Collapse
|
31
|
Pant C, Chakrabarti M, Mendonza JJ, Ganganna B, Pabbaraja S, Pal Bhadra M. Aza-Flavanone Diminishes Parkinsonism in the Drosophila melanogaster Parkin Mutant. ACS Chem Neurosci 2021; 12:4380-4392. [PMID: 34763419 DOI: 10.1021/acschemneuro.1c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease is a chronic and progressive neurodegenerative disease, induced by slow and progressive death of the dopaminergic (DA) neurons from the midbrain region called substantia nigra (SNc) leading to difficulty in locomotion. At present, very few potential therapeutic drugs are available for treatment, necessitating an urgent need for development. In the current study, the parkin transgenic Drosophila melanogaster model that induces selective loss in dopaminergic neurons and impairment of locomotory functions has been used to see the effect of the aza-flavanone molecule. D. melanogaster serves as an amazing in vivo model making valuable contribution in the development of promising treatment strategies. Our in-silico study showed spontaneous binding of this molecule to the D2 receptor making it a potential dopamine agonist. PARKIN protein is well conserved, and it has been reported that Drosophila PARKIN is 42% identical to human PARKIN. Interestingly, this molecule enhances the motor coordination and survivability rate of the transgenic flies along with an increase in expression of the master regulator of Dopamine synthesis, that is, tyrosine hydroxylase (TH), in the substantia nigra region of the fly brain. Moreover, it plays a significant effect on mitochondrial health and biogenesis via modulation of a conserved mitochondrial protein PHB2. Therefore, this molecule could lead to the development of an effective therapeutic approach for the treatment of PD.
Collapse
Affiliation(s)
- Chitrakshi Pant
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Moumita Chakrabarti
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jolly Janette Mendonza
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bogonda Ganganna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Manika Pal Bhadra
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
32
|
Hu D, Liu Z, Qi X. Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases? Front Neurosci 2021; 15:746873. [PMID: 34867159 PMCID: PMC8633545 DOI: 10.3389/fnins.2021.746873] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Many lines of evidence have indicated the therapeutic potential of rescuing mitochondrial integrity by targeting specific mitochondrial quality control pathways in neurodegenerative diseases, such as Parkinson's disease, Huntington's disease, and Alzheimer's disease. In addition to ATP synthesis, mitochondria are critical regulators of ROS production, lipid metabolism, calcium buffering, and cell death. The mitochondrial unfolded protein response, mitochondrial dynamics, and mitophagy are the three main quality control mechanisms responsible for maintaining mitochondrial proteostasis and bioenergetics. The proper functioning of these complex processes is necessary to surveil and restore mitochondrial homeostasis and the healthy pool of mitochondria in cells. Mitochondrial dysfunction occurs early and causally in disease pathogenesis. A significant accumulation of mitochondrial damage resulting from compromised quality control pathways leads to the development of neuropathology. Moreover, genetic or pharmaceutical manipulation targeting the mitochondrial quality control mechanisms can sufficiently rescue mitochondrial integrity and ameliorate disease progression. Thus, therapies that can improve mitochondrial quality control have great promise for the treatment of neurodegenerative diseases. In this review, we summarize recent progress in the field that underscores the essential role of impaired mitochondrial quality control pathways in the pathogenesis of neurodegenerative diseases. We also discuss the translational approaches targeting mitochondrial function, with a focus on the restoration of mitochondrial integrity, including mitochondrial dynamics, mitophagy, and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Zunren Liu
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
33
|
Yan Y, Ren S, Duan Y, Lu C, Niu Y, Wang Z, Inglis B, Ji W, Zheng Y, Si W. Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson's disease. NPJ Biofilms Microbiomes 2021; 7:69. [PMID: 34475403 PMCID: PMC8413421 DOI: 10.1038/s41522-021-00242-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. However, it is unclear whether microbiota and metabolites have demonstrated changes at early PD due to the difficulties in diagnosis and identification of early PD in clinical practice. In a previous study, we generated A53T transgenic monkeys with early Parkinson's symptoms, including anxiety and cognitive impairment. Here we analyzed the gut microbiota by metagenomic sequencing and metabolites by targeted gas chromatography. The gut microbiota analysis showed that the A53T monkeys have higher degree of diversity in gut microbiota with significantly elevated Sybergistetes, Akkermansia, and Eggerthella lenta compared with control monkeys. Prevotella significantly decreased in A53T transgenic monkeys. Glyceric acid, L-Aspartic acid, and p-Hydroxyphenylacetic acid were significantly elevated, whereas Myristic acid and 3-Methylindole were significantly decreased in A53T monkeys. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (KO0131) and the oxidative phosphorylation reaction (KO2147) were significantly increased in metabolic pathways of A53T monkeys. Our study suggested that the transgenic A53T and α-syn aggregation may affect the intestine microbiota and metabolites of rhesus monkeys, and the identified five compositional different metabolites that are mainly associated with mitochondrial dysfunction may be related to the pathogenesis of PD.
