1
|
Takano-Kawabe K, Matoba K, Nakamura Y, Moriyama M. Low Density Lipoprotein Receptor-related Protein 2 Expression and Function in Cultured Astrocytes and Microglia. Neurochem Res 2024; 49:199-211. [PMID: 37702891 DOI: 10.1007/s11064-023-04022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Activation of glial cells, astrocytes and microglia, has been observed in neurodegenerative diseases including Alzheimer's disease (AD). Amyloid β (Aβ), which is aggregated and the aggregation is detected as characteristic pathology in AD brain, is known to be produced by neurons and to activate glial cells. Clearance of Aβ from the brain via active transport system is important to prevent the accumulation and aggregation. Low density lipoprotein receptor-related protein 2 (LRP2/megalin) is an Aβ transporter. However, expression and contribution of LRP2 in astrocytes and microglia remain to be clarified. In the present study, we examined the expression of LRP2 and its roles in cultured astrocytes prepared from rat embryonic brain cortex and mouse microglial cell line BV-2. Both cultured rat astrocytes and BV-2 cells expressed LRP2 mRNA detected by RT-PCR. When lipopolysaccharide (LPS) or all-trans retinoic acid (ATRA) were added to BV-2 cells, LRP2 mRNA expression and uptake of microbeads, Aβ and insulin were increased. On the other hand, LPS decreased LRP2 expression and uptake of Aβ and insulin in cultured astrocytes. Knockdown of LRP2 using siRNA attenuated the LPS- or ATRA-increased uptake of microbeads, Aβ and insulin in BV-2 cells. These results suggest that LRP2 was expressed in both astrocytes and microglia and might be involved in endocytosis activities. Adequate control of LRP2 expression and function in astrocytes and microglia might regulate Aβ and insulin levels in brain and would be a potential target in AD pathology.
Collapse
Affiliation(s)
- Katsura Takano-Kawabe
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Metropolitan University, 1-58, Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Kazuyuki Matoba
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Metropolitan University, 1-58, Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Metropolitan University, 1-58, Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Metropolitan University, 1-58, Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
2
|
Maroli N. Aquaporin-4 Mediated Aggregation of Alzheimer's Amyloid β-Peptide. ACS Chem Neurosci 2023; 14:2683-2698. [PMID: 37486638 DOI: 10.1021/acschemneuro.3c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Clearance of Alzheimer's amyloid oligomers from the brain is crucial for preventing cell toxicity. Dementia complications arise as a result of apoptosis, which is caused by peptide plaques on the lipid surface of cells. Here, we employed all-atom and coarse-grained molecular dynamics simulations to investigate the aggregation of amyloid peptides at the lipid surface and the role of aquaporin-4 (AQP4) in facilitating peptide clearance from astrocytes. The network of protein-protein interactions through text mining revealed that the expression of AQP4 and amyloid aggregation were strongly correlated. It has also been revealed that the role of aquaporins in the etiology of Alzheimer's disease involves several interconnected proteins and pathways. The nature of aggregation at the surface of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer was revealed by the interaction of amyloid oligomers. The membrane-bound pore region of AQP4 interacts with the peptide and slows its aggregation. This interaction maintains the helical content of the peptide while lowering its toxicity at the lipid surface. The hydrophobicity of the peptide also decreased because of these interactions, which may help in the removal of the peptide from astrocytes. Long-term coarse-grained MD simulations demonstrated different features of oligomer aggregation at the surface and strong oligomer attraction to AQP4, which inhibited aggregation. Additionally, the water dynamics of aquaporins demonstrate how the selectivity filter is broken to disrupt water flow. Our findings also provide insight into the physiological alterations in brain tissue associated with Alzheimer's disease, including water retention and increased water flow in the CSF. Furthermore, in vitro thioflavin fluorescence spectroscopy revealed a slower aggregation of the peptide in the presence of AQP4.
Collapse
Affiliation(s)
- Nikhil Maroli
- Computational Biology Division, DRDO Center for Life Science, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
3
|
Lemus Silva EG, Delgadillo Y, White RE, Lucin KM. Beclin 1 regulates astrocyte phagocytosis and phagosomal recruitment of retromer. Tissue Cell 2023; 82:102100. [PMID: 37182392 DOI: 10.1016/j.tice.2023.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Phagocytosis plays an important role in maintaining brain homeostasis and when impaired can result in the accumulation of unwanted cellular material. While microglia are traditionally considered the phagocytes of the brain, astrocytes are also capable of phagocytosis and are the most numerous cells in the brain. In Alzheimer's disease (AD), astrocytes can be found surrounding β-amyloid (Aβ) plaques yet they seem unable to eliminate these deposits, suggesting phagocytosis may be impaired in AD. Mechanisms that might diminish astrocyte phagocytosis in AD are currently unclear. Here, we demonstrate that the autophagy protein beclin 1, which is reduced in AD, plays a role in regulating astrocyte phagocytosis. Specifically, we show that reducing beclin 1 in C6 astrocytes impairs the phagocytosis of latex beads, reduces retromer levels, and impairs retromer recruitment to the phagosomal membrane. Furthermore, we show that these beclin 1-mediated changes are accompanied by reduced expression of the phagocytic receptor Scavenger Receptor Class B type I (SR-BI). Collectively, these findings suggest a critical role for the protein beclin 1 in both receptor trafficking and receptor-mediated phagocytosis in astrocytes. Moreover, these findings provide insight into mechanisms by which astrocytes may become impaired in AD.
Collapse
Affiliation(s)
| | | | - Robin E White
- Westfield State University, Westfield, MA 01086, USA
| | - Kurt M Lucin
- Eastern Connecticut State University, Willimantic, CT 06226, USA.
| |
Collapse
|
4
|
Zhou G, Ye Q, Xu Y, He B, Wu L, Zhu G, Xie J, Yao L, Xiao Z. Mitochondrial calcium uptake 3 mitigates cerebral amyloid angiopathy-related neuronal death and glial inflammation by reducing mitochondrial dysfunction. Int Immunopharmacol 2023; 117:109614. [PMID: 36878048 DOI: 10.1016/j.intimp.2022.109614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 03/06/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the cerebrovascular amyloid-β (Aβ) accumulation, and always accompanied by Alzheimer's disease (AD). Mitochondrial dysfunction-associated cellular events including cell death, inflammation and oxidative stress are implicated in the progression of CAA. Unfortunately, the molecular mechanisms revealing CAA pathogenesis are still obscure, thus requiring further studies. Mitochondrial calcium uptake 3 (MICU3), a regulator of the mitochondrial Ca2+ uniporter (MCU), mediates various biological functions, but its expression and influence on CAA are largely unknown. In the present study, we found that MICU3 expression was gradually declined in cortex and hippocampus of Tg-SwDI transgenic mice. Using stereotaxic operation with AAV9 encoding MICU3, we showed that AAV-MICU3 improved the behavioral performances and cerebral blood flow (CBF) in Tg-SwDI mice, along with markedly reduced Aβ deposition through mediating Aβ metabolism process. Importantly, we found that AAV-MICU3 remarkably improved neuronal death and mitigated glial activation and neuroinflammation in cortex and hippocampus of Tg-SwDI mice. Furthermore, excessive oxidative stress, mitochondrial impairment and dysfunction, decreased ATP and mitochondrial DNA (mtDNA) were detected in Tg-SwDI mice, while being considerably ameliorated upon MICU3 over-expression. More importantly, our in vitro experiments suggested that MICU3-attenuated neuronal death, activation of glial cells and oxidative stress were completely abrogated upon PTEN induced putative kinase 1 (PINK1) knockdown, indicating that PINK1 was required for MICU3 to perform its protective effects against CAA. Mechanistic experiment confirmed an interaction between MICU3 and PINK1. Together, these findings demonstrated that MICU3-PINK1 axis may serve as a key target for CAA treatment mainly through improving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Guijuan Zhou
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China; Department of Rehabilitation Medicine, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Qing Ye
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Yan Xu
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Bing He
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Lin Wu
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Guanghua Zhu
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Juan Xie
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Lan Yao
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Zijian Xiao
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China.
| |
Collapse
|
5
|
Uddin MS, Lim LW. Glial cells in Alzheimer's disease: From neuropathological changes to therapeutic implications. Ageing Res Rev 2022; 78:101622. [PMID: 35427810 DOI: 10.1016/j.arr.2022.101622] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that usually develops slowly and progressively worsens over time. Although there has been increasing research interest in AD, its pathogenesis is still not well understood. Although most studies primarily focus on neurons, recent research findings suggest that glial cells (especially microglia and astrocytes) are associated with AD pathogenesis and might provide various possible therapeutic targets. Growing evidence suggests that microglia can provide protection against AD pathogenesis, as microglia with weakened functions and impaired responses to Aβ proteins are linked with elevated AD risk. Interestingly, numerous findings also suggest that microglial activation can be detrimental to neurons. Indeed, microglia can induce synapse loss via the engulfment of synapses, possibly through a complement-dependent process. Furthermore, they can worsen tau pathology and release inflammatory factors that cause neuronal damage directly or through the activation of neurotoxic astrocytes. Astrocytes play a significant role in various cerebral activities. Their impairment can mediate neurodegeneration and ultimately the retraction of synapses, resulting in AD-related cognitive deficits. Deposition of Aβ can result in astrocyte reactivity, which can further lead to neurotoxic effects and elevated secretion of inflammatory mediators and cytokines. Moreover, glial-induced inflammation in AD can exert both beneficial and harmful effects. Understanding the activities of astrocytes and microglia in the regulation of AD pathogenesis would facilitate the development of novel therapies. In this article, we address the implications of microglia and astrocytes in AD pathogenesis. We also discuss the mechanisms of therapeutic agents that exhibit anti-inflammatory effects against AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Ngwa JS, Nwulia E, Ntekim O, Bedada FB, Kwabi-Addo B, Nadarajah S, Johnson S, Southerland WM, Kwagyan J, Obisesan TO. Aerobic Exercise Training-Induced Changes on DNA Methylation in Mild Cognitively Impaired Elderly African Americans: Gene, Exercise, and Memory Study - GEMS-I. Front Mol Neurosci 2022; 14:752403. [PMID: 35110995 PMCID: PMC8802631 DOI: 10.3389/fnmol.2021.752403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/16/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND DNA methylation at CpG sites is a vital epigenetic modification of the human genome affecting gene expression, and potentially, health outcomes. However, evidence is just budding on the effects of aerobic exercise-induced adaptation on DNA methylation in older mild cognitively impaired (MCI) elderly African American (AAs). Therefore, we examined the effects of a 6-month aerobic exercise-intervention on genome-wide DNA methylation in elderly AA MCI volunteers. DESIGN Elderly AA volunteers confirmed MCI assigned into a 6-month program of aerobic exercise (eleven participants) underwent a 40-min supervised-training 3-times/week and controls (eight participants) performed stretch training. Participants had maximal oxygen consumption (VO2max) test and Genome-wide methylation levels at CpG sites using the Infinium HumanMethylation450 BeadChip assay at baseline and after a 6-month exercise program. We computed false discovery rates (FDR) using Sidak to account for multiplicity of tests and performed quantitative real-time polymerase chain-reaction (qRT-PCR) to confirm the effects of DNA methylations on expression levels of the top 5 genes among the aerobic participants. CpG sites identified from aerobic-exercise participants were similarly analyzed by the stretch group to quantify the effects of exercise-induced methylation changes among the group of stretch participants. RESULTS Eleven MCI participants (aerobic: 73% females; mean age 72.3 ± 6.6 years) and eight MCI participants (stretch: 75% female; mean age 70.6 ± 6.7 years) completed the training. Aerobic exercise-training was associated with increases in VO2max and with global hypo- and hypermethylation changes. The most notable finding was CpG hypomethylation within the body of the VPS52 gene (P = 5.4 × 10-26), a Golgi-associated protein, involved in intracellular protein trafficking including amyloid precursor protein. qRT-PCR confirmed a nearly twofold increased expression of VPS52. Other top findings with FDR q-value < 10-5, include hypomethylations of SCARB1 (8.8 × 10-25), ARTN (6.1 × 10-25), NR1H2 (2.1 × 10-18) and PPP2R5D (9.8 × 10-18). CONCLUSION We conclude that genome-wide DNA methylation patterns is associated with exercise training-induced methylation changes. Identification of methylation changes around genes previously shown to interact with amyloid biology, intracellular protein trafficking, and lipoprotein regulations provide further support to the likely protective effect of exercise in MCI. Future studies in larger samples are needed to confirm our findings.
