1
|
Remore LG, Tolossa M, Wei W, Karnib M, Tsolaki E, Rifi Z, Bari AA. Deep Brain Stimulation of the Medial Forebrain Bundle for Treatment-Resistant Depression: A Systematic Review Focused on the Long-Term Antidepressive Effect. Neuromodulation 2024; 27:690-700. [PMID: 37115122 DOI: 10.1016/j.neurom.2023.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Major depression affects millions of people worldwide and has important social and economic consequences. Since up to 30% of patients do not respond to several lines of antidepressive drugs, deep brain stimulation (DBS) has been evaluated for the management of treatment-resistant depression (TRD). The superolateral branch of the medial forebrain bundle (slMFB) appears as a "hypothesis-driven target" because of its role in the reward-seeking system, which is dysfunctional in depression. Although initial results of slMFB-DBS from open-label studies were promising and characterized by a rapid clinical response, long-term outcomes of neurostimulation for TRD deserve particular attention. Therefore, we performed a systematic review focused on the long-term outcome of slMFB-DBS. MATERIALS AND METHODS A literature search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria was conducted to identify all studies reporting changes in depression scores after one-year follow-up and beyond. Patient, disease, surgical, and outcome data were extracted for statistical analysis. The Montgomery-Åsberg Depression Rating Scale (ΔMADRS) was used as the clinical outcome, defined as percentage reduction from baseline to follow-up evaluation. Responders' and remitters' rates were also calculated. RESULTS From 56 studies screened for review, six studies comprising 34 patients met the inclusion criteria and were analyzed. After one year of active stimulation, ΔMADRS was 60.7% ± 4%; responders' and remitters' rates were 83.8% and 61.5%, respectively. At the last follow-up, four to five years after the implantation, ΔMADRS reached 74.7% ± 4.6%. The most common side effects were stimulation related and reversible with parameter adjustments. CONCLUSIONS slMFB-DBS appears to have a strong antidepressive effect that increases over the years. Nevertheless, to date, the overall number of patients receiving implantations is limited, and the slMFB-DBS surgical technique seems to have an important impact on the clinical outcome. Further multicentric studies in a larger population are needed to confirm slMFB-DBS clinical outcomes.
Collapse
Affiliation(s)
- Luigi Gianmaria Remore
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA; University of Milan "La Statale," Milan, Italy.
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Evangelia Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ziad Rifi
- University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf Ahmad Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Barroca NCB, Della Santa G, Suchecki D, García-Cairasco N, Umeoka EHDL. Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neurosci Biobehav Rev 2022; 140:104771. [PMID: 35817171 DOI: 10.1016/j.neubiorev.2022.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
The neurobiology and development of treatments for stress-related neuropsychiatric disorders rely heavily on animal models. However, the complexity of these disorders makes it difficult to model them entirely, so only specific features of human psychopathology are emulated and these models should be used with great caution. Importantly, the effects of stress depend on multiple factors, like duration, context of exposure, and individual variability. Here we present a review on pre-clinical studies of stress-related disorders, especially those developed to model posttraumatic stress disorder, major depression, and anxiety. Animal models provide relevant evidence of the underpinnings of these disorders, as long as face, construct, and predictive validities are fulfilled. The translational challenges faced by scholars include reductionism and anthropomorphic/anthropocentric interpretation of the results instead of a more naturalistic and evolutionary understanding of animal behavior that must be overcome to offer a meaningful model. Other limitations are low statistical power of analysis, poor evaluation of individual variability, sex differences, and possible conflicting effects of stressors depending on specific windows in the lifespan.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovanna Della Santa
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Norberto García-Cairasco
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; School of Medicine, University Center UniCerrado, Goiatuba, GO, Brazil
| |
Collapse
|
3
|
Rusche T, Kaufmann J, Voges J. Nucleus accumbens projections: Validity and reliability of fiber reconstructions based on high-resolution diffusion-weighted MRI. Hum Brain Mapp 2021; 42:5888-5910. [PMID: 34528323 PMCID: PMC8596959 DOI: 10.1002/hbm.25657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical effects of deep brain stimulation are largely mediated by the activation of myelinated axons. Hence, increasing attention has been paid in the past on targeting white matter tracts in addition to gray matter. Aims of the present study were: (i) visualization of discrete afferences and efferences of the nucleus accumbens (NAc), supposed to be a major hub of neural networks relating to mental disorders, using probabilistic fiber tractography and a data driven approach, and (ii) validation of the applied methodology for standardized routine clinical applications. MR‐data from 11 healthy subjects and 7 measurement sessions each were acquired on a 3T MRI‐scanner. For probabilistic fiber tracking the NAc as a seed region and the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), amygdala (AMY), hippocampus (HPC), dorsomedial thalamus (dmT) and ventral tegmental area (VTA) as target regions were segmented for each subject and both hemispheres. To quantitatively assess the reliability and stability of the reconstructions, we filtered and clustered the individual fiber‐tracts (NAc to target) for each session and subject and performed a point‐by‐point calculation of the maximum cluster distances for intra‐subject comparison. The connectivity patterns formed by the obtained fibers were in good concordance with published data from tracer and/or fiber‐dissection studies. Furthermore, the reliability assessment of the (NAc to target)‐fiber‐tracts yielded to high correlations between the obtained clustered‐tracts. Using DBS with directional lead technology, the workflow elaborated in this study may guide selective electrical stimulation of NAc projections.
Collapse
Affiliation(s)
- Thilo Rusche
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Radiology, Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Predictable maternal separation confers adult stress resilience via the medial prefrontal cortex oxytocin signaling pathway in rats. Mol Psychiatry 2021; 26:7296-7307. [PMID: 34561611 DOI: 10.1038/s41380-021-01293-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Early-life stress is normally thought of as a major risk for psychiatric disorders, but many researchers have revealed that adversity early in life may enhance stress resilience later in life. Few studies have been performed in rodents to address the possibility that exposure to early-life stress may enhance stress resilience, and the underlying neural mechanisms are far from being understood. Here, we established a "two-hit" stress model in rats by applying two different early-life stress paradigms: predictable and unpredictable maternal separation (MS). Predictable MS during the postnatal period promotes resilience to adult restraint stress, while unpredictable MS increases stress susceptibility. We demonstrate that structural and functional impairments occur in glutamatergic synapses in pyramidal neurons of the medial prefrontal cortex (mPFC) in rats with unpredictable MS but not in rats with predictable MS. Then, we used differentially expressed gene (DEG) analysis of RNA sequencing data from the adult male PFC to identify a hub gene that is responsible for stress resilience. Oxytocin, a peptide hormone, was the highest ranked differentially expressed gene of these altered genes. Predictable MS increases the expression of oxytocin in the mPFC compared to normal raised and unpredictable MS rats. Conditional knockout of the oxytocin receptor in the mPFC was sufficient to generate excitatory synaptic dysfunction and anxiety behavior in rats with predictable MS, whereas restoration of oxytocin receptor expression in the mPFC modified excitatory synaptic function and anxiety behavior in rats subjected to unpredictable MS. These findings were further supported by the demonstration that blocking oxytocinergic projections from the paraventricular nucleus of the hypothalamus (PVN) to the mPFC was sufficient to exacerbate anxiety behavior in rats exposed to predictable MS. Our findings provide direct evidence for the notion that predictable MS promotes stress resilience, while unpredictable MS increases stress susceptibility via mPFC oxytocin signaling in rats.
Collapse
|
5
|
Illes J, Lipsman N, McDonald PJ, Hrincu V, Chandler J, Fasano A, Giacobbe P, Hamani C, Ibrahim GM, Kiss Z, Meng Y, Sankar T, Weise L. From vision to action: Canadian leadership in ethics and neurotechnology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:241-273. [PMID: 34446249 DOI: 10.1016/bs.irn.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This chapter explores the complex neuroethical aspects of neurosurgery and neuromodulation in the context of Canadian healthcare and innovation, as seen through the lens of the Pan Canadian Neurotechnology Ethics Consortium (PCNEC). Highlighted are key areas of ethical focus, each with its own unique challenges: technical advances, readiness and risk, vulnerable populations, medico-legal issues, training, and research. Through an exploration of Canadian neurotechnological practice from these various clusters, we provide a critical review of progress, describe opportunities to address areas of debate, and seek to foster ethical innovation. Underpinning this comprehensive review are the fundamental principles of solution-oriented, practical neuroethics, with beneficence and justice at the core. In our view, it is a moral imperative that neurotechnological advancements include a delineation of ethical priorities for future guidelines, oversight, and interactions.