Collapse
Affiliation(s)
- Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shuchao Ren
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Chenyu Lu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Briauna Inglis
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
34
|
Parecoxib alleviates the motor behavioral decline of aged rats by ameliorating mitochondrial dysfunction in the substantia nigra via COX-2/PGE2 pathway inhibition. Neuropharmacology 2021; 194:108627. [PMID: 34089729 DOI: 10.1016/j.neuropharm.2021.108627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction manifests as an early event in the substantia nigra (SN) in aging and Parkinson disease. Cyclooxygenase 2 (COX-2), the rate-limiting enzyme in the prostaglandin E2 (PGE2) synthesis pathway, is implicated in aging and age-related neurodegenerative diseases; moreover, inhibition of COX-2 expression has been shown to be neuroprotective for nigrostriatal dopaminergic neurons. However, it is not known whether the neuroprotective effect of COX-2 inhibition is related to improved mitochondrial function during the aging process. To this end, we explored the effects of the selective COX-2 inhibitor parecoxib on mitochondrial function in the SN of aged rats. We found that parecoxib administration to aged rats for 10 weeks decreased COX-2/PGE2 expression, increased tyrosine hydroxylase and dopamine transporter expression in nigrostriatal dopaminergic neurons, and alleviated motor behavioral decline. Decreased malondialdehyde levels and an increased GSH/GSSG ratio as well as enhanced enzymatic activities of catalase and manganese superoxide dismutase in parecoxib-treated aged rats indicate that parecoxib administration elevated antioxidative ability in the SN during the aging process. Parecoxib treatment to aged rats promoted mitochondrial biogenesis by upregulating PGC-1α/NRF-1/TFAM, enhancing mitochondrial fusion by decreasing Drp1 levels and increasing Mfn1 and OPA1 levels, and activated mitophagy by increasing PINK1/Parkin levels while reducing p62/SQSTM1 levels, thereby coordinating mitochondrial homeostasis via inhibiting the COX-2/PGE2 pathway. Thus, our results strongly support the conclusion that parecoxib treatment is conducive to improving mitochondrial dysfunction in the SN upon aging in rats.
Collapse
|
35
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
36
|
Behl T, Kaur G, Sehgal A, Zengin G, Singh S, Ahmadi A, Bungau S. Flavonoids, the Family of Plant-derived Antioxidants making inroads into Novel Therapeutic Design against IR-induced Oxidative Stress in Parkinson's Disease. Curr Neuropharmacol 2021; 20:324-343. [PMID: 34030619 PMCID: PMC9413797 DOI: 10.2174/1570159x19666210524152817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation-induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species. Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson’s disease. Methods: Published papers were searched in MEDLINE, PubMed, etc., published to date for in-depth database collection. Results: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. Conclusion: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea. Romania
| |
Collapse
|
37
|
Wu H, Liu X, Gao ZY, Lin M, Zhao X, Sun Y, Pu XP. Icaritin Provides Neuroprotection in Parkinson's Disease by Attenuating Neuroinflammation, Oxidative Stress, and Energy Deficiency. Antioxidants (Basel) 2021; 10:antiox10040529. [PMID: 33805302 PMCID: PMC8066334 DOI: 10.3390/antiox10040529] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation, oxidative stress, and mitochondrial dysfunction are all important pathogenic mechanisms underlying motor dysfunction and dopaminergic neuronal damage observed in patients with Parkinson’s disease (PD). However, despite extensive efforts, targeting inflammation and oxidative stress using various approaches has not led to meaningful clinical outcomes, and mitochondrial enhancers have also failed to convincingly achieve disease-modifying effects. We tested our hypothesis that treatment approaches in PD should simultaneously reduce neuroinflammation, oxidative stress, and improve alterations in neuronal energy metabolism using the flavonoid icaritin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Using matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI-MSI), coupled with biochemical analyses and behavioral tests, we demonstrate that icaritin improves PD by attenuating the the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome activity and stabilizing mitochondrial function, based on our extensive analyses showing the inhibition of NLRP3 inflammasome, reduction of NLRP3-mediated IL-1β secretion, and improvements in the levels of antioxidant molecules. Our data also indicated that icaritin stabilized the levels of proteins related to mitochondrial function, such as voltage-dependent anion channel (VDAC) and ATP synthase subunit beta (ATP5B), as well as those of molecules related to energy metabolism, such as ATP and ADP, ultimately improving mitochondrial dysfunction. By employing molecular docking, we also discovered that icaritin can interact with NLRP3, VDAC, ATP5B, and several blood–brain barrier (BBB)-related proteins. These data provide insights into the promising therapeutic potential of icaritin in PD.