Collapse
Affiliation(s)
- Julius S. Ngwa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Howard University, Washington, DC, United States
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University, Washington, DC, United States
| | - Oyonumo Ntekim
- Department of Nutritional Sciences, Howard University, Washington, DC, United States
| | - Fikru B. Bedada
- Department of Clinical Laboratory Sciences, Howard University, Washington, DC, United States
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, Howard University, Washington, DC, United States
| | - Sheeba Nadarajah
- Division of Nursing, Howard University, Washington, DC, United States,School of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States,Department of Medicine, Howard University, Washington, DC, United States
| | - Steven Johnson
- Division of Geriatrics, Department of Medicine and Clinical/Translational Science Program, Howard University Hospital, Washington, DC, United States
| | - William M. Southerland
- Department of Biochemistry and Molecular Biology, Howard University, Washington, DC, United States
| | - John Kwagyan
- Georgetown-Howard U Center for Clinical and Translation Science (GHUCCTS), Howard University Hospital, Washington, DC, United States
| | - Thomas O. Obisesan
- Division of Geriatrics, Department of Medicine and Clinical/Translational Science Program, Howard University Hospital, Washington, DC, United States,*Correspondence: Thomas O. Obisesan,
| |
Collapse
|
7
|
Wu Q, Cortez L, Kamali-Jamil R, Sim V, Wille H, Kar S. Implications of exosomes derived from cholesterol-accumulated astrocytes in Alzheimer's disease pathology. Dis Model Mech 2021; 14:dmm048929. [PMID: 34524402 PMCID: PMC8560497 DOI: 10.1242/dmm.048929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Amyloid β (Aβ) peptides generated from the amyloid precursor protein (APP) play a critical role in the development of Alzheimer's disease (AD) pathology. Aβ-containing neuronal exosomes, which represent a novel form of intercellular communication, have been shown to influence the function/vulnerability of neurons in AD. Unlike neurons, the significance of exosomes derived from astrocytes remains unclear. In this study, we evaluated the significance of exosomes derived from U18666A-induced cholesterol-accumulated astrocytes in the development of AD pathology. Our results show that cholesterol accumulation decreases exosome secretion, whereas lowering cholesterol increases exosome secretion, from cultured astrocytes. Interestingly, exosomes secreted from U18666A-treated astrocytes contain higher levels of APP, APP-C-terminal fragments, soluble APP, APP secretases and Aβ1-40 than exosomes secreted from control astrocytes. Furthermore, we show that exosomes derived from U18666A-treated astrocytes can lead to neurodegeneration, which is attenuated by decreasing Aβ production or by neutralizing exosomal Aβ peptide with an anti-Aβ antibody. These results, taken together, suggest that exosomes derived from cholesterol-accumulated astrocytes can play an important role in trafficking APP/Aβ peptides and influencing neuronal viability in the affected regions of the AD brain.
Collapse
Affiliation(s)
- Qi Wu
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Leonardo Cortez
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Razieh Kamali-Jamil
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Valerie Sim
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Holger Wille
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2G3, Canada
- Department of Biochemistry, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2G3, Canada
| |
Collapse
|
8
|
Preman P, TCW J, Calafate S, Snellinx A, Alfonso-Triguero M, Corthout N, Munck S, Thal DR, Goate AM, De Strooper B, Arranz AM. Human iPSC-derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid-β plaques. Mol Neurodegener 2021; 16:68. [PMID: 34563212 PMCID: PMC8467145 DOI: 10.1186/s13024-021-00487-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/21/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Increasing evidence for a direct contribution of astrocytes to neuroinflammatory and neurodegenerative processes causing Alzheimer's disease comes from molecular and functional studies in rodent models. However, these models may not fully recapitulate human disease as human and rodent astrocytes differ considerably in morphology, functionality, and gene expression. RESULTS To address these challenges, we established an approach to study human astrocytes within the mouse brain by transplanting human induced pluripotent stem cell (hiPSC)-derived astrocyte progenitors into neonatal brains. Xenografted hiPSC-derived astrocyte progenitors differentiated into astrocytes that integrated functionally within the mouse host brain and matured in a cell-autonomous way retaining human-specific morphologies, unique features, and physiological properties. In Alzheimer´s chimeric brains, transplanted hiPSC-derived astrocytes responded to the presence of amyloid plaques undergoing morphological changes that seemed independent of the APOE allelic background. CONCLUSIONS In sum, we describe here a promising approach that consist of transplanting patient-derived and genetically modified astrocytes into the mouse brain to study human astrocyte pathophysiology in the context of Alzheimer´s disease.
Collapse
Affiliation(s)
- Pranav Preman
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Julia TCW
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sara Calafate
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - An Snellinx
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Maria Alfonso-Triguero
- grid.427629.cAchucarro Basque Center for Neuroscience, Leioa, Spain ,grid.11480.3c0000000121671098Department of Neurosciences, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Nikky Corthout
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,VIB Bio Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Sebastian Munck
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,VIB Bio Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Dietmar Rudolf Thal
- grid.5596.f0000 0001 0668 7884Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Department of Pathology, KU Leuven (University of Leuven), University Hospital Leuven, Leuven, Belgium
| | - Alison M Goate
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Bart De Strooper
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,grid.83440.3b0000000121901201Dementia Research Institute, University College London, London, UK
| | - Amaia M Arranz
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,grid.427629.cAchucarro Basque Center for Neuroscience, Leioa, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer's disease-like pathology. Prog Neurobiol 2021; 206:102154. [PMID: 34453977 DOI: 10.1016/j.pneurobio.2021.102154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
The accumulation of amyloid-beta peptide (Aβ) and the failure of cholinergic transmission are key players in Alzheimer's disease (AD). However, in the healthy brain, Aβ contributes to synaptic plasticity and memory acting through α7 subtype nicotinic acetylcholine receptors (α7nAChRs). Here, we hypothesized that the α7nAChR deletion blocks Aβ physiological function and promotes a compensatory increase in Aβ levels that, in turn, triggers an AD-like pathology. To validate this hypothesis, we studied the age-dependent phenotype of α7 knock out mice. We found that α7nAChR deletion caused an impairment of hippocampal synaptic plasticity and memory at 12 months of age, paralleled by an increase of Amyloid Precursor Protein expression and Aβ levels. This was accompanied by other classical AD features such as a hyperphosphorylation of tau at residues Ser 199, Ser 396, Thr 205, a decrease of GSK-3β at Ser 9, the presence of paired helical filaments and neurofibrillary tangles, neuronal loss and an increase of GFAP-positive astrocytes. Our findings suggest that α7nAChR malfunction might precede Aβ and tau pathology, offering a different perspective to interpret the failure of anti-Aβ therapies against AD and to find novel therapeutical approaches aimed at restoring α7nAChRs-mediated Aβ function at the synapse.
