1
|
Zeng Y, Fu BM. Angiogenesis and Microvascular Permeability. Cold Spring Harb Perspect Med 2025; 15:a041163. [PMID: 38692737 PMCID: PMC11694756 DOI: 10.1101/cshperspect.a041163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Angiogenesis, the formation of new blood microvessels, is a necessary physiological process for tissue generation and repair. Sufficient blood supply to the tissue is dependent on microvascular density, while the material exchange between the circulating blood and the surrounding tissue is controlled by microvascular permeability. We thus begin this article by reviewing the key signaling factors, particularly vascular endothelial growth factor (VEGF), which regulates both angiogenesis and microvascular permeability. We then review the role of angiogenesis in tissue growth (bone regeneration) and wound healing. Finally, we review angiogenesis as a pathological process in tumorigenesis, intraplaque hemorrhage, cerebral microhemorrhage, pulmonary fibrosis, and hepatic fibrosis. Since the glycocalyx is important for both angiogenesis and microvascular permeability, we highlight the role of the glycocalyx in regulating the interaction between tumor cells and endothelial cells (ECs) and VEGF-containing exosome release and uptake by tumor-associated ECs, all of which contribute to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| |
Collapse
|
2
|
Ruan J, Wang L, Wang N, Huang P, Chang D, Zhou X, Seto S, Li D, Hou J. Hydroxysafflor Yellow A promotes angiogenesis of brain microvascular endothelial cells from ischemia/reperfusion injury via glycolysis pathway in vitro. J Stroke Cerebrovasc Dis 2025; 34:108107. [PMID: 39515547 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Angiogenesis of brain microvascular endothelial cells (BMECs) after cerebral ischemia was conducive to improving the blood supply of ischemia tissues, which was upregulated by glycolysis. Hydroxysafflor Yellow A (HSYA) mends damaged tissues through increasing angiogenesis. METHODS HSYA treated proliferation, migration and angiogenesis of BMECs in vitro in vitro during OGD/R. HSYA regulated the key enzymes of glycolysis, such as hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), glucose uptake and products (pyruvate, ATP and lactate) were detected by western blot and kits, respectively. Scratch wound assay, transwell, tube formation and spheroid sprouting were used to explore the pathway that HSYA recovered migration and angiogenesis of BMECs. We evaluated the potential target of HSYA promoting glycolysis via molecular docking, drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). RESULTS HSYA promoted the proliferation, migration, tube formation and spheroid sprouting of BMECs during OGD/R, and stimulated the expression of tip phenotype marker protein (CD34), and the receptor (Notch-1) that regulated the differentiation of endothelial cells into tip/stalk phenotype. In glycolysis, PFKFB3 expression was upregulated by HSYA; HSYA also improved ATP and pyruvate levels, as well as lactate release after OGD/R. Finally, upregulating VEGFA and p-VEGFR2 of HSYA was weakened because of suppressing glycolysis; the HSYA's improvement of BMECs migration and angiogenesis was attenuated under the inhibition of glycolysis, which confirmed that HSYA were upregulating angiogenesis and expression of VEGFA/VEGFR2 by glycolysis pathway. The result about molecular docking, DARTS and CETSA suggested that PFKFB3 was the possible target of HSYA. CONCLUSION HSYA promotes angiogenesis of BMECs in vitro through the glycolysis mediated VEGFA/VEGFR2 pathway, and PFKFB3 is the potential target of HSYA to heighten glycolysis.
Collapse
Affiliation(s)
- Juxuan Ruan
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Lei Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| | - Ping Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Dan Li
- Shineway Pharmaceutical Group Co. Ltd. Shijiahzuang 51430, China
| | - Jincai Hou
- Shineway Pharmaceutical Group Co. Ltd. Shijiahzuang 51430, China
| |
Collapse
|
3
|
Raudales A, Schager B, Hancock D, Narayana K, Sharma S, Reeson P, Oshanyk A, Cheema M, Körbelin J, Brown CE. Angiogenesis in the mature mouse cortex is governed in a regional- and Notch1-dependent manner. Cell Rep 2024; 43:115029. [PMID: 39612246 DOI: 10.1016/j.celrep.2024.115029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Cerebral angiogenesis is well appreciated in development and after injury, but the extent to which it occurs across cortical regions in normal adult mice and the underlying mechanisms are incompletely understood. Using in vivo imaging, we show that angiogenesis in anterior-medial cortical regions (retrosplenial and sensorimotor cortex) was exceptionally rare. By contrast, angiogenesis was significantly elevated in posterior-lateral regions such as visual cortex, primarily within 200 μm of the cortical surface. There was no effect of sex on angiogenesis rates, nor were there regional differences in vessel pruning (for either sex). To understand the mechanisms, we surveyed gene expression and found that Notch-related genes were enriched in ultra-stable retrosplenial cortex. Using endothelial-specific knockdown of Notch1, cerebral angiogenesis was significantly increased along with genes implicated in angiogenesis (Apln, Angpt2, Cdkn1a). Our study shows that angiogenesis is regionally dependent and that manipulations of Notch1 could unlock the angiogenic potential of the mature vasculature.
Collapse
Affiliation(s)
- Alejandra Raudales
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Ben Schager
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Dominique Hancock
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Kamal Narayana
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Patrick Reeson
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Adam Oshanyk
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Manjinder Cheema
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
4
|
Wang J, Xiong T, Wu Q, Qin X. Integrated Strategies for Targeting Arteriogenesis and Angiogenesis After Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01291-4. [PMID: 39225878 DOI: 10.1007/s12975-024-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The interdependence between arteriogenesis and angiogenesis is crucial for enhancing perfusion by synchronously improving leptomeningeal collaterals (LMCs) and microvascular networks after stroke. However, current approaches often focus on promoting arteriogenesis and angiogenesis separately, neglecting the potential synergistic benefits of targeting both processes simultaneously. Therefore, it is imperative to consider both arteriogenesis and angiogenesis as integral and complementary strategies for post-stroke revascularization. To gain a deeper understanding of their relationships after stroke and to facilitate the development of targeted revascularization strategies, we compared them based on their timescale, space, and pathophysiology. The temporal differences in the occurrence of arteriogenesis and angiogenesis allow them to restore blood flow at different stages after stroke. The spatial differences in the effects of arteriogenesis and angiogenesis enable them to specifically target the ischemic penumbra and core infarct region. Additionally, the endothelial cell, as the primary effector cell in their pathophysiological processes, is promising target for enhancing both. Therefore, we provide an overview of key signals that regulate endothelium-mediated arteriogenesis and angiogenesis. Finally, we summarize current therapeutic strategies that involve these signals to promote both processes after stroke, with the aim of inspiring future therapeutic advances in revascularization.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Taoying Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
El-Sayyad SM, El-Ella DMA, Hafez MM, Al-Mokaddem AK, Ali BM, Awny MM, El-Emam SZ. Sesamol defends neuronal damage following cerebral ischemia/reperfusion: a crosstalk of autophagy and Notch1/NLRP3 inflammasome signaling. Inflammopharmacology 2024; 32:629-642. [PMID: 37848698 PMCID: PMC10907497 DOI: 10.1007/s10787-023-01355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVE Sesamol (SES) is a phenolic compound found in sesame seed oil. Several studies have revealed its anti-inflammatory and antioxidant properties. However, its complete underlying mechanistic perspective about cerebral ischemia/reperfusion (I/R) lesions has not yet been disclosed. Consequently, we aimed to scrutinize its neuroprotective mechanism against cerebral injury during a global cerebral I/R in a rat model, considering its impact on autophagy and Notch1/NLRP3 inflammasome signaling regulation. METHODS To affirm our purpose, adult Wistar rats were allotted into five groups: sham and the other four groups in which transient global cerebral ischemia was induced by bilateral common ligation (2VO) for 1 h, then reperfusion for either 24 h or 5 days: I/R (1/24), I/R (1/5), SES + I/R (1/24), and SES + I/R (1/5). In treated groups, SES (100 mg/kg, p.o., for 21 days) was administered before cerebral I/R induction. The assessment of histopathological changes in brain tissues, immunohistochemistry, biochemical assays, ELISA, and qRT-PCR were utilized to investigate our hypothesis. RESULTS Advantageously, SES halted the structural neuronal damage with lessened demyelination induced by cerebral I/R injury. Restoring oxidant/antioxidant balance was evident by boosting the total antioxidant capacity and waning lipid peroxidation. Furthermore, SES reduced inflammatory and apoptosis markers. Additionally, SES recovered GFAP, Cx43, and autophagy signaling, which in turn switched off the Notch-1/NLRP3 inflammasome trajectory. CONCLUSIONS Our results revealed the neuroprotective effect of SES against cerebral I/R injury through alleviating injurious events and boosting autophagy, consequently abolishing Notch1/NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Shorouk Mohamed El-Sayyad
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt
| | - Dina M Abo El-Ella
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt
| | - Mohamed M Hafez
- Faculty of Pharmacy, Biochemistry Department, Ahram Canadian University (ACU), Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Faculty of Veterinary Medicine, Department of Pathology, Cairo University, Giza, 12211, Egypt
| | - Bassam Mohamed Ali
- Faculty of Pharmacy, Department of Biochemistry, October 6 University, Giza, 12585, Egypt
| | - Magdy M Awny
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt
| | - Soad Z El-Emam
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt.
