1
|
Liu W, Ma D, Cao C, Liu S, Ma X, Jia F, Li P, Zhang H, Liao Y, Qu H. Abnormal cerebral blood flow in children with developmental stuttering. Pediatr Res 2024:10.1038/s41390-024-03359-1. [PMID: 38914760 DOI: 10.1038/s41390-024-03359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Stuttering affects approximately 5% of children; however, its neurological basis remains unclear. Identifying imaging biomarkers could aid in early detection. Accordingly, we investigated resting-state cerebral blood flow (CBF) in children with developmental stuttering. METHODS Pulsed arterial spin labelling magnetic resonance imaging was utilised to quantify CBF in 35 children with developmental stuttering and 27 healthy controls. We compared normalised CBF between the two groups and evaluated the correlation between abnormal CBF and clinical indicators. RESULTS Compared with healthy controls, the stuttering group exhibited decreased normalised CBF in the cerebellum lobule VI bilaterally, right cuneus, and left superior occipital gyrus and increased CBF in the right medial superior frontal gyrus, left rectus, and left dorsolateral superior frontal gyrus. Additionally, normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus was positively correlated with stuttering severity. CONCLUSIONS Children who stutter display decreased normalised CBF primarily in the cerebellum and occipital gyrus, with increased normalised CBF in the frontal gyrus. Additionally, the abnormal CBF in the left cerebellum lobule VI and left superior occipital gyrus was associated with more severe symptoms, suggesting that decreased CBF in these areas may serve as a novel neuroimaging clue for stuttering. IMPACT Stuttering occurs in 5% of children and often extends into adulthood, which may negatively affect quality of life. Early detection and treatment are essential. We used pulsed arterial spin labelling magnetic resonance imaging to visualise the resting-state cerebral blood flow (CBF) in children who stutter and healthy children. Normalised CBF was decreased in stutterers in the cerebellum and occipital gyrus and increased in the frontal gyrus. Stuttering severity was linked to abnormal normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus, suggesting that CBF may serve as a novel neuroimaging clue for stuttering.
Collapse
Affiliation(s)
- Wanqing Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dan Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Chuanlong Cao
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Sai Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - XinMao Ma
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fenglin Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Pei Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hui Zhang
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
2
|
Cummine J, Ngo T, Nisbet K. Characterization of Cortical and Subcortical Structural Brain Asymmetry in Adults with and without Dyslexia. Brain Sci 2023; 13:1622. [PMID: 38137070 PMCID: PMC10741947 DOI: 10.3390/brainsci13121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple cortical (planum temporale, supramarginal gyrus, fusiform gyrus) and subcortical (caudate, putamen, and thalamus) regions have shown different functional lateralization patterns for skilled vs. dyslexic readers. The extent to which skilled and dyslexic adult readers show differential structural lateralization remains to be seen. Method: Participants included 72 adults (N = 41 skilled; N = 31 dyslexic) who underwent a high-resolution MRI brain scan. The grey matter volume of the cortical and subcortical structures was extracted. Results: While there were clear behavioral differences between the groups, there were no differences in any of the isolated structures (i.e., either total size or asymmetry index) and limited evidence for any brain-behavior relationships. We did find a significant cortical-cortical relationship (p = 0.006) and a subcortical-subcortical relationship (p = 0.008), but not cross-over relationships. Overall, this work provides unique information on neural structures as they relate to reading in skilled and dyslexic readers.
Collapse
Affiliation(s)
- Jacqueline Cummine
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G2G4, Canada; (T.N.); (K.N.)
- Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2G4, Canada
| | - Tiffany Ngo
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G2G4, Canada; (T.N.); (K.N.)
| | - Kelly Nisbet
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G2G4, Canada; (T.N.); (K.N.)
| |
Collapse
|
3
|
Caruso VC, Wray AH, Lescht E, Chang SE. Neural oscillatory activity and connectivity in children who stutter during a non-speech motor task. J Neurodev Disord 2023; 15:40. [PMID: 37964200 PMCID: PMC10647051 DOI: 10.1186/s11689-023-09507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Neural motor control rests on the dynamic interaction of cortical and subcortical regions, which is reflected in the modulation of oscillatory activity and connectivity in multiple frequency bands. Motor control is thought to be compromised in developmental stuttering, particularly involving circuits in the left hemisphere that support speech, movement initiation, and timing control. However, to date, evidence comes from adult studies, with a limited understanding of motor processes in childhood, closer to the onset of stuttering. METHODS We investigated the neural control of movement initiation in children who stutter and children who do not stutter by evaluating transient changes in EEG oscillatory activity (power, phase locking to button press) and connectivity (phase synchronization) during a simple button press motor task. We compared temporal changes in these oscillatory dynamics between the left and right hemispheres and between children who stutter and children who do not stutter, using mixed-model analysis of variance. RESULTS We found reduced modulation of left hemisphere oscillatory power, phase locking to button press and phase connectivity in children who stutter compared to children who do not stutter, consistent with previous findings of dysfunction within the left sensorimotor circuits. Interhemispheric connectivity was weaker at lower frequencies (delta, theta) and stronger in the beta band in children who stutter than in children who do not stutter. CONCLUSIONS Taken together, these findings indicate weaker engagement of the contralateral left motor network in children who stutter even during low-demand non-speech tasks, and suggest that the right hemisphere might be recruited to support sensorimotor processing in childhood stuttering. Differences in oscillatory dynamics occurred despite comparable task performance between groups, indicating that an altered balance of cortical activity might be a core aspect of stuttering, observable during normal motor behavior.
Collapse
Affiliation(s)
- Valeria C Caruso
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Amanda Hampton Wray
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erica Lescht
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
4
|
Zhu J, Shao J, Zhang C, Chen F, Wiener S. Statistical Information Affects Spoken Word Recognition of Tone Languages in Stutterers: Evidence From an Auditory-Perceptual Gating Study. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:3382-3398. [PMID: 37647655 DOI: 10.1044/2023_jslhr-23-00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
PURPOSE Previous studies have shown that individuals who stutter exhibit abnormal speech perception in addition to disfluent production as compared with their nonstuttering peers. This study investigated whether adult Chinese-speaking stutterers are still able to use knowledge of statistical regularities embedded in their native language to recognize spoken words and, if so, how much acoustic information is needed to trigger this information. METHOD Seventeen stutterers and 20 typical, nonstuttering controls participated in a gating experiment. All participants listened to monosyllabic words that consisted of syllables and lexical tones and were segmented into eight successive gates. These words differed in syllable token frequency and syllable-tone co-occurrence probability in line with a Chinese spoken word corpus. The correct syllable-only, correct tone-only, correct syllable-tone word, and correct syllable-incorrect tone responses were analyzed between the two groups using mixed-effects models. RESULTS Stutterers were less accurate overall than controls, with fewer correct syllables, tones, and their combination as words. However, stutterers showed consistent and reliable perceptual patterns triggered by statistical information of speech, as reflected by more accurate responses to high-frequency syllables, high-probability tones, and tone errors all in manners similar to those of nonstuttering controls. CONCLUSIONS Stutterers' atypical speech perception is not due to a lack of statistical learning. Stutterers were able to perceive spoken words with phonological tones based on statistical regularities embedded in their native speech. This finding echoes previous production studies of stuttering and lends some support for a link between perception and production. Implications of pathological, diagnostic, and therapeutic conditions of stuttering are discussed.
Collapse
Affiliation(s)
- Jiaqiang Zhu
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jing Shao
- Department of English Language and Literature, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Caicai Zhang
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Fei Chen
- School of Foreign Languages, Hunan University, Changsha, China
| | - Seth Wiener
- Department of Modern Languages, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
5
|
Chow HM, Garnett EO, Ratner NB, Chang SE. Brain activity during the preparation and production of spontaneous speech in children with persistent stuttering. Neuroimage Clin 2023; 38:103413. [PMID: 37099876 PMCID: PMC10149502 DOI: 10.1016/j.nicl.2023.103413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
Speech production forms the basis for human verbal communication. Though fluent speech production is effortless and automatic for most people, it is disrupted in speakers who stutter, who experience difficulties especially during spontaneous speech and at utterance onsets. Brain areas comprising the basal ganglia thalamocortical (BGTC) motor loop have been a focus of interest in the context of stuttering, given this circuit's critical role in initiating and sequencing connected speech. Despite the importance of better understanding the role of the BGTC motor loop in supporting overt, spontaneous speech production, capturing brain activity during speech has been challenging to date, due to fMRI artifacts associated with severe head motions during speech production. Here, using an advanced technique that removes speech-related artifacts from fMRI signals, we examined brain activity occurring immediately before, and during, overt spontaneous speech production in 22 children with persistent stuttering (CWS) and 18 children who do not stutter (controls) in the 5-to-12-year age range. Brain activity during speech production was compared in two conditions: spontaneous speech (i.e., requiring language formulation) and automatic speech (i.e., overlearned word sequences). Compared to controls, CWS exhibited significantly reduced left premotor activation during spontaneous speech production but not during automatic speech. Moreover, CWS showed an age-related reduction in left putamen and thalamus activation during speech preparation. These results provide further evidence that stuttering is associated with functional deficits in the BGTC motor loop, which are exacerbated during spontaneous speech production.
Collapse
|
6
|
Neef NE, Angstadt M, Koenraads SPC, Chang SE. Dissecting structural connectivity of the left and right inferior frontal cortex in children who stutter. Cereb Cortex 2023; 33:4085-4100. [PMID: 36057839 PMCID: PMC10068293 DOI: 10.1093/cercor/bhac328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
Inferior frontal cortex pars opercularis (IFCop) features a distinct cerebral dominance and vast functional heterogeneity. Left and right IFCop are implicated in developmental stuttering. Weak left IFCop connections and divergent connectivity of hyperactive right IFCop regions have been related to impeded speech. Here, we reanalyzed diffusion magnetic resonance imaging data from 83 children (41 stuttering). We generated connection probability maps of functionally segregated area 44 parcels and calculated hemisphere-wise analyses of variance. Children who stutter showed reduced connectivity of executive, rostral-motor, and caudal-motor corticostriatal projections from the left IFCop. We discuss this finding in the context of tracing studies from the macaque area 44, which leads to the need to reconsider current models of speech motor control. Unlike the left, the right IFCop revealed increased connectivity of the inferior posterior ventral parcel and decreased connectivity of the posterior dorsal parcel with the anterior insula, particularly in stuttering boys. This divergent connectivity pattern in young children adds to the debate on potential core deficits in stuttering and challenges the theory that right hemisphere differences might exclusively indicate compensatory changes that evolve from lifelong exposure. Instead, early right prefrontal connectivity differences may reflect additional brain signatures of aberrant cognition-emotion-action influencing speech motor control.
