1
|
Yang H, Wu Q, Li L, Wu Y. Evaluation of Brain Impairment Using Proton Exchange Rate MRI in a Kainic Acid-Induced Rat Model of Epilepsy. Mol Imaging Biol 2025:10.1007/s11307-024-01980-4. [PMID: 39747781 DOI: 10.1007/s11307-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Proton exchange rate (Kex) is a valuable biophysical metric. Kex MRI may augment conventional structural MRI by revealing brain impairments at the molecular level. This study aimed to investigate the feasibility of Kex MRI in evaluating brain injuries at multiple epilepsy stages. PROCEDURES Six adult rats with epilepsy induced by intra-amygdalae administration of kainic acid (KA) underwent MRI experiment at 11.7 T. Two MRI scans, including T1 mapping and CEST imaging under three B1 amplitudes of 0.75, 1.0, and 1.5 μT, were conducted before and 2, 7, and 28 days after KA injection. Quasi-steady-state analysis was performed to reconstruct equilibrium Z spectra. Direct saturation was resolved using a multi-pool Lorentzian model and removed from Z spectra. The residual spectral signal (ΔZ) was used to construct the omega plot of (1-ΔZ)/ΔZ as a linear function of 1/ ω 1 2 , from which Kex was quantified from the X-axis intercept. One-way ANOVA or two-tailed paired student's t-test was employed with P < 0.05 as statistically significant. RESULTS All animals exhibited repetitive status epilepticus with IV to V seizure stages after KA injection. At day 28, Kex values in the hippocampus and cerebral cortex at the surgical hemisphere with KA injection were significantly higher than that at the time points of control and/or day 2 in the same regions (P < 0.01). Moreover, the values were significantly higher than that in respective contralateral regions at day 28 (P < 0.02). No substantial changes of Kex were seen in bilateral thalamus or contralateral hemisphere among time points (all P > 0.05). CONCLUSIONS Kex increase significantly in the cerebral cortex and hippocampus at the surgical hemisphere, especially at day 28, likely due to substantial alterations at chronic epilepsy stage. Kex MRI is promising to evaluate brain impairment, facilitating the diagnosis and evaluation of neurological disorders.
Collapse
Affiliation(s)
- Huanhuan Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Qiting Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lin Li
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Yang H, Gao J, Wang HY, Ma XM, Liu BY, Song QZ, Cheng H, Li S, Long ZY, Lu XM, Wang YT. The effects and possible mechanisms of whole-body vibration on cognitive function: A narrative review. Brain Res 2024; 1850:149392. [PMID: 39662790 DOI: 10.1016/j.brainres.2024.149392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Whole-body vibration (WBV) is a physical stimulation method that transmits mechanical oscillations to the entire body through a vibration platform or device. Biokinetic and epidemiologic studies have shown that prolonged exposure to high-intensity WBV increases health risks, primarily to the lumbar spine and the nervous system connected to it. There is currently insufficient evidence to demonstrate a quantitative relationship between vibration exposure and risk of health effects. The positive effects of WBV on increasing muscle strength and improving balance and flexibility are well known, but its effects on cognitive function are more complex, with mixed findings, largely related to vibration conditions, including frequency, amplitude, and duration. Studies have shown that short-term low-frequency WBV may have a positive impact on cognitive function, demonstrates potential rehabilitation benefits in enhancing learning and memory, possibly by promoting neuromuscular coordination and enhancing neural plasticity. However, long term exposure to vibration may lead to chronic stress in nerve tissue, affecting nerve conduction efficiency and potentially interfering with neuroprotective mechanisms, thereby having a negative impact on cognitive ability, even causes symptoms such as cognitive decline, mental fatigue, decreased attention, and drowsiness. This literature review aimed to explore the effects of WBV on cognitive function and further to analyze the possible mechanisms. Based on the analysis of literatures, we came to the conclusion that the impact of WBV on cognitive function depends mainly on the frequency and duration of vibration, short-term low-frequency WBV may have a positive impact on cognitive function, while long term exposure to WBV may lead to cognitive decline, and the mechanisms may be involved in neuroinflammation, oxidative stress, synaptic plasticity, and neurotransmitter changes. This review may provide some theoretical foundations and guidance for the prevention and treatment of WBV induced cognitive impairment.
Collapse
Affiliation(s)
- Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Bing-Yao Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qian-Zhong Song
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hui Cheng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
3
|
Zhang S, Yang X, Wang Y. Bibliometric analysis of the interplay between epilepsy and microglia: trends, hotspots, and emerging research areas. Front Neurol 2024; 15:1439823. [PMID: 39445198 PMCID: PMC11496296 DOI: 10.3389/fneur.2024.1439823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Background Epilepsy, a common neurological disorder, has been increasingly associated with neuroinflammation, especially microglia activation. To gain insights into the research trends and patterns in this intersection, we conducted a bibliometric analysis of studies published between 2005 and 2024. Using the Web of Science Core Collection, we identified 1,229 relevant articles and reviews, focusing on the relationship between epilepsy and microglia. Methods We employed the Bibliometrix R package and VOSviewer to analyze the data. Our search strategy combined epilepsy-related terms with microglia and microglial cell keywords. The analysis encompassed publication trends, country and institutional contributions, journal sources, authors, keywords, and thematic evolution. Results The number of publications has steadily increased, particularly after 2019, indicating growing research interest. The United States, China, and Germany emerged as the most productive countries, with extensive collaboration between China and the United States. Epilepsia and Journal of Neuroinflammation were the most influential journals. Aronica E, Vezzani A, and Engel T were the most prolific authors. Thematic analysis revealed clusters focused on temporal lobe epilepsy, epilepsy-related disorders, and microglia activation. Over the past several years, research has shifted from fundamental brain function studies to in-vivo investigations of specific molecular mechanisms. The CSTB (-) mouse model and NF-κB signaling pathway both merit further in-depth investigation. Conclusion In conclusion, this bibliometric study reveals a surge in epilepsy-microglia research, led by key countries, journals, and researchers. Temporal lobe epilepsy, epilepsy-related disorders, and microglia activation are focal themes. Future directions include exploring microglia activation mechanisms, utilizing animal models, and interdisciplinary approaches.
Collapse
Affiliation(s)
- Shouye Zhang
- Department of Neurology, The First Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xiaotong Yang
- Department of Neurology, The First Hospital, Hebei Medical University, Shijiazhuang, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Hebei Hospital of Xuanwu Hospital, Capital Medical University, Shijiazhuang, China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, China
| |
Collapse
|
4
|
Kakebaraei S, Gholami M, Nasta TZ, Arkan E, Bahrehmand F, Fakhri S, Jalili C. Oral administration of crocin-loaded solid lipid nanoparticles inhibits neuroinflammation in a rat model of epileptic seizures by activating SIRT1 expression. Res Pharm Sci 2024; 19:397-414. [PMID: 39399725 PMCID: PMC11468164 DOI: 10.4103/rps.rps_68_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 07/27/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Epilepsy is a group of chronic neurological diseases caused by a complex set of neuronal hyper electrical activities and oxidative stress of neurons. Crocin is a natural bioactive agent of saffron with different pharmacological properties and low bioavailability. This study aimed to evaluate crocin-loaded solid lipid nanoparticles (SLNC) for neuroprotection activity and efficacy against pentylenetetrazol (PTZ)- induced epilepsy. Experimental approach The rats were pretreated with SLNC and pure-crocin (PC; 25 and 50 mg/kg/day; P.O.) for 28 days before PTZ induction. Behavioral functions were evaluated by passive avoidance learning (PAL) tasks. Then, total antioxidant capacity (TAC), malondialdehyde (MDA), and pro-inflammatory factors were measured in the brain tissue using ELISA kits. Gene expression levels were analyzed with real-time polymerase chain reaction and immunohistochemical assay was used to assess the protein expression of sirtuin1 SIRT 1). Findings/Results SLNC was prepared with an average particle size of 98.25 nm and 98.33% encapsulation efficiency. Memory deficit improved in rats treated with SLNC. Administering SLNC at 25 and 50 mg/kg significantly reduced MDA and proinflammatory cytokines while increasing TAC. Additionally, administering SLNC before treatment increased the levels of SIRT1, peroxisome proliferator-activated receptor coactivator 1α, cAMP-regulated enhancer binding protein, and brain-derived neurotrophic factor. Furthermore, SLNC administration resulted in the downregulation of caspase-3 and inflammation factor expression. Conclusion and implications Overall, the obtained results showed that SLNC has better protective effects on oxidative stress in neurons, neurocognitive function, and anti-apoptotic and neuromodulatory activity than PC, suggesting that it is a promising therapeutic strategy for inhibiting seizures.
Collapse
Affiliation(s)
- Seyran Kakebaraei
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fariborz Bahrehmand
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Liang LP, Sri Hari A, Day BJ, Patel M. Pharmacological elevation of glutathione inhibits status epilepticus-induced neuroinflammation and oxidative injury. Redox Biol 2024; 73:103168. [PMID: 38714094 PMCID: PMC11087235 DOI: 10.1016/j.redox.2024.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Glutathione (GSH) is a major endogenous antioxidant, and its depletion has been observed in several brain diseases including epilepsy. Previous studies in our laboratory have shown that dimercaprol (DMP) can elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme and inhibit neuroinflammation in vitro. Here we determined 1) the role of cysteamine as a new mechanism by which DMP increases GSH biosynthesis and 2) its ability to inhibit neuroinflammation and neuronal injury in the rat kainate model of epilepsy. DMP depleted cysteamine in a time- and concentration-dependent manner in a cell free system. To guide the in vivo administration of DMP, its pharmacokinetic profile was determined in the plasma, liver, and brain. The results confirmed DMP's ability to cross the blood-brain-barrier. Treatment of rats with DMP (30 mg/kg) depleted cysteamine in the liver and hippocampus that was associated with increased GCL activity in these tissues. GSH levels were significantly increased (20 %) in the hippocampus 1 h after 30 mg/kg DMP administration. Following DMP (30 mg/kg) administration once daily, a marked attenuation of GSH depletion was seen in the SE model. SE-induced inflammatory markers including cytokine release, microglial activation, and neuronal death were significantly attenuated in the hippocampus with DMP treatment. Taken together, these results highlight the importance of restoring redox status with rescue of GSH depletion by DMP in post epileptogenic insults.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Medicine, National Jewish Health, Denver, CO, 80202, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Ponomareva D, Ivanov A, Bregestovski P. Analysis of the Effects of Pentose Phosphate Pathway Inhibition on the Generation of Reactive Oxygen Species and Epileptiform Activity in Hippocampal Slices. Int J Mol Sci 2024; 25:1934. [PMID: 38339211 PMCID: PMC10856462 DOI: 10.3390/ijms25031934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The pentose phosphate pathway (PPP) is one of three major pathways involved in glucose metabolism, which is regulated by glucose-6-phosphate dehydrogenase (G6PD) controls NADPH formation. NADPH, in turn, regulates the balance of oxidative stress and reactive oxygen species (ROS) levels. G6PD dysfunction, affecting the PPP, is implicated in neurological disorders, including epilepsy. However, PPP's role in epileptogenesis and ROS production during epileptic activity remains unclear. To clarify these points, we conducted electrophysiological and imaging analyses on mouse hippocampal brain slices. Using the specific G6PD inhibitor G6PDi-1, we assessed its effects on mouse hippocampal slices, examining intracellular ROS, glucose/oxygen consumption, the NAD(P)H level and ROS production during synaptic stimulation and in the 4AP epilepsy model. G6PDi-1 increased basal intracellular ROS levels and reduced synaptically induced glucose consumption but had no impact on baselevel of NAD(P)H and ROS production from synaptic stimulation. In the 4AP model, G6PDi-1 did not significantly alter spontaneous seizure frequency or H2O2 release amplitude but increased the frequency and peak amplitude of interictal events. These findings suggest that short-term PPP inhibition has a minimal impact on synaptic circuit activity.