| |
Collapse
|
6
|
Ya J, Pellumbaj J, Hashmat A, Bayraktutan U. The Role of Stem Cells as Therapeutics for Ischaemic Stroke. Cells 2024; 13:112. [PMID: 38247804 PMCID: PMC10814781 DOI: 10.3390/cells13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Stroke remains one of the leading causes of death and disability worldwide. Current reperfusion treatments for ischaemic stroke are limited due to their narrow therapeutic window in rescuing ischaemic penumbra. Stem cell therapy offers a promising alternative. As a regenerative medicine, stem cells offer a wider range of treatment strategies, including long-term intervention for chronic patients, through the reparation and replacement of injured cells via mechanisms of differentiation and proliferation. The purpose of this review is to evaluate the therapeutic role of stem cells for ischaemic stroke. This paper discusses the pathology during acute, subacute, and chronic phases of cerebral ischaemic injury, highlights the mechanisms involved in mesenchymal, endothelial, haematopoietic, and neural stem cell-mediated cerebrovascular regeneration, and evaluates the pre-clinical and clinical data concerning the safety and efficacy of stem cell-based treatments. The treatment of stroke patients with different types of stem cells appears to be safe and efficacious even at relatively higher concentrations irrespective of the route and timing of administration. The priming or pre-conditioning of cells prior to administration appears to help augment their therapeutic impact. However, larger patient cohorts and later-phase trials are required to consolidate these findings.
Collapse
Affiliation(s)
| | | | | | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neurosciences, Queens Medical Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
7
|
Wang L, Li J, Wang Y, Ge C, Huang Q, Li L, Wang N, Chen Y, Zhou X, Chang D, Li D, Hou J. Dan-Deng-Tong-Nao softgel capsule promotes angiogenesis of cerebral microvasculature to protect cerebral ischemia reperfusion injury via activating HIF-1α-VEGFA-Notch1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154966. [PMID: 37487254 DOI: 10.1016/j.phymed.2023.154966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND A proprietary Chinese herbal product called Dan-Deng-Tong-Nao softgel capsule (DDTNC) is used to treat ischemic stroke. However, the preventive mechanisms of DDTNC against cerebral ischemia reperfusion injury (CIRI) haven not been characterized. OBJECTIVE To explore the mechanisms of protective effects of DDTNC against CIRI from both internal and external levels. METHODS Chemical characterization was performed using UPLC. The potential protective mechanisms of DDTNC against CIRI were predicted using network pharmacology. Model of middle cerebral artery occlusion/reperfusion (MCAO/R) was established in rats. An model of brain microvascular endothelial cells (BMECs) induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was also established. We evaluated neurological deficits, cerebral infarct volume, cortical neuron damage, and mitochondrial swelling in vivo. We evaluated the expression of VEGFR2, VEGFA, HIF-1α, CD31, and CD34 in ischemic cortex, and VEGF, bFGF, BDNF, angiostatin, and endostatin in serum of rats and in BMEC supernatants. We also evaluated cell viability, cytotoxicity, intracellular ROS, apoptosis, and migration ability in vitro. RESULTS Seven components were detected in DDTNC. KEGG enrichment analysis showed that DDTNC may modulate angiogenesis via the HIF-1 signaling pathway. DDTNC treatment reduced neurological score and infarct volume, and improved cell morphology of damaged neurons. Transmission electron microscopy showed that DDTNC reduced mitochondria swelling in cortical neurons. Furthermore, DDTNC reduced intracellular ROS and inhibited apoptosis. DDTNC boosted the expression of CD31, CD34, VEGFR2, VEGFA and HIF-1α, highlighting its involvement in angiogenesis, according to immunofluorescence studies. Furthermore, DDTNC enhanced tube formation and migration of BMECs in vitro. ELISA and western blotting indicated that DDTNCCSF induced the expression of VEGF, BDNF and bFGF, reduced the level of angiostatin and endostatin, increased the protein expression of VEGFA, Notch1 and HIF-1α in vitro and in vivo. CONCLUSIONS DDTNC promoted angiogenesis to protect brain tissue against MCAO/R, and exerted protective effects against OGD/R in BMECs via activating HIF-1α-VEGFA-NOTCH1 signal transduction pathway.
Collapse
Affiliation(s)
- Lei Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Jiacheng Li
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Yang Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Chaowen Ge
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Qi Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China.
| | - Lili Li
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China.
| | - Yuang Chen
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead(,) NSW 2145(,) Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead(,) NSW 2145(,) Australia
| | - Dan Li
- Shineway Pharmaceutical Group Co. Ltd. Shijiazhuang 51430(,) China
| | - Jincai Hou
- Shineway Pharmaceutical Group Co. Ltd. Shijiazhuang 51430(,) China
| |
Collapse
|
8
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Li K, Lu M, Cui M, Wang X, Zheng Y. The Notch pathway regulates autophagy after hypoxic-ischemic injury and affects synaptic plasticity. Brain Struct Funct 2023; 228:985-996. [PMID: 37083721 DOI: 10.1007/s00429-023-02639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Following neonatal hypoxic-ischemia (HI) injury, it is crucial factor to reconstruct neural circuit and maintain neural network homeostasis for neurological recovery. A dynamic balance between the synthesis and degradation of synaptic protein is required for maintaining synaptic plasticity. Protein degradation is facilitated by autophagy. This study aimed to investigate the regulation of synaptic structural plasticity by the Notch pathway, by assessing changes in Notch pathway activation and their effects on synaptic proteins and autophagy after HI injury. The study involved 48 male newborn Yorkshire piglets, each weighing 1.0-1.5 kg and 3 days old. They were randomly assigned to two groups: the HI group and the Notch pathway inhibitor + HI group (n = 24 per group). Each group was further divided into six subgroups according to HI duration (n = 4 per group): a control subgroup, and 0-6, 6-12, 12-24, 24-48, and 48-72 h subgroups. The expression of Notch pathway-related proteins, including Notch1, Hes1, and Notch intracellular domains, increased following HI injury. The expression of autophagy proteins increased at 0-6 h and 6-12 h post-HI. The expression of synaptic proteins, such as postsynaptic density protein 95 (PSD95) and synaptophysin, increased 6-12 h and 12-24 h after HI, respectively. Notably, the increased expression of these proteins was reversed by a Notch pathway inhibitor. Transmission electron microscopy revealed the presence of autophagosome structures in synapses. These findings shed light on the underlying mechanisms of neurological recovery after HI injury and may provide insights into potential therapeutic targets for promoting neural circuit reconstruction and maintaining neural network homeostasis.
