1
|
McKinstry-Wu AR, Kelz MB. One node among many: sevoflurane-induced hypnosis and the challenge of an integrative network-level view of anaesthetic action. Br J Anaesth 2024; 132:220-223. [PMID: 38000931 DOI: 10.1016/j.bja.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Building on their known ability to influence sleep and arousal, Li and colleagues show that modulating the activity of glutamatergic pedunculopontine tegmental neurones also alters sevoflurane-induced hypnosis. This finding adds support for the shared sleep-anaesthesia circuit hypothesis. However, the expanding recognition of many neuronal clusters capable of modulating anaesthetic hypnosis raises the question of how disparate and anatomically distant sites ultimately interact to coordinate global changes in the state of the brain. Understanding how these individual sites work in concert to disrupt cognition and behaviour is the next challenge for anaesthetic mechanisms research.
Collapse
Affiliation(s)
- Andrew R McKinstry-Wu
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Center for Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Max B Kelz
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Center for Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Mahoney Institute of Neuroscience, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Radovanovic L, Novakovic A, Petrovic J, Saponjic J. Different Alterations of Hippocampal and Reticulo-Thalamic GABAergic Parvalbumin-Expressing Interneurons Underlie Different States of Unconsciousness. Int J Mol Sci 2023; 24:ijms24076769. [PMID: 37047741 PMCID: PMC10094978 DOI: 10.3390/ijms24076769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
We traced the changes in GABAergic parvalbumin (PV)-expressing interneurons of the hippocampus and reticulo-thalamic nucleus (RT) as possible underlying mechanisms of the different local cortical and hippocampal electroencephalographic (EEG) microstructures during the non-rapid-eye movement (NREM) sleep compared with anesthesia-induced unconsciousness by two anesthetics with different main mechanisms of action (ketamine/diazepam versus propofol). After 3 h of recording their sleep, the rats were divided into two experimental groups: one half received ketamine/diazepam anesthesia and the other half received propofol anesthesia. We simultaneously recorded the EEG of the motor cortex and hippocampus during sleep and during 1 h of surgical anesthesia. We performed immunohistochemistry and analyzed the PV and postsynaptic density protein 95 (PSD-95) expression. PV suppression in the hippocampus and at RT underlies the global theta amplitude attenuation and hippocampal gamma augmentation that is a unique feature of ketamine-induced versus propofol-induced unconsciousness and NREM sleep. While PV suppression resulted in an increase in hippocampal PSD-95 expression, there was no imbalance between inhibition and excitation during ketamine/diazepam anesthesia compared with propofol anesthesia in RT. This increased excitation could be a consequence of a lower GABA interneuronal activity and an additional mechanism underlying the unique local EEG microstructure in the hippocampus during ketamine/diazepam anesthesia.
Collapse
Affiliation(s)
- Ljiljana Radovanovic
- Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Andrea Novakovic
- Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Petrovic
- Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jasna Saponjic
- Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
3
|
Su JH, Hu YW, Yang Y, Li RY, Teng F, Li LX, Jin LJ. Dystonia and the pedunculopontine nucleus: Current evidences and potential mechanisms. Front Neurol 2022; 13:1065163. [PMID: 36504662 PMCID: PMC9727297 DOI: 10.3389/fneur.2022.1065163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Being a major component of the midbrain locomotion region, the pedunculopontine nucleus (PPN) is known to have various connections with the basal ganglia, the cerebral cortex, thalamus, and motor regions of the brainstem and spinal cord. Functionally, the PPN is associated with muscle tone control and locomotion modulation, including motor initiation, rhythm and speed. In addition to its motor functions, the PPN also contribute to level of arousal, attention, memory and learning. Recent studies have revealed neuropathologic deficits in the PPN in both patients and animal models of dystonia, and deep brain stimulation of the PPN also showed alleviation of axial dystonia in patients of Parkinson's disease. These findings indicate that the PPN might play an important role in the development of dystonia. Moreover, with increasing preclinical evidences showed presence of dystonia-like behaviors, muscle tone changes, impaired cognitive functions and sleep following lesion or neuromodulation of the PPN, it is assumed that the pathological changes of the PPN might contribute to both motor and non-motor manifestations of dystonia. In this review, we aim to summarize the involvement of the PPN in dystonia based on the current preclinical and clinical evidences. Moreover, potential mechanisms for its contributions to the manifestation of dystonia is also discussed base on the dystonia-related basal ganglia-cerebello-thalamo-cortical circuit, providing fundamental insight into the targeting of the PPN for the treatment of dystonia in the future.