Collapse
Affiliation(s)
- Judy Illes
- Neuroethics Canada, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Patrick J McDonald
- Neuroethics Canada, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Division of Neurosurgery, Department of Surgery, BC Children's Hospital, Vancouver, BC, Canada
| | - Viorica Hrincu
- Neuroethics Canada, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Chandler
- University of Ottawa, Centre for Health Law, Policy and Ethics, Ottawa, ON, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada; Division of Neurology, University of Toronto, Toronto, ON, Canada; Krembil Brain Institute, Toronto, ON, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children and Toronto Western Hospital, Toronto, ON, Canada
| | - Zelma Kiss
- Hotchkiss Brain Institute, Departments of Psychiatry and Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tejas Sankar
- Division of Neurosurgery, University of Alberta, Edmonton, AB, Canada
| | - Lutz Weise
- Department of Neurosurgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Vedam-Mai V, Deisseroth K, Giordano J, Lazaro-Munoz G, Chiong W, Suthana N, Langevin JP, Gill J, Goodman W, Provenza NR, Halpern CH, Shivacharan RS, Cunningham TN, Sheth SA, Pouratian N, Scangos KW, Mayberg HS, Horn A, Johnson KA, Butson CR, Gilron R, de Hemptinne C, Wilt R, Yaroshinsky M, Little S, Starr P, Worrell G, Shirvalkar P, Chang E, Volkmann J, Muthuraman M, Groppa S, Kühn AA, Li L, Johnson M, Otto KJ, Raike R, Goetz S, Wu C, Silburn P, Cheeran B, Pathak YJ, Malekmohammadi M, Gunduz A, Wong JK, Cernera S, Wagle Shukla A, Ramirez-Zamora A, Deeb W, Patterson A, Foote KD, Okun MS. Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: Advances in Optogenetics, Ethical Issues Affecting DBS Research, Neuromodulatory Approaches for Depression, Adaptive Neurostimulation, and Emerging DBS Technologies. Front Hum Neurosci 2021; 15:644593. [PMID: 33953663 PMCID: PMC8092047 DOI: 10.3389/fnhum.2021.644593] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer’s disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.
Collapse
Affiliation(s)
- Vinata Vedam-Mai
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - James Giordano
- Department of Neurology and Neuroethics Studies Program, Georgetown University Medical Center, Washington, DC, United States
| | - Gabriel Lazaro-Munoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Winston Chiong
- Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Nanthia Suthana
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jean-Philippe Langevin
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Neurosurgery Service, Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jay Gill
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wayne Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nicole R Provenza
- School of Engineering, Brown University, Providence, RI, United States
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Rajat S Shivacharan
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Tricia N Cunningham
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine W Scangos
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Helen S Mayberg
- Department of Neurology and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Kara A Johnson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Christopher R Butson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Ro'ee Gilron
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Robert Wilt
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Yaroshinsky
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Simon Little
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Philip Starr
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Prasad Shirvalkar
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Department of Anesthesiology (Pain Management) and Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Edward Chang
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Jens Volkmann
- Neurologischen Klinik Universitätsklinikum Würzburg, Würzburg, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Matthew Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Robert Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Steve Goetz
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Peter Silburn
- Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Binith Cheeran
- Neuromodulation Division, Abbott, Plano, TX, United States
| | - Yagna J Pathak
- Neuromodulation Division, Abbott, Plano, TX, United States
| | | | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Joshua K Wong
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Stephanie Cernera
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Wissam Deeb
- Department of Neurology, University of Massachusetts, Worchester, MA, United States
| | - Addie Patterson
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Rabin JS, Davidson B, Giacobbe P, Hamani C, Cohn M, Illes J, Lipsman N. Neuromodulation for major depressive disorder: innovative measures to capture efficacy and outcomes. Lancet Psychiatry 2020; 7:1075-1080. [PMID: 33129374 DOI: 10.1016/s2215-0366(20)30187-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Major depressive disorder is a common and debilitating disorder. Although most patients with this disorder benefit from established treatments, a subset of patients have symptoms that remain treatment resistant. Novel treatment approaches, such as deep brain stimulation, are urgently needed for patients with treatment-resistant major depressive disorder. These novel treatments are currently being tested in clinical trials in which success hinges on how accurately and comprehensively the primary outcome measure captures the treatment effect. In this Personal View, we argue that current measures used to assess outcomes in neurosurgical trials of major depressive disorder might be missing clinically important treatment effects. A crucial problem of continuing to use suboptimal outcome measures is that true signals of efficacy might be missed, thereby disqualifying potentially effective treatments. We argue that a re-evaluation of how outcomes are measured in these trials is much overdue and describe several novel approaches that attempt to better capture meaningful change.
Collapse
Affiliation(s)
- Jennifer S Rabin
- Sunnybrook Research Institute, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.
| | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Medicine, Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Medicine, Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Melanie Cohn
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Judy Illes
- Neuroethics Canada, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Medicine, Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Green AL, Paterson DJ. Using Deep Brain Stimulation to Unravel the Mysteries of Cardiorespiratory Control. Compr Physiol 2020; 10:1085-1104. [PMID: 32941690 DOI: 10.1002/cphy.c190039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article charts the history of deep brain stimulation (DBS) as applied to alleviate a number of neurological disorders, while in parallel mapping the electrophysiological circuits involved in generating and integrating neural signals driving the cardiorespiratory system during exercise. With the advent of improved neuroimaging techniques, neurosurgeons can place small electrodes into deep brain structures with a high degree accuracy to treat a number of neurological disorders, such as movement impairment associated with Parkinson's disease and neuropathic pain. As well as stimulating discrete nuclei and monitoring autonomic outflow, local field potentials can also assess how the neurocircuitry responds to exercise. This technique has provided an opportunity to validate in humans putative circuits previously identified in animal models. The central autonomic network consists of multiple sites from the spinal cord to the cortex involved in autonomic control. Important areas exist at multiple evolutionary levels, which include the anterior cingulate cortex (telencephalon), hypothalamus (diencephalon), periaqueductal grey (midbrain), parabrachial nucleus and nucleus of the tractus solitaries (brainstem), and the intermediolateral column of the spinal cord. These areas receive afferent input from all over the body and provide a site for integration, resulting in a coordinated efferent autonomic (sympathetic and parasympathetic) response. In particular, emerging evidence from DBS studies have identified the basal ganglia as a major sub-cortical cognitive integrator of both higher center and peripheral afferent feedback. These circuits in the basal ganglia appear to be central in coupling movement to the cardiorespiratory motor program. © 2020 American Physiological Society. Compr Physiol 10:1085-1104, 2020.
Collapse
Affiliation(s)
- Alexander L Green
- Division of Medical Sciences, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David J Paterson
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Sankar T, Chakravarty MM, Jawa N, Li SX, Giacobbe P, Kennedy SH, Rizvi SJ, Mayberg HS, Hamani C, Lozano AM. Neuroanatomical predictors of response to subcallosal cingulate deep brain stimulation for treatment-resistant depression. J Psychiatry Neurosci 2020; 45:45-54. [PMID: 31525860 PMCID: PMC6919920 DOI: 10.1503/jpn.180207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Deep brain stimulation targeting the subcallosal cingulate gyrus (SCG DBS) improves the symptoms of treatment-resistant depression in some patients, but not in others. We hypothesized that there are pre-existing structural brain differences between responders and nonresponders to SCG DBS, detectable using structural MRI. METHODS We studied preoperative, T1-weighted MRI scans of 27 patients treated with SCG DBS from 2003 to 2011. Responders (n = 15) were patients with a >50% improvement in Hamilton Rating Scale for Depression score following 12 months of SCG DBS. Preoperative subcallosal cingulate gyrus grey matter volume was obtained using manual segmentation by a trained observer blinded to patient identity. Volumes of hippocampus, thalamus, amygdala, whole-brain cortical grey matter and white matter volume were obtained using automated techniques. RESULTS Preoperative subcallosal cingulate gyrus, thalamic and amygdalar volumes were significantly larger in patients who went on to respond to SCG-DBS. Hippocampal volume did not differ between groups. Cortical grey matter volume was significantly smaller in responders, and cortical grey matter:white matter ratio distinguished between responders and nonresponders with high sensitivity and specificity. LIMITATIONS Normalization by intracranial volume nullified some between-group differences in volumetric measures. CONCLUSION There are structural brain differences between patients with treatment-resistant depression who respond to SCG DBS and those who do not. Specifically, the structural integrity of the subcallosal cingulate gyrus target region and its connected subcortical areas, and variations in cortical volume across the entire brain, appear to be important determinants of response. Structural MRI shows promise as a biomarker in deep brain stimulation for depression, and may play a role in refining patient selection for future trials.