Collapse
Affiliation(s)
- Kexin Li
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Meng Lu
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Mengxu Cui
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xiaoming Wang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| | - Yang Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
10
|
Zeng F, Cao J, Hong Z, Liu Y, Hao J, Qin Z, Zou X, Tao T. Single-cell analyses reveal the dynamic functions of Itgb2 + microglia subclusters at different stages of cerebral ischemia-reperfusion injury in transient middle cerebral occlusion mice model. Front Immunol 2023; 14:1114663. [PMID: 37063847 PMCID: PMC10098327 DOI: 10.3389/fimmu.2023.1114663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction The underlying pathophysiological mechanisms of cerebral ischemia reperfusion injury (CIRI) is intricate, and current studies suggest that neuron, astrocyte, microglia, endothelial cell, and pericyte all have different phenotypic changes of specific cell types after ischemic stroke. And microglia account for the largest proportion after CIRI. Previous transcriptomic studies of ischemic stroke have typically focused on the 24 hours after CIRI, obscuring the dynamics of cellular subclusters throughout the disease process. Therefore, traditional methods for identifying cell types and their subclusters may not be sufficient to fully unveil the complexity of single-cell transcriptional profile dynamics caused by an ischemic stroke. Methods In this study, to explore the dynamic transcriptional profile of single cells after CIRI, we used single-cell State Transition Across-samples of RNA-seq data (scSTAR), a new bioinformatics method, to analyze the single-cell transcriptional profile of day 1, 3, and 7 of transient middle cerebral artery occlusion (tMCAO) mice. Combining our bulk RNA sequences and proteomics data, we found the importance of the integrin beta 2 (Itgb2) gene in post-modeling. And microglia of Itgb2+ and Itgb2- were clustered by the scSTAR method. Finally, the functions of the subpopulations were defined by Matescape, and three different time points after tMCAO were found to exhibit specific functions. Results Our analysis revealed a dynamic transcriptional profile of single cells in microglia after tMCAO and explored the important role of Itgb2 contributed to microglia by combined transcriptomics and proteomics analysis after modeling. Our further analysis revealed that the Itgb2+ microglia subcluster was mainly involved in energy metabolism, cell cycle, angiogenesis, neuronal myelin formation, and repair at 1, 3, and 7 days after tMCAO, respectively. Discussion Our results suggested that Itgb2+ microglia act as a time-specific multifunctional immunomodulatory subcluster during CIRI, and the underlying mechanisms remain to be further investigated.
Collapse
Affiliation(s)
- Fanning Zeng
- Department of Anesthesiology, Central People’s Hospital of Zhanjiang, Zhanjiang, Guangdong, China
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Cao
- Department of Anesthesiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zexuan Hong
- Department of Anesthesiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yujun Liu
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Zou
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Tao Tao
- Department of Anesthesiology, Central People’s Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
Zhao Y, Liu Y, Zhang Q, Liu H, Xu J. The Mechanism Underlying the Regulation of Long Non-coding RNA MEG3 in Cerebral Ischemic Stroke. Cell Mol Neurobiol 2023; 43:69-78. [PMID: 34988760 DOI: 10.1007/s10571-021-01176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023]
Abstract
Cerebral ischemic stroke is one of the leading causes of morbidity and mortality worldwide, and rapidly increasing annually with no more effective therapeutic measures. Thus, the novel diagnostic and prognostic biomarkers are urgent to be identified for prevention and therapy of ischemic stroke. Recently, long noncoding RNAs (lncRNAs), a major family of noncoding RNAs with more than 200 nucleotides, have been considered as new targets for modulating pathological process of ischemic stroke. In this review, we summarized that the lncRNA-maternally expressed gene 3 (MEG3) played a critical role in promotion of neuronal cell death and inhibition of angiogenesis in response to hypoxia or ischemia condition, and further described the challenge of overcrossing blood-brain barrier (BBB) and determination of optimal carrier for delivering lncRNA' drugs into the specific brain regions. In brief, MEG3 will be a potential diagnostic biomarker and drug target in treatment and therapy of ischemic stroke in the future.
Collapse
Affiliation(s)
- Yanfang Zhao
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qili Zhang
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Hongliang Liu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jianing Xu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
12
|
Li S, Yang Y, Li N, Li H, Xu J, Zhao W, Wang X, Ma L, Gao C, Ding Y, Ji X, Ren C. Limb Remote Ischemic Conditioning Promotes Neurogenesis after Cerebral Ischemia by Modulating miR-449b/Notch1 Pathway in Mice. Biomolecules 2022; 12:biom12081137. [PMID: 36009031 PMCID: PMC9405712 DOI: 10.3390/biom12081137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Neurogenesis plays an important role in the prognosis of stroke patients and is known to be promoted by the activation of the Notch1 signaling pathway. Studies on the airway epithelium have shown that miR-449b represses the Notch pathway. The study aimed to investigate whether limb remote ischemic conditioning (LRIC) was able to promote neurogenesis in cerebral ischemic mice, and to investigate the role of the miR-449b/Notch1 pathway in LRIC-induced neuroprotection. Male C57BL/6 mice (22–25 g) were subjected to transient middle cerebral artery occlusion (MCAO), and LRIC was performed in the bilateral lower limbs immediately after MCA occlusion. Immunofluorescence staining was performed to assess neurogenesis. The cell line NE-4C was used to elucidate the proliferation of neuronal stem cells in 8% O2. After LRIC treatment on day 28, mice recovered neurological function. Neuronal precursor proliferation was enhanced in the SVZ, and neuronal precursor migration was enhanced in the basal ganglia on day 7. LRIC promoted the improvement of neurological function in mice on day 28, promoted neuronal precursor proliferation in the SVZ, and enhanced neuronal precursor migration in the basal ganglia on day 7. The neurological function score was negatively correlated with the number of BrdU-positive/DCX-positive cells in the SVZ and striatum. LRIC promoted activated Notch1 protein expression in the SVZ and substantially downregulated miR-449b levels in the SVZ and plasma. In vitro, miR-449b was found to target Notch1. Lentivirus-mediated miR-449b knockdown increased Notch1 levels in NE-4C cells and increased proliferation in the cells. The effects of miR-449b inhibition on neurogenesis were ablated by the application of Notch1 shRNA. Our study showed that LRIC promoted the proliferation and migration of neural stem cells after MCAO, and these effects were modulated by the miR-449b/Notch1 pathway.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- Emergency Department, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Yong Yang
- School of Traditional Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- School of Traditional Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Wenbo Zhao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518054, China
| | - Linqing Ma
- Department of Neurology, The People’s Hospital of Suzhou New District, Suzhou 215129, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- Correspondence: ; Tel.: +86-10-83198931; Fax: +86-10-63010085
| |
Collapse
|
13
|
Veerabathiran R, Mohammed V, Kalarani IB. Nanomedicine in Neuroscience: An Application Towards the Treatment of
Various Neurological Diseases. CURRENT NANOMEDICINE 2022; 12:84-92. [DOI: 10.2174/2468187312666220516144008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2023]
Abstract
Absatract:
The effectiveness, cell viability, and selective delivery of medications and diagnostic substances to target organs, tissues, and organs are typical concerns in the care and prognosis of many illnesses. Neurological diseases pose complex challenges, as cerebral targeting represents a yet unresolved challenge in pharmacotherapy, owing to the blood-brain boundary, a densely com-pacted membrane of endothelial cells that prohibits undesired chemicals from reaching the brain. Engineered nanoparticles, with dimensions ranging from 1 to 100 nm, provide intriguing biomedi-cal techniques that may allow for resolving these issues, including the ability to cross the blood-brain barrier. It has substantially explored nanoparticles in the previous century, contributing to sub-stantial progress in biomedical studies and medical procedures. Using many synthesized nanoparti-cles on the molecular level has given many potential gains in various domains of regenerative medi-cine, such as illness detection, cascaded cell treatment, tissue regeneration, medication, and gene editing. This review will encapsulate the novel developments of nanostructured components used in neurological diseases with an emphasis on the most recent discoveries and forecasts for the future of varied biological nanoparticles for tissue repair, drug inventions, and the synthesizing of the deliv-ery mechanism.