Collapse
Affiliation(s)
- Daria Ponomareva
- Department of Physiology, Kazan State Medical University, 420012 Kazan, Russia;
- Institute of Neuroscience, Kazan State Medical University, 420012 Kazan, Russia
- INSERM, Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, 13005 Marseille, France;
| | - Anton Ivanov
- INSERM, Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, 13005 Marseille, France;
| | - Piotr Bregestovski
- Department of Physiology, Kazan State Medical University, 420012 Kazan, Russia;
- Institute of Neuroscience, Kazan State Medical University, 420012 Kazan, Russia
- INSERM, Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, 13005 Marseille, France;
| |
Collapse
|
7
|
Ghorbani Z, Sani M, Aghighi Z, Moghaddam MH, Eskandari N, Mohammadbagheri E, Fathi M, Shenasandeh Z, Fotouhi F, Abdollahifar MA, Salehi M, Bayat AH, Meftahi GH, Aliaghaei A, Rasoolijazi H. 3-acetylpyridine induced behavioral dysfunction and neuronal loss in the striatum and hippocampus of adult male rats. Ann Anat 2024; 252:152185. [PMID: 37944830 DOI: 10.1016/j.aanat.2023.152185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
3-acetylpyridine (3-AP) is a neurotoxin that is known to mainly affect the inferior olivary nucleus (ION) in the brain stem. Although several studies have explored the effect of this neurotoxin, still further investigation is required to understand the impact of this toxin on different parts of the brain. In this research, two groups of rats were studied, the 3-AP-treated and the control groups. Behavioral, stereological, and immunohistochemical analyses were performed. The locomotor activity of the 3-AP-treated rats decreased whereas their anxiety levels were higher than in normal controls. Also, memory performance was impaired in animals in the 3-AP group. Microscopic observations showed a decline in the numerical density of neurons in the hippocampus and striatum along with gliosis. Although this toxin is used to affect the ION, it exerts a neurotoxic effect on different brain regions.
Collapse
Affiliation(s)
- Zeynab Ghorbani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sani
- Department of Educational Neuroscience, Aras International Campus, University of Tabriz, Tabriz, Iran
| | - Zahra Aghighi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shenasandeh
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Fotouhi
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salehi
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Homa Rasoolijazi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran university of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Liang LP, Pearson-Smith JN, Day BJ, Patel M. Novel Catalytic Antioxidant Formulation Decreases Oxidative Stress, Neuroinflammation and Cognitive Dysfunction in a Model of Nerve Agent Intoxication. J Pharmacol Exp Ther 2024; 388:358-366. [PMID: 37652711 PMCID: PMC10801718 DOI: 10.1124/jpet.123.001708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
Reactive oxygen species have an emerging role in the pathologic consequences of status epilepticus. We have previously demonstrated the efficacy of a water-for-injection formulation of the meso-porphyrin catalytic antioxidant, manganese (III) meso-tetrakis (N-N-diethylimidazole) porphyrin (AEOL10150) against oxidative stress, neuroinflammation, and neuronal death initiated by kainic acid, pilocarpine, diisopropylflurophosphate (DFP), and soman. This previous dose and dosing strategy of AEOL10150 required smaller multiple daily injections, precluding our ability to test its efficacy against delayed consequences of nerve agent exposure such as neurodegeneration and cognitive dysfunction. Therefore, we developed formulations of AEOL10150 designed to deliver a larger dose once daily with improved brain pharmacodynamics. We examined four new formulations of AEOL10150 that resulted in 8 times higher subcutaneous dose with lower acute toxicity, slower absorption, longer half-life, and higher maximal plasma concentrations compared with our previous strategy. AEOL10150 brain levels exhibited improved pharmacodynamics over 24 hours with all four formulations. We tested a subcutaneous dose of 40 mg/kg AEOL10150 in two formulations (2% carboxymethyl cellulose and 4% polyethylene glycol-4000) in the DFP rat model, and both formulations exhibited significant protection against DFP-induced oxidative stress. Additionally, and in one formulation (4% polyethylene glycol-4000), AEOL10150 significantly protected against DFP-induced neuronal death, microglial activation, delayed memory impairment, and mortality. These results suggest that reformulation of AEOL10150 can attenuate acute and delayed outcomes of organophosphate neurotoxicity. SIGNIFICANCE STATEMENT: Reformulation of manganese (III) meso-tetrakis (N-N-diethylimidazole) porphyrin allowed higher tolerated doses of the compound with improved pharmacodynamics. Specifically, one new formulation allowed fewer daily doses and improvement in acute and delayed outcomes of organophosphate toxicity.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Jennifer N Pearson-Smith
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., J.N.P.-S., B.J.D., M.P.); and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| |
Collapse
|
9
|
Lin L, Geng D, She D, Kuai X, Du C, Fu P, Zhu Y, Wang J, Pang Z, Zhang J. Targeted nanotheranostics for the treatment of epilepsy through in vivo hijacking of locally activated macrophages. Acta Biomater 2024; 174:314-330. [PMID: 38036284 DOI: 10.1016/j.actbio.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Epilepsy refers to a disabling neurological disorder featured by the long-term and unpredictable occurrence of seizures owing to abnormal excessive neuronal electrical activity and is closely linked to unresolved inflammation, oxidative stress, and hypoxia. The difficulty of accurate localization and targeted drug delivery to the lesion hinders the effective treatment of this disease. The locally activated inflammatory cells in the epileptogenic region offer a new opportunity for drug delivery to the lesion. In this work, CD163-positive macrophages in the epileptogenic region were first harnessed as Trojan horses after being hijacked by targeted albumin manganese dioxide nanoparticles, which effectively penetrated the brain endothelial barrier and delivered multifunctional nanomedicines to the epileptic foci. Hence, accumulative nanoparticles empowered the visualization of the epileptogenic lesion through microenvironment-responsive MR T1-weight imaging of manganese dioxide. Besides, these manganese-based nanomaterials played a pivotal role in shielding neurons from cell apoptosis mediated by oxidative stress and hypoxia. Taken together, the present study provides an up-to-date approach for integrated diagnosis and treatment of epilepsy and other hypoxia-associated inflammatory diseases. STATEMENT OF SIGNIFICANCE: The therapeutic effects of antiepileptic drugs (AEDs) are hindered by insufficient drug accumulation in the epileptic site. Herein, we report an efficient strategy to use locally activated macrophages as carriers to deliver multifunctional nanoparticles to the brain lesion. As MR-responsive T1 contrast agents, multifunctional BMC nanoparticles can be harnessed to accurately localize the epileptogenic region with high sensitivity and specificity. Meanwhile, catalytic nanoparticles BMC can synergistically scavenge ROS, generate O2 and regulate neuroinflammation for the protection of neurons in the brain.
Collapse
Affiliation(s)
- Lin Lin
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Dejun She
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Xinping Kuai
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Chengjuan Du
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Yuefei Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery Ministry of Education, Shanghai 201203, China
| | - Jianhong Wang
- National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China; Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery Ministry of Education, Shanghai 201203, China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China.
| |
Collapse
|
10
|
Tripathi S, Nathan CL, Tate MC, Horbinski CM, Templer JW, Rosenow JM, Sita TL, James CD, Deneen B, Miller SD, Heimberger AB. The immune system and metabolic products in epilepsy and glioma-associated epilepsy: emerging therapeutic directions. JCI Insight 2024; 9:e174753. [PMID: 38193532 PMCID: PMC10906461 DOI: 10.1172/jci.insight.174753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Epilepsy has a profound impact on quality of life. Despite the development of new antiseizure medications (ASMs), approximately one-third of affected patients have drug-refractory epilepsy and are nonresponsive to medical treatment. Nearly all currently approved ASMs target neuronal activity through ion channel modulation. Recent human and animal model studies have implicated new immunotherapeutic and metabolomic approaches that may benefit patients with epilepsy. In this Review, we detail the proinflammatory immune landscape of epilepsy and contrast this with the immunosuppressive microenvironment in patients with glioma-related epilepsy. In the tumor setting, excessive neuronal activity facilitates immunosuppression, thereby contributing to subsequent glioma progression. Metabolic modulation of the IDH1-mutant pathway provides a dual pathway for reversing immune suppression and dampening seizure activity. Elucidating the relationship between neurons and immunoreactivity is an area for the prioritization and development of the next era of ASMs.
Collapse
Affiliation(s)
- Shashwat Tripathi
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | | | | | - Craig M. Horbinski
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
- Department of Pathology, and
| | | | | | - Timothy L. Sita
- Department of Neurological Surgery
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles D. James
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
11
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
13
|
Abou-Taleb BA, El-Ganainy SO. Thermoresponsive Gel-loaded Oxcarbazepine Nanosystems for Nose- To-Brain Delivery: Enhanced Antiepileptic Activity in Rats. Pharm Res 2023; 40:1835-1852. [PMID: 37353628 PMCID: PMC10421799 DOI: 10.1007/s11095-023-03552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Oxcarbazepine (OXC) is a frequently prescribed antiepileptic drug for managing focal and generalized seizures. Its therapeutic benefits are limited by its dose-dependent side effects. Nose-to-brain delivery is a novel route for improving the efficacy of antiepileptics. Drug encapsulation in mucoadhesive nanoparticles offers even more advantages for the nasal route. OBJECTIVE The study aimed to develop oxcarbazepine-loaded chitosan nanoparticles (OXC-NP) added to a mucoadhesive thermo-reversible gel for intranasal delivery and enhancement of antiepileptic activity. METHODS The formulation was optimized based on entrapment efficiency, polydispersity index, particle size, zeta potential, and in vitro release analysis. The therapeutic efficacy of OXC-NP was assessed in an epileptic rat model and compared to intranasal OXC and oral OXC. RESULTS The optimized OXC-NPs with chitosan exhibited particle size, zeta potential, and entrapment efficiency of 189 nm, + 31.4 mV ± 2.5 and 97.6% ± 0.14, respectively. The release of OXC was prolonged, reaching 47.1% after 6 h and 55% after 24 h. Enhanced antiepileptic activity of OXC-NP was manifested as decreased seizure score and prolonged survival. Halting of hippocampal TNF-α and IL-6 together with upregulated IL-10 could explain its anti-inflammatory mechanisms. CONCLUSIONS Intranasal OXC-NP-loaded in situ gel represents a promising formulation for enhanced antiepileptic potential achieved at low drug concentrations.