Collapse
Affiliation(s)
- Hao Wu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xi Liu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ze-Yu Gao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ming Lin
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-2431
| |
Collapse
|
38
|
Büeler H. Mitochondrial and Autophagic Regulation of Adult Neurogenesis in the Healthy and Diseased Brain. Int J Mol Sci 2021; 22:ijms22073342. [PMID: 33805219 PMCID: PMC8036818 DOI: 10.3390/ijms22073342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.
Collapse
Affiliation(s)
- Hansruedi Büeler
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
39
|
Yang H, Wang L, Zang C, Yang X, Bao X, Shang J, Zhang Z, Liu H, Ju C, Li F, Yuan F, Zhang D. Squamosamide Derivative FLZ Diminishes Aberrant Mitochondrial Fission by Inhibiting Dynamin-Related Protein 1. Front Pharmacol 2021; 12:588003. [PMID: 33815098 PMCID: PMC8017221 DOI: 10.3389/fphar.2021.588003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial dysfunction is involved in the pathogenesis of Parkinson’s disease (PD). Mitochondrial morphology is dynamic and precisely regulated by mitochondrial fission and fusion machinery. Aberrant mitochondrial fragmentation, which can result in cell death, is controlled by the mitochondrial fission protein, dynamin-related protein 1 (Drp1). Our previous results demonstrated that FLZ could correct mitochondrial dysfunction, but the effect of FLZ on mitochondrial dynamics remain uncharacterized. In this study, we investigated the effect of FLZ and the role of Drp1 on 1-methyl-4-phenylpyridinium (MPP+)–induced mitochondrial fission in neurons. We observed that FLZ blocked Drp1, inhibited Drp1 enzyme activity, and reduced excessive mitochondrial fission in cultured neurons. Furthermore, by inhibiting mitochondrial fission and ROS production, FLZ improved mitochondrial integrity and membrane potential, resulting in neuroprotection. FLZ curtailed the reduction of synaptic branches of primary cultured dopaminergic neurons caused by MPP+ exposure, reduced abnormal fission, restored normal mitochondrial distribution in neurons, and exhibited protective effects on dopaminergic neurons. The in vitro research results were validated using an MPTP-induced PD mouse model. The in vivo results revealed that FLZ significantly reduced the mitochondrial translocation of Drp1 in the midbrain of PD mice, which, in turn, reduced the mitochondrial fragmentation in mouse substantia nigra neurons. FLZ also protected dopaminergic neurons in PD mice and increased the dopamine content in the striatum, which improved the motor coordination ability of the mice. These findings elucidate this newly discovered mechanism through which FLZ produces neuroprotection in PD.