Collapse
|
10
|
Maccioni RB, Navarrete LP, González A, González-Canacer A, Guzmán-Martínez L, Cortés N. Inflammation: A Major Target for Compounds to Control Alzheimer's Disease. J Alzheimers Dis 2021; 76:1199-1213. [PMID: 32597798 DOI: 10.3233/jad-191014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several hypotheses have been postulated to explain how Alzheimer's disease is triggered, but none of them provide a unified view of its pathogenesis. The dominant hypothesis based on build-ups of the amyloid-β peptide has been around for longer than three decades; however, up to today, numerous clinical trials based on the amyloid postulates have been attempted, but all of them have failed. Clearly, the revisited tau hypothesis provides a better explanation of the clinical observations of patients, but it needs to integrate the cumulative observations on the onset of this disease. In this context, the neuroimmuno modulation theory, based on the involvement of inflammatory events in the central nervous system, accounts for all these observations. In this review we intend to emphasize the idea that neuroinflammation is a main target for the search of new therapeutic strategies to control Alzheimer's disease. Beyond mono-targeting approaches using synthetic drugs that control only specific pathophysiological events, emerging therapeutics views based on multi targeting compounds appear to provide a new pathway for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Ricardo B Maccioni
- Laboratory of Neuroscience and Functional Medicine, International Center for Biomedicine, Vitacura, Santiago, Chile, and Faculty of Sciences, University of Chile, Ñuñoa, Santiago, Chile
| | - Leonardo P Navarrete
- Laboratory of Neuroscience and Functional Medicine, International Center for Biomedicine, Vitacura, Santiago, Chile, and Faculty of Sciences, University of Chile, Ñuñoa, Santiago, Chile
| | - Andrea González
- Laboratory of Neuroscience and Functional Medicine, International Center for Biomedicine, Vitacura, Santiago, Chile, and Faculty of Sciences, University of Chile, Ñuñoa, Santiago, Chile
| | - Alejandra González-Canacer
- Laboratory of Neuroscience and Functional Medicine, International Center for Biomedicine, Vitacura, Santiago, Chile, and Faculty of Sciences, University of Chile, Ñuñoa, Santiago, Chile
| | - Leonardo Guzmán-Martínez
- Laboratory of Neuroscience and Functional Medicine, International Center for Biomedicine, Vitacura, Santiago, Chile, and Faculty of Sciences, University of Chile, Ñuñoa, Santiago, Chile
| | - Nicole Cortés
- Laboratory of Neuroscience and Functional Medicine, International Center for Biomedicine, Vitacura, Santiago, Chile, and Faculty of Sciences, University of Chile, Ñuñoa, Santiago, Chile
| |
Collapse
|
11
|
Wang J, Ding Y, Zhuang L, Wang Z, Xiao W, Zhu J. Ginkgolide B‑induced AMPK pathway activation protects astrocytes by regulating endoplasmic reticulum stress, oxidative stress and energy metabolism induced by Aβ1‑42. Mol Med Rep 2021; 23:457. [PMID: 33880582 PMCID: PMC8072312 DOI: 10.3892/mmr.2021.12096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Ginkgolide B (GB), the diterpenoid lactone compound isolated from the extracts of Ginkgo biloba leaves, significantly improves cognitive impairment, but its potential pharmacological effect on astrocytes induced by β-amyloid (Aβ)1-42 remains to be elucidated. The present study aimed to investigate the protective effect and mechanism of GB on astrocytes with Aβ1-42-induced apoptosis in Alzheimer's disease (AD). Astrocytes obtained from Sprague Dawley rats were randomly divided into control, Aβ, GB and GB + compound C groups. Cell viability and apoptosis were analyzed using Cell Counting Kit-8 and flow cytometry assays, respectively. Protein and mRNA expression levels were analyzed using western blotting and reverse transcription-quantitative PCR, respectively. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), reactive oxygen species (ROS) and ATP were determined using the corresponding commercial kits. The findings revealed that GB attenuated Aβ1-42-induced apoptosis and the 5′ adenosine monophosphate- activated protein kinase (AMPK) inhibitor compound C reversed the protective effects of GB. In addition, GB reversed Aβ1-42-induced oxidative damage and energy metabolism disorders, including decreases in the levels of SOD, GSH-Px and ATP and increased the levels of MDA and ROS in astrocytes, while compound C reversed the anti-oxidative effect and the involvement of GB in maintaining energy metabolism in astrocytes. Finally, GB decreased the expression levels of the endoplasmic reticulum stress (ERS) proteins and the apoptotic protein CHOP and increased both mRNA and protein expression of the components of the energy metabolism-related AMPK/peroxisome proliferator-activated receptor γ coactivator 1α/peroxisome proliferator-activated receptor α and anti-oxidation-related nuclear respiratory factor 2/heme oxygenase 1/NAD(P)H dehydrogenase (quinone 1) pathways and downregulated the expression of β-secretase 1. However, compound C could antagonize these effects. In conclusion, the findings demonstrated that GB protected against Aβ1-42-induced apoptosis by inhibiting ERS, oxidative stress, energy metabolism disorders and Aβ1-42 production probably by activating AMPK signaling pathways. The findings provided an innovative insight into the treatment using GB as a therapeutic in Aβ1-42-related AD.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Linwu Zhuang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, P.R. China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, P.R. China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| |
Collapse
|
12
|
Bai Y, Su X, Piao L, Jin Z, Jin R. Involvement of Astrocytes and microRNA Dysregulation in Neurodegenerative Diseases: From Pathogenesis to Therapeutic Potential. Front Mol Neurosci 2021; 14:556215. [PMID: 33815055 PMCID: PMC8010124 DOI: 10.3389/fnmol.2021.556215] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are the most widely distributed and abundant glial cells in the central nervous system (CNS). Neurodegenerative diseases (NDDs) are a class of diseases with a slow onset, progressive progression, and poor prognosis. Common clinical NDDs include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). Although these diseases have different etiologies, they are all associated with neuronal loss and pathological dysfunction. Accumulating evidence indicates that neurotransmitters, neurotrophic factors, and toxic metabolites that are produced and released by activated astrocytes affect and regulate the function of neurons at the receptor, ion channel, antigen transfer, and gene transcription levels in the pathogenesis of NDDs. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a wide range of biological roles by regulating the transcription and post-transcriptional translation of target mRNAs to induce target gene expression and silencing. Recent studies have shown that miRNAs participate in the pathogenesis of NDDs by regulating astrocyte function through different mechanisms and may be potential targets for the treatment of NDDs. Here, we review studies of the role of astrocytes in the pathogenesis of NDDs and discuss possible mechanisms of miRNAs in the regulation of astrocyte function, suggesting that miRNAs may be targeted as a novel approach for the treatment of NDDs.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xing Su
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lianhua Piao
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zheng Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Rihua Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Luo Y, Sun Y, Tian X, Zheng X, Wang X, Li W, Wu X, Shu B, Hou W. Deep Brain Stimulation for Alzheimer's Disease: Stimulation Parameters and Potential Mechanisms of Action. Front Aging Neurosci 2021; 13:619543. [PMID: 33776742 PMCID: PMC7990787 DOI: 10.3389/fnagi.2021.619543] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) is a neurosurgical technique that regulates neuron activity by using internal pulse generators to electrodes in specific target areas of the brain. As a blind treatment, DBS is widely used in the field of mental and neurological diseases, although its mechanism of action is still unclear. In the past 10 years, DBS has shown a certain positive effect in animal models and patients with Alzheimer's disease (AD), but there are also different results that may be related to the stimulation parameters of DBS. Based on this, determining the optimal stimulation parameters for DBS in AD and understanding its mechanism of action are essential to promote the clinical application of DBS in AD. This review aims to explore the therapeutic effect of DBS in AD, and to analyze its stimulation parameters and potential mechanism of action. The keywords "Deep brain stimulation" and "Alzheimer's Disease" were used for systematic searches in the literature databases of Web of Science and PubMed (from 1900 to September 29, 2020). All human clinical studies and animal studies were reported in English, including individual case studies and long-term follow-up studies, were included. These studies described the therapeutic effects of DBS in AD. The results included 16 human clinical studies and 14 animal studies, of which 28 studies clearly demonstrated the positive effect of DBS in AD. We analyzed the current stimulation parameters of DBS in AD from stimulation target, stimulation frequency, stimulation start time, stimulation duration, unilateral/bilateral treatment and current intensity, etc., and we also discussed its potential mechanism of action from multiple aspects, including regulating related neural networks, promoting nerve oscillation, reducing β-amyloid and tau levels, reducing neuroinflammation, regulating the cholinergic system, inducing the synthesis of nerve growth factor.
Collapse
Affiliation(s)
- Yinpei Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Yuwei Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Weina Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Bin Shu
- Department of Rehabilitation Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Sarkar S, Biswas SC. Astrocyte subtype-specific approach to Alzheimer's disease treatment. Neurochem Int 2021; 145:104956. [PMID: 33503465 DOI: 10.1016/j.neuint.2021.104956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes respond to any pathological condition in the central nervous system (CNS) including Alzheimer's disease (AD), and this response is called astrocyte reactivity. Astrocyte reaction to a CNS insult is a highly heterogeneous phenomenon in which the astrocytes undergo a set of morphological, molecular and functional changes with a characteristic secretome profile. Such astrocytes are termed as 'reactive astrocytes'. Controversies regarding the reactive astrocytes abound. Recently, a continuum of reactive astrocyte profiles with distinct transcriptional states has been identified. Among them, disease-associated astrocytes (DAA) were uniquely present in AD mice and expressed a signature set of genes implicated in complement cascade, endocytosis and aging. Earlier, two stimulus-specific reactive astrocyte subtypes with their unique transcriptomic signatures were identified using mouse models of neuroinflammation and ischemia and termed as A1 astrocytes (detrimental) and A2 astrocytes (beneficial) respectively. Interestingly, although most of the A1 signature genes were also detected in DAA, as opposed to A2 astrocyte signatures, some of the A1 specific genes were expressed in other astrocyte subtypes, indicating that these nomenclature-based signatures are not very specific. In this review, we elaborate the disparate functions and cytokine profiles of reactive astrocyte subtypes in AD and tried to distinguish them by designating neurotoxic astrocytes as A1-like and neuroprotective ones as A2-like without directly referring to the A1/A2 original nomenclature. We have also focused on the dual nature from a functional perspective of some cytokines depending on AD-stage, highlighting a number of them as major candidates in AD therapy. Therefore, we suggest that promoting subtype-specific beneficial roles, inhibiting subtype-specific detrimental roles or targeting subtype-specific cytokines constitute a novel therapeutic approach to AD treatment.
Collapse
Affiliation(s)
- Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India.
| |
Collapse
|
15
|
Hsu HW, Rodriguez-Ortiz CJ, Zumkehr J, Kitazawa M. Inflammatory Cytokine IL-1β Downregulates Endothelial LRP1 via MicroRNA-mediated Gene Silencing. Neuroscience 2021; 453:69-80. [PMID: 33246059 PMCID: PMC7796931 DOI: 10.1016/j.neuroscience.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Effective clearance of neurotoxic amyloid-beta (Aβ) from the brain is a critical process to prevent Alzheimer's disease (AD). One major clearance mechanism is Aβ transcytosis mediated by low-density lipoprotein receptor-related protein 1 (LRP1) in capillary endothelial cells. A marked loss of endothelial LRP1 is found in AD brains and is believed to significantly impair Aβ clearance. Recently, we demonstrated that pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, significantly down-regulated LRP1 in human primary microvascular endothelial cells (MVECs). In this study, we sought to determine the underlying molecular mechanism by which IL-1β led to LRP1 loss in MVECs. Reduced LRP1 protein and transcript were detected up to 24 h post-exposure and returned to the baseline levels after 48 h post-exposure with 1 ng/ml IL-1β. This reduction was in part mediated by microRNA-205-5p, -200b-3p, and -200c-3p, as these microRNAs were concomitantly upregulated in MVECs exposed to IL-1β. Synthetic microRNA-205-5p, -200b-3p, and -200c-3p mimics recapitulated LRP1 loss in MVECs without IL-1β, and their synthetic antagomirs effectively reversed IL-1β-mediated LRP1 loss. Importantly, we found that the expression of these three microRNAs was controlled by NF-κB as pharmacological NF-κB inhibitor, BMS-345541, inhibited the IL-1β-mediated upregulation of these microRNAs and rescued LRP1 expression. siRNA-mediated silencing of IκB in MVECs elevated microRNA-200b-3p and decreased LRP1 transcript, partially confirming our overall findings. In conclusion, our study provides a mechanism by which pro-inflammatory IL-1β instigates the suppression of LRP1 expression in MVECs. Our findings could implicate spatiotemporal loss of LRP1 and impairment of the LRP1-mediated clearance mechanism by endothelial cells.