Collapse
Affiliation(s)
- Nicole E Neef
- Institute for Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Simone P C Koenraads
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, Wytemaweg 80, 3015 CNRotterdam, the Netherlands
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48105, USA
- Department of Communicative Sciences and Disorders, Michigan State University, 1026 Red Cedar Road, East Lansing, MI 48824, USA
- Cognitive Imaging Research Center, Department of Radiology, Michigan State University, 846 Service Road, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Bayat M, Boostani R, Sabeti M, Yadegari F, Taghavi M, Pirmoradi M, Chakrabarti P, Nami M. Speech Related Anxiety in Adults Who Stutter. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. The relationship between anxiety and stuttering has always been a topic of debate with a great emphasis on research focused on examining whether speech-related anxiety can exacerbate stuttering. This investigation compares some speech-related anticipatory anxiety indices in fluent and dysfluent utterances in adults who stutter (AWS). We scored the level of cognitive speech-related anxiety (anticipatory anxiety) using a self-reporting method and also evaluated the autonomic aspects of anxiety (state anxiety) through recording changes in Galvanic Skin Response (GSR) signals. Explaining the link between stuttering and anxiety is expected to assist practitioners in stuttering assessment and subsequent treatment strategies. Phasic GSR values of six events related to answering the verbal stimuli through fluent and dysfluent responses were registered to measure sympathetic arousal as an index of state anxiety in 20 AWS ( Mage = 35 ± 4 years, range: 21–42). To quantitatively examine the cognitive aspects of speech-related anticipatory anxiety, two questionnaires were rated by participants addressing the stuttering anticipation and semantic difficulty of verbal stimuli. GSR measures of fluent events were significantly higher than dysfluent counterparts within time windows before and during answering aloud the verbal stimuli ( p < .001). Later in the experiment, GSR values of dysfluent events were found to be higher than their fluent counterparts ( p < .001). Stuttering anticipation yielded a weak negative meaningful correlation with the scores of fluency ( r = −0.283, p = .046) and a positive yet nonsignificant correlation with the stuttering scores. The semantic difficulty had a moderately significant correlation with stuttering anticipation ( r = 0.354, p = .012) but not a meaningful correlation with fluency state. Autonomic and cognitive indices of speech-related anticipatory anxiety are not robust predictors of fluency. Anxiety seems to be more of a consequence of stuttering than a cause.
Collapse
Affiliation(s)
- Masoumeh Bayat
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Boostani
- Head of Biomedical Engineering Group, Faculty of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| | - Malihe Sabeti
- Department of Computer Engineering, Islamic Azad University, North-Tehran Branch, Tehran, Iran
| | - Fariba Yadegari
- Department of Speech and Language Pathology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahsa Taghavi
- Psychiatry group, medical school, Islamic Azad University, Kazeroon Branch, Kazeroon, Iran
| | - Mohammadreza Pirmoradi
- Department of Clinical Psychology, School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- ITM SLS, Baroda University, Vadodara, Gujarat, India
- Dana Brain Health Institute, Iranian Neuroscience Society-Fars Chapter, Shiraz, Iran
- Society for Brain Mapping and Therapeutics, Brain Mapping Foundation, Los Angeles, CA, USA
- Harvard Alumni for Mental Health, Harvard University, Boston, MA, USA
| |
Collapse
|
8
|
Johnson CA, Liu Y, Waller N, Chang SE. Tract profiles of the cerebellar peduncles in children who stutter. Brain Struct Funct 2022; 227:1773-1787. [PMID: 35220486 PMCID: PMC9743081 DOI: 10.1007/s00429-022-02471-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
Cerebellar-cortical loops comprise critical neural circuitry that supports self-initiated movements and motor adjustments in response to perceived errors, functions that are affected in stuttering. It is unknown whether structural aspects of cerebellar circuitry are affected in stuttering, particularly in children close to symptom onset. Here we examined white matter diffusivity characteristics of the three cerebellar peduncles (CPs) based on diffusion MRI (dMRI) data collected from 41 children who stutter (CWS) and 42 controls in the 3-11 years range. We hypothesized that CWS would exhibit decreased fractional anisotropy (FA) in the right CPs given the contralateral connectivity of the cerebellar-cortical loops and past reports of structural differences in left cortical areas in stuttering speakers. Automatic Fiber Quantification (AFQ) was used to track and segment cerebellar white matter pathways and to extract diffusivity measures. We found significant group differences for FA in the right inferior CP (ICP) only: controls showed significantly higher FA in the right ventral ICP compared to CWS, controlling for age, sex, and verbal IQ. Furthermore, FA of right ICP was negatively correlated with stuttering frequency in CWS. These results suggest an early developmental difference in the right ICP for CWS compared to age-matched peers, which may indicate an alteration in error processing, a function previously linked to the ICP. Lower FA here may impact error monitoring and sensory input processing to guide motor corrections. Further longitudinal investigations in children may provide additional insights into how CP development links to stuttering persistence and recovery.
Collapse
Affiliation(s)
- Chelsea A Johnson
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, USA
| | - Yanni Liu
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Noah Waller
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Almudhi A, Gabr S. Green tea consumption and the management of adrenal stress hormones in adolescents who stutter. Biomed Rep 2022; 16:32. [PMID: 35251619 PMCID: PMC8889529 DOI: 10.3892/br.2022.1515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Green tea and its polyphenolic compounds have been shown to exert positive effects in individuals with psychological disorders. The protective role of green tea against stuttering or its related consequences, depression, anxiety and stress, were evaluated in adolescents with moderate stuttering (MS). A total of 60 adolescents aged (12-18) years old were enrolled in this study. Patients were classified according to standardized test material Stuttering Severity Instrument, 4th Edition was used to estimate the severity of stuttering; participants were classified into two groups: a normal healthy group (n=30) and a MS group (n=30). The Depression Anxiety Stress Scale and General Health Questionnaire were used to estimate the degree of depression, anxiety and stress as well as general mental health. The physiological profile of stress hormones, as a measure of the response to green tea response, was also measured amongst participants. Adrenal stress hormones cortisol, dehydroepiandrosterone (DHEA), acetylcholine (ACTH), corticosterone and the cortisol:DHEA ratio were assayed. In addition, the constituent green tea polyphenols and their quantities were determined using liquid chromatography analysis. Decaffeinated green tea was administered six cups/day for 6 weeks, and this significantly improved the depression, anxiety, stress and mental health consequences associated with stuttering in adolescents. In addition, increased consumption of green tea significantly reduced elevated levels of adrenal stress hormones; cortisol, DHEA, ACTH and corticosterone, and increased the cortisol:DHEA ratio in the control and adolescents who stuttered. The data showed that drinking six cups of decaffeinated green tea, which is enriched in catechins (1,580 mg) and other related polyphenols, was sufficient to improve the consequences of mental health associated with stuttering in younger aged individuals.
Collapse
Affiliation(s)
- Abdulaziz Almudhi
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Sami Gabr
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
10
|
Korzeczek A, Primaßin A, Wolff von Gudenberg A, Dechent P, Paulus W, Sommer M, Neef NE. Fluency shaping increases integration of the command-to-execution and the auditory-to-motor pathways in persistent developmental stuttering. Neuroimage 2021; 245:118736. [PMID: 34798230 DOI: 10.1016/j.neuroimage.2021.118736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/10/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022] Open
Abstract
Fluency-shaping enhances the speech fluency of persons who stutter, yet underlying conditions and neuroplasticity-related mechanisms are largely unknown. While speech production-related brain activity in stuttering is well studied, it is unclear whether therapy repairs networks of altered sensorimotor integration, imprecise neural timing and sequencing, faulty error monitoring, or insufficient speech planning. Here, we tested the impact of one-year fluency-shaping therapy on resting-state fMRI connectivity within sets of brain regions subserving these speech functions. We analyzed resting-state data of 22 patients who participated in a fluency-shaping program, 18 patients not participating in therapy, and 28 fluent control participants, measured one year apart. Improved fluency was accompanied by an increased connectivity within the sensorimotor integration network. Specifically, two connections were strengthened; the left inferior frontal gyrus showed increased connectivity with the precentral gyrus at the representation of the left laryngeal motor cortex, and the left inferior frontal gyrus showed increased connectivity with the right superior temporal gyrus. Thus, therapy-associated neural remediation was based on a strengthened integration of the command-to-execution pathway together with an increased auditory-to-motor coupling. Since we investigated task-free brain activity, we assume that our findings are not biased to network activity involved in compensation but represent long-term focal neuroplasticity effects.
Collapse
Affiliation(s)
- Alexandra Korzeczek
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Annika Primaßin
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; FH Münster University of Applied Sciences, Münster School of Health (MSH), Münster, Germany.
| | | | - Peter Dechent
- Department of Cognitive Neurology, MR Research in Neurosciences, University Medical Center Göttingen, Göttingen, Germany.
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Martin Sommer
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, Germany; Department of Geriatrics, University Medical Center Göttingen, Germany.
| | - Nicole E Neef
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Germany.
| |
Collapse
|
11
|
Toyomura A, Fujii T, Sowman PF. Performance of Bimanual Finger Coordination Tasks in Speakers Who Stutter. Front Psychol 2021; 12:679607. [PMID: 34630201 PMCID: PMC8495154 DOI: 10.3389/fpsyg.2021.679607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Stuttering is a neurodevelopmental speech disorder characterized by the symptoms of speech repetition, prolongation, and blocking. Stuttering-related dysfluency can be transiently alleviated by providing an external timing signal such as a metronome or the voice of another person. Therefore, the existence of a core motor timing deficit in stuttering has been speculated. If this is the case, then motoric behaviors other than speech should be disrupted in stuttering. This study examined motoric performance on four complex bimanual tasks in 37 adults who stutter and 31 fluent controls. Two tasks utilized bimanual rotation to examine motor dexterity, and two tasks used the bimanual mirror and parallel tapping movements to examine timing control ability. Video-based analyses were conducted to determine performance accuracy and speed. The results showed that individuals who stutter performed worse than fluent speakers on tapping tasks but not on bimanual rotation tasks. These results suggest stuttering is associated with timing control for general motor behavior.
Collapse
Affiliation(s)
- Akira Toyomura
- Graduate School of Health Sciences, Gunma University, Maebashi, Japan.,Research Center for Advanced Technologies, Tokyo Denki University, Inzai, Japan
| | | | - Paul F Sowman
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
12
|
Jackson ES, Wijeakumar S, Beal DS, Brown B, Zebrowski PM, Spencer JP. Speech planning and execution in children who stutter: Preliminary findings from a fNIRS investigation. J Clin Neurosci 2021; 91:32-42. [PMID: 34373047 DOI: 10.1016/j.jocn.2021.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Few studies have investigated the neural mechanisms underlying speech production in children who stutter (CWS), despite the critical importance of understanding these mechanisms closer to the time of stuttering onset. The relative contributions of speech planning and execution in CWS therefore are also unknown. Using functional near-infrared spectroscopy, the current study investigated neural mechanisms of planning and execution in a small sample of 9-12 year-old CWS and controls (N = 12) by implementing two tasks that manipulated speech planning and execution loads. Planning was associated with atypical activation in bilateral inferior frontal gyrus and right supramarginal gyrus. Execution was associated with atypical activation in bilateral precentral gyrus and inferior frontal gyrus, as well as right supramarginal gyrus and superior temporal gyrus. The CWS exhibited some activation patterns that were similar to the adults who stutter (AWS) as reported in our previous study: atypical planning in frontal areas including left inferior frontal gyrus and atypical execution in fronto-temporo-parietal regions including left precentral gyrus, and right inferior frontal, superior temporal, and supramarginal gyri. However, differences also emerged. Whereas CWS and AWS both appear to exhibit atypical activation in right inferior and supramarginal gyri during execution, only CWS appear to exhibit this same pattern during planning. In addition, the CWS appear to exhibit atypical activation in left inferior frontal and right precentral gyri related to execution, whereas AWS do not. These preliminary results are discussed in the context of possible impairments in sensorimotor integration and inhibitory control for CWS.