Collapse
Affiliation(s)
- Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| |
Collapse
|
14
|
Ginkgolide B Targets and Inhibits Creatine Kinase B to Regulate the CCT/TRiC-SK1 Axis and Exerts Pro-Angiogenic Activity in Middle Cerebral Artery Occlusion Mice. Pharmacol Res 2022; 180:106240. [PMID: 35513225 DOI: 10.1016/j.phrs.2022.106240] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
Promoting angiogenesis in the ischemic penumbra is a well-established method of ischemic stroke treatment. Ginkgolide B (GB) has long been recognized for its neuroprotective properties following stroke. As previously reported, it appears that stroke-induced neurogenesis and angiogenesis interact or are dependent on one another. Although the pharmacodynamic effect of GB on cerebral blood flow (CBF) following ischemic stroke has been reported, the molecular mechanism underlying this effect remains unknown. As such, this study sought to elucidate the pharmacodynamic effects and underlying mechanisms of GB on post-stroke angiogenesis. To begin, GB significantly increased the proliferation, migration, and tube formation capacity of mouse cerebral hemangioendothelioma cells (b.End3) and human umbilical vein endothelial cells (HUVEC). Additionally, GB significantly improved angiogenesis after oxygen-glucose deprivation/reperfusion (OGD/R) in endothelial cells. The dynamics of CBF, brain microvascular neovascularization and reconstruction, and brain endothelial tissue integrity were examined in middle cerebral artery occlusion (MCAO) mice following GB administration. Through label-free target detection techniques, we discovered for the first time that GB can specifically target Creatine Kinase B (CKB) and inhibit its enzymatic activity. Additionally, we demonstrated through network pharmacology and a series of molecular biology experiments that GB inhibited CKB and then promoted angiogenesis via the CCT/TRiC-SK1 axis. These findings shed new light on novel therapeutic strategies for neurological recovery and endothelial repair following ischemic stroke using GB therapy.
Collapse
|
15
|
Zhou SY, Guo ZN, Zhang DH, Qu Y, Jin H. The Role of Pericytes in Ischemic Stroke: Fom Cellular Functions to Therapeutic Targets. Front Mol Neurosci 2022; 15:866700. [PMID: 35493333 PMCID: PMC9043812 DOI: 10.3389/fnmol.2022.866700] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease causing high rates of disability and fatality. In recent years, the concept of the neurovascular unit (NVU) has been accepted by an increasing number of researchers and is expected to become a new paradigm for exploring the pathogenesis and treatment of IS. NVUs are composed of neurons, endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix. As an important part of the NVU, pericytes provide support for other cellular components and perform a variety of functions, including participating in the maintenance of the normal physiological function of the blood–brain barrier, regulating blood flow, and playing a role in inflammation, angiogenesis, and neurogenesis. Therefore, treatment strategies targeting pericyte functions, regulating pericyte epigenetics, and transplanting pericytes warrant exploration. In this review, we describe the reactions of pericytes after IS, summarize the potential therapeutic targets and strategies targeting pericytes for IS, and provide new treatment ideas for ischemic stroke.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dian-Hui Zhang
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Hang Jin,
| |
Collapse
|
16
|
Hao GS, Fan QL, Hu QZ, Hou Q. Research progress on the mechanism of cerebral blood flow regulation in hypoxia environment at plateau. Bioengineered 2022; 13:6353-6358. [PMID: 35235760 PMCID: PMC8973622 DOI: 10.1080/21655979.2021.2024950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The plateau is a special environment with low air pressure and low oxygen content. The average altitude of Qinghai-Tibet is 3,500 m, and the atmospheric oxygen partial pressure in most areas is lower than 60% of that at sea level. In order to adapt to the plateau low-oxygen environment, the human body has developed corresponding physiological structure and functions adjust. In the present review, the regulation mechanism of cerebral blood flow (CBF) under high-altitude environments was elaborated in eight aspects: the arterial blood gas, endogenous substances in the nerve and blood, the cerebral neovascularization, the hematocrit, cerebral auto-regulation mechanism, cerebrovascular reactivity, pulmonary vasoconstriction, and sympathetic automatic regulation, aiming to further explore the characteristics of changes in brain tissue and cerebral blood flow in a hypoxic environment.
Collapse
Affiliation(s)
- Gui-Sheng Hao
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Qing-Li Fan
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Quan-Zhong Hu
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Qian Hou
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| |
Collapse
|
17
|
Wu N, Cheng CJ, Zhong JJ, He JC, Zhang ZS, Wang ZG, Sun XC, Liu H. Essential role of MALAT1 in reducing traumatic brain injury. Neural Regen Res 2022; 17:1776-1784. [PMID: 35017438 PMCID: PMC8820691 DOI: 10.4103/1673-5374.332156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
As a highly evolutionary conserved long non-coding RNA, metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was first demonstrated to be related to lung tumor metastasis by promoting angiogenesis. To investigate the role of MALAT1 in traumatic brain injury, we established mouse models of controlled cortical impact and cell models of oxygen-glucose deprivation to mimic traumatic brain injury in vitro and in vivo. The results revealed that MALAT1 silencing in vitro inhibited endothelial cell viability and tube formation but increased migration. In MALAT1-deficient mice, endothelial cell proliferation in the injured cortex, functional vessel density and cerebral blood flow were reduced. Bioinformatic analyses and RNA pull-down assays validated enhancer of zeste homolog 2 (EZH2) as a downstream factor of MALAT1 in endothelial cells. Jagged-1, the Notch homolog 1 (NOTCH1) agonist, reversed the MALAT1 deficiency-mediated impairment of angiogenesis. Taken together, our results suggest that MALAT1 controls the key processes of angiogenesis following traumatic brain injury in an EZH2/NOTCH1-dependent manner.