Collapse
Affiliation(s)
- Heng-Wei Hsu
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Carlos J Rodriguez-Ortiz
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Joannee Zumkehr
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States.
| |
Collapse
|
16
|
Wang Y, Xu B, Zhou J, Wang J, Wang G, Cao Y. An Aβ3-10-KLH vaccine decreases Aβ plaques and astrocytes and microglia activation in the brain of APP/PS1 transgenic mice. Acta Neurobiol Exp (Wars) 2021. [DOI: 10.21307/ane-2021-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Van Zeller M, Dias D, Sebastião AM, Valente CA. NLRP3 Inflammasome: A Starring Role in Amyloid-β- and Tau-Driven Pathological Events in Alzheimer's Disease. J Alzheimers Dis 2021; 83:939-961. [PMID: 34366341 PMCID: PMC8543248 DOI: 10.3233/jad-210268] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease commonly diagnosed among the elderly population. AD is characterized by the loss of synaptic connections, neuronal death, and progressive cognitive impairment, attributed to the extracellular accumulation of senile plaques, composed by insoluble aggregates of amyloid-β (Aβ) peptides, and to the intraneuronal formation of neurofibrillary tangles shaped by hyperphosphorylated filaments of the microtubule-associated protein tau. However, evidence showed that chronic inflammatory responses, with long-lasting exacerbated release of proinflammatory cytokines by reactive glial cells, contribute to the pathophysiology of the disease. NLRP3 inflammasome (NLRP3), a cytosolic multiprotein complex sensor of a wide range of stimuli, was implicated in multiple neurological diseases, including AD. Herein, we review the most recent findings regarding the involvement of NLRP3 in the pathogenesis of AD. We address the mechanisms of NLRP3 priming and activation in glial cells by Aβ species and the potential role of neurofibrillary tangles and extracellular vesicles in disease progression. Neuronal death by NLRP3-mediated pyroptosis, driven by the interneuronal tau propagation, is also discussed. We present considerable evidence to claim that NLRP3 inhibition, is undoubtfully a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Mariana Van Zeller
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo Dias
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia A. Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
Danger-Sensing/Patten Recognition Receptors and Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239036. [PMID: 33261147 PMCID: PMC7731137 DOI: 10.3390/ijms21239036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrillar aggregates and soluble oligomers of both Amyloid-β peptides (Aβs) and hyperphosphorylated Tau proteins (p-Tau-es), as well as a chronic neuroinflammation are the main drivers causing progressive neuronal losses and dementia in Alzheimer’s disease (AD). However, the underlying pathogenetic mechanisms are still much disputed. Several endogenous neurotoxic ligands, including Aβs, and/or p-Tau-es activate innate immunity-related danger-sensing/pattern recognition receptors (PPRs) thereby advancing AD’s neuroinflammation and progression. The major PRR families involved include scavenger, Toll-like, NOD-like, AIM2-like, RIG-like, and CLEC-2 receptors, plus the calcium-sensing receptor (CaSR). This quite intricate picture stresses the need to identify the pathogenetically topmost Aβ-activated PRR, whose signaling would trigger AD’s three main drivers and their intra-brain spread. In theory, the candidate might belong to any PRR family. However, results of preclinical studies using in vitro nontumorigenic human cortical neurons and astrocytes and in vivo AD-model animals have started converging on the CaSR as the pathogenetically upmost PRR candidate. In fact, the CaSR binds both Ca2+ and Aβs and promotes the spread of both Ca2+ dyshomeostasis and AD’s three main drivers, causing a progressive neurons’ death. Since CaSR’s negative allosteric modulators block all these effects, CaSR’s candidacy for topmost pathogenetic PRR has assumed a growing therapeutic potential worth clinical testing.
Collapse
|
19
|
Chu TH, Cummins K, Stys PK. Traumatic Injury Reduces Amyloid Plaque Burden in the Transgenic 5xFAD Alzheimer's Mouse Spinal Cord. J Alzheimers Dis 2020; 77:1315-1330. [PMID: 32925040 DOI: 10.3233/jad-200387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Axonal injury has been implicated in the development of amyloid-β in experimental brain injuries and clinical cases. The anatomy of the spinal cord provides a tractable model for examining the effects of trauma on amyloid deposition. OBJECTIVE Our goal was to examine the effects of axonal injury on plaque formation and clearance using wild type and 5xFAD transgenic Alzheimer's disease mice. METHODS We contused the spinal cord at the T12 spinal level at 10 weeks, an age at which no amyloid plaques spontaneously accumulate in 5xFAD mice. We then explored plaque clearance by impacting spinal cords in 27-week-old 5xFAD mice where amyloid deposition is already well established. We also examined the cellular expression of one of the most prominent amyloid-β degradation enzymes, neprilysin, at the lesion site. RESULTS No plaques were found in wild type animals at any time points examined. Injury in 5xFAD prevented plaque deposition rostral and caudal to the lesion when the cords were examined at 2 and 4 months after the impact, whereas age-matched naïve 5xFAD mice showed extensive amyloid plaque deposition. A massive reduction in the number of plaques around the lesion was found as early as 7 days after the impact, preceded by neprilysin upregulation in astrocytes at 3 days after injury. At 7 days after injury, the majority of amyloid was found inside microglia/macrophages. CONCLUSION These observations suggest that the efficient amyloid clearance after injury in the cord may be driven by the orchestrated efforts of astroglial and immune cells.
Collapse
Affiliation(s)
- Tak-Ho Chu
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen Cummins
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter K Stys
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Luo Y, Yang W, Li N, Yang X, Zhu B, Wang C, Hou W, Wang X, Wen H, Tian X. Anodal Transcranial Direct Current Stimulation Can Improve Spatial Learning and Memory and Attenuate Aβ 42 Burden at the Early Stage of Alzheimer's Disease in APP/PS1 Transgenic Mice. Front Aging Neurosci 2020; 12:134. [PMID: 32595486 PMCID: PMC7239315 DOI: 10.3389/fnagi.2020.00134] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible progressive neurodegenerative disease. Intervention in the early stage of AD is a new path for AD treatment that is being explored. The behavioral and pathological effects of anodal transcranial direct current stimulation (AtDCS) at the early stage of AD in the mouse model, amyloid precursor protein (APP)/presenilin-1 (PS1) transgenic mice, were investigated based on our previous studies. Thirty-three 6-month-old male APP/PS1 mice were randomly divided into the model group (AD group), model + sham stimulation group (ADST group) and stimulation group (ADT group). Eleven 6-month-old male C57 wild-type mice were randomly selected as a control group (CTL group). The ADT group received 10 AtDCS sessions. The Morris water maze (MWM) task and novel object recognition (NOR) task were used to test mouse memory. Nissl staining, Western blot (WB), immunohistochemistry and immunofluorescence staining of β-amyloid (Aβ42), glial fibrillary acidic protein (GFAP) and NF200 were conducted for pathological analysis. The ADT group and the CTL group had a shorter escape latency and more platform-region crossings than the AD group and ADST group in the MWM. There was no significant difference in the discrimination index among the groups in the NOR task. Pathological analysis showed visible differences between the AD group and ADT group. This study revealed that early-stage APP/PS1 transgenic mice did not show recognition memory impairment. AtDCS effectively improved spatial learning and memory in the early-stage APP/PS1 transgenic mouse model of AD, alleviating Aβ burden and having a protective effect on neurons. AtDCS could improve AD-related symptoms by activating many glial cells to promote the degradation and clearance of Aβ or directly affecting production and degradation of Aβ to reduce glial activation. AtDCS is an effective means of early intervention in the early stage of AD.
Collapse
Affiliation(s)
- Yinpei Luo
- Chongqing Engineering Research Center for Medical Electronics Technology, Bioengineering College, Chongqing University, Chongqing, China
| | - Wenjuan Yang
- Chongqing Engineering Research Center for Medical Electronics Technology, Bioengineering College, Chongqing University, Chongqing, China
| | - Nian Li
- Chongqing Engineering Research Center for Medical Electronics Technology, Bioengineering College, Chongqing University, Chongqing, China
| | - Xiufang Yang
- Chongqing Engineering Research Center for Medical Electronics Technology, Bioengineering College, Chongqing University, Chongqing, China
| | - Binglian Zhu
- College of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China
| | - Cong Wang
- Chongqing Engineering Research Center for Medical Electronics Technology, Bioengineering College, Chongqing University, Chongqing, China
| | - Wensheng Hou
- Chongqing Engineering Research Center for Medical Electronics Technology, Bioengineering College, Chongqing University, Chongqing, China
| | - Xing Wang
- Chongqing Engineering Research Center for Medical Electronics Technology, Bioengineering College, Chongqing University, Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, China
| | - Xuelong Tian
- Chongqing Engineering Research Center for Medical Electronics Technology, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
22
|
Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front Pharmacol 2019; 10:1008. [PMID: 31572186 PMCID: PMC6751310 DOI: 10.3389/fphar.2019.01008] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative diseases share the fact that they derive from altered proteins that undergo an unfolding process followed by formation of β-structures and a pathological tendency to self-aggregate in neuronal cells. This is a characteristic of tau protein in Alzheimer’s disease and several tauopathies associated with tau unfolding, α-synuclein in Parkinson’s disease, and huntingtin in Huntington disease. Usually, the self-aggregation products are toxic to these cells, and toxicity spreads all over different brain areas. We have postulated that these protein unfolding events are the molecular alterations that trigger several neurodegenerative disorders. Most interestingly, these events occur as a result of neuroinflammatory cascades involving alterations in the cross-talks between glial cells and neurons as a consequence of the activation of microglia and astrocytes. The model we have hypothesized for Alzheimer’s disease involves damage signals that promote glial activation, followed by nuclear factor NF-kβ activation, synthesis, and release of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and IL-12 that affect neuronal receptors with an overactivation of protein kinases. These patterns of pathological events can be applied to several neurodegenerative disorders. In this context, the involvement of innate immunity seems to be a major paradigm in the pathogenesis of these diseases. This is an important element for the search for potential therapeutic approaches for all these brain disorders.