Collapse
Affiliation(s)
- Eric S Jackson
- Department of Communicative Sciences and Disorders, New York University, 665 Broadway, 9th Floor, New York, NY 10012, USA.
| | | | - Deryk S Beal
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road Toronto, Ontario M4G 1R8, Canada; Department of Speech-Language Pathology, Faculty of Medicine, University of Toronto, 160-500 University Avenue, Toronto, ON M5G 1V7, Canada
| | - Bryan Brown
- Department of Communication Sciences and Disorders, University of Wisconsin-Eau Claire, 239 Water Street, Eau Claire, WI 54702, USA
| | - Patricia M Zebrowski
- Department of Communication Sciences and Disorders, Wendell Johnson Speech and Hearing Center, Iowa City, IA 52242, USA
| | - John P Spencer
- School of Psychology, University of East Anglia, Lawrence Stenhouse Building 0.09, Norwich NR4 7TJ, UK
| |
Collapse
|
13
|
Frankford SA, Heller Murray ES, Masapollo M, Cai S, Tourville JA, Nieto-Castañón A, Guenther FH. The Neural Circuitry Underlying the "Rhythm Effect" in Stuttering. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2325-2346. [PMID: 33887150 PMCID: PMC8740675 DOI: 10.1044/2021_jslhr-20-00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Purpose Stuttering is characterized by intermittent speech disfluencies, which are dramatically reduced when speakers synchronize their speech with a steady beat. The goal of this study was to characterize the neural underpinnings of this phenomenon using functional magnetic resonance imaging. Method Data were collected from 16 adults who stutter and 17 adults who do not stutter while they read sentences aloud either in a normal, self-paced fashion or paced by the beat of a series of isochronous tones ("rhythmic"). Task activation and task-based functional connectivity analyses were carried out to compare neural responses between speaking conditions and groups after controlling for speaking rate. Results Adults who stutter produced fewer disfluent trials in the rhythmic condition than in the normal condition. Adults who stutter did not have any significant changes in activation between the rhythmic condition and the normal condition, but when groups were collapsed, participants had greater activation in the rhythmic condition in regions associated with speech sequencing, sensory feedback control, and timing perception. Adults who stutter also demonstrated increased functional connectivity among cerebellar regions during rhythmic speech as compared to normal speech and decreased connectivity between the left inferior cerebellum and the left prefrontal cortex. Conclusions Modulation of connectivity in the cerebellum and prefrontal cortex during rhythmic speech suggests that this fluency-inducing technique activates a compensatory timing system in the cerebellum and potentially modulates top-down motor control and attentional systems. These findings corroborate previous work associating the cerebellum with fluency in adults who stutter and indicate that the cerebellum may be targeted to enhance future therapeutic interventions. Supplemental Material https://doi.org/10.23641/asha.14417681.
Collapse
Affiliation(s)
- Saul A. Frankford
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | | | - Matthew Masapollo
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | - Shanqing Cai
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | - Jason A. Tourville
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | | | - Frank H. Guenther
- Department of Speech, Language & Hearing Sciences, Boston University, MA
- Department of Biomedical Engineering, Boston University, MA
- Department of Radiology, Massachusetts General Hospital, Boston
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge
| |
Collapse
|
14
|
Zhao L, Lian M. Lexical Planning in People Who Stutter: A Defect in Lexical Encoding or the Planning Scope? Front Psychol 2021; 12:581304. [PMID: 33708156 PMCID: PMC7940678 DOI: 10.3389/fpsyg.2021.581304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Developmental stuttering is a widely discussed speech fluency disorder. Research on its mechanism has focused on an atypical interface between the planning (PLAN) and execution (EX) processes, known collectively as the EXPLAN model. However, it remains unclear how this atypical interface influences people who stutter. A straightforward assumption is that stuttering speakers adopt a smaller scope of speech planning, whereas a defect in word retrieval can be confounding. To shed light on this issue, we took the semantic blocking effect as an index to examine lexical planning in word and phrase production. In Experiment 1, for word production, pictures from the same semantic category were combined to form homogeneous blocks, and pictures from different categories were combined to form heterogeneous blocks. A typical effect of semantic blocking showing longer naming latencies for homogeneous blocks than heterogeneous ones was observed for both stuttering and fluent speakers. However, this effect was smaller for stuttering speakers, when it was subject to lexical defects in stuttering. In Experiment 2, for a conjoined noun phrase production task, the pictures referring to the first noun were manipulated into homogeneous and heterogeneous conditions. The semantic blocking effect was also much smaller for stuttering speakers, indicating a smaller scope of lexical planning. Therefore, the results provided more evidence in support of the EXPLAN model and indicated that a smaller scope of lexical planning rather than lexical defects causes the atypical interface for stuttering. Moreover, a comparison between these two tasks showed that the study findings have implications for syntactic defects in stuttering.
Collapse
Affiliation(s)
- Liming Zhao
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
- Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin, China
| | - Miaoqing Lian
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| |
Collapse
|
15
|
Masapollo M, Segawa JA, Beal DS, Tourville JA, Nieto-Castañón A, Heyne M, Frankford SA, Guenther FH. Behavioral and neural correlates of speech motor sequence learning in stuttering and neurotypical speakers: an fMRI investigation. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:106-137. [PMID: 34296194 PMCID: PMC8294667 DOI: 10.1162/nol_a_00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Stuttering is a neurodevelopmental disorder characterized by impaired production of coordinated articulatory movements needed for fluent speech. It is currently unknown whether these abnormal production characteristics reflect disruptions to brain mechanisms underlying the acquisition and/or execution of speech motor sequences. To dissociate learning and control processes, we used a motor sequence learning paradigm to examine the behavioral and neural correlates of learning to produce novel phoneme sequences in adults who stutter (AWS) and neurotypical controls. Participants intensively practiced producing pseudowords containing non-native consonant clusters (e.g., "gvasf") over two days. The behavioral results indicated that although the two experimental groups showed comparable learning trajectories, AWS performed significantly worse on the task prior to and after speech motor practice. Using functional magnetic resonance imaging (fMRI), the authors compared brain activity during articulation of the practiced words and a set of novel pseudowords (matched in phonetic complexity). FMRI analyses revealed no differences between AWS and controls in cortical or subcortical regions; both groups showed comparable increases in activation in left-lateralized brain areas implicated in phonological working memory and speech motor planning during production of the novel sequences compared to the practiced sequences. Moreover, activation in left-lateralized basal ganglia sites was negatively correlated with in-scanner mean disfluency in AWS. Collectively, these findings demonstrate that AWS exhibit no deficit in constructing new speech motor sequences but do show impaired execution of these sequences before and after they have been acquired and consolidated.
Collapse
Affiliation(s)
- Matthew Masapollo
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL
| | - Jennifer A. Segawa
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Departments of Neuroscience and Biology, Stonehill College, Easton, MA
| | - Deryk S. Beal
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Department of Speech-Language Pathology, University of Toronto, Toronto, Canada
| | - Jason A. Tourville
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
| | | | - Matthias Heyne
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
| | - Saul A. Frankford
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
| | - Frank H. Guenther
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Department of Biomedical Engineering, Boston University, Boston, MA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
16
|
Kim KS, Daliri A, Flanagan JR, Max L. Dissociated Development of Speech and Limb Sensorimotor Learning in Stuttering: Speech Auditory-motor Learning is Impaired in Both Children and Adults Who Stutter. Neuroscience 2020; 451:1-21. [PMID: 33091464 PMCID: PMC7704609 DOI: 10.1016/j.neuroscience.2020.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023]
Abstract
Stuttering is a neurodevelopmental disorder of speech fluency. Various experimental paradigms have demonstrated that affected individuals show limitations in sensorimotor control and learning. However, controversy exists regarding two core aspects of this perspective. First, it has been claimed that sensorimotor learning limitations are detectable only in adults who stutter (after years of coping with the disorder) but not during childhood close to the onset of stuttering. Second, it remains unclear whether stuttering individuals' sensorimotor learning limitations affect only speech movements or also unrelated effector systems involved in nonspeech movements. We report data from separate experiments investigating speech auditory-motor learning (N = 60) and limb visuomotor learning (N = 84) in both children and adults who stutter versus matched nonstuttering individuals. Both children and adults who stutter showed statistically significant limitations in speech auditory-motor adaptation with formant-shifted feedback. This limitation was more profound in children than in adults and in younger children versus older children. Between-group differences in the adaptation of reach movements performed with rotated visual feedback were subtle but statistically significant for adults. In children, even the nonstuttering groups showed limited visuomotor adaptation just like their stuttering peers. We conclude that sensorimotor learning is impaired in individuals who stutter, and that the ability for speech auditory-motor learning-which was already adult-like in 3-6 year-old typically developing children-is severely compromised in young children near the onset of stuttering. Thus, motor learning limitations may play an important role in the fundamental mechanisms contributing to the onset of this speech disorder.
Collapse
Affiliation(s)
- Kwang S Kim
- University of Washington, Seattle, WA, United States
| | - Ayoub Daliri
- Arizona State University, Tempe, AZ, United States
| | | | - Ludo Max
- University of Washington, Seattle, WA, United States; Haskins Laboratories, New Haven, CT, United States.
| |
Collapse
|
17
|
Busan P. Developmental stuttering and the role of the supplementary motor cortex. JOURNAL OF FLUENCY DISORDERS 2020; 64:105763. [PMID: 32361030 DOI: 10.1016/j.jfludis.2020.105763] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Developmental stuttering is a frequent neurodevelopmental disorder with a complex neurobiological basis. Robust neural markers of stuttering include imbalanced activity of speech and motor related brain regions, and their impaired structural connectivity. The dynamic interaction of cortical regions is regulated by the cortico-basal ganglia-thalamo-cortical system with the supplementary motor area constituting a crucial cortical site. The SMA integrates information from different neural circuits, and manages information about motor programs such as self-initiated movements, motor sequences, and motor learning. Abnormal functioning of SMA is increasingly reported in stuttering, and has been recently indicated as an additional "neural marker" of DS: anatomical and functional data have documented abnormal structure and activity of the SMA, especially in motor and speech networks. Its connectivity is often impaired, especially when considering networks of the left hemisphere. Compatibly, recent data suggest that, in DS, SMA is part of a poorly synchronized neural network, thus resulting in a likely substrate for the appearance of DS symptoms. However, as evident when considering neural models of stuttering, the role of SMA has not been fully clarified. Herein, the available evidence is reviewed, which highlights the role of the SMA in DS as a neural "hub", receiving and conveying altered information, thus "gating" the release of correct or abnormal motor plans.
Collapse
|
18
|
Hansen SJ, McMahon KL, de Zubicaray GI. Neural Mechanisms for Monitoring and Halting of Spoken Word Production. J Cogn Neurosci 2019; 31:1946-1957. [PMID: 31418336 DOI: 10.1162/jocn_a_01462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
During conversation, speakers monitor their own and others' output so they can alter their production adaptively, including halting it if needed. We investigated the neural mechanisms of monitoring and halting in spoken word production by employing a modified stop signal task during fMRI. Healthy participants named target pictures and withheld their naming response when presented with infrequent auditory words as stop signals. We also investigated whether the speech comprehension system monitors inner (i.e., prearticulatory) speech via the output of phonological word form encoding as proposed by the perceptual loop theory [Levelt, W. J. M. Speaking: From intention to articulation. Cambridge, MA: MIT Press, 1989] by presenting stop signals phonologically similar to the target picture name (e.g., cabbage-CAMEL). The contrast of successful halting versus naming revealed extensive BOLD signal responses in bilateral inferior frontal gyrus, preSMA, and superior temporal gyrus. Successful versus unsuccessful halting of speech was associated with increased BOLD signal bilaterally in the posterior middle temporal, frontal, and parietal lobes and decreases bilaterally in the posterior and left anterior superior temporal gyrus and right inferior frontal gyrus. These results show, for the first time, the neural mechanisms engaged during both monitoring and interrupting speech production. However, we failed to observe any differential effects of phonological similarity in either the behavioral or neural data, indicating monitoring of inner versus external speech might involve different mechanisms.