Collapse
Affiliation(s)
- Basant A Abou-Taleb
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
- Department of Pharmacy practices, Alexandria University Hospitals, Alexandria University, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
14
|
Zhou Z, Li K, Guo Y, Liu P, Chen Q, Fan H, Sun T, Jiang C. ROS/Electro Dual-Reactive Nanogel for Targeting Epileptic Foci to Remodel Aberrant Circuits and Inflammatory Microenvironment. ACS NANO 2023; 17:7847-7864. [PMID: 37039779 DOI: 10.1021/acsnano.3c01140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Medicinal treatment against epilepsy is faced with intractable problems, especially epileptogenesis that cannot be blocked by clinical antiepileptic drugs (AEDs) during the latency of epilepsy. Abnormal circuits of neurons interact with the inflammatory microenvironment of glial cells in epileptic foci, resulting in recurrent seizures and refractory epilepsy. Herein, we have selected phenytoin (PHT) as a model drug to derive a ROS-responsive and consuming prodrug, which is combined with an electro-responsive group (sulfonate sodium, SS) and an epileptic focus-recognizing group (α-methyl-l-tryptophan, AMT) to form hydrogel nanoparticles (i.e., a nanogel). The nanogel will target epileptic foci, release PHT in response to a high concentration of reactive oxygen species (ROS) in the microenvironment, and inhibit overexcited circuits. Meanwhile, with the clearance of ROS, the nanogel can also reduce oxidative stress and alleviate microenvironment inflammation. Thus, a synergistic regulation of epileptic lesions will be achieved. Our nanogel is expected to provide a more comprehensive strategy for antiepileptic treatment.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Keying Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yun Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Peixin Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Hongrui Fan
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| |
Collapse
|
15
|
Obydah W, Abouelnaga AF, Abass M, Saad S, Yehia A, Ammar OAA, Badawy AM, Ibrahim MM, Hussein AM. Possible Role of Oxidative Stress and Nrf2/HO-1 Pathway in Pentylenetetrazole-induced Epilepsy in Aged Rats. Rep Biochem Mol Biol 2023; 12:147-158. [PMID: 37724149 PMCID: PMC10505472 DOI: 10.52547/rbmb.12.1.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/14/2023] [Indexed: 09/20/2023]
Abstract
Background To examine the impact of aging on the response of rats to pentylenetetrazole (PTZ)-induction of epilepsy and the possible role of oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase (HO)-1 pathway in this response. Methods Forty male albino rats were equally allocated into 4 groups; 1) Young control (YC) group, aged 8-12 weeks, 2) Old control (OC) group, aged 24 months, 3) PTZ-Young group: young rats received PTZ (50 mg/Kg, i.p. every other day) for 2 weeks and 4) PTZ-Old group: as group 3 but rats were old. The seizure score stage and latency to the first jerk were recorded in rats. Redox state markers in brain tissues including malondialdehyde (MDA), catalase and total antioxidant capacity (TAC) were evaluated. Also, the expression of Nrf2 and HO-1 genes were measured in the brain tissues. Results Old rats showed an early and a significant rise in the seizure score with PTZ administration and a significant drop in the seizure latency compared to young rats (P <0.01). Also, old rats showed a significantly higher MDA concentration and a significantly lower TAC and catalase activity than young rats (P <0.01). Moreover, the expression of Nrf2 and HO-1 was significantly lowered in old rats compared to young rats with PTZ administration (P < 0.01). Conclusion Aging increases the vulnerability of rats to PTZ-induced epilepsy. An effect might come down to the up-regulation of oxidative stress and the down regulation of antioxidant pathways including Nrf2 and HO-1.
Collapse
Affiliation(s)
- Walaa Obydah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt.
| | - Ahmed Fathi Abouelnaga
- Department of Animal Husbandry and Development of animal wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Somaya Saad
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt.
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt.
| | | | - Alaa Mohamed Badawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohie Mahmoud Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Abdelaziz Mohamed Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt.
| |
Collapse
|
16
|
Akyüz E, Saleem QH, Sari Ç, Auzmendi J, Lazarowski A. Enlightening the mechanism of ferroptosis in epileptic heart. Curr Med Chem 2023; 31:CMC-EPUB-129729. [PMID: 36815654 DOI: 10.2174/0929867330666230223103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic neurological degenerative disease with a high incidence, affecting all age groups. Refractory Epilepsy (RE) occurs in approximately 30-40% of cases with a higher risk of sudden unexpected death in epilepsy (SUDEP). Recent studies have shown that spontaneous seizures developed in epilepsy can be related to an increase in oxidative stress and reactive oxygen derivatives (ROS) production. Increasing ROS concentration causes lipid peroxidation, protein oxidation, destruction of nuclear genetic material, enzyme inhibition, and cell death by a mechanism known as "ferroptosis" (Fts). Inactivation of glutathione peroxidase 4 (GPX4) induces Fts, while oxidative stress is linked with increased intracellular free iron (Fe+2) concentration. Fts is also a non-apoptotic programmed cell death mechanism, where a hypoxia-inducible factor 1 alpha (HIF-141) dependent hypoxic stress-like condition appears to occur with accumulation of iron and cytotoxic ROS in affected cells. Assuming convulsive crises as hypoxic stress, repetitive convulsive/hypoxic stress can be an effective inducer of the "epileptic heart" (EH), which is characterized by altered autonomic function and a high risk of malignant or fatal bradycardia. We previously reported that experimental recurrent seizures induce cardiomyocyte Fts associated with SUDEP. Furthermore, several genes related to Fts and hypoxia have recently been identified in acute myocardial infarction. An emerging theme from recent studies indicates that inhibition of GPX4 through modulating expression or activities of the xCT antiporter system (SLC7A11) governs cell sensitivity to oxidative stress from ferroptosis. Furthermore, during hypoxia, an increased expression of stress transcriptional factor ATF3 can promote Fts induced by erastin in a HIF-141-dependent manner. We propose that inhibition of Fts with ROS scavengers, iron chelators, antioxidants, and transaminase inhibitors could provide a therapeutic effect in epilepsy and improve the prognosis of SUDEP risk by protecting the heart from ferroptosis.
Collapse
Affiliation(s)
- Enes Akyüz
- University of Health Sciences, Faculty of International Medicine, Department of Biophysics, Istanbul, Turkey
| | - Qamar Hakeem Saleem
- University of Health Sciences, Faculty of International Medicine, Istanbul, Turkey
| | - Çiğdem Sari
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Jerónimo Auzmendi
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Lim HJ, Prajapati R, Seong SH, Jung HA, Choi JS. Antioxidant and Antineuroinflammatory Mechanisms of Kaempferol-3- O-β-d-Glucuronate on Lipopolysaccharide-Stimulated BV2 Microglial Cells through the Nrf2/HO-1 Signaling Cascade and MAPK/NF-κB Pathway. ACS OMEGA 2023; 8:6538-6549. [PMID: 36844518 PMCID: PMC9948190 DOI: 10.1021/acsomega.2c06916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Aglycone- and glycoside-derived forms of flavonoids exist broadly in plants and foods such as fruits, vegetables, and peanuts. However, most studies focus on the bioavailability of flavonoid aglycone rather than its glycosylated form. Kaempferol-3-O-β-d-glucuronate (K3G) is a natural flavonoid glycoside obtained from various plants that have several biological activities, including antioxidant and anti-inflammatory effects. However, the molecular mechanism related to the antioxidant and antineuroinflammatory activity of K3G has not yet been demonstrated. The present study was designed to demonstrate the antioxidant and antineuroinflammatory effect of K3G against lipopolysaccharide (LPS)-stimulated BV2 microglial cells and to evaluate the underlying mechanism. Cell viability was determined by MTT assay. The inhibition rate of reactive oxygen species (ROS) and the production of pro-inflammatory mediators and cytokines were measured by DCF-DA assay, Griess assay, enzyme-linked immunosorbent assay (ELISA), and western blotting. K3G inhibited the LPS-induced release of nitric oxide, interleukin (IL)-6, and tumor necrosis factor-α (TNF-α) as well as the expression of prostaglandin E synthase 2. Additionally, K3G reduced the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) related proteins. Mechanistic studies found that K3G downregulated phosphorylated mitogen-activated protein kinases (MAPKs) and upregulated the Nrf2/HO-1 signaling cascade. In this study, we demonstrated the effects of K3G on antineuroinflammation by inactivating phosphorylation of MPAKs and on antioxidants by upregulating the Nrf2/HO-1 signaling pathway through decreasing ROS in LPS-stimulated BV2 cells.
Collapse
Affiliation(s)
- Hyun Jung Lim
- Institute
of Fisheries Sciences, Pukyong National
University, Busan 46041, Republic of Korea
| | - Ritu Prajapati
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Division
of Natural Products Research, Honam National
Institute of Biological Resource, Mokpo 58762, Republic
of Korea
| | - Hyun Ah Jung
- Department
of Food Science and Human Nutrition, Jeonbuk
National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Institute
of Fisheries Sciences, Pukyong National
University, Busan 46041, Republic of Korea
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| |
Collapse
|
18
|
Del Pozo A, Barker-Haliski M. Cannabidiol reveals a disruptive strategy for 21st century epilepsy drug discovery. Exp Neurol 2023; 360:114288. [PMID: 36471511 PMCID: PMC9789191 DOI: 10.1016/j.expneurol.2022.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Over 30 antiseizure medicines (ASMs) have been uncovered in a diversity of preclinical seizure and epilepsy models, with several critical inflection points in the 20th century fundamentally transforming ASM discovery. This commentary aims to review the historical relevance of cannabidiol's (CBD; Epidiolex) approval for epilepsy in the context of other ASMs brought to market. Further, we highlight how CBD's approval may represent an inflection point for 21st century ASM discovery. CBD is one of the main phytocannabinoids of Cannabis sativa. Unlike its related phytocannabinoid, Δ9-tetrahydrocannabinol, CBD does not exert any euphorigenic, tolerance, or withdrawal effects at anticonvulsant doses. CBD also possess marked anti-inflammatory effects, offering the tantalizing potential of a new pharmacological approach in epilepsy. For decades, hints of the anticonvulsant profile of CBD had been suggested with a small handful of studies in rodent seizure models, yet difficulties in formulation, compounded by the social and regulatory pressures related to medical use of cannabis plant-derived agents constrained any clinical implementation. Nonetheless, CBD possesses a broad antiseizure profile in preclinical seizure and epilepsy models, but the transformative impact of CBD'-s approval came because of studies in a rodent model of the orphan disease Dravet syndrome (DS). DS is a pediatric developmental epileptic encephalopathy with high mortality, frequent spontaneous recurrent seizures, and marked resistance to conventional ASMs, such as phenytoin and carbamazepine. CBD was approved for DS by the US Food and Drug Administration in 2018 after convincing efficacy was established in randomized, placebo-controlled trials in children. Because of the clinical approval of CBD as a novel, cannabis plantderived ASM for DS, CBD has revealed a new strategy in ASM discovery to reignite 21st century therapeutic development for epilepsy. In this commentary, we review the major preclinical and clinical milestones of the late 20th century that made CBD, a compound historically subjected to regulatory restrictions, a key driver of a new discovery strategy for epilepsy in the 21st century.