Collapse
Affiliation(s)
- Jun-hui Su
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yao-wen Hu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruo-yu Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-xi Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling-jing Jin
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China,*Correspondence: Ling-jing Jin
| |
Collapse
|
4
|
Grady FS, Boes AD, Geerling JC. A Century Searching for the Neurons Necessary for Wakefulness. Front Neurosci 2022; 16:930514. [PMID: 35928009 PMCID: PMC9344068 DOI: 10.3389/fnins.2022.930514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Wakefulness is necessary for consciousness, and impaired wakefulness is a symptom of many diseases. The neural circuits that maintain wakefulness remain incompletely understood, as do the mechanisms of impaired consciousness in many patients. In contrast to the influential concept of a diffuse "reticular activating system," the past century of neuroscience research has identified a focal region of the upper brainstem that, when damaged, causes coma. This region contains diverse neuronal populations with different axonal projections, neurotransmitters, and genetic identities. Activating some of these populations promotes wakefulness, but it remains unclear which specific neurons are necessary for sustaining consciousness. In parallel, pharmacological evidence has indicated a role for special neurotransmitters, including hypocretin/orexin, histamine, norepinephrine, serotonin, dopamine, adenosine and acetylcholine. However, genetically targeted experiments have indicated that none of these neurotransmitters or the neurons producing them are individually necessary for maintaining wakefulness. In this review, we emphasize the need to determine the specific subset of brainstem neurons necessary for maintaining arousal. Accomplishing this will enable more precise mapping of wakefulness circuitry, which will be useful in developing therapies for patients with coma and other disorders of arousal.
Collapse
Affiliation(s)
- Fillan S Grady
- Geerling Laboratory, Department of Neurology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
| | - Aaron D Boes
- Boes Laboratory, Departments of Pediatrics, Neurology, and Psychiatry, The University of Iowa, Iowa City, IA, United States
| | - Joel C Geerling
- Geerling Laboratory, Department of Neurology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
5
|
Hippocampal and Reticulo-Thalamic Parvalbumin Interneurons and Synaptic Re-Organization during Sleep Disorders in the Rat Models of Parkinson's Disease Neuropathology. Int J Mol Sci 2021; 22:ijms22168922. [PMID: 34445628 PMCID: PMC8396216 DOI: 10.3390/ijms22168922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the alterations of hippocampal and reticulo-thalamic (RT) GABAergic parvalbumin (PV) interneurons and their synaptic re-organizations underlying the prodromal local sleep disorders in the distinct rat models of Parkinson’s disease (PD). We demonstrated for the first time that REM sleep is a predisposing state for the high-voltage sleep spindles (HVS) induction in all experimental models of PD, particularly during hippocampal REM sleep in the hemiparkinsonian models. There were the opposite underlying alterations of the hippocampal and RT GABAergic PV+ interneurons along with the distinct MAP2 and PSD-95 expressions. Whereas the PD cholinopathy enhanced the number of PV+ interneurons and suppressed the MAP2/PSD-95 expression, the hemiparkinsonism with PD cholinopathy reduced the number of PV+ interneurons and enhanced the MAP2/PSD-95 expression in the hippocampus. Whereas the PD cholinopathy did not alter PV+ interneurons but partially enhanced MAP2 and suppressed PSD-95 expression remotely in the RT, the hemiparkinsonism with PD cholinopathy reduced the PV+ interneurons, enhanced MAP2, and did not change PSD-95 expression remotely in the RT. Our study demonstrates for the first time an important regulatory role of the hippocampal and RT GABAergic PV+ interneurons and the synaptic protein dynamic alterations in the distinct rat models of PD neuropathology.
Collapse
|
6
|
Fink AM, Burke LA, Sharma K. Lesioning of the pedunculopontine nucleus reduces rapid eye movement sleep, but does not alter cardiorespiratory activities during sleep, under hypoxic conditions in rats. Respir Physiol Neurobiol 2021; 288:103653. [PMID: 33716095 PMCID: PMC8112452 DOI: 10.1016/j.resp.2021.103653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/21/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
To determine how partial lesioning of the pedunculopontine nucleus (PPT) affects sleep, breathing, and blood pressure in rats, ibotenic acid (IBO) was injected bilaterally into the PPT. Sham-injected (saline) and IBO-lesioned rats were first studied under normoxic conditions (40 recordings were obtained from 15 rats, with each recording lasting for 6 daytime hours). Rats were then exposed to intermittent hypoxia for 4 ± 2 days (51 recordings from 12 rats, each lasting 6 daytime hours). The intermittent hypoxia protocol involved an oxygen decline lasting 35 s (to a nadir of 10 %) followed by a 50 s increase to normoxia. The IBO caused an estimated 53 % reduction in PPT neurons. When normoxic, IBO-lesioned rats had remarkedly normal sleep architecture, respiratory rates, and mean arterial pressure. The exposure to intermittent hypoxia evoked tachypnea in both the IBO-lesioned and sham-injected rats. When intermittently hypoxic, IBO-lesioned rats demonstrated a significant reduction in the duration of rapid eye movement (REM) sleep. We conclude that partial lesions of the PPT do not disrupt cardiorespiratory activities, but a reduction in PPT neurons impairs the ability to sustain REM sleep under hypoxic conditions.