Collapse
Affiliation(s)
- Hanyu Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ju
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyuan Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Hor SL, Teoh SL, Lim WL. Plant Polyphenols as Neuroprotective Agents in Parkinson's Disease Targeting Oxidative Stress. Curr Drug Targets 2021; 21:458-476. [PMID: 31625473 DOI: 10.2174/1389450120666191017120505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the human midbrain. Various ongoing research studies are competing to understand the pathology of PD and elucidate the mechanisms underlying neurodegeneration. Current pharmacological treatments primarily focused on improving dopamine metabolism in PD patients, despite the side effects of long-term usage. In recent years, it is recognized that oxidative stress-mediated pathways lead to neurodegeneration in the brain, which is associated with the pathophysiology of PD. The importance of oxidative stress is often less emphasized when developing potential therapeutic approaches. Natural plant antioxidants have been shown to mediate the oxidative stress-induced effects in PD, which has gained considerable attention in both in vitro and in vivo studies. Yet, clinical trials on natural polyphenol compounds are limited, restricting the potential use of these compounds as an alternative treatment for PD. Therefore, this review provides an understanding of the oxidative stress-induced effects in PD by elucidating the underlying events contributing to oxidative stress and explore the potential use of polyphenols in improving the oxidative status in PD. Preclinical findings have supported the potential of polyphenols in providing neuroprotection against oxidative stress-induced toxicity in PD. However, limiting factors, such as safety and bioavailability of polyphenols, warrant further investigations so as to make them the potential target for clinical applications in the treatment and management of PD.
Collapse
Affiliation(s)
- Suet Lee Hor
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| |
Collapse
|
41
|
Nesari A, Mansouri MT, Khodayar MJ, Rezaei M. Preadministration of high-dose alpha-tocopherol improved memory impairment and mitochondrial dysfunction induced by proteasome inhibition in rat hippocampus. Nutr Neurosci 2021; 24:119-129. [PMID: 31084475 DOI: 10.1080/1028415x.2019.1601888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: The ubiquitin-proteasome system plays a key role in memory consolidation. Proteasome inhibition and free radical-induced neural damage were implicated in neurodegenerative states. In this study, it was tested whether alpha-tocopherol (αT) in low and high doses could improve the long-term memory impairment induced by proteasome inhibition and protects against hippocampal oxidative stress. Methods: Alpha-tocopherol (αT) (60, 200 mg/kg, i.p. for 5 days) was administered to rats with memory deficit and hippocampal oxidative stress induced by bilateral intra-hippocampal injection of lactacystin (32 ng/μl) and mitochondrial evaluations were performed for improvement assessments. Results: The results showed that lactacystin significantly reduced the passive avoidance memory performance and increased the level of malondialdehyde (MDA), reactive oxygen species (ROS) and diminished the mitochondrial membrane potential (MMP) in the rat hippocampus. Furthermore, Intraperitoneal administration of αT significantly increased the passive avoidance memory, glutathione content and reduced ROS, MDA levels and impaired MMP. Conclusions: The results suggested that αT has neuroprotective effects against lactacystin-induced oxidative stress and memory impairment via the enhancement of hippocampal antioxidant capacity and concomitant mitochondrial sustainability. This finding shows a way to prevent and also to treat neurodegenerative diseases associated with mitochondrial impairment.
Collapse
Affiliation(s)
- Ali Nesari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anesthesiology, Irving Medical Center, Columbia University, New York, NY, USA
| | - Mohammad Javad Khodayar
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Rezaei
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
42
|
Zhao S, Wang M, Ma Z. Therapeutic potential of ATP-sensitive potassium channels in Parkinson's disease. Brain Res Bull 2021; 169:1-7. [PMID: 33434622 DOI: 10.1016/j.brainresbull.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022]
Abstract
In the past decade, there was an increasing interest in the therapeutic potential targeting ATP-sensitive potassium (KATP) channels for an effective treatment of Parkinson's disease (PD). KATP channels are widely expressed in the central nervous system and were reported to mediate the degeneration and death of nigral dopamine neurons in the pathogenesis of PD. This review aims to address the pivotal roles of KATP channels played in the mechanisms underlying PD pathogenesis, and provide possible directions for further research from different perspectives, such as the vulnerability of dopamine neurons in the substantia nigra, neurotransmitter releasing, iron metabolism in the brain, α-synuclein secretion and mitochondrial dysfunction, which are off critical importance in the investigation of KATP channels-targeted precise therapeutic interventions for PD.