Collapse
Affiliation(s)
- Tejas Sankar
- From the Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada (Sankar); the Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada (Chakravarty); the Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (Jawa, Li, Hamani, Lozano); the Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Giacobbe, Kennedy, Rizvi); and the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States (Mayberg)
| | - M. Mallar Chakravarty
- From the Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada (Sankar); the Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada (Chakravarty); the Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (Jawa, Li, Hamani, Lozano); the Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Giacobbe, Kennedy, Rizvi); and the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States (Mayberg)
| | - Natasha Jawa
- From the Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada (Sankar); the Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada (Chakravarty); the Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (Jawa, Li, Hamani, Lozano); the Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Giacobbe, Kennedy, Rizvi); and the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States (Mayberg)
| | - Stanley X. Li
- From the Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada (Sankar); the Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada (Chakravarty); the Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (Jawa, Li, Hamani, Lozano); the Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Giacobbe, Kennedy, Rizvi); and the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States (Mayberg)
| | - Peter Giacobbe
- From the Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada (Sankar); the Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada (Chakravarty); the Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (Jawa, Li, Hamani, Lozano); the Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Giacobbe, Kennedy, Rizvi); and the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States (Mayberg)
| | - Sidney H. Kennedy
- From the Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada (Sankar); the Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada (Chakravarty); the Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (Jawa, Li, Hamani, Lozano); the Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Giacobbe, Kennedy, Rizvi); and the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States (Mayberg)
| | - Sakina J. Rizvi
- From the Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada (Sankar); the Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada (Chakravarty); the Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (Jawa, Li, Hamani, Lozano); the Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Giacobbe, Kennedy, Rizvi); and the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States (Mayberg)
| | - Helen S. Mayberg
- From the Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada (Sankar); the Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada (Chakravarty); the Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (Jawa, Li, Hamani, Lozano); the Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Giacobbe, Kennedy, Rizvi); and the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States (Mayberg)
| | - Clement Hamani
- From the Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada (Sankar); the Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada (Chakravarty); the Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (Jawa, Li, Hamani, Lozano); the Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Giacobbe, Kennedy, Rizvi); and the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States (Mayberg)
| | - Andres M. Lozano
- From the Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada (Sankar); the Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada (Chakravarty); the Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (Jawa, Li, Hamani, Lozano); the Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Giacobbe, Kennedy, Rizvi); and the Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States (Mayberg)
| |
Collapse
|
10
|
Fernández-Palleiro P, Rivera-Baltanás T, Rodrigues-Amorim D, Fernández-Gil S, Del Carmen Vallejo-Curto M, Álvarez-Ariza M, López M, Rodriguez-Jamardo C, Luis Benavente J, de Las Heras E, Manuel Olivares J, Spuch C. Brainwaves Oscillations as a Potential Biomarker for Major Depression Disorder Risk. Clin EEG Neurosci 2020; 51:3-9. [PMID: 31537100 DOI: 10.1177/1550059419876807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Major depressive disorder (MDD) is a multidimensional disorder that is characterized by the presence of alterations in mood, cognitive capacity, sensorimotor, and homeostatic functions. Given that about half of the patients diagnosed with MDD do not respond to the various current treatments, new techniques are being sought to predict not only the course of the disease but also the characteristics that differentiate responders from non-responders. Using the electroencephalogram, a noninvasive and inexpensive tool, most studies have proposed that patients with MDD have some lateralization in brain electrical activity, with alterations in alpha and theta rhythms being observed, which would be related to dysfunctions in emotional capacity such as the absence or presence of responses to the different existing treatments. These alterations help in the identification of subjects at high risk of suffering from depression, in the differentiation into responders and nonresponders to various therapies (pharmacological, electroconvulsive therapy, and so on), as well as to establish in which period of the disease the treatment will be more effective. Although the data are still inconclusive and more research is needed, these alpha and theta neurophysiological markers could support future clinical practice when it comes to establishing an early diagnosis and treating state disorders more successfully and accurately of mood disorders.
Collapse
Affiliation(s)
- Patricia Fernández-Palleiro
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| | - Daniela Rodrigues-Amorim
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| | - Sonia Fernández-Gil
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| | | | - María Álvarez-Ariza
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| | - Marta López
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| | - Cynthia Rodriguez-Jamardo
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| | - Jose Luis Benavente
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| | - Elena de Las Heras
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| | - José Manuel Olivares
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, Cibersam, Spain
| |
Collapse
|
11
|
Serum Levels of Tumor Necrosis Factor-α and Loudness Dependence of Auditory Evoked Potentials at Pretreatment and Posttreatment in Patients with Major Depressive Disorder. Brain Sci 2019; 9:brainsci9100253. [PMID: 31561419 PMCID: PMC6826742 DOI: 10.3390/brainsci9100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), are associated with the pathophysiology of major depressive disorder (MDD). Several studies have reported that increased TNF-α might be associated with tryptophan depletion, which eventually could result in MDD. However, other studies revealed that TNF-α increased serotonin firing in raphe. Therefore, whether TNF-α increases or decreases serotonin activity remains unclear. Here, we aimed to determine the relationship between serum TNF-α level and central serotonergic activity using the loudness dependence of auditory evoked potentials (LDAEP) and standardized low-resolution brain electromagnetic tomography (sLORETA), as well as to evaluate the effects of antidepressants on TNF-α levels. Methods: LDAEP, serum TNF-α level, and depression severity were measured in 64 MDD outpatients pre and post 3 months of treatment. Results: Pretreatment TNF-α levels were negatively correlated with the pretreatment N1 sLORETA-LDAEP, P2 sLORETA-LDAEP, and N1/P2 sLORETA-LDAEP (p < 0.05). In multiple regression analysis for N1/P2 sLORETA-LDAEP, lower N1/P2 sLORETA-LDAEP was significantly related to higher TNF-α (CE = −0.047, p = 0.017) when all subjects were dichotomized based on the median TNF-α level (7.16 pg/mL) into pretreatment low- and high-TNF-α groups. In addition, the pretreatment Beck Depression Inventory, P2 LDAEP, and N1/P2 sLORETA-LDAEP were greater in the high-TNF-α groups than in the low-TNF-α groups (p < 0.05). Moreover, the posttreatment TNF-α level was significantly decreased compared to the pretreatment TNF-α level (z = −2.581, p = 0.01). However, the posttreatment TNF-α levels were not associated with posttreatment LDAEP. Conclusions: Higher TNF-α level is associated with decreased LDAEP, which could indicate compensatory elevation of central serotonin activity in outpatients with MDD, although this effect disappeared and TNF-α level was reduced after three months of antidepressant treatment.
Collapse
|
12
|
Calker D, Biber K, Domschke K, Serchov T. The role of adenosine receptors in mood and anxiety disorders. J Neurochem 2019; 151:11-27. [DOI: 10.1111/jnc.14841] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Dietrich Calker
- Department for Psychiatry and Psychotherapy, Medical Center ‐ University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Knut Biber
- Section Medical Physiology, Department of Neuroscience University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Katharina Domschke
- Department for Psychiatry and Psychotherapy, Medical Center ‐ University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Tsvetan Serchov
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, Medical Center ‐ University Freiburg University of Freiburg Freiburg Germany
| |
Collapse
|
13
|
Age-Normative Pathways of Striatal Connectivity Related to Clinical Symptoms in the General Population. Biol Psychiatry 2019; 85:966-976. [PMID: 30898336 PMCID: PMC6534442 DOI: 10.1016/j.biopsych.2019.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Altered striatal development contributes to core deficits in motor and inhibitory control, impulsivity, and inattention associated with attention-deficit/hyperactivity disorder and may likewise play a role in deficient reward processing and emotion regulation in psychosis and depression. The maturation of striatal connectivity has not been well characterized, particularly as it relates to clinical symptomatology. METHODS Resting-state functional connectivity with striatal subdivisions was examined for 926 participants (8-22 years of age, 44% male) from the general population who had participated in two large cross-sectional studies. Developing circuits were identified and growth charting of age-related connections was performed to obtain individual scores reflecting relative neurodevelopmental attainment. Associations of clinical symptom scales (attention-deficit/hyperactivity disorder, psychosis, depression, and general psychopathology) with the resulting striatal connectivity age-deviation scores were then tested using elastic net regression. RESULTS Linear and nonlinear developmental patterns occurred across 231 striatal age-related connections. Both unique and overlapping striatal age-related connections were associated with the four symptom domains. Attention-deficit/hyperactivity disorder severity was related to age-advanced connectivity across several insula subregions, but to age-delayed connectivity with the nearby inferior frontal gyrus. Psychosis was associated with advanced connectivity with the medial prefrontal cortex and superior temporal gyrus, while aberrant limbic connectivity predicted depression. The dorsal posterior insula, a region involved in pain processing, emerged as a strong contributor to general psychopathology as well as to each individual symptom domain. CONCLUSIONS Developmental striatal pathophysiology in the general population is consistent with dysfunctional circuitry commonly found in clinical populations. Atypical age-normative connectivity may thereby reflect aberrant neurodevelopmental processes that contribute to clinical risk.