Collapse
Affiliation(s)
- Leonardo Guzman-Martinez
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile.,Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Andrade
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - Leonardo Patricio Navarrete
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - María Gabriela Pastor
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Nicolas Ramos-Escobar
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| |
Collapse
|
23
|
Neurodegeneration and Neuro-Regeneration-Alzheimer's Disease and Stem Cell Therapy. Int J Mol Sci 2019; 20:ijms20174272. [PMID: 31480448 PMCID: PMC6747457 DOI: 10.3390/ijms20174272] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aging causes many changes in the human body, and is a high risk for various diseases. Dementia, a common age-related disease, is a clinical disorder triggered by neurodegeneration. Brain damage caused by neuronal death leads to cognitive decline, memory loss, learning inabilities and mood changes. Numerous disease conditions may cause dementia; however, the most common one is Alzheimer’s disease (AD), a futile and yet untreatable illness. Adult neurogenesis carries the potential of brain self-repair by an endogenous formation of newly-born neurons in the adult brain; however it also declines with age. Strategies to improve the symptoms of aging and age-related diseases have included different means to stimulate neurogenesis, both pharmacologically and naturally. Finally, the regulatory mechanisms of stem cells neurogenesis or a functional integration of newborn neurons have been explored to provide the basis for grafted stem cell therapy. This review aims to provide an overview of AD pathology of different neural and glial cell types and summarizes current strategies of experimental stem cell treatments and their putative future use in clinical settings.
Collapse
|
24
|
Oksanen M, Lehtonen S, Jaronen M, Goldsteins G, Hämäläinen RH, Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci 2019; 76:2739-2760. [PMID: 31016348 PMCID: PMC6588647 DOI: 10.1007/s00018-019-03111-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Astrocytes are the most abundant cell type in the brain. They were long considered only as passive support for neuronal cells. However, recent data have revealed many active roles for these cells both in maintenance of the normal physiological homeostasis in the brain as well as in neurodegeneration and disease. Moreover, human astrocytes have been found to be much more complex than their rodent counterparts, and to date, astrocytes are known to actively participate in a multitude of processes such as neurotransmitter uptake and recycling, gliotransmitter release, neuroenergetics, inflammation, modulation of synaptic activity, ionic balance, maintenance of the blood-brain barrier, and many other crucial functions of the brain. This review focuses on the role of astrocytes in human neurodegenerative disease and the potential of the novel stem cell-based platforms in modeling astrocytic functions in health and in disease.
Collapse
Affiliation(s)
- Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sarka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, PO. Box 63, 00290, Helsinki, Finland
| | - Merja Jaronen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, PO. Box 63, 00290, Helsinki, Finland.
| |
Collapse
|
25
|
Kuo YC, Rajesh R. Challenges in the treatment of Alzheimer’s disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Rev Neurother 2019; 19:623-652. [DOI: 10.1080/14737175.2019.1621750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
26
|
Nirzhor SSR, Khan RI, Neelotpol S. The Biology of Glial Cells and Their Complex Roles in Alzheimer's Disease: New Opportunities in Therapy. Biomolecules 2018; 8:biom8030093. [PMID: 30201881 PMCID: PMC6164719 DOI: 10.3390/biom8030093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
Even though Alzheimer's disease (AD) is of significant interest to the scientific community, its pathogenesis is very complicated and not well-understood. A great deal of progress has been made in AD research recently and with the advent of these new insights more therapeutic benefits may be identified that could help patients around the world. Much of the research in AD thus far has been very neuron-oriented; however, recent studies suggest that glial cells, i.e., microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells (NG2 glia), are linked to the pathogenesis of AD and may offer several potential therapeutic targets against AD. In addition to a number of other functions, glial cells are responsible for maintaining homeostasis (i.e., concentration of ions, neurotransmitters, etc.) within the central nervous system (CNS) and are crucial to the structural integrity of neurons. This review explores the: (i) role of glial cells in AD pathogenesis; (ii) complex functionalities of the components involved; and (iii) potential therapeutic targets that could eventually lead to a better quality of life for AD patients.
Collapse
|
27
|
Montoliu-Gaya L, Mulder SD, Herrebout MA, Baayen JC, Villegas S, Veerhuis R. Aβ-oligomer uptake and the resulting inflammatory response in adult human astrocytes are precluded by an anti-Aβ single chain variable fragment in combination with an apoE mimetic peptide. Mol Cell Neurosci 2018; 89:49-59. [DOI: 10.1016/j.mcn.2018.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 10/17/2022] Open
|
28
|
Inflammation, insulin signaling and cognitive function in aged APP/PS1 mice. Brain Behav Immun 2018; 70:423-434. [PMID: 29604345 DOI: 10.1016/j.bbi.2018.03.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Cognitive dysfunction and neuroinflammation are typical in Alzheimer's disease (AD), but are also associated with normal aging, albeit less severely. Insulin resistance in the brain has been demonstrated in AD patients and is thought to be involved in AD pathophysiology. Using 15-18 month-old APP/PS1 mice, this study measured peripheral and central insulin signaling and sensitivity, inflammatory markers in brain and plasma and oxidative stress and synapse density in the brain. Novel object recognition, Morris water maze and reversal water maze tasks were performed to assess cognitive function in aged APP/PS1 mice and wild type littermates. Glucose tolerance and insulin sensitivity were similar in APP/PS1 mice and wild type controls, however IRS-1 pSer616 was increased in cortex and dentate gyrus of APP/PS1 mice. Recognition and spatial memory was impaired in both APP/PS1 and wild type mice, however learning impairments were apparent in APP/PS1 mice. Expression of GLP-1 receptor, ERK2, IKKβ, mTOR, PKCθ, NF-κB1 and TLR4 was similar between aged APP/PS1 mice and age-matched wild types. Compared to age-matched wild type mice, IFNγ and IL-4 were increased in brains of APP/PS1 mice. These results suggest that normal aging may be associated with enhanced neuroinflammation, oxidative stress, and cognitive decline, however distinctions are apparent in the brain of APP/PS1 mice in terms of inflammation and insulin signaling and in certain cognitive domains. Demarcation of pathological events that distinguish AD from normal aging will allow for improvements in diagnostic tools and the development of more effective therapeutics.
Collapse
|
29
|
Zhao N, Liu CC, Qiao W, Bu G. Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biol Psychiatry 2018; 83:347-357. [PMID: 28434655 PMCID: PMC5599322 DOI: 10.1016/j.biopsych.2017.03.003] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Apolipoprotein E (apoE) is a lipid carrier in both the peripheral and the central nervous systems. Lipid-loaded apoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and injury repair in the brain. Considering prevalence and relative risk magnitude, the ε4 allele of the APOE gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE4 contributes to AD pathogenesis by modulating multiple pathways, including but not limited to the metabolism, aggregation, and toxicity of amyloid-β peptide, tauopathy, synaptic plasticity, lipid transport, glucose metabolism, mitochondrial function, vascular integrity, and neuroinflammation. Emerging knowledge on apoE-related pathways in the pathophysiology of AD presents new opportunities for AD therapy. We describe the biochemical and biological features of apoE and apoE receptors in the central nervous system. We also discuss the evidence and mechanisms addressing differential effects of apoE isoforms and the role of apoE receptors in AD pathogenesis, with a particular emphasis on the clinical and preclinical studies related to amyloid-β pathology. Finally, we summarize the current strategies of AD therapy targeting apoE, and postulate that effective strategies require an apoE isoform-specific approach.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
30
|
González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of Astrocytes in Alzheimer's Disease from a Neuroinflammatory and Oxidative Stress Perspective. Front Mol Neurosci 2017; 10:427. [PMID: 29311817 PMCID: PMC5742194 DOI: 10.3389/fnmol.2017.00427] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer disease (AD) is a frequent and devastating neurodegenerative disease in humans, but still no curative treatment has been developed. Although many explicative theories have been proposed, precise pathophysiological mechanisms are unknown. Due to the importance of astrocytes in brain homeostasis they have become interesting targets for the study of AD. Changes in astrocyte function have been observed in brains from individuals with AD, as well as in AD in vitro and in vivo animal models. The presence of amyloid beta (Aβ) has been shown to disrupt gliotransmission, neurotransmitter uptake, and alter calcium signaling in astrocytes. Furthermore, astrocytes express apolipoprotein E and are involved in the production, degradation and removal of Aβ. As well, changes in astrocytes that precede other pathological characteristics observed in AD, point to an early contribution of astroglia in this disease. Astrocytes participate in the inflammatory/immune responses of the central nervous system. The presence of Aβ activates different cell receptors and intracellular signaling pathways, mainly the advanced glycation end products receptor/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, responsible for the transcription of pro-inflammatory cytokines and chemokines in astrocytes. The release of these pro-inflammatory agents may induce cellular damage or even stimulate the production of Aβ in astrocytes. Additionally, Aβ induces the appearance of oxidative stress (OS) and production of reactive oxygen species and reactive nitrogen species in astrocytes, affecting among others, intracellular calcium levels, NADPH oxidase (NOX), NF-κB signaling, glutamate uptake (increasing the risk of excitotoxicity) and mitochondrial function. Excessive neuroinflammation and OS are observed in AD, and astrocytes seem to be involved in both. The Aβ/NF-κB interaction in astrocytes may play a central role in these inflammatory and OS changes present in AD. In this paper, we also discuss therapeutic measures highlighting the importance of astrocytes in AD pathology. Several new therapeutic approaches involving phenols (curcumin), phytoestrogens (genistein), neuroesteroids and other natural phytochemicals have been explored in astrocytes, obtaining some promising results regarding cognitive improvements and attenuation of neuroinflammation. Novel strategies comprising astrocytes and aimed to reduce OS in AD have also been proposed. These include estrogen receptor agonists (pelargonidin), Bambusae concretio Salicea, Monascin, and various antioxidatives such as resveratrol, tocotrienol, anthocyanins, and epicatechin, showing beneficial effects in AD models.