Collapse
Affiliation(s)
- Sha Zhao
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - MengZhen Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - ZeGang Ma
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China; Institute of Brain Science and Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
43
|
Simple models including energy and spike constraints reproduce complex activity patterns and metabolic disruptions. PLoS Comput Biol 2020; 16:e1008503. [PMID: 33347433 PMCID: PMC7785241 DOI: 10.1371/journal.pcbi.1008503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/05/2021] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
In this work, we introduce new phenomenological neuronal models (eLIF and mAdExp) that account for energy supply and demand in the cell as well as the inactivation of spike generation how these interact with subthreshold and spiking dynamics. Including these constraints, the new models reproduce a broad range of biologically-relevant behaviors that are identified to be crucial in many neurological disorders, but were not captured by commonly used phenomenological models. Because of their low dimensionality eLIF and mAdExp open the possibility of future large-scale simulations for more realistic studies of brain circuits involved in neuronal disorders. The new models enable both more accurate modeling and the possibility to study energy-associated disorders over the whole time-course of disease progression instead of only comparing the initially healthy status with the final diseased state. These models, therefore, provide new theoretical and computational methods to assess the opportunities of early diagnostics and the potential of energy-centered approaches to improve therapies. Neurons, even “at rest”, require a constant supply of energy to function. They cannot sustain high-frequency activity over long periods because of regulatory mechanisms, such as adaptation or sodium channels inactivation, and metabolic limitations. These limitations are especially severe in many neuronal disorders, where energy can become insufficient and make the neuronal response change drastically, leading to increased burstiness, network oscillations, or seizures. Capturing such behaviors and impact of energy constraints on them is an essential prerequisite to study disorders such as Parkinson’s disease and epilepsy. However, energy and spiking constraints are not present in any of the standard neuronal models used in computational neuroscience. Here we introduce models that provide a simple and scalable way to account for these features, enabling large-scale theoretical and computational studies of neurological disorders and activity patterns that could not be captured by previously used models. These models provide a way to study energy-associated disorders over the whole time-course of disease progression, and they enable a better assessment of energy-centered approaches to improve therapies.
Collapse
|
44
|
Defective mitophagy in Alzheimer's disease. Ageing Res Rev 2020; 64:101191. [PMID: 33022416 DOI: 10.1016/j.arr.2020.101191] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive, mental illness without cure. Several years of intense research on postmortem AD brains, cell and mouse models of AD have revealed that multiple cellular changes are involved in the disease process, including mitochondrial abnormalities, synaptic damage, and glial/astrocytic activation, in addition to age-dependent accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). Synaptic damage and mitochondrial dysfunction are early cellular changes in the disease process. Healthy and functionally active mitochondria are essential for cellular functioning. Dysfunctional mitochondria play a central role in aging and AD. Mitophagy is a cellular process whereby damaged mitochondria are selectively removed from cell and mitochondrial quality and biogenesis. Mitophagy impairments cause the progressive accumulation of defective organelle and damaged mitochondria in cells. In AD, increased levels of Aβ and p-tau can induce reactive oxygen species (ROS) production, causing excessive fragmentation of mitochondria and promoting defective mitophagy. The current article discusses the latest developments of mitochondrial research and also highlights multiple types of mitophagy, including Aβ and p-tau-induced mitophagy, stress-induced mitophagy, receptor-mediated mitophagy, ubiquitin mediated mitophagy and basal mitophagy. This article also discusses the physiological states of mitochondria, including fission-fusion balance, Ca2+ transport, and mitochondrial transport in normal and diseased conditions. Our article summarizes current therapeutic interventions, like chemical or natural mitophagy enhancers, that influence mitophagy in AD. Our article discusses whether a partial reduction of Drp1 can be a mitophagy enhancer and a therapeutic target for mitophagy in AD and other neurological diseases.
Collapse
|
45
|
Vijayanathan Y, Lim SM, Tan MP, Lim FT, Majeed ABA, Ramasamy K. Adult Endogenous Dopaminergic Neuroregeneration Against Parkinson's Disease: Ideal Animal Models? Neurotox Res 2020; 39:504-532. [PMID: 33141428 DOI: 10.1007/s12640-020-00298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The etiology of PD remains an enigma with no available disease modifying treatment or cure. Pharmacological compensation is the only quality of life improving treatments available. Endogenous dopaminergic neuroregeneration has recently been considered a plausible therapeutic strategy for PD. However, researchers have to first decipher the complexity of adult endogenous neuroregeneration. This raises the need of animal models to understand the underlying molecular basis. Mammalian models with highly conserved genetic homology might aid researchers to identify specific molecular mechanisms. However, the scarcity of adult neuroregeneration potential in mammals obfuscates such investigations. Nowadays, non-mammalian models are gaining popularity due to their explicit ability to neuroregenerate naturally without the need of external enhancements, yet these non-mammals have a much diverse gene homology that critical molecular signals might not be conserved across species. The present review highlights the advantages and disadvantages of both mammalian and non-mammalian animal models that can be essentially used to study the potential of endogenous DpN regeneration against PD.