Collapse
Affiliation(s)
- Anne M Fink
- Center for Sleep and Health Research, University of Illinois Chicago, 845 S. Damen Ave (MC 802), Room 750, Chicago, IL, 60612, United States.
| | - Larisa A Burke
- Office of Research Facilitation, University of Illinois Chicago, 845 S. Damen Ave (MC 802), Room 615, Chicago, IL, 60612, United States.
| | - Kamal Sharma
- Department of Anatomy and Cell Biology, University of Illinois Chicago, 808 S Wood St (MC 512), Room 666, Chicago, IL, United States.
| |
Collapse
|
7
|
Petrovic J, Radovanovic L, Saponjic J. Prodromal local sleep disorders in a rat model of Parkinson's disease cholinopathy, hemiparkinsonism and hemiparkinsonism with cholinopathy. Behav Brain Res 2020; 397:112957. [PMID: 33038348 DOI: 10.1016/j.bbr.2020.112957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 01/14/2023]
Abstract
We investigated the prodromal alterations of local sleep, particularly the motor cortical and hippocampal sleep, along with spontaneous locomotor activity in the rat models of Parkinson's disease (PD). We performed our experiments in adult, male Wistar rats, chronically implanted for sleep recording and divided into four experimental groups: the control (implanted controls), the bilateral pedunculopontine tegmental nucleus (PPT) lesions (PD cholinopathy), the unilateral substantia nigra pars compacta (SNpc) lesions (hemiparkinsonism) and the unilateral SNpc/bilateral PPT lesions (hemiparkinsonism with PD cholinopathy). We followed their sleep, basal locomotor activity and spatial habituation for 14 days following the surgical procedures. Severe prodromal local sleep disturbances in the hemiparkinsonian rats were expressed as sleep fragmentation and distinct local NREM/REM EEG microstructure alterations in both the motor cortex and the hippocampus. Alongside the state-unrelated role of the dopaminergic control of theta oscillations and NREM/REM related sigma and beta oscillations, we demonstrated that the REM neurochemical regulatory substrate is particularly important in the dopaminergic control of beta oscillations. In addition, hippocampal prodromal sleep disorders in the hemiparkinsonian rats were expressed as NREM/REM fragmentation and the opposite impact of dopaminergic versus cholinergic control of the NREM delta and beta oscillation amplitudes in the hippocampus, likewise in the motor cortex versus the hippocampus. All these distinct prodromal local sleep disorders and the dopaminergic vs. cholinergic impact on NREM/REM EEG microstructure alterations are of fundamental importance for the further development and follow-up of PD-modifying therapies, and for the identification of patients who are at risk of developing PD.
Collapse
Affiliation(s)
- Jelena Petrovic
- Institute for Biological Research, Sinisa Stankovic - National Institute of Republic of Serbia, Department of Neurobiology, University of Belgrade, Despot Stefan Blvd., 142, 11060, Belgrade, Serbia.
| | - Ljiljana Radovanovic
- Institute for Biological Research, Sinisa Stankovic - National Institute of Republic of Serbia, Department of Neurobiology, University of Belgrade, Despot Stefan Blvd., 142, 11060, Belgrade, Serbia
| | - Jasna Saponjic
- Institute for Biological Research, Sinisa Stankovic - National Institute of Republic of Serbia, Department of Neurobiology, University of Belgrade, Despot Stefan Blvd., 142, 11060, Belgrade, Serbia
| |
Collapse
|
8
|
Sleep Recovery Restored Neuroglobin Immunoreactivity in Rat LDTg-PPTg Nuclei. SLEEP DISORDERS 2020; 2020:8353854. [PMID: 32774927 PMCID: PMC7396083 DOI: 10.1155/2020/8353854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022]
Abstract
Neuroglobin (Ngb) is a protein member of the globin family, expressed mainly in the central and peripheral nervous system. It is involved in the transport of oxygen in response to hypoxic/ischemic and oxidative stress-related insults. We recently showed that sleep deprivation reduces the number of Ngb-positive cells in brain areas related to sleep. However, it is poorly understood whether Ngb expression correlates with sleep occurrence. Here, we aimed to study if sleep recovery produced by 24 h of sleep deprivation restores the number of Ngb-positive cells in the pedunculopontine tegmentum (PPTg) and laterodorsal tegmentum (LDTg), brain areas related to sleep-wake regulation. Male Wistar rats were sleep-deprived for 24 h using the gentle handling method. After sleep deprivation, rats were allowed a sleep recovery for three or six hours. After sleep recovery, rats were euthanized, and their brains processed for Ngb immunohistochemistry. We found that a 3 h sleep recovery is enough to restore the number of Ngb-positive cells in all the analyzed areas. A similar result was observed after a 6 h sleep recovery. These results suggest that Ngb expression is sleep dependent. We suggest that Ngb expression is involved in preventing cell damage due to prolonged wakefulness.