Collapse
Affiliation(s)
- Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Daniel Ariza-Salamanca
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Laura Mora-Muñoz
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
31
|
Batarseh YS, Mohamed LA, Al Rihani SB, Mousa YM, Siddique AB, El Sayed KA, Kaddoumi A. Oleocanthal ameliorates amyloid-β oligomers' toxicity on astrocytes and neuronal cells: In vitro studies. Neuroscience 2017; 352:204-215. [PMID: 28392295 PMCID: PMC5504696 DOI: 10.1016/j.neuroscience.2017.03.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
Abstract
Extra-virgin olive oil (EVOO) has several health promoting effects. Evidence have shown that EVOO attenuates the pathology of amyloid-β (Aβ) and improves cognitive function in experimental animal models, suggesting it's potential to protect and reduce the risk of developing Alzheimer's disease (AD). Available studies have linked this beneficial effect to oleocanthal, one of the active components in EVOO. The effect of oleocanthal against AD pathology has been linked to its ability to attenuate Aβ and tau aggregation in vitro, and enhance Aβ clearance from the brains of wild-type and AD transgenic mice in vivo. However, the ability of oleocanthal to alter the toxic effect of Aβ on brain parenchymal cells is unknown. In the current study, we investigated oleocanthal effect on modulating Aβ oligomers (Aβo) pathological events in neurons and astrocytes. Our findings demonstrated oleocanthal prevented Aβo-induced synaptic proteins, SNAP-25 and PSD-95, down-regulation in neurons, and attenuated Aβo-induced inflammation, glutamine transporter (GLT1) and glucose transporter (GLUT1) down-regulation in astrocytes. Aβo-induced inflammation was characterized by interleukin-6 (IL-6) increase and glial fibrillary acidic protein (GFAP) upregulation that were reduced by oleocanthal. In conclusion, this study provides further evidence to support the protective effect of EVOO-derived phenolic secoiridoid oleocanthal against AD pathology.
Collapse
Affiliation(s)
- Yazan S Batarseh
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Loqman A Mohamed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sweilem B Al Rihani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Youssef M Mousa
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Abu Bakar Siddique
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| |
Collapse
|
32
|
Pihlaja R, Haaparanta-Solin M, Rinne JO. The Anti-Inflammatory Effects of Lipoxygenase and Cyclo-Oxygenase Inhibitors in Inflammation-Induced Human Fetal Glia Cells and the Aβ Degradation Capacity of Human Fetal Astrocytes in an Ex vivo Assay. Front Neurosci 2017; 11:299. [PMID: 28611577 PMCID: PMC5447716 DOI: 10.3389/fnins.2017.00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/12/2017] [Indexed: 01/19/2023] Open
Abstract
Chronic inflammation is a common phenomenon present in the background of multiple neurodegenerative diseases, including Alzheimer's disease (AD). The arachidonic acid pathway overproduces proinflammatory eicosanoids during these states and glial cells in the brain gradually lose their vital functions of protecting and supporting neurons. In this study, the role of different key enzymes of the eicosanoid pathway mediating inflammatory responses was examined in vitro and ex vivo using human fetal glial cells. Astrocytes and microglia were exposed to proinflammatory agents i.e., cytokines interleukin 1-β (IL-1β) and tumor necrosis factor (TNF-α). ELISA assays were used to examine the effects of inhibitors of key enzymes in the eicosanoid pathway. Inhibitors for 5-lipoxygenase (5-LOX) and cyclo-oxygenase 2 (COX-2) in both cell types and 5-, 12-, and 15-LOX-inhibitor in astrocytes reduced significantly IL-6 secretion, compared to exposed glial cells without inhibitors. The cytokine antibody array showed that especially treatments with 5, -12, and -15 LOX inhibitor in astrocytes, 5-LOX inhibitor in microglia and COX-2 inhibitor in both glial cell types significantly reduced the expression of multiple proinflammatory cytokines. Furthermore, human fetal astrocytes and microglia were cultured on top of AD-affected and control human brain sections for 30 h. According to the immunochemical evaluation of the level of total Aβ, astrocytes were very efficient at degrading Aβ from AD-affected brain sections ex vivo; simultaneously added enzyme inhibitors did not increase their Aβ degradation capabilities. Microglia were not able to reduce the level of total Aβ during the 30 h incubation time.
Collapse
Affiliation(s)
- Rea Pihlaja
- PET Preclinical Laboratory, Turku PET Centre, University of TurkuTurku, Finland.,Medicity Research Laboratory, University of TurkuTurku, Finland
| | - Merja Haaparanta-Solin
- PET Preclinical Laboratory, Turku PET Centre, University of TurkuTurku, Finland.,Medicity Research Laboratory, University of TurkuTurku, Finland
| | - Juha O Rinne
- Turku PET Centre, Turku University HospitalTurku, Finland
| |
Collapse
|
33
|
Chiarini A, Armato U, Liu D, Dal Prà I. Calcium-Sensing Receptor Antagonist NPS 2143 Restores Amyloid Precursor Protein Physiological Non-Amyloidogenic Processing in Aβ-Exposed Adult Human Astrocytes. Sci Rep 2017; 7:1277. [PMID: 28455519 PMCID: PMC5430644 DOI: 10.1038/s41598-017-01215-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
Physiological non-amyloidogenic processing (NAP) of amyloid precursor holoprotein (hAPP) by α-secretases (e.g., ADAM10) extracellularly sheds neurotrophic/neuroprotective soluble (s)APPα and precludes amyloid-β peptides (Aβs) production via β-secretase amyloidogenic processing (AP). Evidence exists that Aβs interact with calcium-sensing receptors (CaSRs) in human astrocytes and neurons, driving the overrelease of toxic Aβ42/Aβ42-os (oligomers), which is completely blocked by CaSR antagonist (calcilytic) NPS 2143. Here, we investigated the mechanisms underlying NPS 2143 beneficial effects in human astrocytes. Moreover, because Alzheimer's disease (AD) involves neuroinflammation, we examined whether NPS 2143 remained beneficial when both fibrillary (f)Aβ25-35 and a microglial cytokine mixture (CMT) were present. Thus, hAPP NAP prevailed over AP in untreated astrocytes, which extracellularly shed all synthesized sAPPα while secreting basal Aβ40/42 amounts. Conversely, fAβ25-35 alone dramatically reduced sAPPα extracellular shedding while driving Aβ42/Aβ42-os oversecretion that CMT accelerated but not increased, despite a concurring hAPP overexpression. NPS 2143 promoted hAPP and ADAM10 translocation to the plasma membrane, thereby restoring sAPPα extracellular shedding and fully suppressing any Aβ42/Aβ42-os oversecretion, but left hAPP expression unaffected. Therefore, as anti-AD therapeutics calcilytics support neuronal viability by safeguarding astrocytes neurotrophic/neuroprotective sAPPα shedding, suppressing neurons and astrocytes Aβ42/Aβ42-os build-up/secretion, and remaining effective even under AD-typical neuroinflammatory conditions.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology & Embryology Unit, Medical School, University of Verona, Verona, Venetia, Italy.
| | - Ubaldo Armato
- Human Histology & Embryology Unit, Medical School, University of Verona, Verona, Venetia, Italy
| | - Daisong Liu
- The Third Xiangya Hospital of Central South University, Department of Plastic Surgery, Changsha, Hunan, China
| | - Ilaria Dal Prà
- Human Histology & Embryology Unit, Medical School, University of Verona, Verona, Venetia, Italy.
| |
Collapse
|
34
|
Astrocytic LRP1 Mediates Brain Aβ Clearance and Impacts Amyloid Deposition. J Neurosci 2017; 37:4023-4031. [PMID: 28275161 DOI: 10.1523/jneurosci.3442-16.2017] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 11/21/2022] Open
Abstract
Accumulation and deposition of amyloid-β (Aβ) in the brain represent an early and perhaps necessary step in the pathogenesis of Alzheimer's disease (AD). Aβ accumulation leads to the formation of Aβ aggregates, which may directly and indirectly lead to eventual neurodegeneration. While Aβ production is accelerated in many familial forms of early-onset AD, increasing evidence indicates that impaired clearance of Aβ is more evident in late-onset AD. To uncover the mechanisms underlying impaired Aβ clearance in AD, we examined the role of low-density lipoprotein receptor-related protein 1 (LRP1) in astrocytes. Although LRP1 has been shown to play critical roles in brain Aβ metabolism in neurons and vascular mural cells, its role in astrocytes, the most abundant cell type in the brain responsible for maintaining neuronal homeostasis, remains unclear. Here, we show that astrocytic LRP1 plays a critical role in brain Aβ clearance. LRP1 knockdown in primary astrocytes resulted in decreased cellular Aβ uptake and degradation. In addition, silencing of LRP1 in astrocytes led to downregulation of several major Aβ-degrading enzymes, including matrix metalloproteases MMP2, MMP9, and insulin-degrading enzyme. More important, conditional knock-out of the Lrp1 gene in astrocytes in the background of APP/PS1 mice impaired brain Aβ clearance, exacerbated Aβ accumulation, and accelerated amyloid plaque deposition without affecting its production. Together, our results demonstrate that astrocytic LRP1 plays an important role in Aβ metabolism and that restoring LRP1 expression and function in the brain could be an effective strategy to facilitate Aβ clearance and counter amyloid pathology in AD.SIGNIFICANCE STATEMENT Astrocytes represent a major cell type regulating brain homeostasis; however, their roles in brain clearance of amyloid-β (Aβ) and underlying mechanism are not clear. In this study, we used both cellular models and conditional knock-out mouse models to address the role of a critical Aβ receptor, the low-density lipoprotein receptor-related protein 1 (LRP1) in astrocytes. We found that LRP1 in astrocytes plays a critical role in brain Aβ clearance by modulating several Aβ-degrading enzymes and cellular degradation pathways. Our results establish a critical role of astrocytic LRP1 in brain Aβ clearance and shed light on specific Aβ clearance pathways that may help to establish new targets for AD prevention and therapy.
Collapse
|
35
|
Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders. Ageing Res Rev 2017; 34:51-63. [PMID: 27829172 DOI: 10.1016/j.arr.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of neurovascular function.