Collapse
Affiliation(s)
- Aaron Del Pozo
- Department of Pharmacy, University of Washington, Seattle, WA 98195, United States of America
| | - Melissa Barker-Haliski
- Department of Pharmacy, University of Washington, Seattle, WA 98195, United States of America.
| |
Collapse
|
19
|
Nukala KM, Lilienthal AJ, Lye SH, Bassuk AG, Chtarbanova S, Manak JR. Downregulation of oxidative stress-mediated glial innate immune response suppresses seizures in a fly epilepsy model. Cell Rep 2023; 42:112004. [PMID: 36641750 PMCID: PMC9942582 DOI: 10.1016/j.celrep.2023.112004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Previous work in our laboratory has shown that mutations in prickle (pk) cause myoclonic-like seizures and ataxia in Drosophila, similar to what is observed in humans carrying mutations in orthologous PRICKLE genes. Here, we show that pk mutant brains show elevated, sustained neuronal cell death that correlates with increasing seizure penetrance, as well as an upregulation of mitochondrial oxidative stress and innate immune response (IIR) genes. Moreover, flies exhibiting more robust seizures show increased levels of IIR-associated target gene expression suggesting they may be linked. Genetic knockdown in glia of either arm of the IIR (Immune Deficiency [Imd] or Toll) leads to a reduction in neuronal death, which in turn suppresses seizure activity, with oxidative stress acting upstream of IIR. These data provide direct genetic evidence that oxidative stress in combination with glial-mediated IIR leads to progression of an epilepsy disorder.
Collapse
Affiliation(s)
- Krishna M Nukala
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Shu Hui Lye
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA; The Iowa Neuroscience Institute, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - J Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Department of Pediatrics, University of Iowa and Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Onishi K, Kamida T, Fujiki M, Momii Y, Sugita K. Anticonvulsant and antioxidant effects of lamotrigine on pilocarpine-induced status epilepticus in mice. Neuroreport 2023; 34:61-66. [PMID: 36484279 PMCID: PMC11115457 DOI: 10.1097/wnr.0000000000001859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The anticonvulsant and antioxidant effects of lamotrigine on status epilepticus (SE) are incompletely understood. We assessed these effects of lamotrigine on pilocarpine (Pilo)-induced SE in mice. METHODS Male C57BL/J6 mice were assigned to three groups: the control group, Pilo (400 mg/kg, s.c.)-induced SE (Pilo group) and lamotrigine (20 mg/kg, i.p.) treated (Pilo/lamotrigine group). The latency to SE of Racine's stage 3 or higher, the mortality rate within 2 h of Pilo administration, and the duration of SE until sacrifice were examined. Nitric oxide (NO), malondialdehyde and glutathione of oxidative stress biomarkers were detected in the hippocampus of the sacrificed animals in the above groups. NO was also detected in the cultured rat hippocampal neurons treated with 4 μM Pilo, Pilo+100 μM lamotrigine (Pilo/lamotrigine) and Pilo/lamotrigine+ N-methyl-D-aspartic acid (NMDA) receptor antagonist (10 μM MK-801, 3 μM ifenprodil) to examine the antioxidant effects of lamotrigine via non-NMDA-related pathways. RESULTS lamotrigine prolonged the latency to SE, the SE duration until sacrifice, and decreased the mortality rate in mice with Pilo-induced SE. Lamotrigine also decreased hippocampal concentrations of NO and malondialdehyde and increased the concentrations of glutathione in the SE model. Furthermore, there were significant differences in NO concentrations between groups of cultured rat hippocampal neurons treated with Pilo and Pilo/lamotrigine, and with Pilo/lamotrigine and Pilo/lamotrigine+MK-801. CONCLUSION Our findings suggest that lamotrigine exerts anticonvulsant and antioxidant effects on SE, but its antioxidant activity may not be fully exerted via NMDA-related pathways.
Collapse
Affiliation(s)
- Kouhei Onishi
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Tohru Kamida
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Minoru Fujiki
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Yasutomo Momii
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Kenji Sugita
- Department of Neurosurgery, School of Medicine, Oita University, Hasama-machi, Oita, Japan
| |
Collapse
|
21
|
The Neuroprotective Effect Associated with Echinops spinosus in an Acute Seizure Model Induced by Pentylenetetrazole. Neurochem Res 2023; 48:273-283. [PMID: 36074199 DOI: 10.1007/s11064-022-03738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Echinops spinosus (ES) is a medicinal plant with a wide range of pharmacological and biological effects. It is a medicinal herb having a variety of therapeutic characteristics, including antioxidant, anti-inflammatory, and antibacterial capabilities. The primary goal of this research is to investigate the neuroprotective and anticonvulsant characteristics of E. spinosa extract (ESE) against pentylenetetrazole (PTZ)-induced acute seizures. Negative control rats, ESE treatment rats, PTZ acute seizure model rats, ESE + PTZ rats, and Diazepam + PTZ rats were used in the study. The rats were given a 7-day treatment. ESE pretreatment elevated the latency to seizure onset and lowered seizure duration after PTZ injection. By reducing Bax levels and enhancing antiapoptotic Bcl-2 production, ESE prevented the release of interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2, as well as preventing hippocampal cell death after PTZ injection. ESE corrected the PTZ-induced imbalance in gamma-aminobutyric acid levels and increased the enzyme activity of Na+/K+-ATPase. Echinops spinosus is a potent neuromodulatory, antioxidant, antiinflammatory, and antiapoptotic plant that could be employed as a natural anticonvulsant in the future.
Collapse
|
22
|
Singh PK, Saadi A, Sheeni Y, Shekh-Ahmad T. Specific inhibition of NADPH oxidase 2 modifies chronic epilepsy. Redox Biol 2022; 58:102549. [PMID: 36459714 PMCID: PMC9712695 DOI: 10.1016/j.redox.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Recent work by us and others has implicated NADPH oxidase (NOX) enzymes as main producers of reactive oxygen species (ROS) following a brain insult such as status epilepticus, contributing to neuronal damage and development of epilepsy. Although several NOX isoforms have been examined in the context of epilepsy, most attention has focused on NOX2. In this present study, we demonstrate the effect of gp91ds-tat, a specific competitive inhibitor of NOX2, in in vitro epileptiform activity model as well as in temporal lobe epilepsy (TLE) model in rats. We showed that in in vitro seizure model, gp91ds-tat modulated Ca2+ oscillation, prevented epileptiform activity-induced ROS generation, mitochondrial depolarization, and neuronal death. Administration of gp91ds-tat 1 h after kainic acid-induced status epilepticus significantly decreased the expression of NOX2, as well as the overall NOX activity in the cortex and the hippocampus. Finally, we showed that upon continuous intracerebroventricular administration to epileptic rats, gp91ds-tat significantly reduced the seizure frequency and the total number of seizures post-treatment compared to the scrambled peptide-treated animals. The results of the study suggest that NOX2 may have an important effect on modulation of epileptiform activity and has a critical role in mediating seizure-induced NOX activation, ROS generation and oxidative stress in the brain, and thus significantly contributes to development of epilepsy following a brain insult.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- Corresponding author. The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
23
|
Xie K, El Khoury H, Mitrofanis J, Austin PJ. A systematic review of the effect of photobiomodulation on the neuroinflammatory response in animal models of neurodegenerative diseases. Rev Neurosci 2022; 34:459-481. [DOI: 10.1515/revneuro-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/18/2022] [Indexed: 12/09/2022]
Abstract
Abstract
This systematic review examines the effect of photobiomodulation (PBM), the application of red to near infrared light on body tissues, on the neuroinflammatory response and oxidative stress in animal models of neurodegenerative diseases. The research question and search protocol were prospectively registered on the PROSPERO database. Neurodegenerative diseases are becoming ever more prevalent in the ageing populations across the Western world, with no disease-modifying or neuroprotective treatment options being available. Hence there is a real need for the development of effective treatment options for patients. Inflammatory responses and oxidative stress within the central nervous system have a strong correlation with neuronal cell death. PBM is a non-invasive therapeutic option that has shown efficacy and promising effects in animal models of neurodegenerative disease; many studies have reported neuroprotection and improved behavioural outcomes. To the best of our knowledge, there has been no previous study that has reviewed the anti-inflammatory and the antioxidant effect of PBM in the context of neurodegeneration. This review has examined this relationship in animal models of a range of neurodegenerative diseases. We found that PBM can effectively reduce glial activation, pro-inflammatory cytokine expression and oxidative stress, whilst increasing anti-inflammatory glial responses and cytokines, and antioxidant capacity. These positive outcomes accompanied the neuroprotection evident after PBM treatment. Our review provides further indication that PBM can be developed into an effective non-pharmacological intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kangzhe Xie
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2006 , Australia
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2050 , Australia
| | - Hala El Khoury
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2050 , Australia
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de Dotation Clinatec , 38054 Grenoble , France
| | - Paul J. Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health , University of Sydney , Sydney , NSW 2050 , Australia
| |
Collapse
|
24
|
Sailike B, Omarova Z, Jenis J, Adilbayev A, Akbay B, Askarova S, Jin WL, Tokay T. Neuroprotective and anti-epileptic potentials of genus Artemisia L. Front Pharmacol 2022; 13:1021501. [DOI: 10.3389/fphar.2022.1021501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The Genus Artemisia L. is one of the largest genera in the Asteraceae family growing wild over in Europe, North America, and Central Asia and has been widely used in folk medicine for the treatment of various ailments. Phytochemical and psychopharmacological studies indicated that the genus Artemisia extracts contain various antioxidant and anti-inflammatory compounds and possess antioxidant, anti-inflammatory, antimicrobial, antimalarial, and antitumor activity. Recently, increasing experimental studies demonstrated that many Artemisia extracts offer a great antiepileptic potential, which was attributed to their bioactive components via various mechanisms of action. However, detailed literature on the antiepileptic properties of the genus Artemisia and its mechanism of action is segregated. In this review, we tried to gather the detailed neuroprotective and antiepileptic properties of the genus Artemisia and its possible underlying mechanisms. In this respect, 63 articles were identified in the PubMed and Google scholars databases, from which 18 studies were examined based on the pharmacological use of the genus Artemisia species in epilepsy. The genus Artemisia extracts have been reported to possess antioxidant, anti-inflammatory, neurotransmitter-modulating, anti-apoptotic, anticonvulsant, and pro-cognitive properties by modulating oxidative stress caused by mitochondrial ROS production and an imbalance of antioxidant enzymes, by protecting mitochondrial membrane potential required for ATP production, by upregulating GABA-A receptor and nACh receptor activities, and by interfering with various anti-inflammatory and anti-apoptotic signaling pathways, such as mitochondrial apoptosis pathway, ERK/CREB/Bcl-2 pathway and Nrf2 pathway. This review provides detailed information about some species of the genus Artemisia as potential antiepileptic agents. Hence, we recommend further investigations on the purification and identification of the most biological effective compounds of Artemisia and the mechanisms of their action to cure epilepsy and other neurological diseases.