Collapse
|
9
|
Petrovic J, Radovanovic L, Saponjic J. Diversity of simultaneous sleep in the motor cortex and hippocampus in rats. J Sleep Res 2020; 30:e13090. [PMID: 32472657 DOI: 10.1111/jsr.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/26/2022]
Abstract
We investigated the homogeneity/heterogeneity of spontaneous sleep, simultaneously recorded in the motor cortex and the hippocampus of control rats, and particularly analysed simultaneous and non-simultaneous motor cortical and hippocampal non-rapid eye movement (NREM)/rapid eye movement (REM) sleep. We demonstrate that the sleep architectures of the motor cortex and hippocampus are different in control rats. There was an increase of NREM duration and a decrease of REM duration in the hippocampus versus the motor cortex. In terms of duration, NREM state is the most heterogeneous in the hippocampus, whereas the REM state is the most heterogeneous in the motor cortex. Whereas the hippocampal NREM duration was increased due to the prolongation of NREM episodes, the hippocampal REM duration decreased due to the decreased number of REM episodes. The heterogeneity of sleep in the motor cortex and hippocampus in control rats was particularly expressed through the inverse alteration of sigma amplitude during NREM sleep and beta/gamma amplitudes during REM sleep in the hippocampus, along with the delta, sigma, beta and gamma amplitudes only during non-simultaneous NREM/REM sleep in the hippocampus. We demonstrated the brain structure-related and NREM/REM state-related heterogeneity of the motor cortical and hippocampal local sleep in control rats. The distinctly altered local NREM/REM states, alongside their episode dynamics and electroencephalographic (EEG) microstructures, suggest the importance of both the local neuronal network substrate and the NREM/REM neurochemical substrate in the control mechanisms of sleep.
Collapse
Affiliation(s)
- Jelena Petrovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Radovanovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Ciric J, Kapor S, Perovic M, Saponjic J. Alterations of Sleep and Sleep Oscillations in the Hemiparkinsonian Rat. Front Neurosci 2019; 13:148. [PMID: 30872994 PMCID: PMC6401659 DOI: 10.3389/fnins.2019.00148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/08/2019] [Indexed: 01/16/2023] Open
Abstract
Our previous studies in the rat model of Parkinson’s disease (PD) cholinopathy demonstrated the sleep-related alterations in electroencephalographic (EEG) oscillations at the cortical and hippocampal levels, cortical drives, and sleep spindles (SSs) as the earliest functional biomarkers preceding hypokinesia. Our aim in this study was to follow the impact of a unilateral substantia nigra pars compacta (SNpc) lesion in rat on the cortical and hippocampal sleep architectures and their EEG microstructures, as well as the cortico-hippocampal synchronizations of EEG oscillations, and the SS and high voltage sleep spindle (HVS) dynamics during NREM and REM sleep. We performed unilateral SNpc lesions using two different concentrations/volumes of 6-hydroxydopamine (6-OHDA; 12 μg/1 μl or 12 μg/2 μl). Whereas the unilateral dopaminergic neuronal loss >50% throughout the overall SNpc rostro-caudal dimension prolonged the Wake state, with no change in the NREM or REM duration, there was a long-lasting theta amplitude augmentation across all sleep states in the motor cortex (MCx), but also in the CA1 hippocampus (Hipp) during both Wake and REM sleep. We demonstrate that SS are the hallmarks of NREM sleep, but that they also occur during REM sleep in the MCx and Hipp of the control rats. Whereas SS are always longer in REM vs. NREM sleep in both structures, they are consistently slower in the Hipp. The dopaminergic neuronal loss increased the density of SS in both structures and shortened them in the MCx during NREM sleep, without changing the intrinsic frequency. Conversely, HVS are the hallmarks of REM sleep in the control rats, slower in the Hipp vs. MCx, and the dopaminergic neuronal loss increased their density in the MCx, but shortened them more consistently in the Hipp during REM sleep. In addition, there was an altered synchronization of the EEG oscillations between the MCx and Hipp in different sleep states, particularly the theta and sigma coherences during REM sleep. We provide novel evidence for the importance of the SNpc dopaminergic innervation in sleep regulation, theta rhythm generation, and SS/HVS dynamics control. We suggest the importance of the underlying REM sleep regulatory substrate to HVS generation and duration and to the cortico-hippocampal synchronizations of EEG oscillations in hemiparkinsonian rats.