Collapse
|
19
|
Garnett EO, Chow HM, Nieto-Castañón A, Tourville JA, Guenther FH, Chang SE. Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter. Brain 2019; 141:2670-2684. [PMID: 30084910 DOI: 10.1093/brain/awy199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023] Open
Abstract
Stuttering is a neurodevelopmental disorder that affects the smooth flow of speech production. Stuttering onset occurs during a dynamic period of development when children first start learning to formulate sentences. Although most children grow out of stuttering naturally, ∼1% of all children develop persistent stuttering that can lead to significant psychosocial consequences throughout one's life. To date, few studies have examined neural bases of stuttering in children who stutter, and even fewer have examined the basis for natural recovery versus persistence of stuttering. Here we report the first study to conduct surface-based analysis of the brain morphometric measures in children who stutter. We used FreeSurfer to extract cortical size and shape measures from structural MRI scans collected from the initial year of a longitudinal study involving 70 children (36 stuttering, 34 controls) in the 3-10-year range. The stuttering group was further divided into two groups: persistent and recovered, based on their later longitudinal visits that allowed determination of their eventual clinical outcome. A region of interest analysis that focused on the left hemisphere speech network and a whole-brain exploratory analysis were conducted to examine group differences and group × age interaction effects. We found that the persistent group could be differentiated from the control and recovered groups by reduced cortical thickness in left motor and lateral premotor cortical regions. The recovered group showed an age-related decrease in local gyrification in the left medial premotor cortex (supplementary motor area and and pre-supplementary motor area). These results provide strong evidence of a primary deficit in the left hemisphere speech network, specifically involving lateral premotor cortex and primary motor cortex, in persistent developmental stuttering. Results further point to a possible compensatory mechanism involving left medial premotor cortex in those who recover from childhood stuttering.
Collapse
Affiliation(s)
- Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ho Ming Chow
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | | | - Jason A Tourville
- Department of Speech Language and Hearing Sciences, Boston University, Boston, MA, USA
| | - Frank H Guenther
- Department of Speech Language and Hearing Sciences, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Mohammadi H, Papadatou-Pastou M. Cerebral laterality as assessed by hand preference measures and developmental stuttering. Laterality 2019; 25:127-149. [PMID: 31144576 DOI: 10.1080/1357650x.2019.1621329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The causes of developmental stuttering, a neurodevelopmental communicative disorder, have not been elucidated to date. Neuroimaging studies suggest that atypical cerebral laterality could be one of such causal factors. Moreover, handedness, a behavioural index for cerebral laterality, has been linked to stuttering and recovery from it. However, findings are conflicting, possibly due to sample selection procedures, which typically rely on self-reported stuttering, and to the fact that handedness is typically assessed with regards to its direction rather than degree. We investigated the possible relationship between handedness and stuttering. This is the first study where children who stutter (CWS) were selected using clinical criteria as well as speech samples and where a non-Western population was studied. Findings from 83 CWS aged 3-9 years (mean = 6.43, SD = 1.84) and 90 age- and sex-matched children who do not stutter (mean = 6.45, SD = 1.71) revealed no differences in their hand preference scores as evaluated by parent-completed Edinburgh Handedness Inventory, for both direction and degree. The severity of stuttering was not found to correlate with the degree of handedness. We suggest that parents and professionals not treat left- or mixed-hand preference as a reason for concern with regards to stuttering.
Collapse
Affiliation(s)
- Hiwa Mohammadi
- Department of Neurology & Sleep Disorders Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marietta Papadatou-Pastou
- School of Education, Faculty of Primary Education, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Jackson ES, Wijeakumar S, Beal DS, Brown B, Zebrowski P, Spencer JP. A fNIRS Investigation of Speech Planning and Execution in Adults Who Stutter. Neuroscience 2019; 406:73-85. [DOI: 10.1016/j.neuroscience.2019.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023]
|
22
|
Neef NE, Anwander A, Bütfering C, Schmidt-Samoa C, Friederici AD, Paulus W, Sommer M. Structural connectivity of right frontal hyperactive areas scales with stuttering severity. Brain 2019; 141:191-204. [PMID: 29228195 PMCID: PMC5837552 DOI: 10.1093/brain/awx316] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/11/2017] [Indexed: 11/14/2022] Open
Abstract
A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain–behaviour and structure–function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI–diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christoph Bütfering
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Busan P, Del Ben G, Russo LR, Bernardini S, Natarelli G, Arcara G, Manganotti P, Battaglini PP. Stuttering as a matter of delay in neural activation: A combined TMS/EEG study. Clin Neurophysiol 2019; 130:61-76. [DOI: 10.1016/j.clinph.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
|
24
|
Chang SE, Garnett EO, Etchell A, Chow HM. Functional and Neuroanatomical Bases of Developmental Stuttering: Current Insights. Neuroscientist 2018; 25:566-582. [PMID: 30264661 DOI: 10.1177/1073858418803594] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Affecting 5% of all preschool-aged children and 1% of the general population, developmental stuttering-also called childhood-onset fluency disorder-is a complex, multifactorial neurodevelopmental disorder characterized by frequent disruption of the fluent flow of speech. Over the past two decades, neuroimaging studies of both children and adults who stutter have begun to provide significant insights into the neurobiological bases of stuttering. This review highlights convergent findings from this body of literature with a focus on functional and structural neuroimaging results that are supported by theoretically driven neurocomputational models of speech production. Updated views on possible mechanisms of stuttering onset and persistence, and perspectives on promising areas for future research into the mechanisms of stuttering, are discussed.
Collapse
Affiliation(s)
- Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Etchell
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ho Ming Chow
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
25
|
Connally EL, Ward D, Pliatsikas C, Finnegan S, Jenkinson M, Boyles R, Watkins KE. Separation of trait and state in stuttering. Hum Brain Mapp 2018; 39:3109-3126. [PMID: 29624772 PMCID: PMC6055715 DOI: 10.1002/hbm.24063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/21/2018] [Accepted: 03/19/2018] [Indexed: 01/22/2023] Open
Abstract
Stuttering is a disorder in which the smooth flow of speech is interrupted. People who stutter show structural and functional abnormalities in the speech and motor system. It is unclear whether functional differences reflect general traits of the disorder or are specifically related to the dysfluent speech state. We used a hierarchical approach to separate state and trait effects within stuttering. We collected sparse-sampled functional MRI during two overt speech tasks (sentence reading and picture description) in 17 people who stutter and 16 fluent controls. Separate analyses identified indicators of: (1) general traits of people who stutter; (2) frequency of dysfluent speech states in subgroups of people who stutter; and (3) the differences between fluent and dysfluent states in people who stutter. We found that reduced activation of left auditory cortex, inferior frontal cortex bilaterally, and medial cerebellum were general traits that distinguished fluent speech in people who stutter from that of controls. The stuttering subgroup with higher frequency of dysfluent states during scanning (n = 9) had reduced activation in the right subcortical grey matter, left temporo-occipital cortex, the cingulate cortex, and medial parieto-occipital cortex relative to the subgroup who were more fluent (n = 8). Finally, during dysfluent states relative to fluent ones, there was greater activation of inferior frontal and premotor cortex extending into the frontal operculum, bilaterally. The above differences were seen across both tasks. Subcortical state effects differed according to the task. Overall, our data emphasise the independence of trait and state effects in stuttering.
Collapse
Affiliation(s)
- Emily L Connally
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - David Ward
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUnited Kingdom
| | - Christos Pliatsikas
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUnited Kingdom
| | - Sarah Finnegan
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Rowan Boyles
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
- Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
26
|
Etchell AC, Civier O, Ballard KJ, Sowman PF. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016. JOURNAL OF FLUENCY DISORDERS 2018; 55:6-45. [PMID: 28778745 DOI: 10.1016/j.jfludis.2017.03.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 01/25/2017] [Accepted: 03/06/2017] [Indexed: 05/14/2023]
Abstract
PURPOSE Stuttering is a disorder that affects millions of people all over the world. Over the past two decades, there has been a great deal of interest in investigating the neural basis of the disorder. This systematic literature review is intended to provide a comprehensive summary of the neuroimaging literature on developmental stuttering. It is a resource for researchers to quickly and easily identify relevant studies for their areas of interest and enable them to determine the most appropriate methodology to utilize in their work. The review also highlights gaps in the literature in terms of methodology and areas of research. METHODS We conducted a systematic literature review on neuroimaging studies on developmental stuttering according to the PRISMA guidelines. We searched for articles in the pubmed database containing "stuttering" OR "stammering" AND either "MRI", "PET", "EEG", "MEG", "TMS"or "brain" that were published between 1995/01/01 and 2016/01/01. RESULTS The search returned a total of 359 items with an additional 26 identified from a manual search. Of these, there were a total of 111 full text articles that met criteria for inclusion in the systematic literature review. We also discuss neuroimaging studies on developmental stuttering published throughout 2016. The discussion of the results is organized first by methodology and second by population (i.e., adults or children) and includes tables that contain all items returned by the search. CONCLUSIONS There are widespread abnormalities in the structural architecture and functional organization of the brains of adults and children who stutter. These are evident not only in speech tasks, but also non-speech tasks. Future research should make greater use of functional neuroimaging and noninvasive brain stimulation, and employ structural methodologies that have greater sensitivity. Newly planned studies should also investigate sex differences, focus on augmenting treatment, examine moments of dysfluency and longitudinally or cross-sectionally investigate developmental trajectories in stuttering.
Collapse
Affiliation(s)
- Andrew C Etchell
- Department of Psychiatry, University of Michigan, MI, United States; Department of Cognitive Science, Macquarie University, Sydney, Australia.
| | - Oren Civier
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Kirrie J Ballard
- Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Paul F Sowman
- Department of Cognitive Science, Macquarie University, Sydney, Australia
| |
Collapse
|
27
|
Kronfeld-Duenias V, Civier O, Amir O, Ezrati-Vinacour R, Ben-Shachar M. White matter pathways in persistent developmental stuttering: Lessons from tractography. JOURNAL OF FLUENCY DISORDERS 2018; 55:68-83. [PMID: 29050641 DOI: 10.1016/j.jfludis.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/18/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Fluent speech production relies on the coordinated processing of multiple brain regions. This highlights the role of neural pathways that connect distinct brain regions in producing fluent speech. Here, we aim to investigate the role of the white matter pathways in persistent developmental stuttering (PDS), where speech fluency is disrupted. METHODS We use diffusion weighted imaging and tractography to compare the white matter properties between adults who do and do not stutter. We compare the diffusion properties along 18 major cerebral white matter pathways. We complement the analysis with an overview of the methodology and a roadmap of the pathways implicated in PDS according to the existing literature. RESULTS We report differences in the microstructural properties of the anterior callosum, the right inferior longitudinal fasciculus and the right cingulum in people who stutter compared with fluent controls. CONCLUSIONS Persistent developmental stuttering is consistently associated with differences in bilateral distributed networks. We review evidence showing that PDS involves differences in bilateral dorsal fronto-temporal and fronto-parietal pathways, in callosal pathways, in several motor pathways and in basal ganglia connections. This entails an important role for long range white matter pathways in this disorder. Using a wide-lens analysis, we demonstrate differences in additional, right hemispheric pathways, which go beyond the replicable findings in the literature. This suggests that the affected circuits may extend beyond the known language and motor pathways.