Collapse
|
25
|
Zhou Z, Li K, Chu Y, Li C, Zhang T, Liu P, Sun T, Jiang C. ROS-removing nano-medicine for navigating inflammatory microenvironment to enhance anti-epileptic therapy. Acta Pharm Sin B 2022; 13:1246-1261. [PMID: 36970212 PMCID: PMC10031259 DOI: 10.1016/j.apsb.2022.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 11/01/2022] Open
Abstract
As a neurological disorder in the brain, epilepsy is not only associated with abnormal synchronized discharging of neurons, but also inseparable from non-neuronal elements in the altered microenvironment. Anti-epileptic drugs (AEDs) merely focusing on neuronal circuits frequently turn out deficient, which is necessitating comprehensive strategies of medications to cover over-exciting neurons, activated glial cells, oxidative stress and chronic inflammation synchronously. Therefore, we would report the design of a polymeric micelle drug delivery system that was functioned with brain targeting and cerebral microenvironment modulation. In brief, reactive oxygen species (ROS)-sensitive phenylboronic ester was conjugated with poly-ethylene glycol (PEG) to form amphiphilic copolymers. Additionally, dehydroascorbic acid (DHAA), an analogue of glucose, was applied to target glucose transporter 1 (GLUT1) and facilitate micelle penetration across the blood‒brain barrier (BBB). A classic hydrophobic AED, lamotrigine (LTG), was encapsulated in the micelles via self-assembly. When administrated and transferred across the BBB, ROS-scavenging polymers were expected to integrate anti-oxidation, anti-inflammation and neuro-electric modulation into one strategy. Moreover, micelles would alter LTG distribution in vivo with improved efficacy. Overall, the combined anti-epileptic therapy might provide effective opinions on how to maximize neuroprotection during early epileptogenesis.
Collapse
|
26
|
Fabisiak T, Patel M. Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front Cell Dev Biol 2022; 10:976953. [PMID: 36035987 PMCID: PMC9399352 DOI: 10.3389/fcell.2022.976953] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
The roles of both neuroinflammation and oxidative stress in the pathophysiology of epilepsy have begun to receive considerable attention in recent years. However, these concepts are predominantly studied as separate entities despite the evidence that neuroinflammatory and redox-based signaling cascades have significant crosstalk. Oxidative post-translational modifications have been demonstrated to directly influence the function of key neuroinflammatory mediators. Neuroinflammation can further be controlled on the transcriptional level as the transcriptional regulators NF-KB and nrf2 are activated by reactive oxygen species. Further, neuroinflammation can induce the increased expression and activity of NADPH oxidase, leading to a highly oxidative environment. These factors additionally influence mitochondria function and the metabolic status of neurons and glia, which are already metabolically stressed in epilepsy. Given the implication of this relationship to disease pathology, this review explores the numerous mechanisms by which neuroinflammation and oxidative stress influence one another in the context of epilepsy. We further examine the efficacy of treatments targeting oxidative stress and redox regulation in animal and human epilepsies in the literature that warrant further investigation. Treatment approaches aimed at rectifying oxidative stress and aberrant redox signaling may enable control of neuroinflammation and improve patient outcomes.
Collapse
|
27
|
Zeng C, Hu J, Chen F, Huang T, Zhang L. The Coordination of mTOR Signaling and Non-Coding RNA in Regulating Epileptic Neuroinflammation. Front Immunol 2022; 13:924642. [PMID: 35898503 PMCID: PMC9310657 DOI: 10.3389/fimmu.2022.924642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy accounts for a significant proportion of the burden of neurological disorders. Neuroinflammation acting as the inflammatory response to epileptic seizures is characterized by aberrant regulation of inflammatory cells and molecules, and has been regarded as a key process in epilepsy where mTOR signaling serves as a pivotal modulator. Meanwhile, accumulating evidence has revealed that non-coding RNAs (ncRNAs) interfering with mTOR signaling are involved in neuroinflammation and therefore articipate in the development and progression of epilepsy. In this review, we highlight recent advances in the regulation of mTOR on neuroinflammatory cells and mediators, and feature the progresses of the interaction between ncRNAs and mTOR in epileptic neuroinflammation.
Collapse
Affiliation(s)
- Chudai Zeng
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jason Hu
- Department of Neonatology, Yale School of Medicine, New Haven, CT, United States
| | - Fenghua Chen
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| | - Tianxiang Huang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| | - Longbo Zhang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| |
Collapse
|
28
|
Almeida C, Pongilio RP, Móvio MI, Higa GSV, Resende RR, Jiang J, Kinjo ER, Kihara AH. Distinct Cell-specific Roles of NOX2 and MyD88 in Epileptogenesis. Front Cell Dev Biol 2022; 10:926776. [PMID: 35859905 PMCID: PMC9289522 DOI: 10.3389/fcell.2022.926776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
It is well established that temporal lobe epilepsy (TLE) is often related to oxidative stress and neuroinflammation. Both processes subserve alterations observed in epileptogenesis and ultimately involve distinct classes of cells, including astrocytes, microglia, and specific neural subtypes. For this reason, molecules associated with oxidative stress response and neuroinflammation have been proposed as potential targets for therapeutic strategies. However, these molecules can participate in distinct intracellular pathways depending on the cell type. To illustrate this, we reviewed the potential role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and myeloid differentiation primary response 88 (MyD88) in astrocytes, microglia, and neurons in epileptogenesis. Furthermore, we presented approaches to study genes in different cells, employing single-cell RNA-sequencing (scRNAseq) transcriptomic analyses, transgenic technologies and viral serotypes carrying vectors with specific promoters. We discussed the importance of identifying particular roles of molecules depending on the cell type, endowing more effective therapeutic strategies to treat TLE.
Collapse
Affiliation(s)
- Cayo Almeida
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Rodrigo Ribeiro Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erika Reime Kinjo
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | |
Collapse
|
29
|
Al Omairi NE, Albrakati A, Alsharif KF, Almalki AS, Alsanie W, Abd Elmageed ZY, Zaafar D, Lokman MS, Bauomy AA, Belal SK, Abdel-Daim MM, Abdel Moneim AE, Alyami H, Kassab RB. Selenium Nanoparticles with Prodigiosin Rescue Hippocampal Damage Associated with Epileptic Seizures Induced by Pentylenetetrazole in Rats. BIOLOGY 2022; 11:biology11030354. [PMID: 35336729 PMCID: PMC8945383 DOI: 10.3390/biology11030354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Epilepsy is a chronic neurological disease characterized by neuronal hyper electrical activity and the development of unprovoked seizures. Although several antiepileptic drugs are currently available, their application is associated with undesirable adverse effects. In an attempt to find a novel antiepileptic medication with minimum side effects, we have investigated the potential neuroprotective activity of prodigiosin, a red pigment produced by bacterial species that have important pharmaceutical and biological activities biosynthesized with selenium formulation (SeNPs-PDG) against a murine epileptic model mediated by pentylenetetrazole. The main recorded findings revealed that SeNPs-PDG delayed the onset of epileptic seizures and decreased their duration significantly. Additionally, SeNPs-PDG prevented hippocampal cell loss, oxidative stress, neuroinflammation, restored the balance between excitatory and inhibitory neurotransmitters, and notably normalized the monoaminergic and cholinergic transmission. These promising findings indicate that SeNPs-PDG might serve as a naturally derived anticonvulsant agent due to their active antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory properties. Abstract Background: Prodigiosin (PDG) is a red pigment synthesized by bacterial species with important pharmaceutical and biological activities. Here, we investigated the neuroprotective and anticonvulsant activities of green biosynthesized selenium formulations with PDG (SeNPs-PDG) versus pentylenetetrazole (PTZ)-induced epileptic seizures. Methods: Rats were assigned into six experimental groups: control; PTZ (60 mg/kg, epileptic model); sodium valproate (200 mg/kg) + PTZ; PDG (300 mg/kg) + PTZ; sodium selenite (0.5 mg/kg) + PTZ; and SeNPs-PDG (0.5 mg/kg) + PTZ. The treatment duration is extended to 28 days. Results: SeNPs-PDG pre-treatment delayed seizures onset and reduced duration upon PTZ injection. Additionally, SeNPs-PDG enhanced the antioxidant capacity of hippocampal tissue by activating the expression of nuclear factor erythroid 2–related factor 2 and innate antioxidants (glutathione and glutathione derivatives, in addition to superoxide dismutase and catalase) and decreasing the levels of pro-oxidants (lipoperoxidation products and nitric oxide). SeNPs-PDG administration inhibited inflammatory reactions associated with epileptic seizure development by suppressing the production and activity of glial fibrillary acidic protein and pro-inflammatory mediators, including interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B. Moreover, SeNPs-PDG protected against hippocampal cell loss following PTZ injection by decreasing the levels of cytosolic cytochrome c, Bax, and caspase-3 and enhancing the expression of anti-apoptotic Bcl-2. Interestingly, SeNPs-PDG restored the PTZ-induced imbalance between excitatory and inhibitory amino acids and improved monoaminergic and cholinergic transmission. Conclusions: These promising antioxidative, anti-inflammatory, anti-apoptotic, and neuromodulatory activities indicate that SeNPs-PDG might serve as a naturally derived anticonvulsant agent.
Collapse
Affiliation(s)
- Naif E. Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.A.O.); (H.A.)
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: ; Tel.: +966-555696608
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (W.A.)
| | | | - Walaa Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (W.A.)
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA;
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11311, Egypt;
| | - Maha S. Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
| | - Amira A. Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, ArRass 52719, Saudi Arabia;
| | - Saied K. Belal
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
| | - Hussain Alyami
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.A.O.); (H.A.)