Collapse
Affiliation(s)
- Jelena Ciric
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Slobodan Kapor
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Lazic K, Ciric J, Saponjic J. Sleep spindle dynamics during NREM and REM sleep following distinct general anaesthesia in control rats and in a rat model of Parkinson's disease cholinopathy. J Sleep Res 2018; 28:e12758. [PMID: 30136327 DOI: 10.1111/jsr.12758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/30/2022]
Abstract
On the basis of our previous studies and the important role of the thalamo-cortical network in states of unconsciousness, such as anaesthesia and sleep, and in sleep spindles generation, we investigated sleep spindles (SS) and high-voltage sleep spindle (HVS) dynamics during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep following different types of general anaesthesia in both physiological controls and in a rat model of Parkinson's disease (PD) cholinopathy, to follow the impact of anaesthesia on post-anaesthesia sleep at the thalamo-cortical level through an altered sleep spindle dynamics. We recorded 6 hr of spontaneous sleep in all rats, both before and 48 hr after ketamine/diazepam or pentobarbital anaesthesia, and we used 1 hr of NREM or REM sleep from each to validate visually the automatically detected SS or HVS for their extraction and analysis. In the controls, SS occurred mainly during NREM, whereas HVS occurred only during REM sleep. Ketamine/diazepam anaesthesia promoted HVS, prolonged SS during NREM, induced HVS of increased frequency during REM, and increased SS/HVS densities during REM versus NREM sleep. Pentobarbital anaesthesia decreased the frequency of SS during NREM and the HVS density during REM sleep. Although the pedunculopontine tegmental nucleus lesion prolonged SS only during NREM sleep, in these rats, ketamine/diazepam anaesthesia suppressed HVS during both sleep states, whereas pentobarbital anaesthesia promoted HVS during REM sleep. The different impacts of two anaesthetic regimens on the thalamo-cortical regulatory network are expressed through their distinct sleep spindle generation and dynamics that are dependent on the NREM and REM state regulatory neuronal substrate.
Collapse
Affiliation(s)
- Katarina Lazic
- Department of Neurobiology, Institute for Biological Research - Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Jelena Ciric
- Department of Neurobiology, Institute for Biological Research - Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research - Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2018; 140:77-92. [PMID: 30118737 PMCID: PMC6403104 DOI: 10.1016/j.neures.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
REM sleep was discovered in the 1950s. Many hypothalamic and brainstem areas have been found to contribute to REM sleep. An up-to-date picture of REM-sleep-regulating circuits is reviewed. A brief overview of computational models for REM sleep regulation is provided. Outstanding issues for future studies are discussed.
Rapid eye movement (REM) sleep or paradoxical sleep is an elusive behavioral state. Since its discovery in the 1950s, our knowledge of the neuroanatomy, neurotransmitters and neuropeptides underlying REM sleep regulation has continually evolved in parallel with the development of novel technologies. Although the pons was initially discovered to be responsible for REM sleep, it has since been revealed that many components in the hypothalamus, midbrain, pons, and medulla also contribute to REM sleep. In this review, we first provide an up-to-date overview of REM sleep-regulating circuits in the brainstem and hypothalamus by summarizing experimental evidence from neuroanatomical, neurophysiological and gain- and loss-of-function studies. Second, because quantitative approaches are essential for understanding the complexity of REM sleep-regulating circuits and because mathematical models have provided valuable insights into the dynamics underlying REM sleep genesis and maintenance, we summarize computational studies of the sleep-wake cycle, with an emphasis on REM sleep regulation. Finally, we discuss outstanding issues for future studies.