Collapse
|
14
|
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235:2195-2220. [PMID: 29961124 PMCID: PMC6061771 DOI: 10.1007/s00213-018-4950-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants should be based on the neurotrophin theory.
Collapse
Affiliation(s)
- Marion J F Levy
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Fabien Boulle
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Harry W Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France.
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
15
|
Gilligan J, Rasouli JJ, Kopell BH. Cortical Stimulation for Depression. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kanner AM, Scharfman H, Jette N, Anagnostou E, Bernard C, Camfield C, Camfield P, Legg K, Dinstein I, Giacobbe P, Friedman A, Pohlmann-Eden B. Epilepsy as a Network Disorder (1): What can we learn from other network disorders such as autistic spectrum disorder and mood disorders? Epilepsy Behav 2017; 77:106-113. [PMID: 29107450 PMCID: PMC9835466 DOI: 10.1016/j.yebeh.2017.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 01/16/2023]
Abstract
Epilepsy is a neurologic condition which often occurs with other neurologic and psychiatric disorders. The relation between epilepsy and these conditions is complex. Some population-based studies have identified a bidirectional relation, whereby not only patients with epilepsy are at increased risk of suffering from some of these neurologic and psychiatric disorders (migraine, stroke, dementia, autism, depression, anxiety disorders, Attention deficit hyperactivity disorder (ADHD), and psychosis), but also patients with these conditions are at increased risk of suffering from epilepsy. The existence of common pathogenic mechanisms has been postulated as a potential explanation of this phenomenon. To reassess the relationships between neurological and psychiatric conditions in general, and specifically autism, depression, Alzheimer's disease, schizophrenia, and epilepsy, a recent meeting brought together basic researchers and clinician scientists entitled "Epilepsy as a Network Disorder." This was the fourth in a series of conferences, the "Fourth International Halifax Conference and Retreat". This manuscript summarizes the proceedings on potential relations between Epilepsy on the one hand and autism and depression on the other. A companion manuscript provides a summary of the proceedings about the relation between epilepsy and Alzheimer's disease and schizophrenia, closed by the role of translational research in clarifying these relationships. The review of the topics in these two manuscripts will provide a better understanding of the mechanisms operant in some of the common neurologic and psychiatric comorbidities of epilepsy.
Collapse
Affiliation(s)
- Andres M Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW 14th Street, Room #1324, Miami, FL 33136, USA.
| | - Helen Scharfman
- New York University Langone Medical Center, New York, NY 10016, USA; The Nathan Kline Institute, Orangeburg, NY, USA
| | - Nathalie Jette
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON M4G 1R8, Canada
| | - Christophe Bernard
- NS - Institute de Neurosciences des Systemes, UMR INSERM 1106, Aix-Marseille Université, Equipe Physionet, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| | - Carol Camfield
- Department of Pediatrics, Dalhousie University Halifax, Nova Scotia, Canada
| | - Peter Camfield
- Department of Pediatrics, Dalhousie University Halifax, Nova Scotia, Canada
| | - Karen Legg
- Division of Neurology, Department of Medicine, Halifax Infirmary, Halifax B3H4R2, Nova Scotia, Canada
| | - Ilan Dinstein
- Departments of Psychology and Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Peter Giacobbe
- Centre for Mental Health, University of Toronto, University Health Network, Canada
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Departments of Medical Neuroscience and Pediatrics, Faculty of Medicine, Dalhousie University Halifax, NS, Canada
| | - Bernd Pohlmann-Eden
- Brain Repair Center, Life Science Research Institute, Dalhousie University, Room 229, PO Box 15000, Halifax, Nova Scotia B3H4R2, Canada
| |
Collapse
|
17
|
Sandu AL, Artiges E, Galinowski A, Gallarda T, Bellivier F, Lemaitre H, Granger B, Ringuenet D, Tzavara ET, Martinot JL, Paillère Martinot ML. Amygdala and regional volumes in treatment-resistant versus nontreatment-resistant depression patients. Depress Anxiety 2017; 34:1065-1071. [PMID: 28792656 DOI: 10.1002/da.22675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/22/2017] [Accepted: 06/29/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Although treatment-resistant and nontreatment-resistant depressed patients show structural brain anomalies relative to healthy controls, the difference in regional volumetry between these two groups remains undocumented. METHODS A whole-brain voxel-based morphometry (VBM) analysis of regional volumes was performed in 125 participants' magnetic resonance images obtained on a 1.5 Tesla scanner; 41 had treatment-resistant depression (TRD), 40 nontreatment-resistant depression (non-TRD), and 44 were healthy controls. The groups were comparable for age and gender. Bipolar/unipolar features as well as pharmacological treatment classes were taken into account as covariates. RESULTS TRD patients had higher gray matter (GM) volume in the left and right amygdala than non-TRD patients. No difference was found between the TRD bipolar and the TRD unipolar patients, or between the non-TRD bipolar and non-TRD unipolar patients. An exploratory analysis showed that lithium-treated patients in both groups had higher GM volume in the superior and middle frontal gyri in both hemispheres. CONCLUSIONS Higher GM volume in amygdala detected in TRD patients might be seen in perspective with vulnerability to chronicity, revealed by medication resistance.
Collapse
Affiliation(s)
- Anca-Larisa Sandu
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, University of Aberdeen, Aberdeen, UK
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,Department of Psychiatry 91G16, Orsay Hospital, Orsay, France
| | - André Galinowski
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - Frank Bellivier
- APHP Department of Psychiatry, Fernand Widal Hospital, Paris, France
| | - Hervé Lemaitre
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France
| | - Bernard Granger
- APHP Department of Psychiatry, Tarnier Hospital and University Paris Descartes, Paris, France
| | - Damien Ringuenet
- Service de Psychiatrie et Addictologie, Hôpital Paul Brousse, APHP Villejuif, France
| | - Eleni T Tzavara
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,APHP Department of Psychiatry, Tarnier Hospital and University Paris Descartes, Paris, France.,Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1130, UPMC, Paris, France
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,INSERM Unit 1000 at Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud-Paris Saclay, University Paris Descartes Service Hospitalier Frédéric Joliot, Orsay, France.,INSERM Unit 1000 at Maison de Solenn, Paris, France.,AP-HP Adolescents Psychopathology and Medicine Department, Maison de Solenn, Cochin Hospital and University Paris Descartes, Paris, France
| |
Collapse
|
18
|
Abelaira HM, Réus GZ, Ignácio ZM, Dos Santos MAB, de Moura AB, Matos D, Demo JP, da Silva JBI, Michels M, Abatti M, Sonai B, Dal Pizzol F, Carvalho AF, Quevedo J. Effects of ketamine administration on mTOR and reticulum stress signaling pathways in the brain after the infusion of rapamycin into prefrontal cortex. J Psychiatr Res 2017; 87:81-87. [PMID: 28017918 DOI: 10.1016/j.jpsychires.2016.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022]
Abstract
Recent studies show that activation of the mTOR signaling pathway is required for the rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists. A relationship between mTOR kinase and the endoplasmic reticulum (ER) stress pathway, also known as the unfolded protein response (UPR) has been shown. We evaluate the effects of ketamine administration on the mTOR signaling pathway and proteins of UPR in the prefrontal cortex (PFC), hippocampus, amygdala and nucleus accumbens, after the inhibiton of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol), or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). The immunocontent of mTOR, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), eukaryotic elongation factor 2 kinase (eEF2K) homologous protein (CHOP), PKR-like ER kinase (PERK) and inositol-requiring enzyme 1 (IRE1) - alpha were determined in the brain. The mTOR levels were reduced in the rapamycin group treated with saline and ketamine in the PFC; p4EBP1 levels were reduced in the rapamycin group treated with ketamine in the PFC and nucleus accumbens; the levels of peEF2K were increased in the PFC in the vehicle group treated with ketamine and reduced in the rapamycin group treated with ketamine. The PERK and IRE1-alpha levels were decreased in the PFC in the rapamycin group treated with ketamine. Our results suggest that mTOR signaling inhibition by rapamycin could be involved, at least in part, with the mechanism of action of ketamine; and the ketamine antidepressant on ER stress pathway could be also mediated by mTOR signaling pathway in certain brain structures.