Collapse
Affiliation(s)
- Vered Kronfeld-Duenias
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| | - Oren Civier
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ofer Amir
- The Department of Communication Disorders, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Ruth Ezrati-Vinacour
- The Department of Communication Disorders, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; The Department of English Literature and Linguistics, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
28
|
Metzger FL, Auer T, Helms G, Paulus W, Frahm J, Sommer M, Neef NE. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering. Brain Struct Funct 2017; 223:165-182. [PMID: 28741037 PMCID: PMC5772149 DOI: 10.1007/s00429-017-1476-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 07/07/2017] [Indexed: 11/29/2022]
Abstract
Persistent developmental stuttering is associated with basal ganglia dysfunction or dopamine dysregulation. Here, we studied whole-brain functional connectivity to test how basal ganglia structures coordinate and reorganize sensorimotor brain networks in stuttering. To this end, adults who stutter and fluent speakers (control participants) performed a response anticipation paradigm in the MRI scanner. The preparation of a manual Go/No-Go response reliably produced activity in the basal ganglia and thalamus and particularly in the substantia nigra. Strikingly, in adults who stutter, substantia nigra activity correlated positively with stuttering severity. Furthermore, functional connectivity analyses yielded altered task-related network formations in adults who stutter compared to fluent speakers. Specifically, in adults who stutter, the globus pallidus and the thalamus showed increased network synchronization with the inferior frontal gyrus. This implies dynamic shifts in the response preparation-related network organization through the basal ganglia in the context of a non-speech motor task in stuttering. Here we discuss current findings in the traditional framework of how D1 and D2 receptor activity shapes focused movement selection, thereby suggesting a disproportional involvement of the direct and the indirect pathway in stuttering.
Collapse
Affiliation(s)
- F Luise Metzger
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Tibor Auer
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany.,MRC Cognition and Brain Sciences Unit, Cambridge, UK.,Department of Psychology, Royal Holloway, University of London, Egham, UK
| | - Gunther Helms
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Nicole E Neef
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany. .,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| |
Collapse
|
29
|
Abstract
Stuttering affects nearly 1% of the population worldwide and often has life-altering negative consequences, including poorer mental health and emotional well-being, and reduced educational and employment achievements. Over two decades of neuroimaging research reveals clear anatomical and physiological differences in the speech neural networks of adults who stutter. However, there have been few neurophysiological investigations of speech production in children who stutter. Using functional near-infrared spectroscopy (fNIRS), we examined hemodynamic responses over neural regions integral to fluent speech production including inferior frontal gyrus, premotor cortex, and superior temporal gyrus during a picture description task. Thirty-two children (16 stuttering and 16 controls) aged 7–11 years participated in the study. We found distinctly different speech-related hemodynamic responses in the group of children who stutter compared to the control group. Whereas controls showed significant activation over left dorsal inferior frontal gyrus and left premotor cortex, children who stutter exhibited deactivation over these left hemisphere regions. This investigation of neural activation during natural, connected speech production in children who stutter demonstrates that in childhood stuttering, atypical functional organization for speech production is present and suggests promise for the use of fNIRS during natural speech production in future research with typical and atypical child populations.
Collapse
|
30
|
Saltuklaroglu T, Harkrider AW, Thornton D, Jenson D, Kittilstved T. EEG Mu (µ) rhythm spectra and oscillatory activity differentiate stuttering from non-stuttering adults. Neuroimage 2017; 153:232-245. [PMID: 28400266 PMCID: PMC5569894 DOI: 10.1016/j.neuroimage.2017.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/24/2017] [Accepted: 04/08/2017] [Indexed: 10/19/2022] Open
Abstract
Stuttering is linked to sensorimotor deficits related to internal modeling mechanisms. This study compared spectral power and oscillatory activity of EEG mu (μ) rhythms between persons who stutter (PWS) and controls in listening and auditory discrimination tasks. EEG data were analyzed from passive listening in noise and accurate (same/different) discrimination of tones or syllables in quiet and noisy backgrounds. Independent component analysis identified left and/or right μ rhythms with characteristic alpha (α) and beta (β) peaks localized to premotor/motor regions in 23 of 27 people who stutter (PWS) and 24 of 27 controls. PWS produced μ spectra with reduced β amplitudes across conditions, suggesting reduced forward modeling capacity. Group time-frequency differences were associated with noisy conditions only. PWS showed increased μ-β desynchronization when listening to noise and early in discrimination events, suggesting evidence of heightened motor activity that might be related to forward modeling deficits. PWS also showed reduced μ-α synchronization in discrimination conditions, indicating reduced sensory gating. Together these findings indicate spectral and oscillatory analyses of μ rhythms are sensitive to stuttering. More specifically, they can reveal stuttering-related sensorimotor processing differences in listening and auditory discrimination that also may be influenced by basal ganglia deficits.
Collapse
Affiliation(s)
- Tim Saltuklaroglu
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA.
| | - David Thornton
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| | - David Jenson
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| | - Tiffani Kittilstved
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| |
Collapse
|
31
|
Lu C, Zheng L, Long Y, Yan Q, Ding G, Liu L, Peng D, Howell P. Reorganization of brain function after a short-term behavioral intervention for stuttering. BRAIN AND LANGUAGE 2017; 168:12-22. [PMID: 28113105 DOI: 10.1016/j.bandl.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/14/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
This study investigated changes in brain function that occurred over a 7-day behavioral intervention for adults who stutter (AWS). Thirteen AWS received the intervention (AWS+), and 13 AWS did not receive the intervention (AWS-). There were 13 fluent controls (FC-). All participants were scanned before and after the intervention. Whole-brain analysis pre-intervention showed significant differences in task-related brain activation between AWS and FC- in the right inferior frontal cortex (IFC) and left middle temporal cortex, but there were no differences between the two AWS groups. Across the 7-day period of the intervention, AWS+ alone showed a significant increase of brain activation in the left ventral IFC/insula. There were no changes in brain function for the other two groups. Further analysis revealed that the change did not correlate with resting-state functional connectivity (RSFC) that AWS showed in the cerebellum (Lu et al., 2012). However, both changes in task-related brain function and RSFC correlated with changes in speech fluency level. Together, these findings suggest that functional reorganization in a brain region close to the left IFC that shows anomalous function in AWS, occurs after a short-term behavioral intervention for stuttering.
Collapse
Affiliation(s)
- Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Lifen Zheng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qian Yan
- Stuttering Therapy Center, Beijing, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Danling Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Peter Howell
- Division of Psychology and Language Sciences, University College London, UK
| |
Collapse
|
32
|
Sowman PF, Ryan M, Johnson BW, Savage G, Crain S, Harrison E, Martin E, Burianová H. Grey matter volume differences in the left caudate nucleus of people who stutter. BRAIN AND LANGUAGE 2017; 164:9-15. [PMID: 27693846 DOI: 10.1016/j.bandl.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/22/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
The cause of stuttering has many theoretical explanations. A number of research groups have suggested changes in the volume and/or function of the striatum as a causal agent. Two recent studies in children and one in adults who stutter (AWS) report differences in striatal volume compared that seen in controls; however, the laterality and nature of this anatomical volume difference is not consistent across studies. The current study investigated whether a reduction in striatal grey matter volume, comparable to that seen in children who stutter (CWS), would be found in AWS. Such a finding would support claims that an anatomical striatal anomaly plays a causal role in stuttering. We used voxel-based morphometry to examine the structure of the striatum in a group of AWS and compared it to that in a group of matched adult control subjects. Results showed a statistically significant group difference for the left caudate nucleus, with smaller mean volume in the group of AWS. The caudate nucleus, one of three main structures within the striatum, is thought to be critical for the planning and modulation of movement sequencing. The difference in striatal volume found here aligns with theoretical accounts of stuttering, which suggest it is a motor control disorder that arises from deficient articulatory movement selection and sequencing. Whilst the current study provides further evidence of a striatal volume difference in stuttering at the group level compared to controls, the significant overlap between AWS and controls suggests this difference is unlikely to be diagnostic of stuttering.
Collapse
Affiliation(s)
- Paul F Sowman
- Department of Cognitive Science, Macquarie University, New South Wales 2109, Australia; Australian Research Council Centre of Excellence in Cognition and Its Disorders, Australia; Perception and Action Research Centre, Faculty of Human Sciences, Macquarie University, New South Wales 2109, Australia.
| | - Margaret Ryan
- Department of Cognitive Science, Macquarie University, New South Wales 2109, Australia; Australian Research Council Centre of Excellence in Cognition and Its Disorders, Australia
| | - Blake W Johnson
- Department of Cognitive Science, Macquarie University, New South Wales 2109, Australia; Australian Research Council Centre of Excellence in Cognition and Its Disorders, Australia
| | - Greg Savage
- Australian Research Council Centre of Excellence in Cognition and Its Disorders, Australia; Department of Psychology, Macquarie University, New South Wales 2109, Australia
| | - Stephen Crain
- Australian Research Council Centre of Excellence in Cognition and Its Disorders, Australia; Department of Linguistics, Macquarie University, New South Wales 2109, Australia
| | - Elisabeth Harrison
- Department of Linguistics, Macquarie University, New South Wales 2109, Australia
| | - Erin Martin
- Department of Cognitive Science, Macquarie University, New South Wales 2109, Australia
| | - Hana Burianová
- Centre for Advanced Imaging, The University of Queensland, Queensland 4072, Australia
| |
Collapse
|
33
|
Venkatagiri HS, Nataraja NP, Deepthi M. Stuttering in relation to the morphophonemics of Kannada. CLINICAL LINGUISTICS & PHONETICS 2016; 31:313-329. [PMID: 27936963 DOI: 10.1080/02699206.2016.1259353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The present study investigated the effect of certain unique morphophonemic features of Kannada words on the rate of stutters in a group of 22 adolescent and adult persons who stuttered in an oral reading task. A linear regression analysis showed that word length ranging from 1 to 8 syllables was a potent variable in the occurrence of stutters accounting for 25.3% of stutters. A composite index of morphophonemic complexity with points assigned for sandhi, geminates, consonant clusters, and number of morphemes accounted for a small 7.5% variability in observed stutter rates. Sandhi words and the hybrid content-function words were no more effective than other words in determining stutter rates. Results are discussed in relation to past findings for other languages and current neurolinguistic models of speech production.