Collapse
Affiliation(s)
- Charlotte Héricé
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Amisha A Patel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
13
|
Ciric J, Lazic K, Kapor S, Perovic M, Petrovic J, Pesic V, Kanazir S, Saponjic J. Sleep disorder and altered locomotor activity as biomarkers of the Parkinson’s disease cholinopathy in rat. Behav Brain Res 2018; 339:79-92. [DOI: 10.1016/j.bbr.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/07/2017] [Accepted: 11/16/2017] [Indexed: 11/30/2022]
|
14
|
Olateju OI, Bhagwandin A, Ihunwo AO, Manger PR. Changes in the Cholinergic, Catecholaminergic, Orexinergic and Serotonergic Structures Forming Part of the Sleep Systems of Adult Mice Exposed to Intrauterine Alcohol. Front Neuroanat 2017; 11:110. [PMID: 29230167 PMCID: PMC5711786 DOI: 10.3389/fnana.2017.00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
We examined the effect of chronic prenatal alcohol exposure on certain neuronal systems involved with the sleep-wake cycle of C57BL/6J mice exposed to prenatal alcohol once they had reached 56 days post-natal. Pregnant mice were exposed to alcohol, through oral gavage, on gestational days 7–16, with recorded blood alcohol concentration (BAC)s averaging 1.84 mg/ml (chronic alcohol group, CA). Two control groups, an oral gavage sucrose control group (chronic alcohol control group, CAc) and a non-treated control group (NTc), were also examined. At 56 days post-natal, the pups from each group were sacrificed and the whole brain sectioned in a coronal plane and immunolabeled for cholineacetyltransferase (ChAT), tyrosine hydroxylase (TH), serotonin (5HT) and orexin-A (OxA) which labels cholinergic, catecholaminergic, serotonergic and orexinergic structures respectively. The overall nuclear organization and neuronal morphology were identical in all three groups studied, and resemble that previously reported for laboratory rodents. Quantification of the estimated numbers of ChAT immunopositive (+) neurons of the pons, the TH+ neurons of the pons and the OxA+ neurons of the hypothalamus showed no statistically significant difference between the three experimental groups. The stereologically estimated areas and volumes of OxA+ neurons in the CA group were statistically significantly larger than the groups not exposed to prenatal alcohol, but the ChAT+ neurons in the CA group were statistically significantly smaller. The density of orexinergic boutons in the anterior cingulate cortex was lower in the CA group than the other groups. No statistically significant difference was found in the area and volume of TH+ neurons between the three experimental groups. These differences are discussed in relation to the sleep disorders recorded in children with fetal alcohol spectrum disorder (FASD).
Collapse
Affiliation(s)
- Oladiran I Olateju
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Petrovic J, Milosevic V, Zivkovic M, Stojanov D, Milojkovic O, Kalauzi A, Saponjic J. Slower EEG alpha generation, synchronization and "flow"-possible biomarkers of cognitive impairment and neuropathology of minor stroke. PeerJ 2017; 5:e3839. [PMID: 28970969 PMCID: PMC5623310 DOI: 10.7717/peerj.3839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022] Open
Abstract
Background We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. Methods We included 10 patients with right middle cerebral artery (MCA) ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS), whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA) and MoCA memory index (MoCA-MIS). The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8), and corresponding lateral posterior (P3, P4, T5, T6) electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG), the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure), the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs). Statistical analysis was done using a Kruskal–Wallis ANOVA with a post-hoc Mann–Whitney U two-tailed test, and Spearman’s correlation. Results We demonstrated transient cognitive impairment alongside a slower alpha frequency (αAVG) in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered “alpha flow”, indicating the sustained augmentation of inter-hemispheric interactions. Although the stroke induced slower alpha was a transient phenomenon, the increased alpha intra-hemispheric synchronization, overlying the ipsi-lesional hemisphere, the increased alpha F3–F4 inter-hemispheric synchronization, the delayed alpha waves, and the newly established inter-hemispheric “alpha flow” within the frontal cortex, remained as a permanent consequence of the minor stroke. This newly established frontal inter-hemispheric “alpha flow” represented a permanent consequence of the “hidden” stroke neuropathology, despite the fact that cognitive impairment has been returned to the control values. All the detected permanent changes at the EEG level with no cognitive impairment after a minor stroke could be a way for the brain to compensate for the lesion and restore the lost function. Discussion Our study indicates slower EEG alpha generation, synchronization and “flow” as potential biomarkers of cognitive impairment onset and/or compensatory post-stroke re-organizational processes.
Collapse
Affiliation(s)
- Jelena Petrovic
- Department of Neurobiology, Institute for Biological Research-Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Vuk Milosevic
- Clinic of Neurology, Clinical Center Nis, Nis, Serbia
| | | | | | - Olga Milojkovic
- Clinic for Mental Health Protection, Clinical Center Nis, Nis, Serbia
| | - Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research-Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017; 44:186-192. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Although earlier models of brain circuitry controlling wake-sleep focused on monaminergic and cholinergic arousal systems, recent evidence indicates that these play mainly a modulatory role, and that the backbone of the wake-sleep regulatory system depends upon fast neurotransmitters, such as glutmate and GABA. We review here recent advances in understanding the role these systems play in controlling sleep and wakefulness.