Collapse
Affiliation(s)
- Helena M Abelaira
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.
| | - Zuleide M Ignácio
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Maria Augusta B Dos Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Airam B de Moura
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Danyela Matos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Júlia P Demo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Júlia B I da Silva
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Mariane Abatti
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Beatriz Sonai
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Felipe Dal Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
19
|
Arns M, Batail JM, Bioulac S, Congedo M, Daudet C, Drapier D, Fovet T, Jardri R, Le-Van-Quyen M, Lotte F, Mehler D, Micoulaud-Franchi JA, Purper-Ouakil D, Vialatte F. Neurofeedback: One of today's techniques in psychiatry? Encephale 2017; 43:135-145. [DOI: 10.1016/j.encep.2016.11.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 11/15/2022]
|
20
|
Blomstedt P, Naesström M, Bodlund O. Deep brain stimulation in the bed nucleus of the stria terminalis and medial forebrain bundle in a patient with major depressive disorder and anorexia nervosa. Clin Case Rep 2017; 5:679-684. [PMID: 28469875 PMCID: PMC5412827 DOI: 10.1002/ccr3.856] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 12/10/2016] [Accepted: 12/20/2016] [Indexed: 12/28/2022] Open
Abstract
Deep brain stimulation (DBS) may be considered in severe cases of therapy‐refractory major depressive disorder (MDD). However, DBS for MDD is still an experimental therapy. Therefore, it should only be administered in clinical studies driven by multidisciplinary teams, including surgeons with substantial experience of DBS in the treatment of other conditions.
Collapse
Affiliation(s)
- Patric Blomstedt
- Department of Pharmacology and Clinical Neuroscience Umeå University Umeå Sweden
| | - Matilda Naesström
- Department of Clinical Sciences/Psychiatry Umeå University Umeå Sweden
| | - Owe Bodlund
- Department of Clinical Sciences/Psychiatry Umeå University Umeå Sweden
| |
Collapse
|
21
|
Peters SK, Dunlop K, Downar J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment. Front Syst Neurosci 2016; 10:104. [PMID: 28082874 PMCID: PMC5187454 DOI: 10.3389/fnsys.2016.00104] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network’s associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN’s cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We also review emergent therapeutic evidence that novel invasive and non-invasive brain stimulation treatments may exert therapeutic effects by normalizing abnormalities in the SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series of promising directions for future investigations on the role of SN cortico-striatal-thalamic loop circuits in the pathophysiology and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Sarah K Peters
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Katharine Dunlop
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of TorontoToronto, ON, Canada; Krembil Research Institute, University Health NetworkToronto, ON, Canada; Department of Psychiatry, University of TorontoToronto, ON, Canada; MRI-Guided rTMS Clinic, University Health NetworkToronto, ON, Canada
| |
Collapse
|
22
|
Mattingly G, Anderson RH, Mattingly SG, Anderson EQ. The impact of cognitive challenges in major depression: the role of the primary care physician. Postgrad Med 2016; 128:665-71. [PMID: 27500820 DOI: 10.1080/00325481.2016.1221318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nearly 1 in 5 Americans will struggle with major depression in their lives; some will have recurring bouts. Recent psychiatric research has given new attention to the prevalence of cognitive deficits in major depression and the impact such deficits have on remission and overall life functioning. When depression is partially treated i.e., leaving residual symptoms, patients have higher rates of relapse and lower functional outcomes. Impaired cognitive functioning is a frequent residual symptom, persisting in about 45% of patients even when emotional symptoms have improved, and results in a disproportionate share of the functional impairment, particularly in the workplace. Patients with depression have disrupted circuitry in brain regions responsible for cognition and it is therefore important to screen depressed patients for cognitive as well as emotional symptoms. Cognitive dysfunction should be evaluated in every mood disordered patient with validated self-report scales such as the Patient Health Questionnaire-9 or the Beck Depression Inventory and objective measures of cognitive function are also very very useful. Two easily administered tests are the Trails B Test and the Digit Symbol Substitution Test. Each take less than two minutes and measure working memory, executive function, and processing speed and can track cognitive improvement in depressed patients. Treatment of cognitive dysfunction in major depression is complicated by the 'serotonin conundrum': SSRI's frequently do not treat to full remission, and can cause cognitive blunting-actually adding to cognitive problems. Based on recent data including results from a recently completed meta-analysis by McIntyre and colleagues, an evidence-based algorithm for treating cognitive symptoms in depression is presented. A hierarchy of antidepressants and augmentation strategies based on the best available evidence is discussed. In conclusion, cognitive symptoms in major depressive disorder have been recognized as a target of therapeutic improvement by the FDA and have become a focus of clinical importance.
Collapse
Affiliation(s)
- Gregory Mattingly
- a Department of Psychiatry , Washington University School of Medicine , Saint Charles , MO , USA
| | | | | | | |
Collapse
|
23
|
Ho AL, Sussman ES, Pendharkar AV, Azagury DE, Bohon C, Halpern CH. Deep brain stimulation for obesity: rationale and approach to trial design. Neurosurg Focus 2016; 38:E8. [PMID: 26030708 DOI: 10.3171/2015.3.focus1538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Obesity is one of the most serious public health concerns in the US. While bariatric surgery has been shown to be successful for treatment of morbid obesity for those who have undergone unsuccessful behavioral modification, its associated risks and rates of relapse are not insignificant. There exists a neurological basis for the binge-like feeding behavior observed in morbid obesity that is believed to be due to dysregulation of the reward circuitry. The authors present a review of the evidence of the neuroanatomical basis for obesity, the potential neural targets for deep brain stimulation (DBS), as well as a rationale for DBS and future trial design. Identification of an appropriate patient population that would most likely benefit from this type of therapy is essential. There are also significant cost and ethical considerations for such a neuromodulatory intervention designed to alter maladaptive behavior. Finally, the authors present a consolidated set of inclusion criteria and study end points that should serve as the basis for any trial of DBS for obesity.
Collapse
Affiliation(s)
| | | | | | | | - Cara Bohon
- 3Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Casey H Halpern
- 1Departments of Neurosurgery.,3Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
24
|
Woo YS, Seo HJ, McIntyre RS, Bahk WM. Obesity and Its Potential Effects on Antidepressant Treatment Outcomes in Patients with Depressive Disorders: A Literature Review. Int J Mol Sci 2016; 17:ijms17010080. [PMID: 26771598 PMCID: PMC4730324 DOI: 10.3390/ijms17010080] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence regarding clinical, neurobiological, genetic, and environmental factors suggests a bidirectional link between obesity and depressive disorders. Although a few studies have investigated the link between obesity/excess body weight and the response to antidepressants in depressive disorders, the effect of weight on treatment response remains poorly understood. In this review, we summarized recent data regarding the relationship between the response to antidepressants and obesity/excess body weight in clinical studies of patients with depressive disorders. Although several studies indicated an association between obesity/excess body weight and poor antidepressant responses, it is difficult to draw definitive conclusions due to the variability of subject composition and methodological differences among studies. Especially, differences in sex, age and menopausal status, depressive symptom subtypes, and antidepressants administered may have caused inconsistencies in the results among studies. The relationship between obesity/excess body weight and antidepressant responses should be investigated further in high-powered studies addressing the differential effects on subject characteristics and treatment. Moreover, future research should focus on the roles of mediating factors, such as inflammatory markers and neurocognitive performance, which may alter the antidepressant treatment outcome in patients with comorbid obesity and depressive disorder.
Collapse
Affiliation(s)
- Young Sup Woo
- Department of Psychiatry, College of Medicine, the Catholic University of Korea, Seoul 07345, Korea.
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Hye-Jin Seo
- Department of Psychiatry, College of Medicine, the Catholic University of Korea, Seoul 07345, Korea.
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 2S8, Canada.
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, the Catholic University of Korea, Seoul 07345, Korea.
| |
Collapse
|
25
|
Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band. PLoS One 2015; 10:e0138685. [PMID: 26394404 PMCID: PMC4579059 DOI: 10.1371/journal.pone.0138685] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/02/2015] [Indexed: 01/01/2023] Open
Abstract
Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex.
