1
|
Moreira TS, Mulkey DK, Takakura AC. Update on vascular control of central chemoreceptors. Exp Physiol 2024; 109:1837-1843. [PMID: 38153366 DOI: 10.1113/ep091329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
At least four mechanisms have been proposed to elucidate how neurons in the retrotrapezoid (RTN) region sense changes in CO2/H+ to regulate breathing (i.e., function as respiratory chemosensors). These mechanisms include: (1) intrinsic neuronal sensitivity to H+ mediated by TASK-2 and GPR4; (2) paracrine activation of RTN neurons by CO2-responsive astrocytes (via a purinergic mechanism); (3) enhanced excitatory synaptic input or disinhibition; and (4) CO2-induced vascular contraction. Although blood flow can influence tissue CO2/H+ levels, there is limited understanding of how control of vascular tone in central CO2 chemosensitive regions might contribute to respiratory output. In this review, we focus on recent evidence that CO2/H+-induced purinergic-dependent vasoconstriction in the ventral parafacial region near RTN neurons supports respiratory chemoreception. This mechanism appears to be unique to the ventral parafacial region and opposite to other brain regions, including medullary chemosensor regions, where CO2/H+ elicits vasodilatation. We speculate that this mechanism helps to maintain CO2/H+ levels in the vicinity of RTN neurons, thereby maintaining the drive to breathe. Important next steps include determining whether disruption of CO2/H+ vascular reactivity contributes to or can be targeted to improve breathing problems in disease states, such as Parkinson's disease.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Naccarato MC, Oliveira LM, Ferreira CB, Moreira TS, Takakura AC. Nucleus of the solitary tract neuronal degeneration and impaired hypoxia response in a model of Parkinson's disease. Exp Neurol 2024; 380:114924. [PMID: 39147260 DOI: 10.1016/j.expneurol.2024.114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Parkinson's disease (PD) involves the degeneration of dopaminergic neurons in the substantia nigra (SNpc) and manifests with both classic and non-classic motor symptoms, including respiratory failure. Our study aims to investigate the involvement of the commissural and intermediate nucleus of the solitary tract (cNTS and iNTS) in the attenuated respiratory response to hypoxia in PD. Using a PD rat model induced by bilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum of male Wistar rats, we explored potential alterations in the population of Phox2b neurons or hypoxia-activated neurons in the NTS projecting to the retrotrapezoid nucleus (RTN). Additionally, we explored neuronal connectivity between SNpc and cNTS. Projections pathways were assessed using unilateral injection of the retrograde tracer Fluorogold (FG) in the cNTS and RTN. Neuronal activation was evaluated by analyzing fos expression in rats exposed to hypoxia. In the PD model, the ventilatory response, measured through whole-body plethysmography, was impaired at both baseline and in response to hypoxia. A reduction in Phox2b-expressing neurons or hypoxia-activated neurons projecting to the RTN was observed. Additionally, we identified an indirect pathway linking the SNpc and cNTS, which passes through the periaqueductal gray (PAG). In conclusion, our findings suggest impairment in the SNpc-PAG-cNTS pathway in the PD model, explaining the loss of Phox2b-expressing neurons or hypoxia-activated neurons in the cNTS and subsequent respiratory impairment during hypoxic stimulation. We propose that the reduced population of Phox2b-expressing neurons in the NTS may include the same neurons activated by hypoxia and projecting to the RTN.
Collapse
Affiliation(s)
- Monique C Naccarato
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil; Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Caroline B Ferreira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil; Department of Neurobiology, University of Pittsburgh School of Medicine, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508 Sao Paulo, SP, Brazil.
| |
Collapse
|
3
|
Kawamura LRDSM, Sarmet M, de Campos PS, Takehara S, Kumei Y, Zeredo JLL. Apnea behavior in early- and late-stage mouse models of Parkinson's disease: Cineradiographic analysis of spontaneous breathing, acute stress, and swallowing. Respir Physiol Neurobiol 2024; 323:104239. [PMID: 38395210 DOI: 10.1016/j.resp.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to evaluate the timing and frequency of spontaneous apneas during breathing and swallowing by using cineradiography on mouse models of early/initial or late/advanced Parkinson's disease (PD). C57BL/6 J mice received either 6-OHDA or vehicle injections into their right striatum, followed by respiratory movement recordings during spontaneous breathing and swallowing, and a stress challenge, two weeks later. Experimental group animals showed a significantly lower respiratory rate (158.66 ± 32.88 breaths/minute in late PD, 173.16 ± 25.19 in early PD versus 185.27 ± 25.36 in controls; p<0.001) and a significantly higher frequency of apneas (median 1 apnea/minute in both groups versus 0 in controls; p<0.001). Other changes included reduced food intake and the absence of swallow apneas in experimental mice. 6-OHDA-induced nigrostriatal degeneration in mice disrupted respiratory control, swallowing, stress responsiveness, and feeding behaviors, potentially hindering airway protection and elevating the risk of aspiration.
Collapse
Affiliation(s)
| | - Max Sarmet
- Graduate Program in Health Sciences and Technologies, University of Brasilia, Brasilia, Brazil
| | | | - Sachiko Takehara
- Division of Preventive Dentistry, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuhiro Kumei
- Department of Pathological Biochemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jorge Luis Lopes Zeredo
- Graduate Program in Health Sciences, University of Brasilia, Brasilia, Brazil; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Walker JJ, Meunier E, Garcia S, Messaoudi B, Mouly AM, Veyrac A, Buonviso N, Courtiol E. State-dependent alteration of respiration in a rat model of Parkinson's disease. Exp Neurol 2024; 375:114740. [PMID: 38395215 DOI: 10.1016/j.expneurol.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Besides major deficits in motor coordination, patients may also display sensory and cognitive impairments, which are often overlooked despite being inherently part of the PD symptomatology. Amongst those symptoms, respiration, a key mechanism involved in the regulation of multiple physiological and neuronal processes, appears to be altered. Importantly, breathing patterns are highly correlated with the animal's behavioral states. This raises the question of the potential impact of behavioral state on respiration deficits in PD. To answer this question, we first characterized the respiratory parameters in a neurotoxin-induced rat model of PD (6-OHDA) across three different vigilance states: sleep, quiet waking and exploration. We noted a significantly higher respiratory frequency in 6-OHDA rats during quiet waking compared to Sham rats. A higher respiratory amplitude was also observed in 6-OHDA rats during both quiet waking and exploration. No effect of the treatment was noted during sleep. Given the relation between respiration and olfaction and the presence of olfactory deficits in PD patients, we then investigated the odor-evoked sniffing response in PD rats, using an odor habituation/cross-habituation paradigm. No substantial differences were observed in olfactory abilities between the two groups, as assessed through sniffing frequency. These results corroborate the hypothesis that respiratory impairments in 6-OHDA rats are vigilance-dependent. Our results also shed light on the importance of considering the behavioral state as an impacting factor when analyzing respiration.