Collapse
Affiliation(s)
- Clifford B Saper
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Patrick M Fuller
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
17
|
Lazic K, Petrovic J, Ciric J, Kalauzi A, Saponjic J. REM sleep disorder following general anesthesia in rats. Physiol Behav 2017; 168:41-54. [DOI: 10.1016/j.physbeh.2016.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 11/16/2022]
|
18
|
Regional gray matter changes in shift workers: a voxel-based morphometry study. Sleep Med 2016; 30:185-188. [PMID: 28215246 DOI: 10.1016/j.sleep.2016.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/25/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Previous neuroimaging studies have shown subtle structural changes of the brain in various sleep disorders, suggesting detrimental effects of disrupted sleep-wake cycle on brain structures. We aimed to identify structural changes in shift workers relative to day workers. We hypothesized that brain structures belonging to sleep-wake modulation may be altered in shift workers. METHODS Nineteen male shift workers (median age, 21 years) and 19 male day workers (median age, 21 years) voluntarily participated in the current study. Sleep questionnaires were obtained from all participants and compared between the groups. Voxel-based morphometry was used to compare regional gray matter volume between shift workers and day workers (corrected p < 0.05 with small volume correction). Separate correlation analyses were performed between regional gray matter volume change and scores of Epworth Sleepiness Scale and Pittsburgh Sleep Quality Index (Pearson's correlation, p < 0.05). RESULTS Compared to day workers, shift workers had higher scores of Beck Depression Inventory-II, Epworth Sleepiness Scale, and Pittsburgh Sleep Quality Index. Compared to day workers, shift workers had a significant gray matter volume reduction in the pontomesencephalic tegmentum. Regional volume of the pontomesencephalic tegmentum negatively correlated with Pittsburgh Sleep Quality Index global score. CONCLUSIONS We observed that pontomesencephalic tegmentum volume was reduced in shift workers compared to day workers and that the smaller pontomesencephalic tegmentum volume was related to the poorer sleep quality. Our preliminary findings may be related to chronic disruption of circadian rhythm or decreased exposure to bright light in shift workers.
Collapse
|
19
|
Unraveling a new circuitry for sleep regulation in Parkinson's disease. Neuropharmacology 2016; 108:161-71. [DOI: 10.1016/j.neuropharm.2016.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/10/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022]
|
20
|
Ciric J, Lazic K, Petrovic J, Kalauzi A, Saponjic J. Age-related disorders of sleep and motor control in the rat models of functionally distinct cholinergic neuropathology. Behav Brain Res 2016; 301:273-86. [DOI: 10.1016/j.bbr.2015.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
|
21
|
Dell LA, Patzke N, Spocter MA, Siegel JM, Manger PR. Organization of the sleep-related neural systems in the brain of the harbour porpoise (Phocoena phocoena). J Comp Neurol 2016; 524:1999-2017. [PMID: 26588354 DOI: 10.1002/cne.23929] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 11/10/2022]
Abstract
The present study provides the first systematic immunohistochemical neuroanatomical investigation of the systems involved in the control and regulation of sleep in an odontocete cetacean, the harbor porpoise (Phocoena phocoena). The odontocete cetaceans show an unusual form of mammalian sleep, with unihemispheric slow waves, suppressed REM sleep, and continuous bodily movement. All the neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals were present in the harbor porpoise, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity of nuclear organization relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements involved with these nuclei. Quantitative analysis of the cholinergic and noradrenergic nuclei of the pontine region revealed that in comparison with other mammals, the numbers of pontine cholinergic (126,776) and noradrenergic (122,878) neurons are markedly higher than in other large-brained bihemispheric sleeping mammals. The diminutive telencephalic commissures (anterior commissure, corpus callosum, and hippocampal commissure) along with an enlarged posterior commissure and supernumerary pontine cholinergic and noradrenergic neurons indicate that the control of unihemispheric slow-wave sleep is likely to be a function of interpontine competition, facilitated through the posterior commissure, in response to unilateral telencephalic input related to the drive for sleep. In addition, an expanded peripheral division of the dorsal raphe nuclear complex appears likely to play a role in the suppression of REM sleep in odontocete cetaceans. Thus, the current study provides several clues to the understanding of the neural control of the unusual sleep phenomenology present in odontocete cetaceans. J. Comp. Neurol. 524:1999-2017, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leigh-Anne Dell
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, 50312
| | - Jerome M Siegel
- Department of Psychiatry, University of California, Los Angeles, Neurobiology Research 151A3, Veterans Administration Sepulveda Ambulatory Care Center, North Hills, California, 91343
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, Republic of South Africa
| |