Collapse
Affiliation(s)
| | - Nuggehalli P Nataraja
- b Department of Speech Pathology , JSS Institute of Speech and Hearing , Mysore , India
| | - M Deepthi
- b Department of Speech Pathology , JSS Institute of Speech and Hearing , Mysore , India
| |
Collapse
|
34
|
The role of anxiety in stuttering: Evidence from functional connectivity. Neuroscience 2016; 346:216-225. [PMID: 27919696 DOI: 10.1016/j.neuroscience.2016.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 01/13/2023]
Abstract
Persistent developmental stuttering is a neurologically based speech disorder associated with cognitive-linguistic, motor and emotional abnormalities. Previous studies investigating the relationship between anxiety and stuttering have yielded mixed results, but it has not yet been examined whether anxiety influences brain activity underlying stuttering. Here, using functional magnetic resonance imaging (fMRI), we investigated the functional connectivity associated with state anxiety in a syllable repetition task, and trait anxiety during rest in adults who stutter (N=19) and fluent controls (N=19). During the speech task, people who stutter (PWS) showed increased functional connectivity of the right amygdala with the prefrontal gyrus (the left ventromedial frontal gyrus and right middle frontal gyrus) and the left insula compared to controls. During rest, PWS showed stronger functional connectivity between the right hippocampus and the left orbital frontal gyrus, and between the left hippocampus and left motor areas than controls. Taken together, our results suggest aberrant bottom-up and/or top-down interactions for anxiety regulation, which might be responsible for the higher level of state anxiety during speech and for the anxiety-prone trait in PWS. To our knowledge, this is the first study to examine the neural underpinnings of anxiety in PWS, thus yielding new insight into the causes of stuttering which might aid strategies for the diagnosis and treatment of stuttering.
Collapse
|
35
|
Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Civier O, Ben-Shachar M. Dorsal and ventral language pathways in persistent developmental stuttering. Cortex 2016; 81:79-92. [PMID: 27179916 DOI: 10.1016/j.cortex.2016.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/20/2015] [Accepted: 04/01/2016] [Indexed: 02/06/2023]
|
36
|
Lu C, Long Y, Zheng L, Shi G, Liu L, Ding G, Howell P. Relationship between Speech Production and Perception in People Who Stutter. Front Hum Neurosci 2016; 10:224. [PMID: 27242487 PMCID: PMC4870257 DOI: 10.3389/fnhum.2016.00224] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/29/2016] [Indexed: 11/28/2022] Open
Abstract
Speech production difficulties are apparent in people who stutter (PWS). PWS also have difficulties in speech perception compared to controls. It is unclear whether the speech perception difficulties in PWS are independent of, or related to, their speech production difficulties. To investigate this issue, functional MRI data were collected on 13 PWS and 13 controls whilst the participants performed a speech production task and a speech perception task. PWS performed poorer than controls in the perception task and the poorer performance was associated with a functional activity difference in the left anterior insula (part of the speech motor area) compared to controls. PWS also showed a functional activity difference in this and the surrounding area [left inferior frontal cortex (IFC)/anterior insula] in the production task compared to controls. Conjunction analysis showed that the functional activity differences between PWS and controls in the left IFC/anterior insula coincided across the perception and production tasks. Furthermore, Granger Causality Analysis on the resting-state fMRI data of the participants showed that the causal connection from the left IFC/anterior insula to an area in the left primary auditory cortex (Heschl's gyrus) differed significantly between PWS and controls. The strength of this connection correlated significantly with performance in the perception task. These results suggest that speech perception difficulties in PWS are associated with anomalous functional activity in the speech motor area, and the altered functional connectivity from this area to the auditory area plays a role in the speech perception difficulties of PWS.
Collapse
Affiliation(s)
- Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Lifen Zheng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Guang Shi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Peter Howell
- Division of Psychology and Language Sciences, University College LondonLondon, UK
| |
Collapse
|
37
|
Rogić Vidaković M, Jerković A, Jurić T, Vujović I, Šoda J, Erceg N, Bubić A, Zmajević Schönwald M, Lioumis P, Gabelica D, Đogaš Z. Neurophysiologic markers of primary motor cortex for laryngeal muscles and premotor cortex in caudal opercular part of inferior frontal gyrus investigated in motor speech disorder: a navigated transcranial magnetic stimulation (TMS) study. Cogn Process 2016; 17:429-442. [PMID: 27130564 DOI: 10.1007/s10339-016-0766-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/18/2016] [Indexed: 11/24/2022]
Abstract
Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 ± 2.07 ms and CoMEP amplitude was 294.47 ± 208.87 µV, and in stuttering subjects CoMEP latency was 12.13 ± 0.75 ms and 504.64 ± 487.93 µV CoMEP amplitude. The latency of LLR in control subjects was 52.8 ± 8.6 ms and 54.95 ± 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.
Collapse
Affiliation(s)
- Maja Rogić Vidaković
- School of Medicine, Laboratory for Human and Experimental Neurophysiology (LAHEN), Department of Neuroscience, University of Split, Šoltanska 2, 21000, Split, Croatia.
| | - Ana Jerković
- Faculty of Philosophy, University of Zagreb, Ivana Lučića 3, 10000, Zagreb, Croatia
| | - Tomislav Jurić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Department of Electronics, University of Split, R. Boškovića 32, Split, Croatia
| | - Igor Vujović
- Faculty of Maritime Studies, Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), University of Split, Ruđera-Boškovića 37, Split, Croatia
| | - Joško Šoda
- Faculty of Maritime Studies, Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), University of Split, Ruđera-Boškovića 37, Split, Croatia
| | - Nikola Erceg
- Faculty of Humanities and Social Sciences, University of Split, Put iza nove bolnice 10 C, Split, Croatia
| | - Andreja Bubić
- Faculty of Humanities and Social Sciences, University of Split, Put iza nove bolnice 10 C, Split, Croatia
| | - Marina Zmajević Schönwald
- Clinical Medical Centre "Sisters of Mercy", Department of Neurosurgery, Clinical Unit for Intraoperative Neurophysiologic Monitoring, Vinogradska 29 A, Zagreb, Croatia
| | - Pantelis Lioumis
- Bio Mag Laboratory HUS Medical Imaging center, Helsinki University Hospital, P.O. Box 340, 00029, HUS, Helsinki, Finland
| | - Dragan Gabelica
- School of Medicine, Laboratory for Human and Experimental Neurophysiology (LAHEN), Department of Neuroscience, University of Split, Šoltanska 2, 21000, Split, Croatia.,SGM Medical Monitoring, Grge Novaka 22A, 21000, Split, Croatia
| | - Zoran Đogaš
- School of Medicine, Laboratory for Human and Experimental Neurophysiology (LAHEN), Department of Neuroscience, University of Split, Šoltanska 2, 21000, Split, Croatia
| |
Collapse
|
38
|
When will a stuttering moment occur? The determining role of speech motor preparation. Neuropsychologia 2016; 86:93-102. [PMID: 27106391 DOI: 10.1016/j.neuropsychologia.2016.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/28/2016] [Accepted: 04/18/2016] [Indexed: 11/22/2022]
Abstract
The present study aimed to evaluate whether increased activity related to speech motor preparation preceding fluently produced words reflects a successful compensation strategy in stuttering. For this purpose, a contingent negative variation (CNV) was evoked during a picture naming task and measured by use of electro-encephalography. A CNV is a slow, negative event-related potential known to reflect motor preparation generated by the basal ganglia-thalamo-cortical (BGTC) - loop. In a previous analysis, the CNV of 25 adults with developmental stuttering (AWS) was significantly increased, especially over the right hemisphere, compared to the CNV of 35 fluent speakers (FS) when both groups were speaking fluently (Vanhoutte et al., (2015) doi: 10.1016/j.neuropsychologia.2015.05.013). To elucidate whether this increase is a compensation strategy enabling fluent speech in AWS, the present analysis evaluated the CNV of 7 AWS who stuttered during this picture naming task. The CNV preceding AWS stuttered words was statistically compared to the CNV preceding AWS fluent words and FS fluent words. Though no difference emerged between the CNV of the AWS stuttered words and the FS fluent words, a significant reduction was observed when comparing the CNV preceding AWS stuttered words to the CNV preceding AWS fluent words. The latter seems to confirm the compensation hypothesis: the increased CNV prior to AWS fluent words is a successful compensation strategy, especially when it occurs over the right hemisphere. The words are produced fluently because of an enlarged activity during speech motor preparation. The left CNV preceding AWS stuttered words correlated negatively with stuttering frequency and severity suggestive for a link between the left BGTC - network and the stuttering pathology. Overall, speech motor preparatory activity generated by the BGTC - loop seems to have a determining role in stuttering. An important divergence between left and right hemisphere is hypothesized.
Collapse
|
39
|
Venezia JH, Fillmore P, Matchin W, Isenberg AL, Hickok G, Fridriksson J. Perception drives production across sensory modalities: A network for sensorimotor integration of visual speech. Neuroimage 2016; 126:196-207. [PMID: 26608242 PMCID: PMC4733636 DOI: 10.1016/j.neuroimage.2015.11.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 11/22/2022] Open
Abstract
Sensory information is critical for movement control, both for defining the targets of actions and providing feedback during planning or ongoing movements. This holds for speech motor control as well, where both auditory and somatosensory information have been shown to play a key role. Recent clinical research demonstrates that individuals with severe speech production deficits can show a dramatic improvement in fluency during online mimicking of an audiovisual speech signal suggesting the existence of a visuomotor pathway for speech motor control. Here we used fMRI in healthy individuals to identify this new visuomotor circuit for speech production. Participants were asked to perceive and covertly rehearse nonsense syllable sequences presented auditorily, visually, or audiovisually. The motor act of rehearsal, which is prima facie the same whether or not it is cued with a visible talker, produced different patterns of sensorimotor activation when cued by visual or audiovisual speech (relative to auditory speech). In particular, a network of brain regions including the left posterior middle temporal gyrus and several frontoparietal sensorimotor areas activated more strongly during rehearsal cued by a visible talker versus rehearsal cued by auditory speech alone. Some of these brain regions responded exclusively to rehearsal cued by visual or audiovisual speech. This result has significant implications for models of speech motor control, for the treatment of speech output disorders, and for models of the role of speech gesture imitation in development.
Collapse
Affiliation(s)
- Jonathan H Venezia
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, United States.
| | - Paul Fillmore
- Department of Communication Sciences and Disorders, Baylor University, Waco, TX 76798, United States
| | - William Matchin
- Department of Linguistics, University of Maryland, College Park, MD 20742, United States
| | - A Lisette Isenberg
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, United States
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
40
|
Yang Y, Jia F, Siok WT, Tan LH. Altered functional connectivity in persistent developmental stuttering. Sci Rep 2016; 6:19128. [PMID: 26743821 PMCID: PMC4705486 DOI: 10.1038/srep19128] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023] Open
Abstract
Persistent developmental stuttering (PDS) is a speech disorder that impairs communication skills. Despite extensive research, the core causes of PDS are elusive. Converging evidence from task-induced neuroimaging methods has demonstrated the contributions of the basal ganglia and the cerebellum to PDS, but such task-state neuroimaging findings are often confounded by behavioral performance differences between subjects who stutter and normal controls. Here, using resting-state functional magnetic resonance imaging, we investigated functional connectivity within cerebellar-cortical and basal ganglia-thalamocortical networks in 16 adults who stutter and 18 age-matched fluent speakers. Seed-to-voxel analysis demonstrated that, compared to controls, adults who stutter showed alternations in functional connectivity of cerebellum to motor cortex as well as connectivity among different locals within cerebellum. Additionally, we found that functional connectivity within cerebellar circuits was significantly correlated with severity of stuttering. The alternations of functional connectivity within basal ganglia-thalamocortical networks were identified as the reduced connectivity of the putamen to the superior temporal gyrus and inferior parietal lobules in adults who stutter. The abnormalities of resting state functional connectivity are assumed to affect language planning and motor execution critical for speaking fluently. Our findings may yield neurobiological cues to the biomarkers of PDS.