Collapse
Affiliation(s)
- Jean Jacques Walker
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Estelle Meunier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France
| | - Samuel Garcia
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Belkacem Messaoudi
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Anne-Marie Mouly
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Alexandra Veyrac
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Nathalie Buonviso
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Emmanuelle Courtiol
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
5
|
Andrzejewski K, Orłowska ME, Zaremba M, Joniec-Maciejak I, Kaczyńska K. Impact of Serotonergic 5HT 1A and 5HT 2A Receptor Activation on the Respiratory Response to Hypercapnia in a Rat Model of Parkinson's Disease. Int J Mol Sci 2024; 25:4403. [PMID: 38673988 PMCID: PMC11050428 DOI: 10.3390/ijms25084403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In Parkinson's disease (PD), along with typical motor dysfunction, abnormal breathing is present; the cause of which is not well understood. The study aimed to analyze the effects of stimulation of the serotonergic system with 5-HT1A and 5-HT2A agonists in a model of PD induced by injection of 6-hydroxydopamine (6-OHDA). To model PD, bilateral injection of 6-OHDA into both striata was performed in male Wistar rats. Respiratory disturbances in response to 7% hypercapnia (CO2 in O2) in the plethysmographic chamber before and after stimulation of the serotonergic system and the incidence of apnea were studied in awake rats 5 weeks after 6-OHDA or vehicle injection. Administration of 6-OHDA reduced the concentration of serotonin (5-HT), dopamine (DA) and norepinephrine (NA) in the striatum and the level of 5-HT in the brainstem of treated rats, which have been associated with decreased basal ventilation, impaired respiratory response to 7% CO2 and increased incidence of apnea compared to Sham-operated rats. Intraperitoneal (i.p.) injection of the 5-HT1AR agonist 8-OH-DPAT and 5-HT2AR agonist NBOH-2C-CN increased breathing during normocapnia and hypercapnia in both groups of rats. However, it restored reactivity to hypercapnia in 6-OHDA group to the level present in Sham rats. Another 5-HT2AR agonist TCB-2 was only effective in increasing normocapnic ventilation in 6-OHDA rats. Both the serotonergic agonists 8-OH-DPAT and NBOH-2C-CN had stronger stimulatory effects on respiration in PD rats, compensating for deficits in basal ventilation and hypercapnic respiration. We conclude that serotonergic stimulation may have a positive effect on respiratory impairments that occur in PD.
Collapse
Affiliation(s)
- Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland; (K.A.); (M.E.O.)
| | - Magdalena E. Orłowska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland; (K.A.); (M.E.O.)
| | - Małgorzata Zaremba
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CePT), Medical University of Warsaw, 02-091 Warsaw, Poland; (M.Z.), (I.J.-M.)
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CePT), Medical University of Warsaw, 02-091 Warsaw, Poland; (M.Z.), (I.J.-M.)
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland; (K.A.); (M.E.O.)
| |
Collapse
|
6
|
McMahon L, McGrath D, Blake C, Lennon O. Responsiveness of respiratory function in Parkinson's Disease to an integrative exercise programme: A prospective cohort study. PLoS One 2024; 19:e0301433. [PMID: 38551984 PMCID: PMC10980210 DOI: 10.1371/journal.pone.0301433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
INTRODUCTION Respiratory disorders are the most common cause of death in Parkinson's Disease (PD). Conflicting data exist on the aetiology of respiratory dysfunction in PD and few studies examine the effects of exercise-based interventions on respiratory measures. This study was conducted to better understand respiratory dysfunction in PD and to identify measures of dysfunction responsive to an integrative exercise programme. OBJECTIVES The objectives were to compare baseline respiratory measures with matched, published population norms and to examine immediate and longer-term effects of a 12-week integrated exercise programme on these measures. DESIGN Twenty-three people with mild PD (median Hoehn & Yahr = 2) self-selected to participate in this exploratory prospective cohort study. Evaluation of participants occurred at three time points: at baseline; following the 12-week exercise programme and at 4-month follow-up. OUTCOME MEASURES Outcome measures included: Forced Vital Capacity (FVC), Forced Expiratory Volume in 1 second (FEV1), FEV1/FVC ratio, Peak Expiratory Flow (PEF), Inspiratory Muscle Strength (MIP), Expiratory Muscle Strength (MEP), Peak Cough Flow (PCF), and Cardiovascular Fitness measures of estimated VO2 max and 6-Minute Walk Test (6MWT). RESULTS Compared to published norms, participants had impaired cough, reduced respiratory muscle strength, FEV, FVC, PEF and cardiovascular fitness. Post exercise intervention, statistically significant improvements were noted in MEP, cardiovascular fitness, and PEF. However only gains in PEF were maintained at 4-month follow-up. CONCLUSIONS Significant respiratory dysfunction exists, even in the early stages of PD. Metrics of respiratory muscle strength, peak expiratory flow and cardiovascular fitness appear responsive to an integrative exercise programme.
Collapse
Affiliation(s)
- Laura McMahon
- Health Sciences Centre, UCD School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Denise McGrath
- Health Sciences Centre, UCD School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Catherine Blake
- Health Sciences Centre, UCD School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Olive Lennon
- Health Sciences Centre, UCD School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Bruce MR, Couch ACM, Grant S, McLellan J, Ku K, Chang C, Bachman A, Matson M, Berman RF, Maddock RJ, Rowland D, Kim E, Ponzini MD, Harvey D, Taylor SL, Vernon AC, Bauman MD, Van de Water J. Altered behavior, brain structure, and neurometabolites in a rat model of autism-specific maternal autoantibody exposure. Mol Psychiatry 2023; 28:2136-2147. [PMID: 36973347 PMCID: PMC10575787 DOI: 10.1038/s41380-023-02020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Maternal immune dysregulation is a prenatal risk factor for autism spectrum disorder (ASD). Importantly, a clinically relevant connection exists between inflammation and metabolic stress that can result in aberrant cytokine signaling and autoimmunity. In this study we examined the potential for maternal autoantibodies (aAbs) to disrupt metabolic signaling and induce neuroanatomical changes in the brains of exposed offspring. To accomplish this, we developed a model of maternal aAb exposure in rats based on the clinical phenomenon of maternal autoantibody-related ASD (MAR-ASD). Following confirmation of aAb production in rat dams and antigen-specific immunoglobulin G (IgG) transfer to offspring, we assessed offspring behavior and brain structure longitudinally. MAR-ASD rat offspring displayed a reduction in pup ultrasonic vocalizations and a pronounced deficit in social play behavior when allowed to freely interact with a novel partner. Additionally, longitudinal in vivo structural magnetic resonance imaging (sMRI) at postnatal day 30 (PND30) and PND70, conducted in a separate cohort of animals, revealed sex-specific differences in total and regional brain volume. Treatment-specific effects by region appeared to converge on midbrain and cerebellar structures in MAR-ASD offspring. Simultaneously, in vivo 1H magnetic resonance spectroscopy (1H-MRS) data were collected to examine brain metabolite levels in the medial prefrontal cortex. Results showed that MAR-ASD offspring displayed decreased levels of choline-containing compounds and glutathione, accompanied by increased taurine compared to control animals. Overall, we found that rats exposed to MAR-ASD aAbs present with alterations in behavior, brain structure, and neurometabolites; reminiscent of findings observed in clinical ASD.
Collapse
Affiliation(s)
- Matthew R Bruce
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Amalie C M Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simone Grant
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Janna McLellan
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Katherine Ku
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Christina Chang
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Angelica Bachman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Matthew Matson
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Robert F Berman
- Department of Neurological Surgery, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Douglas Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, CA, USA
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthew D Ponzini
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Danielle Harvey
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Sandra L Taylor
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA.
- MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
8
|
McMahon L, Blake C, Lennon O. A systematic review and meta-analysis of respiratory dysfunction in Parkinson's disease. Eur J Neurol 2023; 30:1481-1504. [PMID: 36779856 DOI: 10.1111/ene.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/14/2023]
Abstract
INTRODUCTION Respiratory dysfunction in Parkinson's disease (PD) is common and associated with increased hospital admission and mortality rates. Central and peripheral mechanisms have been proposed in PD. To date no systematic review identifies the extent and type of respiratory impairments in PD compared with healthy controls. METHODS PubMed, EMBASE, CINAHL, Web of Science, Pedro, MEDLINE, Cochrane Library and OpenGrey were searched from inception to December 2021 to identify case-control studies reporting respiratory measures in PD and matched controls. RESULTS Thirty-nine studies met inclusion criteria, the majority with low risk of bias across Risk of Bias Assessment tool for Non-randomized Studies (RoBANS) domains. Data permitted pooled analysis for 26 distinct respiratory measures. High-to-moderate certainty evidence of impairment in PD was identified for vital capacity (standardised mean difference [SMD] 0.75; 95% CI 0.45-1.05; p < 0.00001; I2 = 10%), total chest wall volume (SMD 0.38; 95% CI 0.09-0.68; p = 0.01; I2 = 0%), maximum inspiratory pressure (SMD 0.91; 95% CI 0.64-1.19; p < 0.00001; I2 = 43%) and sniff nasal inspiratory pressure (SMD 0.58; 95% CI 0.30-0.87; p < 0.00001; I2 = 0%). Sensitivity analysis provided high-moderate certainty evidence of impairment for forced vital capacity and forced expiratory volume in 1 s during medication ON phases and increased respiratory rate during OFF phases. Lower certainty evidence identified impairments in PD for maximum expiratory pressure, tidal volume, maximum voluntary ventilation and peak cough flow. CONCLUSIONS Strong evidence supports a restrictive pattern with inspiratory muscle weakness in PD compared with healthy controls. Limited data for central impairment were identified with inconclusive findings.
Collapse
Affiliation(s)
- Laura McMahon
- UCD School of Public Health, Physiotherapy and Population Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Catherine Blake
- UCD School of Public Health, Physiotherapy and Population Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Olive Lennon
- UCD School of Public Health, Physiotherapy and Population Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
10
|
The Pedunculopontine Tegmental Nucleus is not Important for Breathing Impairments Observed in a Parkinson's Disease Model. Neuroscience 2023; 512:32-46. [PMID: 36690033 DOI: 10.1016/j.neuroscience.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a motor disorder resulting from degeneration of dopaminergic neurons of substantia nigra pars compacta (SNpc), with classical and non-classical symptoms such as respiratory instability. An important region for breathing control, the Pedunculopontine Tegmental Nucleus (PPTg), is composed of cholinergic, glutamatergic, and GABAergic neurons. We hypothesize that degenerated PPTg neurons in a PD model contribute to the blunted respiratory activity. Adult mice (40 males and 29 females) that express the fluorescent green protein in cholinergic, glutamatergic or GABAergic cells were used (Chat-cre Ai6, Vglut2-cre Ai6 and Vgat-cre Ai6) and received bilateral intrastriatal injections of vehicle or 6-hydroxydopamine (6-OHDA). Ten days later, the animals were exposed to hypercapnia or hypoxia to activate PPTg neurons. Vglut2-cre Ai6 animals also received retrograde tracer injections (cholera toxin b) into the retrotrapezoid nucleus (RTN) or preBötzinger Complex (preBötC) and anterograde tracer injections (AAV-mCherry) into the SNpc. In 6-OHDA-injected mice, there is a 77% reduction in the number of dopaminergic neurons in SNpc without changing the number of neurons in the PPTg. Hypercapnia activated fewer Vglut2 neurons in PD, and hypoxia did not activate PPTg neurons. PPTg neurons do not input RTN or preBötC regions but receive projections from SNpc. Although our results did not show a reduction in the number of glutamatergic neurons in PPTg, we observed a reduction in the number of neurons activated by hypercapnia in the PD animal model, suggesting that PPTg may participate in the hypercapnia ventilatory response.
Collapse
|
11
|
L. F. Nascimento A, O. S. Medeiros P, F. A. T. Pedrão L, Queiroz VC, Oliveira LM, Novaes LS, Caetano AL, Munhoz CD, Takakura AC, Falquetto B. Oxidative stress inhibition via apocynin prevents contributes to medullary respiratory neurodegeneration and respiratory pattern dysfunction in 6-OHDA animal model of Parkinson's disease. Neuroscience 2022; 502:91-106. [DOI: 10.1016/j.neuroscience.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022]
|
12
|
Oliveira LM, Fernandes-Junior SA, Cabral LMC, Miranda NCS, Czeisler CM, Otero JJ, Moreira TS, Takakura AC. Regulation of blood vessels by ATP in the ventral medullary surface in a rat model of Parkinson's disease. Brain Res Bull 2022; 187:138-154. [PMID: 35777704 DOI: 10.1016/j.brainresbull.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Silvio A Fernandes-Junior
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil; The Ohio State University College of Medicine, Department of Pathology, USA
| | - Laís M C Cabral
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Nicole C S Miranda
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | | | - José J Otero
- The Ohio State University College of Medicine, Department of Pathology, USA
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Ana C Takakura
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
13
|
Kaczyńska K, Orłowska ME, Andrzejewski K. Respiratory Abnormalities in Parkinson's Disease: What Do We Know from Studies in Humans and Animal Models? Int J Mol Sci 2022; 23:ijms23073499. [PMID: 35408858 PMCID: PMC8998219 DOI: 10.3390/ijms23073499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease characterized by movement disorders due to the progressive loss of dopaminergic neurons in the ventrolateral region of the substantia nigra pars compacta (SNpc). Apart from the cardinal motor symptoms such as rigidity and bradykinesia, non-motor symptoms including those associated with respiratory dysfunction are of increasing interest. Not only can they impair the patients’ quality of life but they also can cause aspiration pneumonia, which is the leading cause of death among PD patients. This narrative review attempts to summarize the existing literature on respiratory impairments reported in human studies, as well as what is newly known from studies in animal models of the disease. Discussed are not only respiratory muscle dysfunction, apnea, and dyspnea, but also altered central respiratory control, responses to hypercapnia and hypoxia, and how they are affected by the pharmacological treatment of PD.
Collapse
|
14
|
Aquino YC, Cabral LM, Miranda NC, Naccarato MC, Falquetto B, Moreira TS, Takakura AC. Respiratory disorders of Parkinson's disease. J Neurophysiol 2022; 127:1-15. [PMID: 34817281 DOI: 10.1152/jn.00363.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, mainly affecting people over 60 yr of age. Patients develop both classic symptoms (tremors, muscle rigidity, bradykinesia, and postural instability) and nonclassical symptoms (orthostatic hypotension, neuropsychiatric deficiency, sleep disturbances, and respiratory disorders). Thus, patients with PD can have a significantly impaired quality of life, especially when they do not have multimodality therapeutic follow-up. The respiratory alterations associated with this syndrome are the main cause of mortality in PD. They can be classified as peripheral when caused by disorders of the upper airways or muscles involved in breathing and as central when triggered by functional deficits of important neurons located in the brainstem involved in respiratory control. Currently, there is little research describing these disorders, and therefore, there is no well-established knowledge about the subject, making the treatment of patients with respiratory symptoms difficult. In this review, the history of the pathology and data about the respiratory changes in PD obtained thus far will be addressed.