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
- Biology Department, Faculty of Science and Arts, Al-Baha University, Al-Mukhwah 65554, Saudi Arabia
| |
Collapse
|
30
|
León BE, Kang S, Franca-Solomon G, Shang P, Choi DS. Alcohol-Induced Neuroinflammatory Response and Mitochondrial Dysfunction on Aging and Alzheimer's Disease. Front Behav Neurosci 2022; 15:778456. [PMID: 35221939 PMCID: PMC8866940 DOI: 10.3389/fnbeh.2021.778456] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Mitochondria are essential organelles central to various cellular functions such as energy production, metabolic pathways, signaling transduction, lipid biogenesis, and apoptosis. In the central nervous system, neurons depend on mitochondria for energy homeostasis to maintain optimal synaptic transmission and integrity. Deficiencies in mitochondrial function, including perturbations in energy homeostasis and mitochondrial dynamics, contribute to aging, and Alzheimer's disease. Chronic and heavy alcohol use is associated with accelerated brain aging, and increased risk for dementia, especially Alzheimer's disease. Furthermore, through neuroimmune responses, including pro-inflammatory cytokines, excessive alcohol use induces mitochondrial dysfunction. The direct and indirect alcohol-induced neuroimmune responses, including pro-inflammatory cytokines, are critical for the relationship between alcohol-induced mitochondrial dysfunction. In the brain, alcohol activates microglia and increases inflammatory mediators that can impair mitochondrial energy production, dynamics, and initiate cell death pathways. Also, alcohol-induced cytokines in the peripheral organs indirectly, but synergistically exacerbate alcohol's effects on brain function. This review will provide recent and advanced findings focusing on how alcohol alters the aging process and aggravates Alzheimer's disease with a focus on mitochondrial function. Finally, we will contextualize these findings to inform clinical and therapeutic approaches towards Alzheimer's disease.
Collapse
Affiliation(s)
- Brandon Emanuel León
- Regenerative Sciences Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Gabriela Franca-Solomon
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Pei Shang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
31
|
The Interconnected Mechanisms of Oxidative Stress and Neuroinflammation in Epilepsy. Antioxidants (Basel) 2022; 11:antiox11010157. [PMID: 35052661 PMCID: PMC8772850 DOI: 10.3390/antiox11010157] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
One of the most important characteristics of the brain compared to other organs is its elevated metabolic demand. Consequently, neurons consume high quantities of oxygen, generating significant amounts of reactive oxygen species (ROS) as a by-product. These potentially toxic molecules cause oxidative stress (OS) and are associated with many disorders of the nervous system, where pathological processes such as aberrant protein oxidation can ultimately lead to cellular dysfunction and death. Epilepsy, characterized by a long-term predisposition to epileptic seizures, is one of the most common of the neurological disorders associated with OS. Evidence shows that increased neuronal excitability—the hallmark of epilepsy—is accompanied by neuroinflammation and an excessive production of ROS; together, these factors are likely key features of seizure initiation and propagation. This review discusses the role of OS in epilepsy, its connection to neuroinflammation and the impact on synaptic function. Considering that the pharmacological treatment options for epilepsy are limited by the heterogeneity of these disorders, we also introduce the latest advances in anti-epileptic drugs (AEDs) and how they interact with OS. We conclude that OS is intertwined with numerous physiological and molecular mechanisms in epilepsy, although a causal relationship is yet to be established.
Collapse
|
32
|
Lee JW, Chun W, Lee HJ, Kim SM, Min JH, Kim DY, Kim MO, Ryu HW, Lee SU. The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9101449. [PMID: 34680566 PMCID: PMC8533549 DOI: 10.3390/biomedicines9101449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023] Open
Abstract
Microglia play an important role in the maintenance and neuroprotection of the central nervous system (CNS) by removing pathogens, damaged neurons, and plaques. Recent observations emphasize that the promotion and development of neurodegenerative diseases (NDs) are closely related to microglial activation. In this review, we summarize the contribution of microglial activation and its associated mechanisms in NDs, such as epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), based on recent observations. This review also briefly introduces experimental animal models of epilepsy, AD, PD, and HD. Thus, this review provides a better understanding of microglial functions in the development of NDs, suggesting that microglial targeting could be an effective therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| |
Collapse
|
33
|
Holton KF. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front Neurosci 2021; 15:726457. [PMID: 34630015 PMCID: PMC8492967 DOI: 10.3389/fnins.2021.726457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Excitotoxicity has been implicated in many neurological disorders and is a leading cause of oxidative stress and neuroinflammation in the nervous system. Most of the research to date has focused on each of these conditions individually; however, excitotoxicity, oxidative stress, and neuroinflammation have the ability to influence one another in a self-sustaining manner, thus functioning as a "neurotoxic triad." This perspective article re-introduces the concept of the neurotoxic triad and reviews how specific dietary micronutrients have been shown to protect against not only oxidative stress, but also excitotoxicity and neuroinflammation. Future dietary interventions for neurological disorders could focus on the effects on all three aspects of the neurotoxic triad.
Collapse
Affiliation(s)
- Kathleen F Holton
- Nutritional Neuroscience Lab, Department of Health Studies, Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
34
|
Kirmani BF, Au K, Ayari L, John M, Shetty P, Delorenzo RJ. Super-Refractory Status Epilepticus: Prognosis and Recent Advances in Management. Aging Dis 2021; 12:1097-1119. [PMID: 34221552 PMCID: PMC8219503 DOI: 10.14336/ad.2021.0302] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Super-refractory status epilepticus (SRSE) is a life-threatening neurological emergency with high morbidity and mortality. It is defined as “status epilepticus (SE) that continues or recurs 24 hours or more after the onset of anesthesia, including those cases in which SE recurs on the reduction or withdrawal of anesthesia.” This condition is resistant to normal protocols used in the treatment of status epilepticus and exposes patients to increased risks of neuronal death, neuronal injury, and disruption of neuronal networks if not treated in a timely manner. It is mainly seen in patients with severe acute onset brain injury or presentation of new-onset refractory status epilepticus (NORSE). The mortality, neurological deficits, and functional impairments are significant depending on the duration of status epilepticus and the resultant brain damage. Research is underway to find the cure for this devastating neurological condition. In this review, we will discuss the wide range of therapies used in the management of SRSE, provide suggestions regarding its treatment, and comment on future directions. The therapies evaluated include traditional and alternative anesthetic agents with antiepileptic agents. The other emerging therapies include hypothermia, steroids, immunosuppressive agents, electrical and magnetic stimulation therapies, emergent respective epilepsy surgery, the ketogenic diet, pyridoxine infusion, cerebrospinal fluid drainage, and magnesium infusion. To date, there is a lack of robust published data regarding the safety and effectiveness of various therapies, and there continues to be a need for large randomized multicenter trials comparing newer therapies to treat this refractory condition.
Collapse
Affiliation(s)
- Batool F Kirmani
- 1Texas A&M University College of Medicine, College Station, TX, USA.,3Epilepsy and Functional Neurosurgery Program, Department of Neurology, CHI St. Joseph Health, Bryan, TX, USA
| | - Katherine Au
- 2George Washington University, School of Medicine & Health Sciences, Washington DC, USA
| | - Lena Ayari
- 1Texas A&M University College of Medicine, College Station, TX, USA
| | - Marita John
- 1Texas A&M University College of Medicine, College Station, TX, USA
| | - Padmashri Shetty
- 4M. S. Ramaiah Medical College, M. S. Ramaiah Nagar, Bengaluru, Karnataka, India
| | - Robert J Delorenzo
- 5Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
35
|
Evaluation of IL-10, IFN-γ, and thiol-disulfide homeostasis in patients with drug-resistant epilepsy. Neurol Sci 2021; 43:485-492. [PMID: 34036451 DOI: 10.1007/s10072-021-05331-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
AIM This study compared dynamic thiol-disulfide homeostasis (an oxidative stress marker), anti-inflammatory interleukin-10 (IL-10) levels, and proinflammatory interferon gamma (IFN-γ) levels in drug-resistant epilepsy patients with those in patients with well-controlled epilepsy and healthy controls. METHOD This prospective cross-sectional study enrolled 89 people: 27 with drug-resistant epilepsy, 30 with well-controlled epilepsy, and 32 healthy controls matched in demographic characteristics. RESULTS The mean serum IL-10 levels were significantly lower and the mean serum IFN-γ levels significantly higher in the drug-resistant epilepsy patients compared to the well-controlled epilepsy and healthy control groups. The mean serum native thiol (SH) and total thiol (TT) levels were significantly lower, and the disulfide (SS) levels were significantly higher in the drug-resistant group than in the other two groups. CONCLUSIONS The significant differences in thiol-disulfide homeostasis and IL-10 and IFN-γ levels in the drug-resistant epilepsy group suggest that these markers indicate a poor prognosis in epilepsy.
Collapse
|
36
|
Kung WM, Lin MS. Beneficial Impacts of Alpha-Eleostearic Acid from Wild Bitter Melon and Curcumin on Promotion of CDGSH Iron-Sulfur Domain 2: Therapeutic Roles in CNS Injuries and Diseases. Int J Mol Sci 2021; 22:ijms22073289. [PMID: 33804820 PMCID: PMC8037269 DOI: 10.3390/ijms22073289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation and abnormal mitochondrial function are related to the cause of aging, neurodegeneration, and neurotrauma. The activation of nuclear factor κB (NF-κB), exaggerating these two pathologies, underlies the pathogenesis for the aforementioned injuries and diseases in the central nervous system (CNS). CDGSH iron-sulfur domain 2 (CISD2) belongs to the human NEET protein family with the [2Fe-2S] cluster. CISD2 has been verified as an NFκB antagonist through the association with peroxisome proliferator-activated receptor-β (PPAR-β). This protective protein can be attenuated under circumstances of CNS injuries and diseases, thereby causing NFκB activation and exaggerating NFκB-provoked neuroinflammation and abnormal mitochondrial function. Consequently, CISD2-elevating plans of action provide pathways in the management of various disease categories. Various bioactive molecules derived from plants exert protective anti-oxidative and anti-inflammatory effects and serve as natural antioxidants, such as conjugated fatty acids and phenolic compounds. Herein, we have summarized pharmacological characters of the two phytochemicals, namely, alpha-eleostearic acid (α-ESA), an isomer of conjugated linolenic acids derived from wild bitter melon (Momordica charantia L. var. abbreviata Ser.), and curcumin, a polyphenol derived from rhizomes of Curcuma longa L. In this review, the unique function of the CISD2-elevating effect of α-ESA and curcumin are particularly emphasized, and these natural compounds are expected to serve as a potential therapeutic target for CNS injuries and diseases.