Collapse
Affiliation(s)
- Na Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong-Jie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Chi He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhao-Si Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Gang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Liu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao Campus), Qingdao, Shandong Province, China
| |
Collapse
|
18
|
Guo Z, Jia J, Tu Y, Jin C, Guo C, Song F, Wu X, Bao H, Fan W. Altered Jagged1-Notch1 Signaling in Enhanced Dysfunctional Neovascularization and Delayed Angiogenesis After Ischemic Stroke in HFD/STZ Induced Type 2 Diabetes Rats. Front Physiol 2021; 12:687947. [PMID: 34305641 PMCID: PMC8297620 DOI: 10.3389/fphys.2021.687947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes exacerbates brain damage in cerebral ischemic stroke. Our previous study has demonstrated that after cerebral ischemia, type 2 diabetes rats displayed worse neurological outcomes, larger cerebral infarction and severer blood-brain barrier disruption. However, our knowledge of the mechanisms of how diabetes impacts the cerebrovascular repair process is limited. This study was aimed to characterize structural alterations and potential mechanisms in brain microvessels before and after ischemic stroke in type 2 diabetic rats treated with high-fat diet and streptozotocin (HFD/STZ). Furtherly, we tested our hypothesis that dysregulated intercellular Jagged1-Notch1 signaling was involved in the dysfunctional cerebral neovascularization both before and after ischemic stroke in HFD/STZ rats. In our study, we found increased yet dysfunctional neovascularization with activated Jagged1-Notch1 signaling in the cerebrovasculature before cerebral ischemia in HFD/STZ rats compared with non-diabetic rats. Furthermore, we observed delayed angiogenesis as well as suppressed Jagged1-Notch1 signaling after ischemic stroke. Our results elucidate the potential mechanisms underlying diabetes-related cerebral microvasculature dysfunction after ischemic stroke.
Collapse
Affiliation(s)
- Zhihui Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Jia
- Department of Neurology, Shanghai Xuhui District Central Hospital, Shanghai, China
| | - Yanling Tu
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Chang Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feifei Song
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haifeng Bao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer's: a Comprehensive Review. Neurotox Res 2021; 39:1589-1612. [PMID: 34169405 DOI: 10.1007/s12640-021-00381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases such as stroke and Alzheimer's disease (AD) are two inter-related disorders that affect the neurons in the brain and central nervous system. Alzheimer's is a disease by undefined origin and causes. Stroke and its most common type, ischemic stroke (IS), occurs due to the blockade of cerebral blood vessels. As an important feature, both of disorders are associated with irreversible damages to the brain and nervous system. In this regard, finding common signaling pathways and the same molecular origin between these two diseases may be a promising way for their solution. On the basis of literature appraisal, the most common signaling cascades implicated in the pathogenesis of AD and stroke including notch, autophagy, inflammatory, and insulin signaling pathways were reviewed. Furthermore, current therapeutic strategies including natural and synthetic pharmaceuticals aiming modulation of respective signaling factors were scrutinized to ameliorate neural deficits in AD and stroke. Taken together, digging deeper in the common connections and signal targeting can be greatly helpful in understanding and unified treating of these disorders.
Collapse
|
20
|
Chen H, Xiao H, Gan H, Zhang L, Wang L, Li S, Wang D, Li T, Zhai X, Zhao J. Hypoxia-inducible Factor 2α Exerts Neuroprotective Effects by Promoting Angiogenesis via the VEGF/Notch Pathway after Intracerebral Hemorrhage Injury in Rats. Neuroscience 2020; 448:206-218. [PMID: 32736070 DOI: 10.1016/j.neuroscience.2020.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Angiogenesis after intracerebral hemorrhage (ICH) injury can effectively alleviate brain damage and improve neurological function. Hypoxia-inducible factor 2α (HIF-2α) is an important angiogenic regulator and exhibits protective effects in several neurological diseases; however, its role in ICH has not yet been reported. Hence, in the present study, we explored whether HIF-2α reduces ICH injury by promoting angiogenesis. In addition, we explored the role of the vascular endothelial growth factor (VEGF)/Notch pathway in HIF-2α-mediated angiogenesis. We injected 50 μL of autologous blood taken from the femoral artery into the right striatum of healthy male adult Sprague-Dawley rats to create an autologous-blood-induced rat model of ICH. Lentiviral vectors were injected to both overexpress and knock down HIF-2α expression. VEGF receptor 2 (VEGFR2) and Notch-specific inhibitors were injected intraperitoneally to block VEGFR2- and Notch-mediated signaling after lentiviral injections. Our data showed that HIF-2α overexpression reduced neurological-damage scores and brain-water content, suggesting it had a protective effect on ICH injury. In addition, overexpression of HIF-2α promoted angiogenesis, increased focal cerebral blood flow (CBF), and reduced neuronal damage, whereas HIF-2α knockdown resulted in the opposite effects. Furthermore, we found that HIF-2α-mediated angiogenesis was blocked by a Notch-specific inhibitor. Likewise, the HIF-2α-mediated increase in phospho-VEGFR-2, cleaved-Notch1 and Notch1 expression was reversed via a VEGFR2-specific inhibitor. Taken together, our results indicate that HIF-2α promotes angiogenesis via the VEGF/Notch pathway to attenuate ICH injury. Moreover, our findings may contribute to the development of a novel strategy for alleviating ICH injury via HIF-2α-mediated upregulation of angiogenesis.
Collapse
Affiliation(s)
- Hui Chen
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Han Xiao
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hui Gan
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Zhang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lu Wang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Siyu Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Difei Wang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Tiegang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Meteria Medica, Peking Union Medical College and Chinese Academy of Sciences, Beijing 100050, China
| | - Xuan Zhai
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
21
|
Wang K, Ru J, Zhang H, Chen J, Lin X, Lin Z, Wen M, Huang L, Ni H, Zhuge Q, Yang S. Melatonin Enhances the Therapeutic Effect of Plasma Exosomes Against Cerebral Ischemia-Induced Pyroptosis Through the TLR4/NF-κB Pathway. Front Neurosci 2020; 14:848. [PMID: 33013286 PMCID: PMC7461850 DOI: 10.3389/fnins.2020.00848] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Ischemic stroke-induced inflammation and inflammasome-dependent pyroptotic neural death cause serious neurological injury. Nano-sized plasma exosomes have exhibited therapeutic potential against ischemia and reperfusion injury by ameliorating inflammation. To enhance its therapeutic potential in patients with ischemic injury, we isolated exosomes from melatonin-treated rat plasma and assessed the neurological protective effect in a rat model of focal cerebral ischemia. Methods Basal plasma exosomes and melatonin-treated plasma exosomes were isolated and intravenously injected into a rat model of focal cerebral ischemia. Neurological recovery was evaluated by determining the modified neurological severity score (mNSS), infarct volume, and brain water content. Pyroptosis in the ischemic cortex was detected through dUTP nick-end labeling (TUNEL) assay, lactate dehydrogenase (LDH) release, and gasdermin D (GSDMD) cleavage. NLRP3 inflammasome assembly and global inflammatory cytokine secretion were detected by enzyme-linked immunosorbent assay (ELISA) and Western blot assay. In immunized Sprague-Dawley rats, microglia pyroptosis was determined through a positive percentage of IBA1+ and caspase-1 (p20)+ cells. Finally, the microRNA (miRNA) profiles in melatonin-treated plasma exosomes were analyzed by exosome miRNA microarray analysis. Results Melatonin treatment enhanced plasma exosome therapeutic effects against ischemia-induced inflammatory responses and inflammasome-mediated pyroptosis. In addition, we confirmed that ischemic stroke-induced pyroptotic cell death occurred in the microglia and neuron, while the administration of melatonin-treated exosomes further effectively decreased the infarct volume and improved recovery of function via regulation of the TLR4/NF-κB signaling pathway. Finally, the altered miRNA profiles in the melatonin-treated plasma exosomes demonstrated the regulatory mechanisms involved in neurological recovery after ischemic injury. Conclusion This study suggests that nano-sized plasma exosomes with melatonin pretreatment might be a more effective strategy for patients with ischemic brain injury. Further exploration of key molecules in the plasma exosome may provide increased therapeutic value for cerebral ischemic injury.