Collapse
|
26
|
Kringelbach ML. A Balanced Mind: A Network Perspective on Mood and Motivation Brain Pathways. Brain Stimul 2015. [DOI: 10.1002/9781118568323.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
27
|
|
28
|
Harvey PO, Van den Eynde F, Zangen A, Berlim MT. Neural correlates of clinical improvement after deep transcranial magnetic stimulation (DTMS) for treatment-resistant depression: a case report using functional magnetic resonance imaging. Neurocase 2015; 21:16-22. [PMID: 24313336 DOI: 10.1080/13554794.2013.860173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report the effects of a 4-week trial of deep transcranial magnetic stimulation (DTMS) on depressive and anxious symptoms and brain activity in a patient (Mrs A) with treatment-resistant depression (TRD). The protocol involved a pre- and a post-functional magnetic resonance imaging (fMRI) scan during which Mrs A had to perform a working memory task (i.e., n-back). Her baseline score on the 21-item Hamilton Depression Rating Scale (HAM-D21) was 24, indicating severe depressive symptoms. Immediately after 4 weeks of daily DTMS treatment applied over the left dorsolateral prefrontal cortex (DLPFC), her HAM-D21 score decreased to 13 (a 46% reduction), and 1 month later, it was 12 (a 50% reduction). Moreover, Mrs A's accuracy scores on the n-back task (i.e., 2-back condition) improved from 79% (baseline) to 96% (after DTMS treatment). At the neural level, Mrs A showed significantly increased brain activity in the working memory network (e.g., DLPFC, parietal cortex) during the execution of the 2-back condition after DTMS treatment compared to baseline.
Collapse
|
29
|
Whittle AJ, Walsh J, de Lecea L. Light and chemical control of neuronal circuits: possible applications in neurotherapy. Expert Rev Neurother 2014; 14:1007-17. [PMID: 25115180 DOI: 10.1586/14737175.2014.948850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Millions of people worldwide suffer from diseases that result from a failure of central pathways to regulate behavioral and physiological processes. Advances in genetics and pharmacology have already allowed us to appreciate that rather than this dysregulation being systemic throughout the brain, it is usually rooted in specific subsets of dysfunctional cells within discrete neurological circuits. This article discusses the advent of opto- and chemogenetic tools and how they are providing the means to dissect these circuits with a degree of temporal and spatial sensitivity not previously possible. We also highlight the potential applications for treating disease and the key developments likely to have the greatest impact over the next 5 years.
Collapse
Affiliation(s)
- Andrew J Whittle
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
30
|
Abstract
Evaluation of potential therapies for neurological disease has been challenging due to beneficial responses in patients receiving the sham/placebo treatment. Placebo effects are especially prominent in Parkinson's disease (PD), which has become a useful model for studying the neurobiology of placebo responses. In this issue of the JCI, Ko and colleagues identify a neural circuit associated with the placebo response in a PD patient cohort. The observed placebo effect-associated pattern involved metabolic activity increases that corresponded with long-term motor improvements after sham surgery. Presurgery activity in this network was inversely related to sham response, suggesting that this network has potential for identifying sham responders and thus reducing placebo-related variance in surgical trials.
Collapse
|
31
|
Mondino M, Bennabi D, Poulet E, Galvao F, Brunelin J, Haffen E. Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? World J Biol Psychiatry 2014; 15:261-75. [PMID: 24447054 DOI: 10.3109/15622975.2013.876514] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Since the discovery of psychopharmacological treatments in the early 1950s, followed by the development of second-generation antidepressants and antipsychotics, biological psychiatry has not achieved much progress. Recent technological advances in the field of non-invasive brain stimulation open new perspectives in the treatment of psychiatric disorders. Amongst them, transcranial direct current stimulation (tDCS) modulates cortical excitability and induces long-lasting effects. Here, we aimed at evaluating whether tDCS has potential to be developed as an innovative treatment in psychiatry. METHODS We conducted a systematic review of the current state of development and application of tDCS in psychiatric disorders, exploring clinical and cognitive effects, especially in major depressive disorder (MDD), schizophrenia and substance use disorder. RESULTS Systematic literature search yielded 40 publications: 22 in MDD, nine in schizophrenia, seven in substance use disorder, one in obsessive-compulsive disorder and one in mania. Our findings indicated beneficial clinical effects of tDCS for MDD and a promising literature in schizophrenia and substance use disorder. CONCLUSIONS Despite methodological differences, the data published to date are promising and supports the use of tDCS as a treatment for psychiatric disorders. However, its place regarding other treatments still has to be determined before becoming a routine clinical treatment.
Collapse
Affiliation(s)
- Marine Mondino
- Centre Hospitalier le Vinatier, Université Claude Bernard Lyon I , Bron , France
| | | | | | | | | | | |
Collapse
|
32
|
Quraan MA, Protzner AB, Daskalakis ZJ, Giacobbe P, Tang CW, Kennedy SH, Lozano AM, McAndrews MP. EEG power asymmetry and functional connectivity as a marker of treatment effectiveness in DBS surgery for depression. Neuropsychopharmacology 2014; 39:1270-81. [PMID: 24285211 PMCID: PMC3957123 DOI: 10.1038/npp.2013.330] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 01/10/2023]
Abstract
Recently, deep brain stimulation (DBS) has been evaluated as an experimental therapy for treatment-resistant depression. Although there have been encouraging results in open-label trials, about half of the patients fail to achieve meaningful benefit. Although progress has been made in understanding the neurobiology of MDD, the ability to characterize differences in brain dynamics between those who do and do not benefit from DBS is lacking. In this study, we investigated EEG resting-state data recorded from 12 patients that have undergone DBS surgery. Of those, six patients were classified as responders to DBS, defined as an improvement of 50% or more on the 17-item Hamilton Rating Scale for Depression (HAMD-17). We compared hemispheric frontal theta and parietal alpha power asymmetry and synchronization asymmetry between responders and non-responders. Hemispheric power asymmetry showed statistically significant differences between responders and non-responders with healthy controls showing an asymmetry similar to responders but opposite to non-responders. This asymmetry was characterized by an increase in frontal theta in the right hemisphere relative to the left combined with an increase in parietal alpha in the left hemisphere relative to the right in non-responders compared with responders. Hemispheric mean synchronization asymmetry showed a statistically significant difference between responders and non-responders in the theta band, with healthy controls showing an asymmetry similar to responders but opposite to non-responders. This asymmetry resulted from an increase in frontal synchronization in the right hemisphere relative to the left combined with an increase in parietal synchronization in the left hemisphere relative to the right in non-responders compared with responders. Connectivity diagrams revealed long-range differences in frontal/central-parietal connectivity between the two groups in the theta band. This pattern was observed irrespective of whether EEG data were collected with active DBS or with the DBS stimulation turned off, suggesting stable functional and possibly structural modifications that may be attributed to plasticity.
Collapse
Affiliation(s)
- Maher A Quraan
- Krembil Neuroscience Center, University Health Network, Toronto, ON, Canada,Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Room 4F-409, Toronto, Ontario M5T 2S8, Canada, Tel: +1 416 603 5800, E-mail:
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Department of Psychiatry, University Health Network, Toronto, ON, Canada
| | - Chris W Tang
- Department of Psychiatry, University Health Network, Toronto, ON, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Department of Psychiatry, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Krembil Neuroscience Center, University Health Network, Toronto, ON, Canada,Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mary P McAndrews
- Krembil Neuroscience Center, University Health Network, Toronto, ON, Canada,Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Effectiveness and acceptability of deep brain stimulation (DBS) of the subgenual cingulate cortex for treatment-resistant depression: a systematic review and exploratory meta-analysis. J Affect Disord 2014; 159:31-8. [PMID: 24679386 DOI: 10.1016/j.jad.2014.02.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) applied to the subgenual cingulate cortex (SCC) has been recently investigated as a potential treatment for severe and chronic treatment-resistant depression (TRD). Given its invasive and experimental nature, a comprehensive evaluation of its effectiveness and acceptability is of paramount importance. Therefore, we conducted the present systematic review and exploratory meta-analysis. METHODS We searched the literature for English language prospective clinical trials on DBS of the SCC for TRD from 1999 through December 2012 using MEDLINE, EMBASE, PsycINFO, CENTRAL and SCOPUS, and performed a random effects exploratory meta-analysis using Event Rates and Hedges׳ g effect sizes. RESULTS Data from 4 observational studies were included, totaling 66 subjects with severe and chronic TRD. Twelve-month response and remission rates following DBS treatment were 39.9% (95% CI=28.4% to 52.8%) and 26.3% (95% CI=13% to 45.9%), respectively. Also, depression scores at 12 months post-DBS were significantly reduced (i.e., pooled Hedges׳ g effect size=-1.89 [95% CI=-2.64 to -1.15, p<0.0001]). Also, there was a significant decrease in depression scores between 3 and 6 months (Hedges׳ g=-0.27, p=0.003), but no significant changes from months 6 to 12. Finally, dropout rates at 12 months were 10.8% (95% CI=4.3% to 24.4%). LIMITATIONS Small number of included studies (most of which were open label), and limited long-term effectiveness data. CONCLUSIONS DBS applied to the SCC seems to be associated with relatively large response and remission rates in the short- and medium- to long-term in patients with severe TRD. Also, its maximal antidepressant effects are mostly observed within the first 6 months after device implantation. Nevertheless, these findings are clearly preliminary and future controlled trials should include larger and more representative samples, and focus on the identification of optimal neuroanatomical sites and stimulation parameters.