Collapse
Affiliation(s)
- Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan;
| | - Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Correspondence: ; Tel.: +886-4-2665-1900
| |
Collapse
|
37
|
Zingerone Targets Status Epilepticus by Blocking Hippocampal Neurodegeneration via Regulation of Redox Imbalance, Inflammation and Apoptosis. Pharmaceuticals (Basel) 2021; 14:ph14020146. [PMID: 33670383 PMCID: PMC7918711 DOI: 10.3390/ph14020146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Epilepsy is an intricate neurological disease where the neurons are severely affected, leading to the mortality of millions worldwide. Status epilepticus (SE), induced by lithium chloride (LiCl) and pilocarpine, is the most accepted model for epilepsy. The current work aims to unravel the mechanisms underlying the anti-epileptic efficacy of zingerone (an active ingredient of ginger), which has beneficial pharmacological activities on seizure-induced behavioral, histological, neurochemical, and molecular patterns in mice. Zingerone restored cognitive function by diminishing seizure activity, escape latency, and subsequent hippocampal damage manifested in histology. Seizures are associated with local inflammation, redox imbalance, and neural loss, confirmed by the present study of SE, and was attenuated by zingerone treatment. Nuclear factor-kappa B and its downstream signaling molecules (TNF-α, IL-1β, IL-6, NO, MPO) were activated in the LiCl-and-pilocarpine-induced group leading to inflammatory signaling, which was substantially ameliorated by zingerone treatment. The intrinsic apoptotic process was triggered subsequent to SE, as demonstrated by augmentation of cleaved caspase-3, downregulation of Bcl-2. However, zingerone treatment downregulated caspase-3 and upregulated Bcl-2, increasing cell survival and decreasing hippocampal neural death, deciphering involvement of apoptosis in SE. Therefore, zingerone plays an essential role in neuroprotection, probably by precluding oxidative stress, inflammation, and obstructing the mitochondrial pathway of apoptosis.
Collapse
|
38
|
Liang LP, Fulton R, Bradshaw-Pierce EL, Pearson-Smith J, Day BJ, Patel M. Optimization of Lipophilic Metalloporphyrins Modifies Disease Outcomes in a Rat Model of Parkinsonism. J Pharmacol Exp Ther 2021; 377:1-10. [PMID: 33500265 DOI: 10.1124/jpet.120.000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress plays a crucial role in the pathogenesis of Parkinson disease (PD), and one strategy for neuroprotective therapy for PD is to scavenge reactive species using a catalytic antioxidant. Previous studies in our laboratory revealed that pretreatment of lipophilic metalloporphyrins showed protective effects in a mouse PD model. In this study, we optimized the formulations of these metalloporphyrins to deliver them orally and tested their efficacy on disease outcomes in a second species after initiation of an insult (i.e., disease modification). In this study, a pharmaceutical formulation of two metalloporphyrin catalytic antioxidants, AEOL11207 and AEOL11114, was tested for oral drug delivery. Both compounds showed gastrointestinal absorption, achieved high plasma concentrations, and readily penetrated the blood-brain barrier after intravenous or oral delivery. AEOL11207 and AEOL11114 bioavailabilities were calculated to be 24% and 25%, respectively, at a dose of 10 mg/kg via the oral route. In addition, both compounds significantly attenuated 6-hydroxydopamine (6-OHDA)-induced neurotoxic damage, including dopamine depletion, cytokine production, and microglial activation in the striata; dopaminergic neuronal loss in the substantia nigra; oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain; and rotation behavioral abnormality in rats. These results indicate that AEOL11207 and AEOL11114 are orally active metalloporphyrins and protect against 6-OHDA neurotoxicity 1-3 days postlesioning, suggesting disease-modifying properties and translational potential for PD. SIGNIFICANCE STATEMENT: Two catalytic antioxidants showed gastrointestinal absorption, achieved high plasma concentrations, and readily penetrated the blood-brain barrier. Both compounds significantly attenuated dopamine depletion, cytokine production, microglial activation, dopaminergic neuronal loss, oxidative/nitrative stress indices, and behavioral abnormality in a Parkinson disease rat model. The results suggest that both metalloporphyrins possess disease-modifying properties that may be useful in treating Parkinson disease.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Ruth Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Erica L Bradshaw-Pierce
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Jennifer Pearson-Smith
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado (L.-P.L., R.F., E.-L.B.-P., J.P.-S., B.J.D., M.P.) and Department of Medicine, National Jewish Health, Denver, Colorado (B.J.D.)
| |
Collapse
|
39
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
40
|
Kung WM, Lin MS. The NFκB Antagonist CDGSH Iron-Sulfur Domain 2 Is a Promising Target for the Treatment of Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22020934. [PMID: 33477809 PMCID: PMC7832822 DOI: 10.3390/ijms22020934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Proinflammatory response and mitochondrial dysfunction are related to the pathogenesis of neurodegenerative diseases (NDs). Nuclear factor κB (NFκB) activation has been shown to exaggerate proinflammation and mitochondrial dysfunction, which underlies NDs. CDGSH iron-sulfur domain 2 (CISD2) has been shown to be associated with peroxisome proliferator-activated receptor-β (PPAR-β) to compete for NFκB and antagonize the two aforementioned NFκB-provoked pathogeneses. Therefore, CISD2-based strategies hold promise in the treatment of NDs. CISD2 protein belongs to the human NEET protein family and is encoded by the CISD2 gene (located at 4q24 in humans). In CISD2, the [2Fe-2S] cluster, through coordinates of 3-cysteine-1-histidine on the CDGSH domain, acts as a homeostasis regulator under environmental stress through the transfer of electrons or iron-sulfur clusters. Here, we have summarized the features of CISD2 in genetics and clinics, briefly outlined the role of CISD2 as a key physiological regulator, and presented modalities to increase CISD2 activity, including biomedical engineering or pharmacological management. Strategies to increase CISD2 activity can be beneficial for the prevention of inflammation and mitochondrial dysfunction, and thus, they can be applied in the management of NDs.
Collapse
Affiliation(s)
- Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan;
| | - Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Correspondence: ; Tel.: +886-4-2665-1900
| |
Collapse
|
41
|
Ketogenic Diet Therapy for Intractable Epilepsy in Infantile Alexander Disease: A Small Case Series and Analyses of Astroglial Chemokines and Proinflammatory Cytokines. Epilepsy Res 2020; 170:106519. [PMID: 33395615 DOI: 10.1016/j.eplepsyres.2020.106519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 11/20/2022]
Abstract
In infantile Alexander disease (iAxD), one of the serious symptoms is intractable epilepsy, and some reports have suggested that neuroinflammation may be involved in the pathophysiology of the disease. Drug-resistant seizures adversely affect not only the quality of life of the caregivers and patients, but also patients' lifespan. Thus, controlling epilepsy is clinically important. For intractable childhood epilepsy, ketogenic diet therapy (KDT) is well-established, but its effects on iAxD have not been characterized. Here, we describe the use of KDT in three iAxD patients experiencing drug-resistant seizures. In all three cases, the formerly intractable epilepsies were well controlled by KDT. However, the brain magnetic resonance imaging findings deteriorated even after the epilepsy was controlled. In addition, the concentrations of monocyte chemotactic protein-1 and proinflammatory cytokines in the cerebrospinal fluid of the patients remained still high. KDT is effective in controlling epilepsy in iAxD. Our results clinically support previous reports arguing the involvement of neuroinflammation in the pathophysiology of iAxD. Although KDT cannot prevent disease progression, earlier initiation might contribute to a better prognosis.
Collapse
|
42
|
Olowe R, Sandouka S, Saadi A, Shekh-Ahmad T. Approaches for Reactive Oxygen Species and Oxidative Stress Quantification in Epilepsy. Antioxidants (Basel) 2020; 9:E990. [PMID: 33066477 PMCID: PMC7602129 DOI: 10.3390/antiox9100990] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress (OS) and excessive reactive oxygen species (ROS) production have been implicated in many neurological pathologies, including acute seizures and epilepsy. Seizure-induced damage has been demonstrated both in vitro and in several in vivo seizure and epilepsy models by direct determination of ROS, and by measuring indirect markers of OS. In this manuscript, we review the current reliable methods for quantifying ROS-related and OS-related markers in pre-clinical and clinical epilepsy studies. We first provide pieces of evidence for the involvement of different sources of ROS in epilepsy. We then discuss general methods and assays used for the ROS measurements, mainly superoxide anion, hydrogen peroxide, peroxynitrite, and hydroxyl radical in in vitro and in vivo studies. In addition, we discuss the role of these ROS and markers of oxidative injury in acute seizures and epilepsy pre-clinical studies. The indirect detection of secondary products of ROS such as measurements of DNA damage, lipid peroxidation, and protein oxidation will also be discussed. This review also discusses reliable methods for the assessment of ROS, OS markers, and their by-products in epilepsy clinical studies.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (R.O.); (S.S.); (A.S.)
| |
Collapse
|
43
|
Vezzani B, Carinci M, Patergnani S, Pasquin MP, Guarino A, Aziz N, Pinton P, Simonato M, Giorgi C. The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules 2020; 10:E1437. [PMID: 33066071 PMCID: PMC7600410 DOI: 10.3390/biom10101437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Marianna Carinci
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Matteo P. Pasquin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Annunziata Guarino
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Nimra Aziz
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy
| | - Michele Simonato
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| |
Collapse
|
44
|
Boleti APDA, Frihling BEF, E Silva PS, Cardoso PHDO, de Moraes LFRN, Rodrigues TAA, Biembengute MEF, Koolen HHF, Migliolo L. Biochemical aspects and therapeutic mechanisms of cannabidiol in epilepsy. Neurosci Biobehav Rev 2020; 132:1214-1228. [PMID: 33031814 DOI: 10.1016/j.neubiorev.2020.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022]
Abstract
Epilepsy is a chronic neurological disease characterized by recurrent epileptic seizures. Studies have shown the complexity of epileptogenesis and ictogenesis, in which immunological processes and epigenetic and structural changes in neuronal tissues have been identified as triggering epilepsy. Cannabidiol (CBD) is a major active component of the Cannabis plant and the source of CBD-enriched products for the treatment of epilepsy and associated diseases. In this review, we provide an up-to-date discussion on cellular and molecular mechanisms triggered during epilepsy crises, and the phytochemical characteristics of CBD that make it an attractive candidate for controlling rare syndromes, with excellent therapeutic properties. We also discuss possible CBD anticonvulsant mechanisms and molecular targets in neurodegenerative disorders and epilepsy. Based on these arguments, we conclude that CBD presents a biotecnological potential in the anticonvulsant process, including decreasing dependence on health care in hospitals, and could make the patient's life more stable, with regard to neurological conditions.