Collapse
Affiliation(s)
- Kankai Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junnan Ru
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengli Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongxiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Tao-Hong-Si-Wu Decoction promotes angiogenesis after cerebral ischaemia in rats via platelet microparticles. Chin J Nat Med 2020; 18:620-627. [PMID: 32768169 DOI: 10.1016/s1875-5364(20)30074-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Indexed: 12/18/2022]
Abstract
Platelet microparticles (PMPs) are membrane particles derived from the platelet membrane that enter into the blood circulation. We sought to explore the therapeutic effects of Tao-Hong-Si-Wu Decoction (THSWD) on angiogenesis in a rat model of cerebral ischaemia-reperfusion (I/R). The protective effect of THSWD on I/R rats was observed morphologically by immunohistochemical expression of VEGF and CD34, along with immunofluorescence results of co-expression of BrdU and vWF. Then, PMPs from different groups of rats were extracted, and cytokine array analysis was used to screen for angiogenesis associated proteins. The results showed that THSWD can promote the expression of VEGF, CD34, BrdU and vWF. Cytokine array analysis revealed the changes in the expression of 29 related angiogenic proteins in the total protein of PMPs, which involved the Notch signalling pathway. Compared with model group, the expression levels of NICD and Hes-1 in the THSWD group were significantly increased. In the context of I/R, the angiogenesis-related proteins of PMPs are different. THSWD may involve the promotion of activation of the Notch signalling pathway to achieve therapeutic effects on cerebral ischaemia.
Collapse
|
23
|
Ren C, Li N, Gao C, Zhang W, Yang Y, Li S, Ji X, Ding Y. Ligustilide provides neuroprotection by promoting angiogenesis after cerebral ischemia. Neurol Res 2020; 42:683-692. [PMID: 32584207 DOI: 10.1080/01616412.2020.1782122] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- BeijingKey Laboratory of Hypoxia Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Ning Li
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- BeijingKey Laboratory of Hypoxia Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Chen Gao
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- BeijingKey Laboratory of Hypoxia Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Wei Zhang
- Department of Herbal Formula Science Medicine, Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Yang
- Department of Herbal Formula Science Medicine, Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Sijie Li
- BeijingKey Laboratory of Hypoxia Translational Medicine, Beijing, China
| | - Xunming Ji
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- BeijingKey Laboratory of Hypoxia Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
24
|
Identification micro-RNAs functional modules and genes of ischemic stroke based on weighted gene co-expression network analysis (WGCNA). Genomics 2020; 112:2748-2754. [PMID: 32198065 DOI: 10.1016/j.ygeno.2020.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 01/20/2023]
|
25
|
Song D, Zhang X, Chen J, Liu X, Xue J, Zhang L, Lan X. Wnt canonical pathway activator TWS119 drives microglial anti-inflammatory activation and facilitates neurological recovery following experimental stroke. J Neuroinflammation 2019; 16:256. [PMID: 31810470 PMCID: PMC6896312 DOI: 10.1186/s12974-019-1660-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022] Open
Abstract
Background Ischemic stroke is a leading cause of disability worldwide and characteristically accompanied by downregulation of the Wnt/β-catenin signaling. Activation of Wnt/β-catenin signaling emerges to attenuate neuroinflammation after ischemic stroke; however, its effect on modulating microglial polarization is largely unknown. Here, we explored whether Wnt/β-catenin pathway activator TWS119 facilitated long-term neurological recovery via modulating microglia polarization after experimental stroke. Methods Ischemic stroke mice model was induced by permanent distal middle cerebral artery occlusion plus 1 h hypoxia. TWS119 was administrated from day 1 to 14 after stroke. Neurological deficits were monitored up to 21 days after stroke. Angiogenesis, neural plasticity, microglial polarization, and microglia-associated inflammatory cytokines were detected in the peri-infarct cortex at days 14 and 21 after stroke. Primary microglia and mouse brain microvascular endothelial cell lines were employed to explore the underlying mechanism in vitro. Results TWS119 mitigated neurological deficits at days 14 and 21 after experimental stroke, paralleled by acceleration on angiogenesis and neural plasticity in the peri-infarct cortex. Mechanistically, cerebral ischemia induced production of microglia-associated proinflammatory cytokines and priming of activated microglia toward pro-inflammatory polarization, whereas TWS119 ameliorated microglia-mediated neuroinflammatory status following ischemic stroke and promoted angiogenesis by modulating microglia to anti-inflammatory phenotype. The beneficial efficacy of TWS119 in microglial polarization was largely reversed by selective Wnt/β-catenin pathway blockade in vitro, suggesting that TWS119-enabled pro-inflammatory to anti-inflammatory phenotype switch of microglia was possibly mediated by Wnt/β-catenin signaling. Conclusions Wnt/β-catenin pathway activator TWS119 ameliorated neuroinflammatory microenvironment following chronic cerebral ischemia via modulating microglia towards anti-inflammatory phenotype, and facilitates neurological recovery in an anti-inflammatory phenotype polarization-dependent manner. Activation of Wnt/β-catenin pathway following ischemic stroke might be a potential restorative strategy targeting microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Degang Song
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Department of Neurology, First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China. .,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
| | - Junmin Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaoxia Liu
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Jing Xue
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Xifa Lan
- Department of Neurology, First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| |
Collapse
|
26
|
Tao X, Yang W, Zhu S, Que R, Liu C, Fan T, Wang J, Mo D, Zhang Z, Tan J, Jin K, Yenari MA, Song T, Wang Q. Models of poststroke depression and assessments of core depressive symptoms in rodents: How to choose? Exp Neurol 2019; 322:113060. [PMID: 31505162 DOI: 10.1016/j.expneurol.2019.113060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023]
Abstract
Our previous studies have indicated that depression and declined cognition have been involved in some neurodegenerative diseases including Stroke, Parkinson's diseases and Vascular Parkinsonism. Post-stroke depression (PSD) is the most common psychiatric disorder following a stroke and has high morbidity and mortality. Studies on PSD are increasingly common, but the specific mechanisms remain unknown. Current research mainly includes clinical and animal aspects. Questionnaires and peripheral blood examination are two of the most common methods used to study clinical PSD. The results of questionnaires are influenced by multiple factors such as disease history, education background, occupation, economic status, family relationships and social support. There are certain limitations to blood sample testing; for example, it is influenced by cerebrovascular diseases and some other disruptions of the internal environment. It is difficult for either method to fully clarify the pathophysiological mechanism of PSD. Animal models provide alternative methods to further understand the pathophysiological mechanisms of PSD, such as the involvement of neuronal circuits and cytokines. More than ten animal models of PSD have been developed, and new models are constantly being introduced. Therefore, it is important to choose the appropriate model for any given study. In this paper, we will discuss the characteristics of the different models of PSD and comment on the advantages and disadvantages of each model, drawing from research on model innovation. Finally, we briefly describe the current assessment methods for the core symptoms of PSD models, point out the shortcomings, and present the improved sucrose preference test as a rational evaluation of anhedonia.