Collapse
Affiliation(s)
- Yasmin C Aquino
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Monique C Naccarato
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Bárbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Ghosh S. Breathing disorders in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:223-239. [PMID: 36031306 DOI: 10.1016/b978-0-323-91532-8.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurodegenerative disorders are a diverse group of conditions caused by progressive degeneration of neurons resulting in cognitive, motor, sensory, and autonomic dysfunction, leading to severe disability and death. Pulmonary dysfunction is relatively common in these conditions, may be present early in the disease, and is less well recognized and treated than other symptoms. There are variable disorders of upper and lower airways, central control of ventilation, strength of respiratory muscles, and breathing during sleep which further impact daily activities and quality of life and have the potential to injure vulnerable neurons. Laryngopharyngeal dysfunction affects speech, swallowing, and clearance of secretions, increases the risk of aspiration pneumonia, and can cause stridor and sudden death. In Parkinson's disease, L-Dopa benefits some pulmonary symptoms but there are limited pharmacological treatment options for pulmonary dysfunction. Targeted treatments include strengthening of respiratory muscles, positive airway pressure in sleep and techniques to improve cough efficacy. Well-designed clinical trials are needed to evaluate the long-term benefits of these interventions. Challenges for the future include earlier identification of pulmonary dysfunction in the clinic, institution of the most effective treatments (based on clinical trials that measure long-term meaningful outcomes) and the development of neuroprotective treatment.
Collapse
Affiliation(s)
- Soumya Ghosh
- Perron Institute for Neurological and Translational Science, University of Western Australia and Department of Neurology, Sir Charles Gairdner and Perth Children's Hospitals, Nedlands, WA, Australia.
| |
Collapse
|
16
|
Dudchenko NG, Gadzhieva ZF, Koloman II, Kuzmina AV, Levin OS. [Respiratory dysfunction in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:80-85. [PMID: 34870919 DOI: 10.17116/jnevro202112110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For a long time it was believed that respiratory disorders (RD) in Parkinson's disease (PD) are rare. However, the situation has changed dramatically over the past 10 years. Thus, special studies have revealed RD in almost half of patients with PD. The paper presents: a literature review, classification of RD in PD, various mechanisms of their development and general approaches to their treatment. Classification of RD in PD is presented.
Collapse
Affiliation(s)
- N G Dudchenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Z F Gadzhieva
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - I I Koloman
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - A V Kuzmina
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - O S Levin
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| |
Collapse
|
17
|
Pernía-Andrade AJ, Wenger N, Esposito MS, Tovote P. Circuits for State-Dependent Modulation of Locomotion. Front Hum Neurosci 2021; 15:745689. [PMID: 34858153 PMCID: PMC8631332 DOI: 10.3389/fnhum.2021.745689] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023] Open
Abstract
Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.
Collapse
Affiliation(s)
| | - Nikolaus Wenger
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Maria S Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Carlos de Bariloche, Argentina
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.,Center for Mental Health, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
de la Rosa T, Calvo VS, Gonçalves VC, Scerni DA, Scorza FA. 6-hydroxydopamine and ovariectomy has no effect on heart rate variability parameters of females. Clinics (Sao Paulo) 2021; 76:e3175. [PMID: 34644736 PMCID: PMC8478141 DOI: 10.6061/clinics/2021/e3175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES In addition to the classic motor symptoms of Parkinson's disease (PD), patients also present with non-motor symptoms, such as autonomic dysfunction, which is present in almost 90% of patients with PD, affecting the quality of life and mortality. Regarding sex differences in prevalence and presentation, there is increasing concern about how sex affects autonomic dysfunction. However, there are no previous data on autonomic cardiac function in females after 6-hydroxydopamine (6-OHDA) striatal injection. METHODS Wistar female rats were ovariectomized. After 20 days, the animals received bilateral injections of 6-OHDA (total dose per animal: 48 µg) or a vehicle solution in the striatum. Thirty days after 6-OHDA injection, subcutaneous electrodes were implanted for electrocardiogram (ECG) recording. Ten days after electrode implantation, ECG signals were recorded. Analyses of heart rate variability (HRV) parameters were performed, and the 6-OHDA lesion was confirmed by analyzing the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta (SNpc). RESULTS A high dose of 6-OHDA did not affect HRV of females, independent of ovariectomy. As expected, ovariectomy did not affect HRV or lesions in the SNpc after 6-OHDA injection. CONCLUSIONS We suggest that females with 6-OHDA present with cardioprotection, independent of ovarian hormones, which could be related to female vagal predominance.
Collapse
Affiliation(s)
- Tomás de la Rosa
- Departamento de Neurologia, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
| | | | | | | | | |
Collapse
|
19
|
Lavezzi AM, Mehboob R. The Mesencephalic Periaqueductal Gray, a Further Structure Involved in Breathing Failure Underlying Sudden Infant Death Syndrome. ASN Neuro 2021; 13:17590914211048260. [PMID: 34623930 PMCID: PMC8642109 DOI: 10.1177/17590914211048260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to investigate the involvement of the periaqueductal gray
(PAG), an area of gray matter surrounding the cerebral aqueduct of Sylvius, in the
pathogenetic mechanism of SIDS, a syndrome frequently ascribed to arousal failure from
sleep. We reconsidered the same samples of brainstem, more precisely midbrain specimens,
taken from a large series of sudden infant deaths, namely 46 cases aged from 1 to about 7
months, among which 26 SIDS and 20 controls, in which we already highlighted significant
developmental alterations of the substantia nigra, another mesencephalic structure with a
critical role in breath and awakening regulation. Specific histological and
immunohistochemical methods were applied to examine the PAG cytoarchitecture and the
expression of the tyrosine hydroxylase, a marker of catecholaminergic neurons. Hypoplasia
of the PAG subnucleus medialis was observed in 65% of SIDS but never in controls; tyrosine
hydroxylase expression was significantly higher in controls than in SIDS. A significant
correlation was found between these findings and those related to the substantia nigra,
demonstrating a link between these neuronal centers and the brainstem respiratory network
and a common involvement in the sleep-arousal phase failure leading to SIDS.