Collapse
|
34
|
Salomons TV, Dunlop K, Kennedy SH, Flint A, Geraci J, Giacobbe P, Downar J. Resting-state cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder. Neuropsychopharmacology 2014; 39:488-98. [PMID: 24150516 PMCID: PMC3870791 DOI: 10.1038/npp.2013.222] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/03/2023]
Abstract
Despite its high toll on society, there has been little recent improvement in treatment efficacy for major depressive disorder (MDD). The identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we investigate whether resting-state functional connectivity predicted response to treatment with repetitive transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty-five individuals with treatment-refractory MDD underwent a 4-week course of dmPFC-rTMS. Before and after treatment, subjects received resting-state functional MRI scans and assessments of depressive symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal, and cortico-limbic connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-thalamic connectivity and decreased subgenual cingulate cortex-caudate connectivity, Our findings provide insight into which individuals might respond to rTMS treatment and the mechanisms through which these treatments work.
Collapse
Affiliation(s)
- Tim V Salomons
- MRI-Guided rTMS Clinic, Toronto Western Hospital, Toronto, ON, Canada,Department of Psychiatry, University Health Network, Toronto, ON, Canada,School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Katharine Dunlop
- MRI-Guided rTMS Clinic, Toronto Western Hospital, Toronto, ON, Canada,Faculty of Arts and Sciences, University of Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Alastair Flint
- Department of Psychiatry, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Joseph Geraci
- Department of Psychiatry, University Health Network, Toronto, ON, Canada,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Peter Giacobbe
- MRI-Guided rTMS Clinic, Toronto Western Hospital, Toronto, ON, Canada,Department of Psychiatry, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jonathan Downar
- MRI-Guided rTMS Clinic, Toronto Western Hospital, Toronto, ON, Canada,Department of Psychiatry, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,MRI-Guided rTMS Clinic, University Health Network, 7M-432 399 Bathurst Street, Toronto, ON M5T 2S8, Canada, Tel: +416 603 5667, Fax: +416 603 5292, E-mail
| |
Collapse
|
35
|
Ethical considerations in deep brain stimulation for psychiatric illness. J Clin Neurosci 2014; 21:1-5. [DOI: 10.1016/j.jocn.2013.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 01/03/2023]
|
36
|
Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 2013; 29:419-23. [PMID: 24321772 DOI: 10.1016/j.eurpsy.2013.10.005] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022] Open
Abstract
Ketamine exerts fast acting, robust, and lasting antidepressant effects in a sub-anesthetic dose, however, the underlying mechanisms are still not fully elucidated. Recent studies have suggested that ketamine's antidepressant effects are probably attributed to the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The present study aimed to observe the effects of AMPA receptor modulators on mammalian target of rapamycin (mTOR) and brain-derived neurotrophic factor (BDNF) expression during the procedure of ketamine exerting antidepressant effects. Therefore, we pretreated rats with NBQX, an AMPA receptor antagonist, or CX546, an AMPA receptor agonist, and subsequently observed the immobility time during the forced swimming test (FST) and the hippocampal and prefrontal cortical levels of mTOR and BDNF. The results showed ketamine decreased the immobility time of rats during the FST and increased the hippocampal and prefrontal cortical mTOR and BDNF. NBQX pretreatment significantly increased the immobility time and decreased the levels of mTOR and BDNF when compared with vehicle 1 (DMSO) pretreatment. CX546 pretreatment significantly decreased the immobility time and increased the levels of mTOR and BDNF when compared with vehicle 2 (DMSO+ethanol) pretreatment. Our results suggest ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- W Zhou
- Department of Anesthesiology, School of Medicine, Jinling Hospital, Nanjing University, No. 305, East Zhongshan Road, Nanjing 210002, China
| | - N Wang
- Department of Anesthesiology, School of Medicine, Jinling Hospital, Nanjing University, No. 305, East Zhongshan Road, Nanjing 210002, China
| | - C Yang
- Department of Anesthesiology, School of Medicine, Jinling Hospital, Nanjing University, No. 305, East Zhongshan Road, Nanjing 210002, China
| | - X-M Li
- Department of Anesthesiology, School of Medicine, Jinling Hospital, Nanjing University, No. 305, East Zhongshan Road, Nanjing 210002, China
| | - Z-Q Zhou
- Department of Anesthesiology, School of Medicine, Jinling Hospital, Nanjing University, No. 305, East Zhongshan Road, Nanjing 210002, China.
| | - J-J Yang
- Department of Anesthesiology, School of Medicine, Jinling Hospital, Nanjing University, No. 305, East Zhongshan Road, Nanjing 210002, China.
| |
Collapse
|
37
|
Williams NR, Okun MS. Deep brain stimulation (DBS) at the interface of neurology and psychiatry. J Clin Invest 2013; 123:4546-56. [PMID: 24177464 DOI: 10.1172/jci68341] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) is an emerging interventional therapy for well-screened patients with specific treatment-resistant neuropsychiatric diseases. Some neuropsychiatric conditions, such as Parkinson disease, have available and reasonable guideline and efficacy data, while other conditions, such as major depressive disorder and Tourette syndrome, have more limited, but promising results. This review summarizes both the efficacy and the neuroanatomical targets for DBS in four common neuropsychiatric conditions: Parkinson disease, Tourette syndrome, major depressive disorder, and obsessive-compulsive disorder. Based on emerging new research, we summarize novel approaches to optimization of stimulation for each neuropsychiatric disease and we review the potential positive and negative effects that may be observed following DBS. Finally, we summarize the likely future innovations in the field of electrical neural-network modulation.
Collapse
|
38
|
Surgery for Psychiatric Disorders. World Neurosurg 2013; 80:S31.e17-28. [DOI: 10.1016/j.wneu.2012.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/28/2012] [Indexed: 12/28/2022]
|
39
|
Pujara M, Koenigs M. Mechanisms of reward circuit dysfunction in psychiatric illness: prefrontal-striatal interactions. Neuroscientist 2013; 20:82-95. [PMID: 23924665 DOI: 10.1177/1073858413499407] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The brain's "reward circuit" has been widely implicated in the pathophysiology of mental illness. Although there has been significant progress in identifying the functional characteristics of individual nodes within the circuit and linking dysfunction of these brain areas to various forms of psychopathology, there remains a substantial gap in understanding how the nodes of the circuit interact with one another, and how the growing neurobiological knowledge may be applied to improve psychiatric patient care. In this article, we summarize what is currently known about the functions and interactions of two key nodes of this circuit-the ventral striatum and the ventromedial prefrontal/orbital frontal cortex-in relation to mental illness.
Collapse
Affiliation(s)
- Maia Pujara
- 1Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
40
|
Lipsman N, Sankar T, Downar J, Kennedy SH, Lozano AM, Giacobbe P. Neuromodulation for treatment-refractory major depressive disorder. CMAJ 2013; 186:33-9. [PMID: 23897945 DOI: 10.1503/cmaj.121317] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
41
|
|
42
|
Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 2012; 493:532-6. [PMID: 23235832 PMCID: PMC3554860 DOI: 10.1038/nature11713] [Citation(s) in RCA: 800] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 10/25/2012] [Indexed: 12/12/2022]
Abstract
Ventral tegmental area (VTA) dopamine (DA) neurons in the brain’s reward circuit play a crucial role in mediating stress responses1–4 including determining susceptibility vs. resilience to social stress-induced behavioural abnormalities5. VTA DA neurons exhibit two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing6–8. Phasic firing of the neurons, which is well known to encode reward signals6,7,9, is upregulated by repeated social defeat stress, a highly validated mouse model of depression5,8,10–13. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no change in firing rate apparent in resilient individuals5,8. However, direct evidence linking—in real-time—DA neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here, we took advantage of the temporal precision and cell type- and projection pathway-specificity of optogenetics to demonstrate that enhanced phasic firing of these neurons mediates susceptibility to social defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing, in VTA DA neurons of mice undergoing a subthreshold social defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social defeat stress. Furthermore, we show differences in projection pathway-specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, while inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing pattern- and neural circuit-specific mechanisms of depression.