Collapse
Affiliation(s)
- Xi Tao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chujuan Liu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Tao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jia Wang
- Department of Scientific Research, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Danheng Mo
- Department of Neurology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Zhuohua Zhang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Jieqiong Tan
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Tao Song
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
27
|
Wu K, Huang D, Zhu C, Kasanga EA, Zhang Y, Yu E, Zhang H, Ni Z, Ye S, Zhang C, Hu J, Zhuge Q, Yang J. NT3 P75-2 gene-modified bone mesenchymal stem cells improve neurological function recovery in mouse TBI model. Stem Cell Res Ther 2019; 10:311. [PMID: 31651375 PMCID: PMC6814101 DOI: 10.1186/s13287-019-1428-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The attainment of extensive neurological function recovery remains the key challenge for the treatment of traumatic brain injury (TBI). Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has been shown to improve neurological function recovery after TBI. However, the survival of BMSCs after transplantation in early-stage TBI is limited, and much is unknown about the mechanisms mediating this neurological function recovery. Secretion of neurotrophic factors, including neurotrophin 3 (NT3), is one of the critical factors mediating BMSC neurological function recovery. Gene mutation of NT3 (NT3P75-2) has been shown to enhance the biological function of NT3 via the reduction of the activation of the P75 signal pathway. Thus, we investigated whether NT3P75-2 gene-modified BMSCs could enhance the survival of BMSCs and further improve neurological function recovery after TBI. METHODS The ability of NT3P75-2 induction to improve cell growth rate of NSC-34 and PC12 cells in vitro was first determined. BMSCs were then infected with three different lentiviruses (green fluorescent protein (GFP), GFP-NT3, or GFP-NT3P75-2), which stably express GFP, GFP-NT3, or GFP-NT3P75-2. At 24 h post-TBI induction in mice, GFP-labeled BMSCs were locally transplanted into the lesion site. Immunofluorescence and histopathology were performed at 1, 3, and/or 7 days after transplantation to evaluate the survival of BMSCs as well as the lesion volume. A modified neurological severity scoring system and the rotarod test were chosen to evaluate the functional recovery of the mice. Cell growth rate, glial activation, and signaling pathway analyses were performed to determine the potential mechanisms of NT3P75-2 in functional recovery after TBI. RESULTS Overall, NT3P75-2 improved cell growth rate of NSC-34 and PC12 cells in vitro. In addition, NT3P75-2 significantly improved the survival of transplanted BMSCs and neurological function recovery after TBI. Overexpression of NT3P75-2 led to a significant reduction in the activation of glial cells, brain water content, and brain lesion volume after TBI. This was associated with a reduced activation of the p75 neurotrophin receptor (P75NTR) and the c-Jun N-terminal kinase (JNK) signal pathway due to the low affinity of NT3P75-2 for the receptor. CONCLUSIONS Taken together, our results demonstrate that administration of NT3P75-2 gene-modified BMSCs dramatically improves neurological function recovery after TBI by increasing the survival of BMSCs and ameliorating the inflammatory environment, providing a new promising treatment strategy for TBI.
Collapse
Affiliation(s)
- Ke Wu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dongdong Huang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Can Zhu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Ying Zhang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Enxing Yu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hengli Zhang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhihui Ni
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Sheng Ye
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chunli Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiangnan Hu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Qichuan Zhuge
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jianjing Yang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
28
|
Role of exosomes induced by remote ischemic preconditioning in neuroprotection against cerebral ischemia. Neuroreport 2019; 30:834-841. [DOI: 10.1097/wnr.0000000000001280] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Combination of Ligusticum Chuanxiong and Radix Paeonia Promotes Angiogenesis in Ischemic Myocardium through Notch Signalling and Mobilization of Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7912402. [PMID: 30906416 PMCID: PMC6398078 DOI: 10.1155/2019/7912402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/10/2019] [Accepted: 02/03/2019] [Indexed: 01/07/2023]
Abstract
Objective To study the cardioprotective mechanism by which the combination of Chuanxiong (CX) and Chishao (CS) promotes angiogenesis. Methods Myocardial infarction (MI) mouse models were induced by ligation of the left anterior descending coronary artery. The effects on cardiac function were evaluated in the perindopril tert-butylamine group (PB group) (3 mg/kg/d), CX group (55 mg/kg/d), CS group (55 mg/kg/d), and CX and CS combination (CX-CS) group (27.5 mg/kg/d CX plus 27.5 mg/kg/d CS). RO4929097, an inhibitor of Notch γ secretase, was used (10 mg/kg/d) to explore the role of Notch signalling in the CX-CS-induced promotion of angiogenesis in the myocardial infarcted border zone (IBZ). The left ventricular ejection fraction (LVEF) and percentage of MI area were evaluated with animal ultrasound and Masson staining. The average optical densities (AODs) of CD31 and vWF in the myocardial IBZ were detected by immunofluorescence. Angiogenesis-related proteins including hypoxia-inducible factor 1-alpha (HIF-1α), fibroblast growth factor receptor 1 (FGFR-1), Notch1 and Notch intracellular domain (NICD), and stem cell mobilization-related proteins including stromal cell-derived factor 1 (SDF-1), C-X-C chemokine receptor type 4 (CXCR-4), and cardiotrophin1 were detected by western blot analysis. Results Compared with the model group, the CX-CS and PB groups both showed markedly improved LVEF and decreased percentage of MI area after 21 days of treatment. Although the CX group and CS group showed increased LVEF and decreased MI areas compared with the model group, the difference was not significant. The AOD of CD31 in the IBZ in both the model and the CX-CS-I group was markedly reduced compared with that in the sham group. CX-CS significantly increased the CD31 AOD in the IBZ and decreased the AODs of CD31 and vWF in the infarct zone compared with those in the model group. The expression of HIF-1α in both the model group and the CX-CS group was higher than that in the sham group. Compared with the model group, the expression of FGFR-1, SDF-1, cardiotrophin1, Notch1, and NICD was increased in the CX-CS group. Notch1 and NICD expression in the CX-CS-I group was reduced compared with that in the CX-CS group. Conclusions The combination of CX and CS protected cardiomyocytes in the IBZ better than CX or CS alone. The mechanism by which CX-CS protects ischemic myocardium may be related to the proangiogenesis effect of CX-CS exerted through Notch signalling and the mobilization of stem cells to the IBZ.
Collapse
|
30
|
Hu J, Chen L, Huang X, Wu K, Ding S, Wang W, Wang B, Smith C, Ren C, Ni H, ZhuGe Q, Yang J. Calpain inhibitor MDL28170 improves the transplantation-mediated therapeutic effect of bone marrow-derived mesenchymal stem cells following traumatic brain injury. Stem Cell Res Ther 2019; 10:96. [PMID: 30876457 PMCID: PMC6420775 DOI: 10.1186/s13287-019-1210-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/16/2019] [Accepted: 03/06/2019] [Indexed: 01/14/2023] Open
Abstract
Background Studies have shown that transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) protects against brain damage. However, the low survival number of transplanted BMSCs remains a pertinent challenge and can be attributed to the unfavorable microenvironment of the injured brain. It is well known that calpain activation plays a critical role in traumatic brain injury (TBI)-mediated inflammation and cell death; previous studies showed that inhibiting calpain activation is neuroprotective after TBI. Thus, we investigated whether preconditioning with the calpain inhibitor, MDL28170, could enhance the survival of BMSCs transplanted at 24 h post TBI to improve neurological function. Methods TBI rat model was induced by the weight-drop method, using the gravitational forces of a free falling weight to produce a focal brain injury. MDL28170 was injected intracranially at the lesion site at 30 min post TBI, and the secretion levels of neuroinflammatory factors were assessed 24 h later. BMSCs labeled with green fluorescent protein (GFP) were locally administrated into the lesion site of TBI rat brains at 24 h post TBI. Immunofluorescence and histopathology were performed to evaluate the BMSC survival and the TBI lesion volume. Modified neurological severity scores were chosen to evaluate the functional recovery. The potential mechanisms by which MDL28170 is involved in the regulation of inflammation signaling pathway and cell apoptosis were determined by western blot and immunofluorescence staining. Results Overall, we found that a single dose of MDL28170 at acute phase of TBI improved the microenvironment by inhibiting the inflammation, facilitated the survival of grafted GFP-BMSCs, and reduced the grafted cell apoptosis, leading to the reduction of lesion cavity. Furthermore, a significant neurological function improvement was observed when BMSCs were transplanted into a MDL28170-preconditioned TBI brains compared with the one without MDL28170-precondition group. Conclusions Taken together, our data suggest that MDL28170 improves BMSC transplantation microenvironment and enhances the neurological function restoration after TBI via increased survival rate of BMSCs. We suggest that the calpain inhibitor, MDL28170, could be pursued as a new combination therapeutic strategy to advance the effects of transplanted BMSCs in cell-based regenerative medicine. Electronic supplementary material The online version of this article (10.1186/s13287-019-1210-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiangnan Hu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Lefu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xujun Huang
- Department of Intensive Care Unit (ICU), Hengdian Wenrong Hospital, Jinhua, 322100, China
| | - Ke Wu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weikan Wang
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Brian Wang
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Charity Smith
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qichuan ZhuGe
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
31
|
Tian Y, Di Y, Zhang J, Chen X, Feng T, Adu-Nti F, Shi M, Fan J, Zhang J, Zhang P, Liu Y. Angiogenic Gene Profiles in Laser-Microdissected Microvessels and Neurons from Ischemic Penumbra of Rat Brain. J Mol Neurosci 2019; 67:643-653. [PMID: 30840225 DOI: 10.1007/s12031-019-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 11/30/2022]
Abstract
Angiogenesis is induced immediately after cerebral ischemia and plays a pivotal role in the strategy against ischemic injury. We hypothesized that the coordinated interaction between microvessels and neurons was altered immediately after stroke, and microvessels and neurons would show the temporal specificity of angiogenic gene profiles after cerebral ischemia. Microvessels and neurons were harvested in the ischemic penumbra of rat brain using the PixCell II laser capture microdissection (LCM) instrument. After RNA isolation, T7 and gene-specific primer RNA linear amplification were performed, and angiogenic functional grouping cDNA profiling was analyzed in LCM samples. cDNA microarray results showed there were 35 (36.46%) and 27 (28.13%) genes expression changes in the microvessels, while 25 (26.04%) and 31 (32.29%) genes were changed in the neurons at 2 h and 24 h after cerebral ischemia. Members of growth factors and receptors, cytokines and chemokines, adhesion molecules, matrix proteins, proteases, and inhibitors showed temporal and spatial differentiation in the microvessels and neurons after cerebral ischemia. This finding will help to understand the coordination and interaction between microvessels and neurons, and to elucidate the molecular mechanisms of angiogenesis after brain ischemic injury.