Collapse
Affiliation(s)
- Yuganthini Vijayanathan
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Maw Pin Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fei Ting Lim
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
46
|
Nguyen DT, Iqbal J, Han J, Pierens GK, Wood SA, Mellick GD, Feng Y. Chemical constituents from Macleaya cordata (Willd) R. Br. and their phenotypic functions against a Parkinson's disease patient-derived cell line. Bioorg Med Chem 2020; 28:115732. [PMID: 33065438 DOI: 10.1016/j.bmc.2020.115732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Cytological profiling (CP) assay against a human olfactory neuroshpere-derived (hONS) cell line using a library of traditional Chinese medicinal plant extracts gave indications that the ethanolic extract of Macleaya cordata (Willd) R. Br. elicited strong perturbations to various cellular components. Further chemical investigation of this extract resulted in the isolation of two new benzo[c]phenanthridine alkaloids, (6R)-10-methoxybocconoline (1) and 6-(1-hydroxyethyl)-10-methoxy-5,6-dihydrochelerythrine (2). Their planar structures were elucidated by extensive 1D and 2D NMR studies, together with MS data. The absolute configuration for position C-6 of 1 and relative configurations for position C-6 and C-1' of 2 were assigned by density functional theory (DFT) calculations of ECD and NMR data, respectively. Also isolated were fourteen known metabolites, including ten alkaloids (3-12) and four coumaroyl-containing compounds (13-16). Cytological profiling of the isolates against Parkinson's Disease (PD) patient-derived olfactory cells revealed bocconoline (3) and 6-(1-hydroxyethyl)-5,6-dihydrochelerythrine (4) significantly perturbated the features of cellular organelles including early endosomes, mitochondria and autophagosomes. Given that hONS cells from PD patients model some functional aspects of the disease, the results suggested that these phenotypic profiles may have a role in the mechanisms underlying PD and signified the efficacy of CP in finding potential chemical tools to study the biological pathways in PD.
Collapse
Affiliation(s)
- Duy Thanh Nguyen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Jamila Iqbal
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Jianying Han
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
47
|
Verma A, Ray A, Bapat D, Diwakar L, Kommaddi RP, Schneider BL, Hirsch EC, Ravindranath V. Glutaredoxin 1 Downregulation in the Substantia Nigra Leads to Dopaminergic Degeneration in Mice. Mov Disord 2020; 35:1843-1853. [PMID: 32618039 DOI: 10.1002/mds.28190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by a severe loss of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Perturbation of protein thiol redox homeostasis has been shown to play a role in the dysregulation of cell death and cell survival signaling pathways in these neurons. Glutaredoxin 1 (Grx1) is a thiol/disulfide oxidoreductase that catalyzes the deglutathionylation of proteins and is important for regulation of cellular protein thiol redox homeostasis. OBJECTIVES We evaluated if the downregulation of Grx1 could lead to dopaminergic degeneration and PD-relevant motor deficits in mice. METHODS Grx1 was downregulated unilaterally through viral vector-mediated transduction of short hairpin RNA against Grx1 into the SNpc. Behavioral assessment was performed through rotarod and elevated body swing test. Stereological analysis of tyrosine hydroxylase-positive and Nissl-positive neurons was carried out to evaluate neurodegeneration. RESULTS Downregulation of Grx1 resulted in contralateral bias of elevated body swing and reduced latency to fall off, accelerating rotarod. This was accompanied by a loss of tyrosine hydroxylase-positive neurons in the SNpc and their DA projections in the striatum. Furthermore, there was a loss Nissl-positive neurons in the SNpc, indicating cell death. This was selective to the SNpc neurons because DA neurons in the ventral tegmental area were unaffected akin to that seen in human PD. Furthermore, Grx1 mRNA expression was substantially decreased in the SNpc from PD patients. CONCLUSIONS Our study indicates that Grx1 is critical for the survival of SNpc DA neurons and that it is downregulated in human PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aditi Verma
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Ajit Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Deepti Bapat
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Latha Diwakar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India.,Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Reddy Peera Kommaddi
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India.,Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Etienne C Hirsch
- Institut du Cerveau-ICM Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India.,Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
48
|