Collapse
Affiliation(s)
- Yang Yang
- Neuroimaging Laboratory, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Institute of Neuroscience, Shenzhen, China
- Guangdong Key Laboratory of Biomedical Information Detection and Ultrasound Imaging, Shenzhen, China
| | - Fanlu Jia
- Neuroimaging Laboratory, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Institute of Neuroscience, Shenzhen, China
- Guangdong Key Laboratory of Biomedical Information Detection and Ultrasound Imaging, Shenzhen, China
| | - Wai Ting Siok
- Shenzhen Institute of Neuroscience, Shenzhen, China
- School of Humanities, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Li Hai Tan
- Neuroimaging Laboratory, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Institute of Neuroscience, Shenzhen, China
- Guangdong Key Laboratory of Biomedical Information Detection and Ultrasound Imaging, Shenzhen, China
| |
Collapse
|
41
|
Klaas HS, Frühholz S, Grandjean D. Aggressive vocal expressions-an investigation of their underlying neural network. Front Behav Neurosci 2015; 9:121. [PMID: 26029069 PMCID: PMC4426728 DOI: 10.3389/fnbeh.2015.00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/27/2015] [Indexed: 11/13/2022] Open
Abstract
Recent neural network models for the production of primate vocalizations are largely based on research in nonhuman primates. These models seem yet not fully capable of explaining the neural network dynamics especially underlying different types of human vocalizations. Unlike animal vocalizations, human affective vocalizations might involve higher levels of vocal control and monitoring demands, especially in case of more complex vocal expressions of emotions superimposed on speech. Here we therefore investigated the functional cortico-subcortical network underlying different types (evoked vs. repetition) of producing human affective vocalizations in terms of affective prosody, especially examining the aggressive tone of a voice while producing meaningless speech-like utterances. Functional magnetic resonance imaging revealed, first, that bilateral auditory cortices showed a close functional interconnectivity during affective vocalizations pointing to a bilateral exchange of relevant acoustic information of produced vocalizations. Second, bilateral motor cortices (MC) that directly control vocal motor behavior showed functional connectivity to the right inferior frontal gyrus (IFG) and the right superior temporal gyrus (STG). Thus, vocal motor behavior during affective vocalizations seems to be controlled by a right lateralized network that provides vocal monitoring (IFG), probably based on auditory feedback processing (STG). Third, the basal ganglia (BG) showed both positive and negative modulatory connectivity with several frontal (ACC, IFG) and temporal brain regions (STG). Finally, the repetition of affective prosody compared to evoked vocalizations revealed a more extended neural network probably based on higher control and vocal monitoring demands. Taken together, the functional brain network underlying human affective vocalizations revealed several features that have been so far neglected in models of primate vocalizations.
Collapse
Affiliation(s)
- Hannah S Klaas
- Neuroscience of Emotion and Affective Dynamics Laboratory (NEAD), Department of Psychology, University of Geneva Geneva, Switzerland
| | - Sascha Frühholz
- Neuroscience of Emotion and Affective Dynamics Laboratory (NEAD), Department of Psychology, University of Geneva Geneva, Switzerland ; Swiss Center for Affective Sciences, University of Geneva Geneva, Switzerland
| | - Didier Grandjean
- Neuroscience of Emotion and Affective Dynamics Laboratory (NEAD), Department of Psychology, University of Geneva Geneva, Switzerland ; Swiss Center for Affective Sciences, University of Geneva Geneva, Switzerland
| |
Collapse
|
42
|
Beal DS, Lerch JP, Cameron B, Henderson R, Gracco VL, De Nil LF. The trajectory of gray matter development in Broca's area is abnormal in people who stutter. Front Hum Neurosci 2015; 9:89. [PMID: 25784869 PMCID: PMC4347452 DOI: 10.3389/fnhum.2015.00089] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/04/2015] [Indexed: 11/13/2022] Open
Abstract
The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca’s area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter) ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in people who stutter.
Collapse
Affiliation(s)
- Deryk S Beal
- Department of Communication Sciences and Disorders and the Institute for Stuttering Treatment and Research, Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada ; Neuroscience and Mental Health Institute, University of Alberta Edmonton, AB, Canada
| | - Jason P Lerch
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Toronto, ON, Canada ; Department of Medical Biophysics, University of Toronto Toronto, ON, Canada
| | - Brodie Cameron
- Department of Communication Sciences and Disorders and the Institute for Stuttering Treatment and Research, Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada
| | - Rhaeling Henderson
- Department of Communication Sciences and Disorders and the Institute for Stuttering Treatment and Research, Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada
| | - Vincent L Gracco
- Haskins Laboratories New Haven, CT, USA ; Centre for Research on Brain, Language and Music, McGill University Montreal, QC, Canada
| | - Luc F De Nil
- Department of Speech-Language Pathology, University of Toronto Toronto, ON, Canada
| |
Collapse
|
43
|
Belyk M, Kraft SJ, Brown S. Stuttering as a trait or state - an ALE meta-analysis of neuroimaging studies. Eur J Neurosci 2014; 41:275-84. [PMID: 25350867 DOI: 10.1111/ejn.12765] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 11/29/2022]
Abstract
Stuttering is a speech disorder characterised by repetitions, prolongations and blocks that disrupt the forward movement of speech. An earlier meta-analysis of brain imaging studies of stuttering (Brown et al., 2005) revealed a general trend towards rightward lateralization of brain activations and hyperactivity in the larynx motor cortex bilaterally. The present study sought not only to update that meta-analysis with recent work but to introduce an important distinction not present in the first study, namely the difference between 'trait' and 'state' stuttering. The analysis of trait stuttering compares people who stutter (PWS) with people who do not stutter when behaviour is controlled for, i.e., when speech is fluent in both groups. In contrast, the analysis of state stuttering examines PWS during episodes of stuttered speech compared with episodes of fluent speech. Seventeen studies were analysed using activation likelihood estimation. Trait stuttering was characterised by the well-known rightward shift in lateralization for language and speech areas. State stuttering revealed a more diverse pattern. Abnormal activation of larynx and lip motor cortex was common to the two analyses. State stuttering was associated with overactivation in the right hemisphere larynx and lip motor cortex. Trait stuttering was associated with overactivation of lip motor cortex in the right hemisphere but underactivation of larynx motor cortex in the left hemisphere. These results support a large literature highlighting laryngeal and lip involvement in the symptomatology of stuttering, and disambiguate two possible sources of activation in neuroimaging studies of persistent developmental stuttering.
Collapse
Affiliation(s)
- Michel Belyk
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4M9, Canada
| | | | | |
Collapse
|
44
|
The frontal aslant tract underlies speech fluency in persistent developmental stuttering. Brain Struct Funct 2014; 221:365-81. [PMID: 25344925 DOI: 10.1007/s00429-014-0912-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
45
|
Joos K, De Ridder D, Boey RA, Vanneste S. Functional connectivity changes in adults with developmental stuttering: a preliminary study using quantitative electro-encephalography. Front Hum Neurosci 2014; 8:783. [PMID: 25352797 PMCID: PMC4195313 DOI: 10.3389/fnhum.2014.00783] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/15/2014] [Indexed: 11/28/2022] Open
Abstract
Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity. Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on quality of life (QoL), we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R) and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES), respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA) analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES. Results: No significant results could be obtained when looking at neural activity, however significant alterations in resting state functional connectivity could be demonstrated between persons who stutter (PWS) and fluently speaking controls, predominantly interhemispheric, i.e., a decreased functional connectivity for high frequency oscillations (beta and gamma) between motor speech areas (BA44 and 45) and the contralateral premotor (BA6) and motor (BA4) areas. Moreover, a positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha) and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL. Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is maladaptive.
Collapse
Affiliation(s)
- Kathleen Joos
- Department of Neurosurgery, University Hospital Antwerp Antwerp, Belgium ; Department of Translational Neuroscience, Faculty of Medicine, University of Antwerp Antwerp, Belgium
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago Dunedin, New Zealand ; BRAI2N and TRI, Sint Augustinus Hospital Antwerp, Belgium
| | - Ronny A Boey
- Centre of Stuttering Therapy Antwerp, University of Antwerp Antwerp, Belgium ; Faculty of Medicine and Health Sciences, University of Antwerp Antwerp, Belgium
| | - Sven Vanneste
- Department of Translational Neuroscience, Faculty of Medicine, University of Antwerp Antwerp, Belgium ; School of Behavioral and Brain Sciences, The University of Texas at Dallas Richardson, TX, USA
| |
Collapse
|
46
|
Vanhoutte S, Van Borsel J, Cosyns M, Batens K, van Mierlo P, Hemelsoet D, Van Roost D, Corthals P, De Letter M, Santens P. CNV amplitude as a neural correlate for stuttering frequency: A case report of acquired stuttering. Neuropsychologia 2014; 64:349-59. [PMID: 25281310 DOI: 10.1016/j.neuropsychologia.2014.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 11/28/2022]
Abstract
A neural hallmark of developmental stuttering is abnormal articulatory programming. One of the neurophysiological substrates of articulatory preparation is the contingent negative variation (CNV). Unfortunately, CNV tasks are rarely performed in persons who stutter and mainly focus on the effect of task variation rather than on interindividual variation in stutter related variables. However, variations in motor programming seem to be related to variation in stuttering frequency. The current study presents a case report of acquired stuttering following stroke and stroke related surgery in the left superior temporal gyrus. A speech related CNV task was administered at four points in time with differences in stuttering severity and frequency. Unexpectedly, CNV amplitudes at electrode sites approximating bilateral motor and left inferior frontal gyrus appeared to be inversely proportional to stuttering frequency. The higher the stuttering frequency, the lower the activity for articulatory preparation. Thus, the amount of disturbance in motor programming seems to determine stuttering frequency. At right frontal electrodes, a relative increase in CNV amplitude was seen at the test session with most severe stuttering. Right frontal overactivation is cautiously suggested to be a compensation strategy. In conclusion, late CNV amplitude elicited by a relatively simple speech task seems to be able to provide an objective, neural correlate of stuttering frequency. The present case report supports the hypothesis that motor preparation has an important role in stuttering.