Collapse
|
36
|
Iram T, Trudler D, Kain D, Kanner S, Galron R, Vassar R, Barzilai A, Blinder P, Fishelson Z, Frenkel D. Astrocytes from old Alzheimer's disease mice are impaired in Aβ uptake and in neuroprotection. Neurobiol Dis 2016; 96:84-94. [DOI: 10.1016/j.nbd.2016.08.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/11/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022] Open
|
37
|
Yan H, Zhu X, Xie J, Zhao Y, Liu X. β-amyloid increases neurocan expression through regulating Sox9 in astrocytes: A potential relationship between Sox9 and chondroitin sulfate proteoglycans in Alzheimer's disease. Brain Res 2016; 1646:377-383. [PMID: 27317830 DOI: 10.1016/j.brainres.2016.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to investigate whether β-amyloid (Aβ) was able to enhance neurocan expression in a Sox9 dependent manner in astrocytes. METHODS AND MATERIALS Astrocytes were incubated with Aβ at different concentrations, the expression of Sox9 and neurocan was detected by Western blot assay. Meanwhile, the viability and proliferation of astrocytes were assessed by MTT assay. Then, the Sox9 expression was silenced, and the expression of Sox9 and neurocan was examined. RESULTS After incubation with Aβ, the viability of astrocytes was increased regardless silencing of Sox9 (all P<0.05). The proliferation of astrocytes was also gradually increased with the increase in the time of Aβ incubation (all P<0.05). With the increase in Aβ concentration, the expression of Sox9 and neurocan was also increased (all P<0.05). However, after silencing of Sox9 expression, the neurocan expression was significantly reduced as compared to control group and scra-siRNA group (all P<0.05). CONCLUSION Our study shows the viability and proliferation of astrocytes are significantly increased by Aβ in a dose dependent manner. Moreover, Aβ may effectively up-regulate the neurocan expression via regulating Sox9.
Collapse
Affiliation(s)
- Han Yan
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, PR China
| | - Xiaolong Zhu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, PR China
| | - Junchao Xie
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, PR China
| | - Yanxin Zhao
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, PR China.
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, PR China.
| |
Collapse
|
38
|
Fu Y, Zhao J, Atagi Y, Nielsen HM, Liu CC, Zheng H, Shinohara M, Kanekiyo T, Bu G. Apolipoprotein E lipoprotein particles inhibit amyloid-β uptake through cell surface heparan sulphate proteoglycan. Mol Neurodegener 2016; 11:37. [PMID: 27151330 PMCID: PMC4857252 DOI: 10.1186/s13024-016-0099-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/19/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The accumulation, aggregation and deposition of amyloid-β (Aβ) peptides in the brain are central to the pathogenesis of Alzheimer's disease (AD). Alzheimer's disease risk increases significantly in individuals carrying one or two copies of APOE ε4 allele compared to individuals with an ε3/ε3 genotype. Growing evidence has demonstrated that apolipoprotein E (apoE) strongly influences AD pathogenesis by controlling Aβ aggregation and metabolism. Heparan sulphate proteoglycans (HSPGs) are abundant cell surface molecules that bind to both apoE and Aβ. HSPGs have been associated with Aβ aggregation and deposition. Although several lines of research have shown that apoE influences Aβ clearance in the brain, it is not clear how apoE influences HSPG-mediated cellular uptake of Aβ. RESULTS In this study, we show that apoE lipoprotein particles from conditioned media of immortalized astrocytes isolated from human APOE-targeted replacement (TR) mice significantly suppress cellular Aβ42 and Aβ40 uptake through cell surface HSPG. ApoE3 and apoE4 particles have similar binding affinity to heparin, while apoE4 particles are likely hypolipidated compared to apoE particles. We also found that the apoE particles antagonize Aβ binding to cell surface, and inhibited Aβ uptake in a concentration-dependent manner in Chinese hamster ovary (CHO) cells. While the effect was not apoE isoform-dependent, the suppressive effect of apoE particles on Aβ uptake was not observed in HSPG-deficient CHO cells. We further demonstrated that apoE particles reduced the internalization of Aβ in mouse primary neurons, an effect that is eliminated by the presence of heparin. CONCLUSIONS Taken together, our findings indicate that apoE particles irrespective of isoform inhibit HSPG-dependent cellular Aβ uptake. Modulating the ability of apoE particles to affect Aβ cellular uptake may hold promises for developing new strategies for AD therapy.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yuka Atagi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Honghua Zheng
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
39
|
Chiarini A, Armato U, Liu D, Dal Prà I. Calcium-Sensing Receptors of Human Neural Cells Play Crucial Roles in Alzheimer's Disease. Front Physiol 2016; 7:134. [PMID: 27199760 PMCID: PMC4844916 DOI: 10.3389/fphys.2016.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/28/2016] [Indexed: 12/21/2022] Open
Abstract
In aged subjects, late-onset Alzheimer's disease (LOAD) starts in the lateral entorhinal allocortex where a failure of clearance mechanisms triggers an accumulation of neurotoxic amyloid-β42 oligomers (Aβ42-os). In neurons and astrocytes, Aβ42-os enhance the transcription of Aβ precursor protein (APP) and β-secretase/BACE1 genes. Thus, by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the endogenous production of Aβ42-os which pile up, damage mitochondria, and are oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons' and astrocytes' calcium-sensing receptors (CaSRs) activating a set of intracellular signaling pathways which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach mounting numbers of adjacent and remoter teams of neurons and astrocytes which in turn are recruited, again via Aβ42-os•CaSR-governed mechanisms, to produce and release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD progression toward upper cortical areas. Later on accumulating Aβ42-os elicit the advent of hyperphosphorylated (p)-Tau oligomers which acting together with Aβ42-os and other glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas. In parallel, Aβ42-os•CaSR signals also elicit an excess production and secretion of nitric oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide and (likely) Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have shown that highly selective allosteric CaSR antagonists (calcilytics), like NPS 2143 and NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-os•CaSR signaling drives in cultured cortical untransformed human neurons and astrocytes. In fact, calcilytics increase Aβ42 proteolysis and discontinue the oversecretion of Aβ42-os, nitric oxide, and vascular endothelial growth factor-A from both astrocytes and neurons. Seemingly, calcilytics would also benefit the other types of glial cells and cerebrovascular cells otherwise damaged by the effects of Aβ42-os•CaSR signaling. Thus, given at amnestic minor cognitive impairment (aMCI) or initial symptomatic stages, calcilytics could prevent or terminate the propagation of LOAD neuropathology and preserve human neurons' viability and hence patients' cognitive abilities.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| | - Daisong Liu
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
- Proteomics Laboratory, Institute for Burn Research, Third Military Medical UniversityChongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| |
Collapse
|
40
|
Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Schöll M, Chiotis K, Thordardottir S, Graff C, Wall A, Långström B, Nordberg A. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease. Brain 2016; 139:922-36. [PMID: 26813969 PMCID: PMC4766380 DOI: 10.1093/brain/awv404] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/20/2015] [Indexed: 11/14/2022] Open
Abstract
See Schott and Fox (doi:
10.1093/brain/awv405
) for a scientific commentary on this article.
Alzheimer’s disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer’s disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer
11
C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition (
11
C-Pittsburgh compound B), and glucose metabolism (
18
F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer’s disease mutation carriers (
n =
11; 49.6 ± 10.3 years old) and non-carriers (
n =
16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (
n =
17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer’s disease (
n =
8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer’s disease participants belonged to families with known mutations in either presenilin 1 (
PSEN1
) or amyloid precursor protein (
APPswe
or
APParc
) genes. Sporadic mild cognitive impairment patients were further divided into
11
C-Pittsburgh compound B-positive (
n =
13; 62.0 ± 6.4; seven male) and
11
C-Pittsburgh compound B-negative (
n =
4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 ± 0.6 years. By using linear mixed-effects models, fibrillar amyloid-β plaque deposition was first observed in the striatum of presymptomatic autosomal dominant Alzheimer’s disease carriers from 17 years before expected symptom onset; at about the same time, astrocytosis was significantly elevated and then steadily declined. Diverging from the astrocytosis pattern, amyloid-β plaque deposition increased with disease progression. Glucose metabolism steadily declined from 10 years after initial amyloid-β plaque deposition. Patients with sporadic mild cognitive impairment who were
11
C-Pittsburgh compound B-positive at baseline showed increasing amyloid-β plaque deposition and decreasing glucose metabolism but, in contrast to autosomal dominant Alzheimer’s disease carriers, there was no significant longitudinal decline in astrocytosis over time. The prominent initially high and then declining astrocytosis in autosomal dominant Alzheimer’s disease carriers, contrasting with the increasing amyloid-β plaque load during disease progression, suggests astrocyte activation is implicated in the early stages of Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Laure Saint-Aubert
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Stephen F Carter
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Ove Almkvist
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden 2 Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Karim Farid
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Michael Schöll
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Konstantinos Chiotis
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Steinunn Thordardottir
- 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden 4 Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Caroline Graff
- 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden 4 Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Anders Wall
- 5 Department of Surgical Sciences, Section of Nuclear Medicine & PET, Uppsala University, 751 85 Uppsala, Sweden
| | - Bengt Långström
- 6 Department of Chemistry, Uppsala University, 701 05 Uppsala, Sweden
| | - Agneta Nordberg
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| |
Collapse
|
41
|
Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2016; 144:121-41. [PMID: 26797041 DOI: 10.1016/j.pneurobio.2016.01.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta protein triggers reactive gliosis, a prominent neuropathological feature in the brains of Alzheimer's patients. The cytoskeletal and morphological changes of astrogliosis are its evident features, while changes in oxidative stress defense, cholesterol metabolism, and gene transcription programs are less manifest. However, these latter molecular changes may underlie a disruption in homeostatic regulation that keeps the brain environment balanced. Astrocytes in Alzheimer's disease show changes in glutamate and GABA signaling and recycling, potassium buffering, and in cholinergic, purinergic, and calcium signaling. Ultimately the dysregulation of homeostasis maintained by astrocytes can have grave consequences for the stability of microcircuits within key brain regions. Specifically, altered inhibition influenced by astrocytes can lead to local circuit imbalance with farther reaching consequences for the functioning of larger neuronal networks. Healthy astrocytes have a role in maintaining and modulating normal neuronal communication, synaptic physiology and energy metabolism, astrogliosis interferes with these functions. This review considers the molecular and functional changes occurring during astrogliosis in Alzheimer's disease, and proposes that astrocytes are key players in the development of dementia.
Collapse
|
42
|
Rajasekar N, Nath C, Hanif K, Shukla R. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes. Mol Neurobiol 2015; 53:6730-6744. [PMID: 26660109 DOI: 10.1007/s12035-015-9576-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/29/2015] [Indexed: 12/21/2022]
Abstract
Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.
Collapse
Affiliation(s)
- N Rajasekar
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Chandishwar Nath
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Kashif Hanif
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Rakesh Shukla
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India.
| |
Collapse
|
43
|
Yui D, Nishida Y, Nishina T, Mogushi K, Tajiri M, Ishibashi S, Ajioka I, Ishikawa K, Mizusawa H, Murayama S, Yokota T. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme. PLoS One 2015; 10:e0143518. [PMID: 26637123 PMCID: PMC4670075 DOI: 10.1371/journal.pone.0143518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.