Liu Y, Lear TB, Verma M, Wang KZ, Otero PA, McKelvey AC, Dunn SR, Steer E, Bateman NW, Wu C, Jiang Y, Weathington NM, Rojas M, Chu CT, Chen BB, Mallampalli RK. Chemical inhibition of FBXO7 reduces inflammation and confers neuroprotection by stabilizing the mitochondrial kinase PINK1. JCI Insight 2020; 5:131834. [PMID: 32493843 DOI: 10.1172/jci.insight.131834] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/23/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial quality control is mediated by the PTEN-induced kinase 1 (PINK1), a cytoprotective protein that is dysregulated in inflammatory lung injury and neurodegenerative diseases. Here, we show that a ubiquitin E3 ligase receptor component, FBXO7, targets PINK1 for its cellular disposal. FBXO7, by mediating PINK1 ubiquitylation and degradation, was sufficient to induce mitochondrial injury and inflammation in experimental pneumonia. A computational simulation-based screen led to the identification of a small molecule, BC1464, which abrogated FBXO7 and PINK1 association, leading to increased cellular PINK1 concentrations and activities, and limiting mitochondrial damage. BC1464 exerted antiinflammatory activity in human tissue explants and murine lung inflammation models. Furthermore, BC1464 conferred neuroprotection in primary cortical neurons, human neuroblastoma cells, and patient-derived cells in several culture models of Parkinson's disease. The data highlight a unique opportunity to use small molecule antagonists that disrupt PINK1 interaction with the ubiquitin apparatus to enhance mitochondrial quality, limit inflammatory injury, and maintain neuronal viability.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Medicine, the Acute Lung Injury Center of Excellence.,The McGowan Institute for Regenerative Medicine
| | - Travis B Lear
- Department of Medicine, the Acute Lung Injury Center of Excellence.,Department of Environmental and Occupational Health, Graduate School of Public Health, and
| | - Manish Verma
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kent Zq Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - P Anthony Otero
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Sarah R Dunn
- Department of Medicine, the Acute Lung Injury Center of Excellence
| | - Erin Steer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Mauricio Rojas
- Department of Medicine, the Acute Lung Injury Center of Excellence
| | - Charleen T Chu
- The McGowan Institute for Regenerative Medicine.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Ophthalmology.,The Pittsburgh Institute for Neurodegenerative Diseases
| | - Bill B Chen
- Department of Medicine, the Acute Lung Injury Center of Excellence.,Vascular Medicine Institute, and
| | - Rama K Mallampalli
- Department of Medicine, the Acute Lung Injury Center of Excellence.,Department of Cell Biology and.,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
49
|
Hanumanthappa P, Ashok A, Prakash I, Priya CI, Zinzala J, Marigowda VV, Sosalegowda AH. In silico and In vivo Evaluation of Oxidative Stress Inhibitors Against Parkinson's Disease using the C. elegans Model. Comb Chem High Throughput Screen 2020; 23:814-826. [PMID: 32407263 DOI: 10.2174/1386207323666200514074128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease ranks second, after Alzheimer's as the major neurodegenerative disorder, for which no cure or disease-modifying therapies exist. Ample evidence indicate that PD manifests as a result of impaired anti-oxidative machinery leading to neuronal death wherein Cullin-3 has ascended as a potential therapeutic target for diseases involving damaged anti-oxidative machinery. OBJECTIVE The design of target specific inhibitors for the Cullin-3 protein might be a promising strategy to increase the Nrf2 levels and to decrease the possibility of "off-target" toxic properties. METHODS In the present study, an integrated computational and wet lab approach was adopted to identify small molecule inhibitors for Cullin-3. The rational drug designing process comprised homology modeling and derivation of the pharmacophore for Cullin-3, virtual screening of Zinc natural compound database, molecular docking and Molecular dynamics based screening of ligand molecules. In vivo validations of an identified lead compound were conducted in the PD model of C. elegans. RESULTS AND DISCUSSION Our strategy yielded a potential inhibitor; (Glide score = -12.31), which was evaluated for its neuroprotective efficacy in the PD model of C. elegans. The inhibitor was able to efficiently defend against neuronal death in PD model of C. elegans and the neuroprotective effects were attributed to its anti-oxidant activities, supported by the increase in superoxide dismutase, catalase and the diminution of acetylcholinesterase and reactive oxygen species levels. In addition, the Cullin-3 inhibitor significantly restored the behavioral deficits in the transgenic C. elegans. CONCLUSION Taken together, these findings highlight the potential utility of Cullin-3 inhibition to block the persistent neuronal death in PD. Further studies focusing on Cullin-3 and its mechanism of action would be interesting.