Collapse
Affiliation(s)
- Yingfang Tian
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, 710062, Shaanxi, China. .,College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Yuanyuan Di
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jianshui Zhang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xinlin Chen
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ting Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Frank Adu-Nti
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Meimei Shi
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, 710062, Shaanxi, China
| | - Juan Fan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Junfeng Zhang
- Department of Anatomy, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Pengbo Zhang
- Department of Anesthesia of the Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710004, Shaanxi, China
| | - Yong Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
32
|
Hu C, Dong ZL. MicroRNA-212 promotes the recovery function and vascular regeneration of endothelial progenitor cells in mice with ischemic stroke through inactivation of the notch signaling pathway via downregulating MMP9 expression. J Cell Physiol 2018; 234:7090-7103. [PMID: 30552827 DOI: 10.1002/jcp.27463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a refractory disease caused by cerebral ischemic injury, which results in brain dysfunction. This study intends to investigate the effects of microRNA-212 (miR-212) on the recovery function and vascular regeneration of endothelial progenitor cells (EPCs) by inactivation of the Notch signaling pathway by binding to matrix metallopeptidase 9 (MMP9) in mice with ischemic stroke. According to the results of database retrieval systems and data analysis, MMP9 was predicted as a gene related to ischemic stroke and miR-212 is a potential regulating mRNA of MMP9. All 72 healthy adult C57BL6 mice were selected for middle cerebral artery occlusion (MCAO) establishment. Cerebral infarction was observed under triphenyltetrazolium chloride staining. A series of inhibitors, activators, and siRNAs were introduced to the verified regulatory functions for miR-212 governing MMP9 in ischemic stroke. Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and tube-forming ability by tubule formation test. Reverse transcription quantitative polymerase chain reaction and Western blot analysis were used to detect the expressions of miR-212, MMP9, Hes-1, and Notch-1. The corresponding results demonstrated that the area of cerebral infarction and the number of neuronal necrosis increased in the MCAO group in contrast to the sham group. Meanwhile, upregulation of miR-212 or downregulation of MMP9 decreases the expressions of MMP9, Hes-1 Notch-1, increases cell proliferation and tube-forming ability and improves the pathological conditions of EPCs. Our study suggests that miR-212 promotes recovery function and vascular regeneration of EPCs through negative regulation of the Notch signaling pathway via downregulating expression of MMP9, thus provides a clinical theoretical basis for ischemic stroke therapy.
Collapse
Affiliation(s)
- Chen Hu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Zhi-Ling Dong
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
33
|
Ren C, Li S, Rajah G, Shao G, Lu G, Han R, Huang Q, Li H, Ding Y, Jin K, Ji X. Hypoxia, hibernation and Neuroprotection: An Experimental Study in Mice. Aging Dis 2018; 9:761-768. [PMID: 30090664 PMCID: PMC6065299 DOI: 10.14336/ad.2018.0702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 11/01/2022] Open
Abstract
Hibernation is a unique physiological state that evolved to survive periods of food shortages. It is characterized by profound decreases in metabolic rate, body temperature and physiological functions. Studies have shown that animals in hibernation can resist neurological damage. Here, we aimed to study whether hypoxia can induce a hibernation-like state in a traditionally non-hibernating animal and whether it is neuroprotective. All procedures were conducted according to international guidelines on laboratory animal safety. Mice C57BL/6 (19-21g) were placed into a 125 mL jar with fresh air and the jar was sealed with a rubber plug. For each run, the tolerance limit was judged by the animals' appearance for "air hunger". The animal was removed from the jar as soon as its first gasping breath appeared and was moved to another fresh-air-containing jar of similar volume. This procedure was performed in four runs. The hypoxia exposure significantly decreased oxygen (O2) consumption, carbon dioxide (CO2) production, respiratory rate and heart rate. Meanwhile, rectal temperature reached a minimum of 12.7±2.56°C, which is lower than a wide range of ambient temperatures. The mimicked hibernation decreased the infarct size in a focal cerebral ischemia mouse model. Our findings suggest the possibility of inducing suspended animation-like hibernation states for medical applications post injury.
Collapse
Affiliation(s)
- Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Guo Shao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Guowei Lu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Rongrong Han
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Qingjian Huang
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Yuchuan Ding
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kunlin Jin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| |
Collapse
|
34
|
Mehdipour M, Liu Y, Liu C, Kumar B, Kim D, Gathwala R, Conboy IM. Key Age-Imposed Signaling Changes That Are Responsible for the Decline of Stem Cell Function. Subcell Biochem 2018; 90:119-143. [PMID: 30779008 DOI: 10.1007/978-981-13-2835-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter analyzes recent developments in the field of signal transduction of ageing with the focus on the age-imposed changes in TGF-beta/pSmad, Notch, Wnt/beta-catenin, and Jak/Stat networks. Specifically, this chapter delineates how the above-mentioned evolutionary-conserved morphogenic signaling pathways operate in young versus aged mammalian tissues, with insights into how the age-specific broad decline of stem cell function is precipitated by the deregulation of these key cell signaling networks. This chapter also provides perspectives onto the development of defined therapeutic approaches that aim to calibrate intensity of the determinant signal transduction to health-youth, thereby rejuvenating multiple tissues in older people.
Collapse
Affiliation(s)
- Melod Mehdipour
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Yutong Liu
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Chao Liu
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Binod Kumar
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Daehwan Kim
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Ranveer Gathwala
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Irina M Conboy
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|