Collapse
Affiliation(s)
- Daishi Yui
- Department of Neurology and Neurological Science, Graduate school of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoichiro Nishida
- Department of Neurology and Neurological Science, Graduate school of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Nishina
- Department of Neurology and Neurological Science, Graduate school of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaoru Mogushi
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mio Tajiri
- Department of Neurology and Neurological Science, Graduate school of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology and Neurological Science, Graduate school of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate school of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehiro Mizusawa
- National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate school of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
44
|
Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer’s Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. J Alzheimers Dis 2015; 48:891-917. [DOI: 10.3233/jad-150379] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Noopur Kejriwal
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
- Department of Neurology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
45
|
Steardo L, Bronzuoli MR, Iacomino A, Esposito G, Steardo L, Scuderi C. Does neuroinflammation turn on the flame in Alzheimer's disease? Focus on astrocytes. Front Neurosci 2015; 9:259. [PMID: 26283900 PMCID: PMC4518161 DOI: 10.3389/fnins.2015.00259] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/10/2015] [Indexed: 12/18/2022] Open
Abstract
Data from animal models and Alzheimer's disease (AD) subjects provide clear evidence for an activation of inflammatory pathways during the pathogenetic course of such illness. Biochemical and neuropathological studies highlighted an important cause/effect relationship between inflammation and AD progression, revealing a wide range of genetic, cellular, and molecular changes associated with the pathology. In this context, glial cells have been proved to exert a crucial role. These cells, in fact, undergo important morphological and functional changes and are now considered to be involved in the onset and progression of AD. In particular, astrocytes respond quickly to pathology with changes that have been increasingly recognized as a continuum, with potentially beneficial and/or negative consequences. Although it is now clear that activated astrocytes trigger the neuroinflammatory process, however, the precise mechanisms have not been completely elucidated. Neuroinflammation is certainly a multi-faceted and complex phenomenon and, especially in the early stages, exerts a reparative intent. However, for reasons not yet all well known, this process goes beyond the physiologic control and contributes to the exacerbation of the damage. Here we scrutinize some evidence supporting the role of astrocytes in the neuroinflammatory process and the possibility that these cells could be considered a promising target for future AD therapies.
Collapse
Affiliation(s)
- Luca Steardo
- Department of Psychiatry, University of Naples SUNNaples, Italy
| | - Maria R. Bronzuoli
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Aniello Iacomino
- Faculty of Psychology, University of Rome “G. Marconi”Rome, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| |
Collapse
|
46
|
Avila-Muñoz E, Arias C. Cholesterol-induced astrocyte activation is associated with increased amyloid precursor protein expression and processing. Glia 2015; 63:2010-2022. [PMID: 26096015 DOI: 10.1002/glia.22874] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 11/05/2022]
Abstract
Cholesterol is essential for maintaining lipid raft integrity and has been regarded as a crucial regulatory factor for amyloidogenesis in Alzheimer's disease (AD). The vast majority of studies on amyloid precursor protein (APP) metabolism and amyloid β-protein (Aβ) production have focused on neurons. The role of astrocytes remains largely unexplored, despite the presence of activated astrocytes in the brains of most patients with AD and in transgenic models of the disease. The role of cholesterol in Aβ production has been thoroughly studied in neurons and attributed to the participation of lipid rafts in APP metabolism. Thus, in this study, we analyzed the effect of cholesterol loading in astrocytes and analyzed the expression and processing of APP. We found that cholesterol exposure induced astrocyte activation, increased APP content, and enhanced the interaction of APP with BACE-1. These effects were associated with an enrichment of ganglioside GM1-cholesterol patches in the astrocyte membrane and with increased ROS production. GLIA 2015;63:2010-2022.
Collapse
Affiliation(s)
- Evangelina Avila-Muñoz
- Departamento De Medicina Genómica Y Toxicología Ambiental, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, D.F., México
| | - Clorinda Arias
- Departamento De Medicina Genómica Y Toxicología Ambiental, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, D.F., México
| |
Collapse
|
47
|
Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer's disease. Cell Mol Neurobiol 2015; 35:71-83. [PMID: 25149075 DOI: 10.1007/s10571-014-0101-6] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Amyloid β (Aβ) plays a pivotal role in the progression of Alzheimer's disease (AD) through its neurotoxic and inflammatory effects. On one hand, Aβ binds to microglia and activates them to produce inflammatory mediators. On the other hand, Aβ is cleared by microglia through receptor-mediated phagocytosis and degradation. This review focuses on microglial membrane receptors that bind Aβ and contribute to microglial activation and/or Aβ phagocytosis and clearance. These receptors can be categorized into several groups. The scavenger receptors (SRs) include scavenger receptor A-1 (SCARA-1), MARCO, scavenger receptor B-1 (SCARB-1), CD36 and the receptor for advanced glycation end product (RAGE). The G protein-coupled receptors (GPCRs) are formyl peptide receptor 2 (FPR2) and chemokine-like receptor 1 (CMKLR1). There are also toll-like receptors (TLRs) including TLR2, TLR4, and the co-receptor CD14. Functionally, SCARA-1 and CMKLR1 are involved in the uptake of Aβ, and RAGE is responsible for the activation of microglia and production of proinflammatory mediators following Aβ binding. CD36, CD36/CD47/α6β1-intergrin, CD14/TLR2/TLR4, and FPR2 display both functions. Additionally, MARCO and SCARB-1 also exhibit the ability to bind Aβ and may be involved in the progression of AD. Here, we focus on the expression and distribution of these receptors in microglia and their roles in microglia interaction with Aβ. Finally, we discuss the potential therapeutic value of these receptors in AD.
Collapse
Affiliation(s)
- Yang Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China,
| | | |
Collapse
|
48
|
Avila-Muñoz E, Arias C. When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer's disease. Ageing Res Rev 2014; 18:29-40. [PMID: 25078115 DOI: 10.1016/j.arr.2014.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/03/2014] [Accepted: 07/21/2014] [Indexed: 12/24/2022]
Abstract
A growing body of research suggests that astrocytes play roles as contributors to the pathophysiology of Alzheimer's disease (AD). Several lines of evidence propose that activated astrocytes produce and release proinflammatory molecules that may be critical for the generation of amyloid-β peptide (Aβ). However, accumulating evidence indicates that Aβ may activate astrocytes, which leads to an increase in cytokines that has been suggested to be a causative factor in the cognitive dysfunction of AD; thus, a vicious circle may be created. Intrinsic inflammatory mechanisms may provide a regulatory system that is capable of influencing the neuronal microenvironment that affects neuronal survival. In this article, we address the evidence surrounding the interactions of dysfunctional astrocytes with neighboring neurons that may initiate a cascade of events that culminates with neuronal injury and the expression of the hallmark lesions of AD. Comprehensive knowledge of the molecular mechanisms underlying the participation of astrocytes in neurodegeneration could aid the development of therapies to restore proper astrocyte function that can be used in AD patients to prevent or alleviate the progression of the disease in a more efficient and comprehensive manner.
Collapse
|
49
|
Perluigi M, Di Domenico F, Buttterfield DA. Unraveling the complexity of neurodegeneration in brains of subjects with Down syndrome: insights from proteomics. Proteomics Clin Appl 2014; 8:73-85. [PMID: 24259517 DOI: 10.1002/prca.201300066] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/27/2013] [Accepted: 09/10/2013] [Indexed: 01/17/2023]
Abstract
Down syndrome (DS) is one of the most common genetic causes of intellectual disability characterized by multiple pathological phenotypes, among which neurodegeneration is a key feature. The neuropathology of DS is complex and likely results from impaired mitochondrial function, increased oxidative stress, and altered proteostasis. After the age of 40 years, many (most) DS individuals develop a type of dementia that closely resembles that of Alzheimer's disease with deposition of senile plaques and neurofibrillary tangles. A number of studies demonstrated that increased oxidative damage, accumulation of damaged/misfolded protein aggregates, and dysfunction of intracellular degradative systems are critical events in the neurodegenerative processes. This review summarizes the current knowledge that demonstrates a “chronic” condition of oxidative stress in DS pointing to the putative molecular pathways that could contribute to accelerate cognition and memory decline. Proteomics and redox proteomics studies are powerful tools to unravel the complexity of DS phenotypes, by allowing to identifying protein expression changes and oxidative PTMs that are proved to be detrimental for protein function. It is reasonable to suggest that changes in the cellular redox status in DS neurons, early from the fetal period, could provide a fertile environment upon which increased aging favors neurodegeneration. Thus, after a critical age, DS neuropathology can be considered a human model of early Alzheimer's disease and could contribute to understanding the overlapping mechanisms that lead from normal aging to development of dementia.
Collapse
|
50
|
Mechanisms of U87 astrocytoma cell uptake and trafficking of monomeric versus protofibril Alzheimer's disease amyloid-β proteins. PLoS One 2014; 9:e99939. [PMID: 24941200 PMCID: PMC4062444 DOI: 10.1371/journal.pone.0099939] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/20/2014] [Indexed: 01/02/2023] Open
Abstract
A significant hallmark of Alzheimer’s disease is the formation of senile plaques in the brain due to the unbalanced levels of amyloid-beta (Aβ). However, although how Aβ is produced from amyloid precursor proteins is well understood, little is known regarding the clearance and metabolism of various Aβ aggregates from the brain. Similarly, little is known regarding how astrocytes internalize and degrade Aβ, although astrocytes are known to play an important role in plaque maintenance and Aβ clearance. The objective of this study is to investigate the cellular mechanisms that mediate the internalization of soluble monomeric versus oligomeric Aβ by astrocytes. We used a combination of laser confocal microscopy and genetic and pharmacological experiments to dissect the internalization of sAβ42 and oAβ42 and their postendocytic transport by U87 human brain astrocytoma cell line. Both Aβ42 species were internalized by U87 cells through fluid phase macropinocytosis, which required dynamin 2. Depleting LDL receptor-related protein 1 (LRP1) decreased sAβ42 uptake more significantly than that of oAβ42. We finally show that both Aβ42 species were rapidly transported to lysosomes through an endolytic pathway and subjected to proteolysis after internalization, which had no significant toxic effects to the U87 cells under relatively low concentrations. We propose that macropinocytic sAβ42 and oAβ42 uptake and their subsequent proteolytic degradation in astroglial cells is a significant mechanism underlying Aβ clearance from the extracellular milieu. Understanding the molecular events involved in astrocytic Aβ internalization may identify potential therapeutic targets for Alzheimer’s disease.
Collapse
|