Collapse
Affiliation(s)
- Anna M. Lavezzi
- “Lino Rossi” Research Center for the study and prevention of unexpected
perinatal death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Anna Maria Lavezzi “Lino Rossi” Research Center for
the study and prevention of unexpected perinatal death and SIDS, Department of Biomedical,
Surgical and Dental Sciences, University of Milan. E-mail:
| | - Riffat Mehboob
- “Lino Rossi” Research Center for the study and prevention of unexpected
perinatal death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Faculty of Allied Health Sciences, University of Lahore, Lahore,
Pakistan
| |
Collapse
|
20
|
Johnson RA, Kelm-Nelson CA, Ciucci MR. Changes to Ventilation, Vocalization, and Thermal Nociception in the Pink1-/- Rat Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:489-504. [PMID: 32065805 DOI: 10.3233/jpd-191853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Individuals with Parkinson's disease (PD) experience significant vocal communication deficits. Findings in the Pink1-/- rat model of early-onset PD suggest that ultrasonic vocal communication is impaired early, progressively worsens prior to nigrostriatal dopamine depletion, and is associated with loss of locus coeruleus neurons, brainstem α-synuclein, and larynx pathology. Individuals with PD also demonstrate ventilatory deficits and altered sensory processing, which may contribute to vocal deficits. OBJECTIVE The central hypothesis is that ventilatory and sensory deficits are present in the early disease stages when limb and vocal motor deficits also present. METHODS Pink1-/- rats were compared to wildtype (WT) controls at longitudinal timepoints. Whole-body flow through plethysmography was used to measure ventilation in the following conditions: baseline, hypoxia, and maximal chemoreceptor stimulation. Plantar thermal nociception, and as a follow up to previous work, limb gait and vocalization were analyzed. Serotonin density (5-HT) in the dorsal raphe was quantified post-mortem. RESULTS Baseline breathing frequencies were consistently higher in Pink1-/- rats at all time points. In hypoxic conditions, there were no significant changes between genotypes. With hypercapnia, Pink1-/- rats had decreased breathing frequencies with age. Thermal withdrawal latencies were significantly faster in Pink1-/- compared with WT rats across time. No differences in 5-HT were found between genotypes. Vocal peak frequency was negatively correlated to tidal volume and minute ventilation in Pink1-/- rats. CONCLUSION This work suggests that abnormal nociceptive responses in Pink1-/- rats and ventilatory abnormalities may be associated with abnormal sensorimotor processing to chemosensory stimuli during disease manifestation.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Cynthia A Kelm-Nelson
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle R Ciucci
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
D'Arrigo A, Floro S, Bartesaghi F, Casellato C, Sferrazza Papa GF, Centanni S, Priori A, Bocci T. Respiratory dysfunction in Parkinson's disease: a narrative review. ERJ Open Res 2020; 6:00165-2020. [PMID: 33043046 PMCID: PMC7533305 DOI: 10.1183/23120541.00165-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
The presence of respiratory symptoms in Parkinson's disease (PD) has been known since the first description of the disease, even though the prevalence and incidence of these disturbances are not well defined. Several causes have been reported, comprising obstructive and restrictive pulmonary disease and changes in the central ventilatory control, and different pathogenetic mechanisms have been postulated accordingly. In our review, we encompass the current knowledge about respiratory abnormalities in PD, as well as the impact of anti-Parkinsonian drugs as either risk or protective factors. A description of putative pathogenetic mechanisms is also provided, and possible treatments are discussed, focusing on the importance of recognising and treating respiratory symptoms as a key manifestation of the disease itself. A brief description of respiratory dysfunctions in atypical Parkinsonism, especially α-synucleinopathies, is also provided. This review addresses current knowledge about respiratory dysfunctions in Parkinson's disease, from the aetiopathology to pharmacological and invasive treatments, describing the different clinical phenotypeshttps://bit.ly/2X7OLtN
Collapse
Affiliation(s)
- Andrea D'Arrigo
- "Aldo Ravelli" Center, Dept of Health Sciences, University of Milan Medical School and San Paolo University Hospital, ASST Santi Paolo e Carlo Milano, Milan, Italy
| | - Stefano Floro
- "Aldo Ravelli" Center, Dept of Health Sciences, University of Milan Medical School and San Paolo University Hospital, ASST Santi Paolo e Carlo Milano, Milan, Italy
| | - Francesca Bartesaghi
- "Aldo Ravelli" Center, Dept of Health Sciences, University of Milan Medical School and San Paolo University Hospital, ASST Santi Paolo e Carlo Milano, Milan, Italy
| | - Chiara Casellato
- "Aldo Ravelli" Center, Dept of Health Sciences, University of Milan Medical School and San Paolo University Hospital, ASST Santi Paolo e Carlo Milano, Milan, Italy
| | - Giuseppe Francesco Sferrazza Papa
- Respiratory Unit, Dept of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milan, Italy.,Casa di Cura del Policlinico, Department of Neurorehabilitation Sciences, Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, Dept of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center, Dept of Health Sciences, University of Milan Medical School and San Paolo University Hospital, ASST Santi Paolo e Carlo Milano, Milan, Italy
| | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Dept of Health Sciences, University of Milan, Milan, Italy.,III Neurology Clinic, ASST Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
22
|
Falquetto B, Thieme K, Malta MB, e Rocha KC, Tuppy M, Potje SR, Antoniali C, Rodrigues AC, Munhoz CD, Moreira TS, Takakura AC. Oxidative stress in the medullary respiratory neurons contributes to respiratory dysfunction in the 6‐OHDA model of Parkinson's disease. J Physiol 2020; 598:5271-5293. [DOI: 10.1113/jp279791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/14/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Bárbara Falquetto
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Karina Thieme
- Department of Physiology and Biophysics Instituto de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Marília B. Malta
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Karina C. e Rocha
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Marina Tuppy
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Simone R. Potje
- Department of Basic Sciences School of Dentistry São Paulo State University (UNESP) Araçatuba SP 16015‐050 Brazil
| | - Cristina Antoniali
- Department of Basic Sciences School of Dentistry São Paulo State University (UNESP) Araçatuba SP 16015‐050 Brazil
| | - Alice C. Rodrigues
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Carolina D. Munhoz
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Thiago S. Moreira
- Department of Physiology and Biophysics Instituto de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Ana C. Takakura
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| |
Collapse
|
23
|
Yang CF, Kim EJ, Callaway EM, Feldman JL. Monosynaptic Projections to Excitatory and Inhibitory preBötzinger Complex Neurons. Front Neuroanat 2020; 14:58. [PMID: 33013329 PMCID: PMC7507425 DOI: 10.3389/fnana.2020.00058] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
The key driver of breathing rhythm is the preBötzinger Complex (preBötC) whose activity is modulated by various functional inputs, e.g., volitional, physiological, and emotional. While the preBötC is highly interconnected with other regions of the breathing central pattern generator (bCPG) in the brainstem, there is no data about the direct projections to either excitatory and inhibitory preBötC subpopulations from other elements of the bCPG or from suprapontine regions. Using modified rabies tracing, we identified neurons throughout the brain that send monosynaptic projections to identified excitatory and inhibitory preBötC neurons in mice. Within the brainstem, neurons from sites in the bCPG, including the contralateral preBötC, Bötzinger Complex, the nucleus of the solitary tract (NTS), parafacial region (pF L /pF V ), and parabrachial nuclei (PB), send direct projections to both excitatory and inhibitory preBötC neurons. Suprapontine inputs to the excitatory and inhibitory preBötC neurons include the superior colliculus, red nucleus, amygdala, hypothalamus, and cortex; these projections represent potential direct pathways for volitional, emotional, and physiological control of breathing.