Collapse
|
22
|
Lazic K, Petrovic J, Ciric J, Kalauzi A, Saponjic J. Impact of anesthetic regimen on the respiratory pattern, EEG microstructure and sleep in the rat model of cholinergic Parkinson’s disease neuropathology. Neuroscience 2015; 304:1-13. [DOI: 10.1016/j.neuroscience.2015.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/29/2022]
|
23
|
Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J Neurosci 2015; 35:4792-803. [PMID: 25810510 DOI: 10.1523/jneurosci.3646-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pedunculopontine tegmental nucleus (PPTg) has been proposed as a target for deep brain stimulation (DBS) in parkinsonian patients, particularly for symptoms such as gait and postural difficulties refractory to dopaminergic treatments. Several patients have had electrodes implanted aimed at the PPTg, but outcomes have been disappointing, with little evidence that gait and posture are improved. The PPTg is a heterogeneous structure. Consequently, exact target sites in PPTg, possible DBS mechanisms, and potential benefits still need systematic investigation in good animal models. We have investigated the role of PPTg in gait, developed a refined model of parkinsonism including partial loss of the PPTg with bilateral destruction of nigrostriatal dopamine neurons that mimics human pathophysiology, and investigated the effect of DBS at different PPTg locations on gait and posture using a wireless device that lets rats move freely while receiving stimulation. Neither partial nor complete lesions of PPTg caused gait deficits, underlining questions raised previously about the status of PPTg as a motor control structure. The effect of DBS in the refined and standard model of parkinsonism were very different despite minimal behavioral differences in nonstimulation control conditions. Anterior PPTg DBS caused severe episodes of freezing and worsened gait, whereas specific gait parameters were mildly improved by stimulation of posterior PPTg. These results emphasize the critical importance of intra-PPTg DBS location and highlight the need to take PPTg degeneration into consideration when modeling parkinsonian symptoms. They also further implicate a role for PPTg in the pathophysiology of parkinsonism.
Collapse
|
24
|
Ciric J, Lazic K, Petrovic J, Kalauzi A, Saponjic J. Aging induced cortical drive alterations during sleep in rats. Mech Ageing Dev 2015; 146-148:12-22. [DOI: 10.1016/j.mad.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022]
|
25
|
Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A 2014; 112:584-9. [PMID: 25548191 DOI: 10.1073/pnas.1423136112] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.
Collapse
|
26
|
Bataveljic D, Petrovic J, Lazic K, Saponjic J, Andjus P. Glial response in the rat models of functionally distinct cholinergic neuronal denervations. J Neurosci Res 2014; 93:244-52. [PMID: 25250774 DOI: 10.1002/jnr.23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/23/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) involves selective loss of basal forebrain cholinergic neurons, particularly in the nucleus basalis (NB). Similarly, Parkinson's disease (PD) might involve the selective loss of pedunculopontine tegmental nucleus (PPT) cholinergic neurons. Therefore, lesions of these functionally distinct cholinergic centers in rats might serve as models of AD and PD cholinergic neuropathologies. Our previous articles described dissimilar sleep/wake-state disorders in rat models of AD and PD cholinergic neuropathologies. This study further examines astroglial and microglial responses as underlying pathologies in these distinct sleep disorders. Unilateral lesions of the NB or the PPT were induced with rats under ketamine/diazepam anesthesia (50 mg/kg i.p.) by using stereotaxically guided microinfusion of the excitotoxin ibotenic acid (IBO). Twenty-one days after the lesion, loss of cholinergic neurons was quantified by nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry, and the astroglial and microglial responses were quantified by glia fibrillary acidic protein/OX42 immunohistochemistry. This study demonstrates, for the first time, the anatomofunctionally related astroglial response following unilateral excitotoxic PPT cholinergic neuronal lesion. Whereas IBO NB and PPT lesions similarly enhanced local astroglial and microglial responses, astrogliosis in the PPT was followed by a remote astrogliosis within the ipslilateral NB. Conversely, there was no microglial response within the NB after PPT lesions. Our results reveal the rostrorostral PPT-NB astrogliosis after denervation of cholinergic neurons in the PPT. This hierarchically and anatomofunctionally guided PPT-NB astrogliosis emerged following cholinergic neuronal loss greater than 17% throughout the overall rostrocaudal PPT dimension.
Collapse
Affiliation(s)
- Danijela Bataveljic
- Faculty of Biology, Center for Laser Microscopy, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
27
|
Petrovic J, Lazic K, Kalauzi A, Saponjic J. REM sleep diversity following the pedunculopontine tegmental nucleus lesion in rat. Behav Brain Res 2014; 271:258-68. [DOI: 10.1016/j.bbr.2014.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/28/2022]
|
28
|
Petrovic J, Lazic K, Ciric J, Kalauzi A, Saponjic J. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat. Behav Brain Res 2013; 256:108-18. [DOI: 10.1016/j.bbr.2013.07.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 01/30/2023]
|