Collapse
Affiliation(s)
- Ana Paula de A Boleti
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil
| | - Breno Emanuel F Frihling
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil
| | - Patrícia Souza E Silva
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil
| | - Pedro Henrique de O Cardoso
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil
| | - Luiz Filipe R N de Moraes
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil
| | - Thiago Antônio A Rodrigues
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil
| | | | - Hector Henrique F Koolen
- Grupo de Estudos em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas - UEA, Manaus, Brazil
| | - Ludovico Migliolo
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
45
|
Abstract
AbstractEpilepsy is a chronic neurological disorder that has an extensive impact on a patient’s life. Accumulating evidence has suggested that inflammation participates in the progression of spontaneous and recurrent seizures. Pro-convulsant incidences can stimulate immune cells, augment the release of pro-inflammatory cytokines, elicit neuronal excitation as well as blood-brain barrier (BBB) dysfunction, and finally trigger the generation or recurrence of seizures. Understanding the pathogenic roles of inflammatory mediators, including inflammatory cytokines, cells, and BBB, in epileptogenesis will be beneficial for the treatment of epilepsy. In this systematic review, we performed a literature search on the PubMed database using the following keywords: “epilepsy” or “seizures” or “epileptogenesis”, and “immunity” or “inflammation” or “neuroinflammation” or “damage-associated molecular patterns” or “cytokines” or “chemokines” or “adhesion molecules” or “microglia” or “astrocyte” or “blood-brain barrier”. We summarized the classic inflammatory mediators and their pathogenic effects in the pathogenesis of epilepsy, based on the most recent findings from both human and animal model studies.
Collapse
|
46
|
Shen W, Poliquin S, Macdonald RL, Dong M, Kang JQ. Endoplasmic reticulum stress increases inflammatory cytokines in an epilepsy mouse model Gabrg2 +/Q390X knockin: A link between genetic and acquired epilepsy? Epilepsia 2020; 61:2301-2312. [PMID: 32944937 DOI: 10.1111/epi.16670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Neuroinflammation is a major theme in epilepsy, which has been characterized in acquired epilepsy but is poorly understood in genetic epilepsy. γ-Aminobutyric acid type A receptor subunit gene mutations are significant causes of epilepsy, and we have studied the pathophysiology directly resulting from defective receptor channels. Here, we determined the proinflammatory factors in a genetic mouse model, the Gabrg2+/Q390X knockin (KI). We have identified increased cytokines in multiple brain regions of the KI mouse throughout different developmental stages and propose that accumulation of the trafficking-deficient mutant protein may increase neuroinflammation, which would be a novel mechanism for genetic epilepsy. METHODS We used enzyme-linked immunosorbent assay, immunoprecipitation, nuclei purification, immunoblot, immunohistochemistry, and confocal microscopy to characterize increased neuroinflammation and its potential causes in a Gabrg2+/Q390X KI mouse and a Gabrg2+/- knockout (KO) mouse, each associated with a different epilepsy syndrome with different severities. RESULTS We found that proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1-beta (IL-1β), and IL-6 were increased in the KI mice but not in the KO mice. A major underlying basis for the discrepancy in cytokine expression between the two mouse models is likely chronic mutant protein accumulation and endoplasmic reticulum (ER) stress. The presence of mutant protein dampened cytokine induction upon further cellular stimulation or external stress such as elevated temperature. Pharmacological induction of ER stress upregulated cytokine expression in the wild-type and KO but not in the KI mice. The increased cytokine expression was independent of seizure occurrence, because it was upregulated in both mice and cultured neurons. SIGNIFICANCE Together, these data demonstrate a novel pathophysiology for genetic epilepsy, increased neuroinflammation, which is a common mechanism for acquired epilepsy. The findings thus provide the first link of neuroinflammation between genetic epilepsy associated with an ion channel gene mutation and acquired epilepsy.
Collapse
Affiliation(s)
- Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Poliquin
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marco Dong
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
47
|
Regner GG, Torres ILS, de Oliveira C, Pflüger P, da Silva LS, Scarabelot VL, Ströher R, de Souza A, Fregni F, Pereira P. Transcranial direct current stimulation (tDCS) affects neuroinflammation parameters and behavioral seizure activity in pentylenetetrazole-induced kindling in rats. Neurosci Lett 2020; 735:135162. [PMID: 32569808 DOI: 10.1016/j.neulet.2020.135162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022]
Abstract
Despite the introduction of new antiepileptic drugs, about 30 % of patients with epilepsy are refractory to drug therapy. Thus, the search for non-pharmacological interventions such as transcranial direct current stimulation (tDCS) may be an alternative, either alone or in combination with low doses of anticonvulsants. This study evaluated the effect of anodal (a-tDCS) and cathodal tDCS (c-tDCS) on seizure behavior and neuroinflammation parameters. Rats were submitted to the kindling model induced by pentylenetetrazole (PTZ) using diazepam (DZP) as anticonvulsant standard. tDCS groups were submitted to 10 sessions of a-tDCS or c-tDCS or SHAM-tDCS. Every 3 days they received saline (SAL), low dose of DZP (alone or in combination with tDCS) or effective dose of DZP 30 min before administration of PTZ, totaling 16 days of protocol. Neither a-tDCS nor c-tDCS reduced the occurrence of clonic forelimb seizures (convulsive motor seizures - stage 3 by the adapted Racine scale we based on). Associated with DZP, c-tDCS (c-tDCS/DZP0.15) increased the latency to first clonic forelimb seizure on the 10th and 16th days. Hippocampal IL-1β levels were reduced by c-tDCS and c-tDCS/DZP0.15. In contrast, these treatments induced an increase in cortical IL-1β levels. Hippocampal TNF-α levels were not altered by c-tDCS or a-tDCS, but c-tDCS and c-tDCS/DZP0.15 increased those levels in cerebral cortex. Cortical NGF levels were increased by c-tDCS and c-tDCS/DZP0.15. a-tDCS/DZP0.15 reduced hippocampal BDNF levels and c-tDCS/DZP0.15 increased these levels in cerebral cortex. In conclusion, c-tDCS alone or in combination with a low dose of DZP showed to affect neuroinflammation, improving central neurotrophin levels and decreasing hippocampal IL-1β levels after PTZ-induced kindling without statistically significant effect on seizure behavior.
Collapse
Affiliation(s)
- Gabriela Gregory Regner
- Laboratory of Neuropharmacology and Preclinical Toxicology Laboratory, Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Carla de Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pricila Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology Laboratory, Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Lisiane Santos da Silva
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Vanessa Leal Scarabelot
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Roberta Ströher
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Andressa de Souza
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Studies - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-003, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, United States
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology Laboratory, Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
48
|
Borowicz-Reutt KK, Czuczwar SJ. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol Rep 2020; 72:1218-1226. [PMID: 32865811 PMCID: PMC7550371 DOI: 10.1007/s43440-020-00143-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
In a state of balance between oxidants and antioxidants, free radicals play an advantageous role of “redox messengers”. In a state of oxidative stress, they trigger a cascade of events leading to epileptogenesis. During this latent, free of seizures period, a cascade of neurological changes takes place and finally leads to spontaneous recurrent seizures. The main processes involved in seizure generation are: neuroinflammation, neurodegeneration with anomalous neuroregeneration and lowering seizure threshold. Time of epileptogenesis offers a unique therapeutic window to prevent or at least attenuate seizure development. Animal data indicate that some antioxidants (for instance, resveratrol) may bear an anti-epileptogenic potential.
Collapse
Affiliation(s)
- Kinga K Borowicz-Reutt
- Independent Unit of Experimental Pathophysiology, Medical University of Lublin, Lublin, Poland.
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland
| |
Collapse
|
49
|
TRPV1 Contributes to the Neuroprotective Effect of Dexmedetomidine in Pilocarpine-Induced Status Epilepticus Juvenile Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7623635. [PMID: 32337274 PMCID: PMC7168755 DOI: 10.1155/2020/7623635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 11/25/2022]
Abstract
To investigate the antiepileptic and neuroprotective effects of dexmedetomidine (Dex) in pilocarpine- (Pilo-) induced status epilepticus (SE) juvenile rats, rats were randomly assigned to the following six groups (n = 20): normal, normal+Dex, SE, SE+Cap, SE+Dex, and SE+Dex+Cap. The rats were treated with either diazepam (i.p., an antiepileptic drug) or Dex after the onset of SE. The Morris water maze was used to assess rat cognitive behavior. Flow cytometry was used to detect the concentrations of Ca2+, mitochondrial membrane potential, and reactive oxygen species. Transmission electron microscopy was performed to evaluate specimens of brain tissue. The levels of caspase 3 and TRPV1 were examined by western blot and immunohistochemistry (IHC). Treatment with Dex significantly decreased the escape latency of the SE rats (P < 0.05). Capsaicin, a TRPV1 agonist, delivery aggravated the performance of SE rats. Pathological changes in SE rat were attenuated by Dex and deteriorated by capsaicin. Swollen mitochondria and abnormal endoplasmic reticulum were found in SE rats and were then aggravated by capsaicin and reversed by Dex. Moreover, our data showed that Dex significantly restrained calcium overload, ROS production, and mitochondrial membrane potential loss, all of which were induced by Pilo and capsaicin (P < 0.05). Dex decreased the apoptotic rate in the Model SE group (P < 0.05) and TRPV1 and caspase 3 expression in the Dex treatment group (P < 0.05). Interestingly, all these effects of Dex were partially counteracted by the TRPV1 agonist, capsaicin (P < 0.05). Our study showed that Dex exerted a neuroprotective effect in Pilo-induced SE rats by inhibiting TRPV1 expression and provided information for therapy to SE patients.
Collapse
|
50
|
Francisco EDS, Mendes-da-Silva RF, de Castro CBL, Soares GDSF, Guedes RCA. Taurine/Pilocarpine Interaction in the Malnourished Rat Brain: A Behavioral, Electrophysiological, and Immunohistochemical Analysis. Front Neurosci 2019; 13:981. [PMID: 31619952 PMCID: PMC6759493 DOI: 10.3389/fnins.2019.00981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/30/2019] [Indexed: 12/05/2022] Open
Abstract
This study aimed to evaluate the possible protective role of taurine on anxiety-like behavior, brain electrical activity and glial cell immunoreactivity in well-nourished and malnourished rats that were treated with a subconvulsing dose of pilocarpine. Newborn Wistar rats were subjected to normal or unfavorable lactation conditions, represented by the suckling of litters with 9 or 15 pups, resulting in well-nourished and malnourished animals, respectively. Each nutritional group was split into five subgroups that were treated from postnatal day (PND) 35 to 55 with 300 mg/kg/day of taurine + 45 mg/kg/day of pilocarpine (group T + P), taurine only (group T), pilocarpine only (group P), vehicle control (group V), or not treated control (group naïve; Nv). At PND56-58, the groups were subjected to the elevated plus-maze behavioral tests. Glycemia was measured on PND59. Between PND60 and PND65, the cortical spreading depression (CSD) was recorded in the cerebral cortex, and the levels of malondialdehyde and microglial and astrocyte immunoreactivity were evaluated in the cortex and hippocampus. Our data indicate that treatment with taurine and pilocarpine resulted in anxiolytic-like and anxiogenic behavior, respectively, and that nutritional deficiency modulated these effects. Both treatments decelerated CSD propagation and modulated GFAP- and Iba1-containing glial cells. Pilocarpine reduced body weight and glycemia, and administration of taurine was not able to attenuate the effects of pilocarpine. The molecular mechanisms underlying taurine action on behavioral and electrophysiological parameters in the normal and altered brain remain to be further explored.
Collapse
|