Collapse
Affiliation(s)
- Cindy F. Yang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Euiseok J. Kim
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Edward M. Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jack L. Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
24
|
Hosford PS, Ninkina N, Buchman VL, Smith JC, Marina N, SheikhBahaei S. Synuclein Deficiency Results in Age-Related Respiratory and Cardiovascular Dysfunctions in Mice. Brain Sci 2020; 10:brainsci10090583. [PMID: 32846874 PMCID: PMC7563345 DOI: 10.3390/brainsci10090583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/16/2023] Open
Abstract
Synuclein (α, β, and γ) proteins are highly expressed in presynaptic terminals, and significant data exist supporting their role in regulating neurotransmitter release. Targeting the gene encoding α-synuclein is the basis of many animal models of Parkinson's disease (PD). However, the physiological role of this family of proteins in not well understood and could be especially relevant as interfering with accumulation of α-synuclein level has therapeutic potential in limiting PD progression. The long-term effects of their removal are unknown and given the complex pathophysiology of PD, could exacerbate other clinical features of the disease, for example dysautonomia. In the present study, we sought to characterize the autonomic phenotypes of mice lacking all synucleins (α, β, and γ; αβγ-/-) in order to better understand the role of synuclein-family proteins in autonomic function. We probed respiratory and cardiovascular reflexes in conscious and anesthetized, young (4 months) and aged (18-20 months) αβγ-/- male mice. Aged mice displayed impaired respiratory responses to both hypoxia and hypercapnia when breathing activities were recorded in conscious animals using whole-body plethysmography. These animals were also found to be hypertensive from conscious blood pressure recordings, to have reduced pressor baroreflex gain under anesthesia, and showed reduced termination of both pressor and depressor reflexes. The present data demonstrate the importance of synuclein in the normal function of respiratory and cardiovascular reflexes during aging.
Collapse
Affiliation(s)
- Patrick S. Hosford
- Department of Neuroscience Physiology and Pharmacology, Center for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London WC1E 6BT, UK; (P.S.H.); (N.M.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (V.L.B.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences (IPAC RAS), 1 Severniy proezd, 142432 Chernogolovka, Moscow Region, Russia
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (V.L.B.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences (IPAC RAS), 1 Severniy proezd, 142432 Chernogolovka, Moscow Region, Russia
| | - Jeffrey C. Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Nephtali Marina
- Department of Neuroscience Physiology and Pharmacology, Center for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London WC1E 6BT, UK; (P.S.H.); (N.M.)
| | - Shahriar SheikhBahaei
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-301-496-4960; Fax: +1-301-496-1339
| |
Collapse
|
25
|
Fernandes-Junior SA, Oliveira LM, Czeisler CM, Mo X, Roy S, Somogyi A, Zhang L, Moreira TS, Otero JJ, Takakura AC. Stimulation of retrotrapezoid nucleus Phox2b-expressing neurons rescues breathing dysfunction in an experimental Parkinson's disease rat model. Brain Pathol 2020; 30:926-944. [PMID: 32497400 DOI: 10.1111/bpa.12868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Emerging evidence from multiple studies indicates that Parkinson's disease (PD) patients suffer from a spectrum of autonomic and respiratory motor deficiencies in addition to the classical motor symptoms attributed to substantia nigra degeneration of dopaminergic neurons. Animal models of PD show a decrease in the resting respiratory rate as well as a decrease in the number of Phox2b-expressing retrotrapezoid nucleus (RTN) neurons. The aim of this study was to determine the extent to which substantia nigra pars compact (SNc) degeneration induced RTN biomolecular changes and to identify the extent to which RTN pharmacological or optogenetic stimulations rescue respiratory function following PD-induction. SNc degeneration was achieved in adult male Wistar rats by bilateral striatal 6-hydroxydopamine injection. For proteomic analysis, laser capture microdissection and pressure catapulting were used to isolate the RTN for subsequent comparative proteomic analysis and Ingenuity Pathway Analysis (IPA). The respiratory parameters were evaluated by whole-body plethysmography and electromyographic analysis of respiratory muscles. The results confirmed reduction in the number of dopaminergic neurons of SNc and respiratory rate in the PD-animals. Our proteomic data suggested extensive RTN remodeling, and that pharmacological or optogenetic stimulations of the diseased RTN neurons promoted rescued the respiratory deficiency. Our data indicate that despite neuroanatomical and biomolecular RTN pathologies, that RTN-directed interventions can rescue respiratory control dysfunction.
Collapse
Affiliation(s)
- Silvio A Fernandes-Junior
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil.,Department of Pathology, School of Medicine, The Ohio State University (OSU), Columbus, OH
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Catherine M Czeisler
- Department of Pathology, School of Medicine, The Ohio State University (OSU), Columbus, OH
| | - Xiaokui Mo
- Department of Biostatistics and Bioinformatics, The Ohio State University (OSU), Columbus, OH
| | - Sashwati Roy
- Departments of Surgery and Molecular and Cellular Biochemistry, The Ohio State University (OSU), Columbus, OH
| | - Arpad Somogyi
- Mass Spectrometry and Proteomics Facility, The Ohio State University (OSU), Columbus, OH
| | - Liewn Zhang
- Mass Spectrometry and Proteomics Facility, The Ohio State University (OSU), Columbus, OH
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - José J Otero
- Department of Pathology, School of Medicine, The Ohio State University (OSU), Columbus, OH
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
26
|
Cabral LM, Moreira TS, Takakura AC, Falquetto B. Attenuated baroreflex in a Parkinson's disease animal model coincides with impaired activation of non-C1 neurons. Auton Neurosci 2020; 225:102655. [PMID: 32092676 DOI: 10.1016/j.autneu.2020.102655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Orthostatic hypotension is one of the most common symptoms observed in Parkinson's disease (PD), a neurodegenerative disease caused by death of dopaminergic neurons in the substantia nigra pars compacta (SNc), and it is associated with denervation of the heart and impairment of the baroreflex. Here, we aimed to investigate if the impaired baroreflex was associated with lower activation of cardiovascular brainstem areas in a 6-hydroxydopamine (6-OHDA) animal model of PD. The PD model was generated with male Wistar rats by injection of 6-OHDA or vehicle into the striatum. After 20 or 60 days, the femoral vein and artery were cannulated to assess cardiovascular parameters during injection of sodium nitroprusside (SNP) or phenylephrine (Phe). Brainstem slices were submitted to immunohistochemistry and immunofluorescence. After 6-OHDA injection, 75% of the dopaminergic neurons in the SNc were absent, confirming establishment of the PD model. Intravenous (iv) injection of SNP generated reduced hypotension and tachycardia response, and the noncatecholaminergic (nonC1) neurons of the rostral ventrolateral medulla (RVLM) were less activated. Additionally, iv injection of Phe increased blood pressure and bradycardia to the same extent and activated equivalent numbers of neurons in the nucleus of the solitary tract and the caudal ventrolateral medulla as well as cholinergic neurons of the dorsal motor nucleus of the vagus and the nucleus ambiguus between control and PD animals. In summary, these data showed that in the PD model, impairment of cardiovascular autonomic control was observed only during deactivation of the baroreflex, which could be related to reduced activation of non-C1 neurons within the RVLM.