Collapse
Affiliation(s)
- Sarah Vanhoutte
- Department of Internal Medicine, Neurology, Ghent University, Ghent University Hospital, De Pintelaan 185, 1K12A, B-9000 Ghent, Belgium.
| | - John Van Borsel
- Department of Speech, Language and Hearing Sciences, Ghent University, Ghent University Hospital, De Pintelaan 185, 2P1, B-9000 Ghent, Belgium; Veiga de Almeida University, Rua Ibituruna, 108, Tijuca, Rio de Janeiro, Brazil.
| | - Marjan Cosyns
- Department of Speech, Language and Hearing Sciences, Ghent University, Ghent University Hospital, De Pintelaan 185, 2P1, B-9000 Ghent, Belgium.
| | - Katja Batens
- Department of Neurology, Ghent University Hospital, De Pintelaan 185,1K12A, B-9000 Ghent, Belgium; Department of physical therapy and motor rehabilitation, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium.
| | - Pieter van Mierlo
- MEDISIP, Department of Electronics and Information Systems, Ghent University - iMINDS Medical IT Department, Ghent University Hospital De Pintelaan 185, 5-Blok B, B-9000 Ghent, Belgium.
| | - Dimitri Hemelsoet
- Department of Neurology, Ghent University Hospital, De Pintelaan 185,1K12A, B-9000 Ghent, Belgium.
| | - Dirk Van Roost
- Department of Neurosurgery, Ghent University Hospital, De Pintelaan 185, 4K12E, B-9000 Ghent, Belgium; Department of Surgery, Ghent University, De Pintelaan 185, 4K12E, B-9000 Ghent, Belgium.
| | - Paul Corthals
- Department of Speech, Language and Hearing Sciences, Ghent University, Ghent University Hospital, De Pintelaan 185, 2P1, B-9000 Ghent, Belgium; Faculty of Education, Health and Social Work, University College Ghent, Keramiekstraat 80, B-9000 Ghent, Belgium.
| | - Miet De Letter
- Department of Speech, Language and Hearing Sciences, Ghent University, Ghent University Hospital, De Pintelaan 185, 2P1, B-9000 Ghent, Belgium; Department of Neurology, Ghent University Hospital, De Pintelaan 185,1K12A, B-9000 Ghent, Belgium.
| | - Patrick Santens
- Department of Internal Medicine, Neurology, Ghent University, Ghent University Hospital, De Pintelaan 185, 1K12A, B-9000 Ghent, Belgium; Department of Neurology, Ghent University Hospital, De Pintelaan 185,1K12A, B-9000 Ghent, Belgium.
| |
Collapse
|
47
|
Jansson-Verkasalo E, Eggers K, Järvenpää A, Suominen K, Van den Bergh B, De Nil L, Kujala T. Atypical central auditory speech-sound discrimination in children who stutter as indexed by the mismatch negativity. JOURNAL OF FLUENCY DISORDERS 2014; 41:1-11. [PMID: 25066139 DOI: 10.1016/j.jfludis.2014.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/18/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
PURPOSE Recent theoretical conceptualizations suggest that disfluencies in stuttering may arise from several factors, one of them being atypical auditory processing. The main purpose of the present study was to investigate whether speech sound encoding and central auditory discrimination, are affected in children who stutter (CWS). METHODS Participants were 10 CWS, and 12 typically developing children with fluent speech (TDC). Event-related potentials (ERPs) for syllables and syllable changes [consonant, vowel, vowel-duration, frequency (F0), and intensity changes], critical in speech perception and language development of CWS were compared to those of TDC. RESULTS There were no significant group differences in the amplitudes or latencies of the P1 or N2 responses elicited by the standard stimuli. However, the Mismatch Negativity (MMN) amplitude was significantly smaller in CWS than in TDC. For TDC all deviants of the linguistic multifeature paradigm elicited significant MMN amplitudes, comparable with the results found earlier with the same paradigm in 6-year-old children. In contrast, only the duration change elicited a significant MMN in CWS. CONCLUSIONS The results showed that central auditory speech-sound processing was typical at the level of sound encoding in CWS. In contrast, central speech-sound discrimination, as indexed by the MMN for multiple sound features (both phonetic and prosodic), was atypical in the group of CWS. Findings were linked to existing conceptualizations on stuttering etiology. EDUCATIONAL OBJECTIVES The reader will be able (a) to describe recent findings on central auditory speech-sound processing in individuals who stutter, (b) to describe the measurement of auditory reception and central auditory speech-sound discrimination, (c) to describe the findings of central auditory speech-sound discrimination, as indexed by the mismatch negativity (MMN), in children who stutter.
Collapse
Affiliation(s)
- Eira Jansson-Verkasalo
- Department of Behavioural Sciences and Philosophy, Logopedics, University of Turku, Finland; Department of Clinical Neurophysiology, Oulu University Hospital, Finland.
| | - Kurt Eggers
- Department of Speech-Language Therapy and Audiology, Thomas More University College Antwerp, Belgium.
| | - Anu Järvenpää
- Department of Clinical Neurophysiology, Oulu University Hospital, Finland.
| | - Kalervo Suominen
- Department of Clinical Neurophysiology, Oulu University Hospital, Finland.
| | - Bea Van den Bergh
- Department of Psychology, Tilburg University, The Netherlands; Department of Psychology, University of Leuven, Belgium.
| | - Luc De Nil
- School of Graduate Studies, University of Toronto, Canada; Experimental Otorinolaryngology, Department of Neurosciences, University of Leuven, Belgium.
| | - Teija Kujala
- Cicero Learning, University of Helsinki, Helsinki, Finland; Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, Finland.
| |
Collapse
|
48
|
Sowman PF, Crain S, Harrison E, Johnson BW. Lateralization of brain activation in fluent and non-fluent preschool children: a magnetoencephalographic study of picture-naming. Front Hum Neurosci 2014; 8:354. [PMID: 24904388 PMCID: PMC4035571 DOI: 10.3389/fnhum.2014.00354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 05/09/2014] [Indexed: 11/30/2022] Open
Abstract
The neural causes of stuttering remain unknown. One explanation comes from neuroimaging studies that have reported abnormal lateralization of activation in the brains of people who stutter. However, these findings are generally based on data from adults with a long history of stuttering, raising the possibility that the observed lateralization anomalies are compensatory rather than causal. The current study investigated lateralization of brain activity in language-related regions of interest in young children soon after the onset of stuttering. We tested 24 preschool-aged children, half of whom had a positive diagnosis of stuttering. All children participated in a picture-naming experiment whilst their brain activity was recorded by magnetoencephalography. Source analysis performed during an epoch prior to speech onset was used to assess lateralized activation in three regions of interest. Activation was significantly lateralized to the left hemisphere in both groups and not different between groups. This study shows for the first time that significant speech preparatory brain activation can be identified in young children during picture-naming and supports the contention that, in stutterers, aberrant lateralization of brain function may be the result of neuroplastic adaptation that occurs as the condition becomes chronic.
Collapse
Affiliation(s)
- Paul F. Sowman
- Department of Cognitive Science, ARC Centre of Excellence for Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia
- Perception and Action Research Centre (PARC), Faculty of Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stephen Crain
- Department of Linguistics, ARC Centre of Excellence for Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia
| | - Elisabeth Harrison
- Department of Linguistics, ARC Centre of Excellence for Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia
| | - Blake W. Johnson
- Department of Cognitive Science, ARC Centre of Excellence for Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
49
|
Connally EL, Ward D, Howell P, Watkins KE. Disrupted white matter in language and motor tracts in developmental stuttering. BRAIN AND LANGUAGE 2014; 131:25-35. [PMID: 23819900 DOI: 10.1016/j.bandl.2013.05.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/18/2013] [Indexed: 06/02/2023]
Abstract
White matter tracts connecting areas involved in speech and motor control were examined using diffusion-tensor imaging in a sample of people who stutter (n=29) who were heterogeneous with respect to age, sex, handedness and stuttering severity. The goals were to replicate previous findings in developmental stuttering and to extend our knowledge by evaluating the relationship between white matter differences in people who stutter and factors such as age, sex, handedness and stuttering severity. We replicated previous findings that showed reduced integrity in white matter underlying ventral premotor cortex, cerebral peduncles and posterior corpus callosum in people who stutter relative to controls. Tractography analysis additionally revealed significantly reduced white matter integrity in the arcuate fasciculus bilaterally and the left corticospinal tract and significantly reduced connectivity within the left corticobulbar tract in people who stutter. Region-of-interest analyses revealed reduced white matter integrity in people who stutter in the three pairs of cerebellar peduncles that carry the afferent and efferent fibers of the cerebellum. Within the group of people who stutter, the higher the stuttering severity index, the lower the white matter integrity in the left angular gyrus, but the greater the white matter connectivity in the left corticobulbar tract. Also, in people who stutter, handedness and age predicted the integrity of the corticospinal tract and peduncles, respectively. Further studies are needed to determine which of these white matter differences relate to the neural basis of stuttering and which reflect experience-dependent plasticity.
Collapse
Affiliation(s)
- Emily L Connally
- Department of Experimental Psychology & Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, South Parks Road, Oxford OX1 3UD, UK.
| | - David Ward
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights Road, Reading RG6 6AL, UK.
| | - Peter Howell
- Cognitive, Perceptual and Brain Sciences Department, University College London, 26 Bedford Way, London WC1H 0AP, UK.
| | - Kate E Watkins
- Department of Experimental Psychology & Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|
50
|
Liu J, Wang Z, Huo Y, Davidson SM, Klahr K, Herder CL, Sikora CO, Peterson BS. A functional imaging study of self-regulatory capacities in persons who stutter. PLoS One 2014; 9:e89891. [PMID: 24587104 PMCID: PMC3937393 DOI: 10.1371/journal.pone.0089891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
Developmental stuttering is a disorder of speech fluency with an unknown pathogenesis. The similarity of its phenotype and natural history with other childhood neuropsychiatric disorders of frontostriatal pathology suggests that stuttering may have a closely related pathogenesis. We investigated in this study the potential involvement of frontostriatal circuits in developmental stuttering. We collected functional magnetic resonance imaging data from 46 persons with stuttering and 52 fluent controls during performance of the Simon Spatial Incompatibility Task. We examined differences between the two groups of blood-oxygen-level-dependent activation associated with two neural processes, the resolution of cognitive conflict and the context-dependent adaptation to changes in conflict. Stuttering speakers and controls did not differ on behavioral performance on the task. In the presence of conflict-laden stimuli, however, stuttering speakers activated more strongly the cingulate cortex, left anterior prefrontal cortex, right medial frontal cortex, left supplementary motor area, right caudate nucleus, and left parietal cortex. The magnitude of activation in the anterior cingulate cortex correlated inversely in stuttering speakers with symptom severity. Stuttering speakers also showed blunted activation during context-dependent adaptation in the left dorsolateral prefrontal cortex, a brain region that mediates cross-temporal contingencies. Frontostriatal hyper-responsivity to conflict resembles prior findings in other disorders of frontostriatal pathology, and therefore likely represents a general mechanism supporting functional compensation for an underlying inefficiency of neural processing in these circuits. The reduced activation of dorsolateral prefrontal cortex likely represents the inadequate readiness of stuttering speakers to execute a sequence of motor responses.
Collapse
Affiliation(s)
- Jie Liu
- Department of Psychiatry, The New York State Psychiatric Institute, Columbia College of Physicians and Surgeons, New York, New York, United States of America
| | - Zhishun Wang
- Department of Psychiatry, The New York State Psychiatric Institute, Columbia College of Physicians and Surgeons, New York, New York, United States of America
| | - Yuankai Huo
- Department of Psychiatry, The New York State Psychiatric Institute, Columbia College of Physicians and Surgeons, New York, New York, United States of America
| | - Stephanie M. Davidson
- Department of Psychiatry, The New York State Psychiatric Institute, Columbia College of Physicians and Surgeons, New York, New York, United States of America
| | - Kristin Klahr
- Department of Psychiatry, The New York State Psychiatric Institute, Columbia College of Physicians and Surgeons, New York, New York, United States of America
| | - Carl L. Herder
- American Institute for Stuttering, New York, New York, United States of America
| | - Chamonix O. Sikora
- American Institute for Stuttering, New York, New York, United States of America
| | - Bradley S. Peterson
- Department of Psychiatry, The New York State Psychiatric Institute, Columbia College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|