Collapse
|
43
|
Alterations in resting-state regional cerebral blood flow demonstrate ongoing pain in osteoarthritis: An arterial spin-labeled magnetic resonance imaging study. ACTA ACUST UNITED AC 2012; 64:3936-46. [DOI: 10.1002/art.37685] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 08/23/2012] [Indexed: 11/07/2022]
|
44
|
|
45
|
Anderson RJ, Frye MA, Abulseoud OA, Lee KH, McGillivray JA, Berk M, Tye SJ. Deep brain stimulation for treatment-resistant depression: efficacy, safety and mechanisms of action. Neurosci Biobehav Rev 2012; 36:1920-33. [PMID: 22721950 DOI: 10.1016/j.neubiorev.2012.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 06/06/2012] [Accepted: 06/10/2012] [Indexed: 12/22/2022]
Abstract
Deep brain stimulation (DBS), a neuromodulation therapy that has been used successfully in the treatment of symptoms associated with movement disorders, has recently undergone clinical trials for individuals suffering from treatment-resistant depression (TRD). Although the small patient numbers and open label study design limit our ability to identify optimum targets and make definitive conclusions about treatment efficacy, a review of the published research demonstrates significant reductions in depressive symptomatology and high rates of remission in a severely treatment-resistant patient group. Despite these encouraging results, an incomplete understanding of the mechanisms of action underlying the therapeutic effects of DBS for TRD is highlighted, paralleling the incomplete understanding of the neuroanatomy of mood regulation and treatment resistance. Proposed mechanisms of action include short and long-term local effects of stimulation at the neuronal level, to modulation of neural network activity.
Collapse
|
46
|
Rodriguez-Romaguera J, Do Monte FHM, Quirk GJ. Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear. Proc Natl Acad Sci U S A 2012; 109:8764-9. [PMID: 22586125 PMCID: PMC3365168 DOI: 10.1073/pnas.1200782109] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) reduces symptoms of intractable obsessive-compulsive disorder (OCD), but the mechanism of action is unknown. OCD is characterized by avoidance behaviors that fail to extinguish, and DBS could act, in part, by facilitating extinction of fear. We investigated this possibility by using auditory fear conditioning in rats, for which the circuits of fear extinction are well characterized. We found that DBS of the VS (the VC/VS homolog in rats) during extinction training reduced fear expression and strengthened extinction memory. Facilitation of extinction was observed for a specific zone of dorsomedial VS, just above the anterior commissure; stimulation of more ventrolateral sites in VS impaired extinction. DBS effects could not be obtained with pharmacological inactivation of either dorsomedial VS or ventrolateral VS, suggesting an extrastriatal mechanism. Accordingly, DBS of dorsomedial VS (but not ventrolateral VS) increased expression of a plasticity marker in the prelimbic and infralimbic prefrontal cortices, the orbitofrontal cortex, the amygdala central nucleus (lateral division), and intercalated cells, areas known to learn and express extinction. Facilitation of fear extinction suggests that, in accord with clinical observations, DBS could augment the effectiveness of cognitive behavioral therapies for OCD.
Collapse
Affiliation(s)
| | | | - Gregory J. Quirk
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067
| |
Collapse
|
47
|
Christopher PP, Leykin Y, Appelbaum PS, Holtzheimer PE, Mayberg HS, Dunn LB. Enrolling in deep brain stimulation research for depression: influences on potential subjects' decision making. Depress Anxiety 2012; 29:139-46. [PMID: 22095837 DOI: 10.1002/da.20916] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/22/2011] [Accepted: 11/20/2011] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ethical concerns regarding early-phase clinical trials of DBS for treatment-resistant depression (TRD) include the possibility that participants' decisions to enroll might be motivated by unrealistic expectations of personal benefit or minimization of risks. METHODS Thematic analyses were conducted on a sample of 26 adults considering participation in two DBS trials. Influences on the decision making of these potential DBS trial participants were derived from responses to questions posed in the MacArthur Competence Assessment Tool for Clinical Research (MacCAT-CR), a semi-structured interview designed to evaluate decisional capacity to consent to research. RESULTS Participants cited numerous factors as influential in their enrollment decisions, including perceived lack of other treatment options, desire to take initiative, beliefs about DBS as a novel treatment, possibility of DBS efficacy, hoped-for improvements, potential risks and disadvantages of DBS or clinical trial participation, and altruism. No individual expressed a set of motivations or influencing factors that suggested compromised decision-making capacity or diminished voluntariness of decision making. CONCLUSIONS These results suggest that individuals make the decision to enroll in early-phase trials of DBS for TRD based on a number of complex and sometimes idiosyncratic considerations, and that the trials that were studied utilized sufficiently robust informed consent processes. These findings offer evidence that the emerging research area of DBS can be advanced in an ethically sound manner, provided that safeguards and processes for discussing trials with participants are carefully and proactively enacted.
Collapse
Affiliation(s)
- Paul P Christopher
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
48
|
Deep brain stimulation of the subcallosal cingulate gyrus: further evidence in treatment-resistant major depression. Int J Neuropsychopharmacol 2012; 15:121-33. [PMID: 21777510 DOI: 10.1017/s1461145711001088] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Deep brain stimulation (DBS) is currently tested as an experimental therapy for patients with treatment-resistant depression (TRD). Here we report on the short- and long-term (1 yr) clinical outcomes and tolerance of DBS in eight TRD patients. Electrodes were implanted bilaterally in the subgenual cingulate gyrus (SCG; Broadman areas 24-25), and stimulated at 135 Hz (90-μs pulsewidth). Voltage and active electrode contacts were adjusted to maximize short-term responses. Clinical assessments included the 17-item Hamilton Depression Rating Scale (HAMD17; primary measure), the Montgomery-Åsberg Depression Rating Scale (MADRS) and the Clinical Global Impression (CGI) Scale. In the first week after surgery, response and remission (HAMD ⩽7) rates were, respectively 87.5% and 50%. These early responses were followed by an overall worsening, with a response and remission rates of 37.5% (3/8) at 1 month. From then onwards, patients showed a progressive improvement, with response and remission rates of 87.5% and 37.5%, respectively, at 6 months. The corresponding figures at 1 yr were 62.5% and 50%, respectively. Clinical effects were seen in all HAMD subscales without a significant incidence of side-effects. Surgical procedure and post-operative period were well-tolerated for all patients. This is the second independent study on the use of DBS of the SCG to treat chronic depression resistant to current therapeutic strategies. DBS fully remitted 50% of the patients at 1 yr, supporting its validity as a new therapeutic strategy for TRD.
Collapse
|
49
|
Erythropoietin: a candidate treatment for mood symptoms and memory dysfunction in depression. Psychopharmacology (Berl) 2012; 219:687-98. [PMID: 21947319 DOI: 10.1007/s00213-011-2511-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Current pharmacological treatments for depression have a significant treatment-onset-response delay, an insufficient efficacy for many patients and fail to reverse cognitive dysfunction. Erythropoietin (EPO) has neuroprotective and neurotrophic actions and improves cognitive function in animal models of acute and chronic neurodegenerative conditions and in patients with cognitive decline. METHODS We systematically reviewed the published findings from animal and human studies exploring the potential of EPO to treat depression-related cognitive dysfunction and depression. RESULTS We identified five animal studies (two in male rats, two in male mice and one in male rats and mice) and seven human proof-of-concept studies (five in healthy volunteers and two in depressed patients) that investigated the above. All of the reviewed animal studies but one and all human studies demonstrated beneficial effects of EPO on hippocampus-dependent memory and antidepressant-like effects. These effects appear to be mediated through direct neurobiological actions of EPO rather than upregulation of red cell mass. CONCLUSIONS The reviewed studies demonstrate beneficial effects of EPO on hippocampus-dependent memory function and on depression-relevant behavior, thus highlighting EPO as a candidate agent for future management of cognitive dysfunction and mood symptoms in depression. Larger-scale clinical trials of EPO as a treatment for mood and neurocognitive symptoms in patients with mood disorder are therefore warranted.
Collapse
|
50
|
Sankar T, Tierney TS, Hamani C. Novel applications of deep brain stimulation. Surg Neurol Int 2012; 3:S26-33. [PMID: 22826807 PMCID: PMC3400483 DOI: 10.4103/2152-7806.91607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/20/2011] [Indexed: 11/11/2022] Open
Abstract
The success of deep brain stimulation (DBS) surgery in treating medically refractory symptoms of some movement disorders has inspired further investigation into a wide variety of other treatment-resistant conditions. These range from disorders of gait, mood, and memory to problems as diverse as obesity, consciousness, and addiction. We review the emerging indications, rationale, and outcomes for some of the most promising new applications of DBS in the treatment of postural instability associated with Parkinson's disease, depression, obsessive–compulsive disorder, obesity, substance abuse, epilepsy, Alzheimer′s-type dementia, and traumatic brain injury. These studies reveal some of the excitement in a field at the edge of a rapidly expanding frontier. Much work still remains to be done on basic mechanism of DBS, optimal target and patient selection, and long-term durability of this technology in treating new indications.
Collapse
Affiliation(s)
- Tejas Sankar
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|