Collapse
Affiliation(s)
- Pradeep Hanumanthappa
- Department of Studies in Biotechnology, University of Mysore, Manasagangothri, Mysore 570 006, Karnataka, India
| | - Arpitha Ashok
- Department of Studies in Biotechnology, University of Mysore, Manasagangothri, Mysore 570 006, Karnataka, India
| | - Inderjit Prakash
- Department of Studies in Biotechnology, University of Mysore, Manasagangothri, Mysore 570 006, Karnataka, India
| | - Carmel I Priya
- Department of Studies in Biotechnology, University of Mysore, Manasagangothri, Mysore 570 006, Karnataka, India
| | - Julie Zinzala
- Department of Studies in Biotechnology, University of Mysore, Manasagangothri, Mysore 570 006, Karnataka, India
| | - Vidya V Marigowda
- Department of Studies in Biotechnology, University of Mysore, Manasagangothri, Mysore 570 006, Karnataka, India
| | - Aparna H Sosalegowda
- Department of Studies in Biotechnology, University of Mysore, Manasagangothri, Mysore 570 006, Karnataka, India
| |
Collapse
|
50
|
Manzoor R, Rasool A, Ahmed M, Kaleem U, Duru LN, Ma H, Deng Y. Synergistic Neuroprotective Effect of Endogenously-Produced Hydroxytyrosol and Synaptic Vesicle Proteins on Pheochromocytoma Cell Line Against Salsolinol. Molecules 2020; 25:E1715. [PMID: 32276517 PMCID: PMC7181248 DOI: 10.3390/molecules25071715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 01/29/2023] Open
Abstract
Oxidative stress triggers a lethal cascade, leading to Parkinson's disease by causing degeneration of dopaminergic neurons. In this study, eight antioxidants were screened for their neuroprotective effect on PC12 cells (pheochromocytoma cell line) under oxidative stress induced by salsolinol (OSibS). Hydroxytyrosol was found to be the strongest neuroprotective agent; it improved viability of PC12 cells by up to 81.69% under OSibS. Afterward, two synaptic vesicle proteins, synapsin-1 and septin-5, were screened for their neuroprotective role; the overexpression of synapsin-1 and the downregulation of septin-5 separately improved the viability of PC12 cells by up to 71.17% and 67.00%, respectively, compared to PC12 cells only treated with salsolinol (PoTwS) under OSibS. Subsequently, the PC12+syn++sep- cell line was constructed and pretreated with 100 µM hydroxytyrosol, which improved its cell viability by up to 99.03% and led to 14.71- and 6.37-fold reductions in the levels of MDA and H2O2, respectively, and 6.8-, 12.97-, 10.57-, and 7.57-fold increases in the activity of catalase, glutathione reductase, superoxide dismutase, and glutathione peroxidase, respectively, compared to PoTwS under OSibS. Finally, alcohol dehydrogenase-6 from Saccharomyces cerevisiae was expressed in PC12+syn++sep- cells to convert 3,4-dihydroxyphenylacetaldehyde (an endogenous neurotoxin) into hydroxytyrosol. The PC12+syn++sep-+ADH6+ cell line also led to 22.38- and 12.33-fold decreases in the production of MDA and H2O2, respectively, and 7.15-, 13.93-, 12.08-, and 8.11-fold improvements in the activity of catalase, glutathione reductase, superoxide dismutase, and glutathione peroxidase, respectively, compared to PoTwS under OSibS. Herein, we report the endogenous production of a powerful antioxidant, hydroxytyrosol, from 3,4-dihydroxyphenylacetaldehyde, and evaluate its synergistic neuroprotective effect, along with synapsin-1 and septin-5, on PC12 cells under OSibS.
Collapse
Affiliation(s)
- Robina Manzoor
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| | - Aamir Rasool
- Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Maqbool Ahmed
- Department of Tuberculosis, Bolan University of Medical and Health Sciences, Quetta 87300, Pakistan;
| | - Ullah Kaleem
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan;
| | - Lucienne Nneoma Duru
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| | - Hong Ma
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| |
Collapse
|