Collapse
Affiliation(s)
- Laís M Cabral
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Bárbara Falquetto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil.
| |
Collapse
|
27
|
George Zaki Ghali M. Midbrain control of breathing and blood pressure: The role of periaqueductal gray matter and mesencephalic collicular neuronal microcircuit oscillators. Eur J Neurosci 2020; 52:3879-3902. [PMID: 32227408 DOI: 10.1111/ejn.14727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 02/01/2020] [Accepted: 03/22/2020] [Indexed: 01/12/2023]
Abstract
Neural circuitry residing within the medullary ventral respiratory column nuclei and dorsal respiratory group interact with the Kölliker-Fuse and medial parabrachial nuclei to generate the core breathing rhythm and pattern during resting conditions. Triphasic eupnea consists of inspiratory [I], post-inspiratory [post-I], and late-expiratory [E2] phases. Mesencephalic zones exert modulatory influences upon respiratory rhythm-generating circuitry, sympathetic oscillators, and parasympathetic nuclei. The earliest evidence supporting the existence of midbrain control of breathing derives from studies conducted by Martin and Booker in 1878. These authors demonstrated electrical stimulation of the deep layers of the mesencephalic colliculi in the rabbit augmented ventilation and sequentially elicited chest wall tremors and tetany. Investigations performed during the past several decades would demonstrate stimlation of distributed zones within the midbrain reticular formation elicits starkly disparate effects upon respiratory phase switching. Schmid, Böhmer, and Fallert demonstrated electrical stimulation of the nucleus rubre and emanating axon bundles alternately elicits or inhibits the activity of medullary expiratory- or inspiratory-related units and phrenic nerve discharge with differential latency. A series of studies would later indicate the red nucleus mediates hypoxic ventilatory depression. Periaqueductal gray matter neurons exhibit extensive afferent and efferent interconnectivity with suprabulbar, brainstem, and spinal cord zones aptly positioning these units to modulate breathing, autonomic outflow, nociception locomotion, micturtion, and sexual behavior. Experimental stimulatory activation of the tectal colliculi and periaqueductal gray matter via electrical current or glutamate, D,L-homocysteinic acid, or bicuculline microinjections coordinately modulates neuromotor inspiratory bursting frequency and amplitude and discharge of pre-Bötzinger complex, ventrolateral medullary late-I and post-I, and ventrolateral nucleus tractus solitarius decrementing early-I and augmenting and decrementing late-I neurons, elicits expiratory outflow and vocalization, and blunt the Hering-Breuer reflex in unanesthetzed decerebrate and anesthetized preprations of the cat and rat. Stimulation of the mesencephalic colliuli or dorsal divisions of the PAG potently amplifes renal sympathetic neural efferent activity, dynamic arterial pressure magnitude, and myocardial contraction frequency and elicits various behavioral defense responses. Elicited physiological effects exhibit extensive locoregional heterogeneity and variably enlist requisite contributions from the dorsomedial hypothalamus and/or lateral parabrachial nuclei. Stimulation of the dorsal mesencephalon occasionally elicits dynamic increases of arterial pressure magnitude exhibiting prominent oscillatory variability coherent with phrenic nerve discharge, perhaps by generating intra-neuraxial hysteresis, serving to intermittently deliver blood to organ vascular beds under high pressure in order to prevent organ edema, microcirculatory dysfunction, and downregulation of vascular smooth muscle alpha adrenergic receptors. Chemosensitive mesencephalic caudal raphé units and projections of hypoxia-sensitive units in the caudal hypothalamus to the periaqueductal gray matter may imply the existence of a diencephalo-smesencephalic chemosensitive network modulating breathing and sympathetic discharge.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, Baylor College of Medicine, Houston, Texas.,Department of Neurological Surgery, University of California, San Francisco, California.,Department of Neurological Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Pokusa M, Hajduchova D, Budaj T, Kralova Trancikova A. Respiratory Function and Dysfunction in Parkinson-Type Neurodegeneration. Physiol Res 2020; 69:S69-S79. [DOI: 10.33549/physiolres.934405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is most commonly manifested by the presence of motor symptoms. However, non-motor symptoms occur several years before the onset of motor symptoms themselves. Hallmarks of dysfunction of the respiratory system are still outside the main focus of interest, whether by clinicians or scientists, despite their indisputable contribution to the morbidity and mortality of patients suffering from PD. In addition, many of the respiratory symptoms are already present in the early stages of the disease and efforts to utilize these parameters in the early diagnosis of PD are now intensifying. Mechanisms that lead to the development and progression of respiratory symptoms are only partially understood. This review focuses mainly on the comparison of respiratory problems observed in clinical studies with available findings obtained from experimental animal models. It also explains pathological changes observed in non-neuronal tissues in subjects with PD.
Collapse
Affiliation(s)
| | | | | | - A. Kralova Trancikova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Martin, Slovak Republic.
| |
Collapse
|
29
|
Vijayan S, Singh B, Ghosh S, Stell R, Mastaglia FL. Brainstem Ventilatory Dysfunction: A Plausible Mechanism for Dyspnea in Parkinson's Disease? Mov Disord 2020; 35:379-388. [DOI: 10.1002/mds.27932] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Srimathy Vijayan
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Bhajan Singh
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital Nedlands Perth, Western Australia Australia
- School of Human Sciences, University of Western Australia Crawley Western Australia Australia
| | - Soumya Ghosh
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Rick Stell
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| |
Collapse
|
30
|
Flores-Cuadrado A, Saiz-Sanchez D, Mohedano-Moriano A, Martinez-Marcos A, Ubeda-Bañon I. Neurodegeneration and contralateral α-synuclein induction after intracerebral α-synuclein injections in the anterior olfactory nucleus of a Parkinson's disease A53T mouse model. Acta Neuropathol Commun 2019; 7:56. [PMID: 30987677 PMCID: PMC6463651 DOI: 10.1186/s40478-019-0713-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease is characterized by a proteinopathy that includes aggregates of α-synuclein. A recent hypothesis proposes a prion-like spreading mechanism for this α-synucleinopathy. Early neuropathological deposits occur, among others, in the anterior olfactory nucleus (AON). This study investigates the anterograde and/or retrograde transmissibility of exogenous α-synuclein inoculated in the right AON of the A53T model of Parkinson’s disease and wild-type mice as well as neuronal and glial involvement. Seven experimental groups were established: wild-type injected with tracers; A53T mice injected with either α-synuclein or saline 2 months beforehand; wild-type injected with either α-synuclein or saline 2 months beforehand; and wild-type injected with either α-synuclein or saline 4 months beforehand. Weight and behavioral changes were analyzed. Immunohistochemistry against α-synuclein, NeuN, Iba-1 and GFAP was performed. Volume and marker distributions in the olfactory bulb (OB), AON and piriform cortex were analyzed using unbiased stereology. The behavioral analyses reveal higher levels of hyperactivity in transgenic as compared to wild-type mice. Tract-tracing experiments show that the main contralateral afferent projections to the dorsal AON come from the AON and secondarily from the OB. In saline-injected transgenic animals, α-synuclein expression in the OB and the AON is higher in the left hemisphere than in the right hemisphere, which could be due to basal interhemispheric differences. α-synuclein injection could provoke a significant increase in the left hemisphere of the transgenic mice’s OB, compared to saline-injected animals. Neuronal loss was observed in saline-injected transgenic mice relative to the saline-injected wild-type group. There were no overall differences in neuron number following injection of α-synuclein into either wild-type or transgenic mice, however some neuron loss was apparent in specific regions of α-synuclein injected wild-types. Microglia labeling appeared to be correlated with surgery-induced inflammation. Astroglial labeling was higher in transgenic animals, which could be due to endogenous α-synucleinopathy. This study suggests α-synucleinopathy induction, via retrograde and contralateral projections, within the olfactory system of transgenic animals.
Collapse
|
31
|
Oliveira LM, Oliveira MA, Moriya HT, Moreira TS, Takakura AC. Respiratory disturbances in a mouse model of Parkinson's disease. Exp Physiol 2019; 104:729-739. [PMID: 30758090 DOI: 10.1113/ep087507] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? Clinical reports have described and suggested central and peripheral respiratory abnormalities in Parkinson's disease (PD) patients; however, these reports have never addressed the occurrence of these abnormalities in an animal model. What is the main finding and its importance? A mouse model of PD has reduced neurokinin-1 receptor immunoreactivity in the pre-Bӧtzinger complex and Phox2b-expressing neurons in the retrotrapezoid nucleus. The PD mouse has impairments of respiratory frequency and the hypercapnic ventilatory response. Lung collagen deposition and ribcage stiffness appear in PD mice. ABSTRACT Parkinson's disease (PD) is a neurodegenerative motor disorder characterized by dopaminergic deficits in the brain. Parkinson's disease patients may experience shortness of breath, dyspnoea, breathing difficulties and pneumonia, which can be linked as a cause of morbidity and mortality of those patients. The aim of the present study was to clarify whether a mouse model of PD could develop central brainstem and lung respiratory abnormalities. Adult male C57BL/6 mice received bilateral injections of 6-hydroxydopamine (10 μg μl-1 ; 0.5 μl) or vehicle into the striatum. Ventilatory parameters were assessed in the 40 days after induction of PD, by whole-body plethysmography. In addition, measurements of respiratory input impedance (closed and opened thorax) were performed. 6-Hydroxydopamine reduced the number of tyrosine hydroxylase neurons in the substantia nigra pars compacta, the density of neurokinin-1 receptor immunoreactivity in the pre-Bӧtzinger complex and the number of Phox2b neurons in the retrotrapezoid nucleus. Physiological experiments revealed a reduction in resting respiratory frequency in PD animals, owing to an increase in expiratory time and a blunted hypercapnic ventilatory response. Measurements of respiratory input impedance showed that only PD animals with the thorax preserved had increased viscance, indicating that the ribcage could be stiff in this animal model of PD. Consistent with stiffened ribcage mechanics, abnormal collagen deposits in alveolar septa and airways were observed in PD animals. Our data showed that our mouse model of PD presented with neurodegeneration in respiratory brainstem centres and disruption of lung mechanical properties, suggesting that both central and peripheral deficiencies contribute to PD-related respiratory pathologies.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
32
|
Andrzejewski K, Budzińska K, Kaczyńska K. Effect of 6-OHDA on hypercapnic ventilatory response in the rat model of Parkinson's disease. Physiol Res 2019; 68:285-293. [PMID: 30628829 DOI: 10.33549/physiolres.933949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing impairments, such as an alteration in breathing pattern, dyspnoea, and sleep apnoea, are common health deficits recognised in Parkinson's disease (PD). The mechanism that underlies these disturbances, however, remains unclear. We investigated the effect of the unilateral damage to the rat nigrostriatal pathway on the central ventilatory response to hypercapnia, evoked by administering 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle (MFB). The respiratory experiments were carried out in conscious animals in the plethysmography chamber. The ventilatory parameters were studied in normocapnic and hyperoxic hypercapnia before and 14 days after the neurotoxin injection. Lesion with the 6-OHDA produced an increased tidal volume during normoxia. The magnified response of tidal volume and a decrease of breathing frequency to hypercapnia were observed in comparison to the pre-lesion and sham controls. Changes in both respiratory parameters resulted in an increase of minute ventilation of the response to CO(2) by 28% in comparison to the pre-lesion state at 60 s. Our results demonstrate that rats with implemented unilateral PD model presented an altered respiratory pattern most often during a ventilatory response to hypercapnia. Preserved noradrenaline and specific changes in dopamine and serotonin characteristic for this model could be responsible for the pattern of breathing observed during hypercapnia.
Collapse
Affiliation(s)
- K Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
33
|
Fernandes-Junior SA, Carvalho KS, Moreira TS, Takakura AC. Correlation between neuroanatomical and functional respiratory changes observed in an experimental model of Parkinson's disease. Exp Physiol 2018; 103:1377-1389. [PMID: 30070746 DOI: 10.1113/ep086987] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the relationship between neuroanatomical and functional respiratory changes in an experimental model of Parkinson's disease? What is the main finding and its importance? Sixty days after induction of Parkinson's disease in a rat model, there are decreases in baseline breathing and in the number of neurons, density of the neurokinin-1 receptor and density of astrocytes in the ventrolateral respiratory region. These results provide the first evidence that neuroanatomical changes occur before functional respiratory deficits in a Parkinson's disease model and that there is a positive correlation between those sets of changes. The neuroanatomical changes impair respiratory activity and are presumably a major cause of the respiratory problems observed in Parkinson's disease. ABSTRACT We showed previously that 60 days after the induction of Parkinson's disease (PD) in a rat model, there are decreases in baseline breathing and in the number of phox2b-expressing neurons of the retrotrapezoid nucleus (RTN) and nucleus of the solitary tract (NTS), as well as a reduction in the density of the neurokinin-1 receptor (NK1r) in the pre-Bötzinger complex (preBötC) and rostral ventrolateral respiratory group (rVRG). Here, our aim was to evaluate the correlation between neuroanatomical and functional respiratory changes in an experimental model of PD. Male Wistar rats with bilateral injections of 6-hydroxydopamine (6-OHDA, 24 μg μl-1 ) or vehicle into the striatum had respiratory parameters assessed by whole-body plethysmography 1 day before and 30, 40 or 60 days after the ablation. From the 30th day after the ablation, we observed a reduction in the number of phox2b neurons in the RTN and NTS and a reduction in the density of astrocytes in the rVRG. At 40 days after the ablation, we observed decreases in the density of NK1r in the preBötC and rVRG and of astrocytes in the RTN region. At 60 days, we observed a reduction in the density of astrocytes in the NTS and preBötC regions. The functional data showed changes in the resting and hypercapnia-induced respiratory rates and tidal volume from days 40-60 after injury. Our data suggest that the neuroanatomical changes impair respiratory activity and are presumably a major cause of the respiratory problems observed in PD.
Collapse
Affiliation(s)
- Silvio A Fernandes-Junior
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Kárin S Carvalho
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
34
|
Orexinergic neurons are involved in the chemosensory control of breathing during the dark phase in a Parkinson's disease model. Exp Neurol 2018; 309:107-118. [PMID: 30110606 DOI: 10.1016/j.expneurol.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra compacta (SNpc) and the only risk factor is aging. We showed that in 6-hydroxydopamine (6-OHDA)-model of PD there is a reduction in the neuronal profile within the brainstem ventral respiratory column with a decrease in the hypercapnic ventilatory response. Here we tested the involvement of orexin cells from the lateral hypothalamus/perifornical area (LH/PeF) on breathing in a 6-OHDA PD model. In this model of PD, there is a reduction in the total number of orexinergic neurons and in the number of orexinergic neurons that project to the RTN, without changing the number of CO2-activated orexinergic neurons during the dark phase. The ventilation at rest and in response to hypercapnia (7% CO2) was assessed in animals that received 6-OHDA or vehicle injections into the striatum and saporin anti-Orexin-B or IgG saporin into the LH/PeF during the sleep and awake states. The experiments showed a reduction of respiratory frequency (fR) at rest during the light phase in PD animals only during sleep. During the dark phase, there was an impaired fR response to hypercapnia in PD animals with depletion of orexinergic neurons in awake and sleeping rats. In conclusion, the degeneration of orexinergic neurons in this model of PD can be related to impaired chemoreceptor function in the dark phase.
Collapse
|