1
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Amin G, Ghali R, Habeichi NJ, Mallat Z, Booz GW, Zouein FA. Dual Time-Dependent Effects of Interleukin-33 Administration on the Kidney Postmyocardial Infarction. J Interferon Cytokine Res 2024; 44:496-509. [PMID: 39311715 DOI: 10.1089/jir.2024.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Kidney damage is a serious prevalent complication that occurs after a myocardial infarction (MI) and is associated with worse outcomes. Interleukin-33 (IL-33), a member of the IL-1 superfamily, functions as an alarmin that is released upon necrosis or tissue damage to alert immune cells expressing the ST2L receptor. IL-33 is increased in kidney disease, and recent studies have shown that the IL-33/ST2 axis is instrumental in both disease progression and repair. In this study, we investigated the effect of IL-33 administration on kidneys in C57BL6/J male mice 4 and 7 days after the induction of MI. The mice received either IL-33 or vehicle (PBS) treatment. Cardiac systolic function and systemic inflammation were assessed, and kidneys were subjected to histological and molecular analysis. The administration of IL-33 for 4 days post-MI improved renal structure consistent with reduced expression of profibrotic markers, reduced apoptosis, and increased expression of the anti-inflammatory cytokine IL-4. In addition, IL-33 administration enhanced the levels of Sirtuin3, nicotinamide phosphoribosyltransferase, and the renal nicotinamide adenine dinucleotide pool which are critical for mitochondrial function and energy production, indicating metabolic benefits. However, this protection seems to be lost with the continued administration of IL-33 for 7 days post-MI coinciding with aggravated cardiac dysfunction and increased systemic inflammation. These findings demonstrate that while IL-33 treatment can help improve kidney damage post-MI in the short term, extended treatment may not be beneficial. This may be due to the direct effects of IL-33 on the kidneys or indirectly mediated by adverse cardiac remodeling influencing the cardiorenal crosstalk.
Collapse
Affiliation(s)
- Ghadir Amin
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rana Ghali
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, Institute Paris-Saclay for Therapeutic Innovation, Faculty of Pharmacy, University Paris Saclay, Gif-sur-Yvette, France
| | - Ziad Mallat
- Department of Medicine, Section of Cardio Respiratory Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
- Paris Cardiovascular Research Center, Institut National de la Sante et de la Recherche Medicale (Inserm), Paris, France
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Signaling and Cardiovascular Pathophysiology, Institute Paris-Saclay for Therapeutic Innovation, Faculty of Pharmacy, University Paris Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Wang H, Liu S, Sun Y, Chen C, Hu Z, Li Q, Long J, Yan Q, Liang J, Lin Y, Yang S, Lin M, Liu X, Wang H, Yu J, Yi F, Tan Y, Yang Y, Chen N, Ai Q. Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases. Ageing Res Rev 2024; 101:102472. [PMID: 39233146 DOI: 10.1016/j.arr.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Neuroinflammation is an innate and adaptive immune response initiated by the release of inflammatory mediators from various immune cells in response to harmful stimuli. While initially beneficial and protective, prolonged or excessive neuroinflammation has been identified in clinical and experimental studies as a key pathological driver of numerous neurological diseases and an accelerant of the aging process. Glycolysis, the metabolic process that converts glucose to pyruvate or lactate to produce adenosine 5'-triphosphate (ATP), is often dysregulated in many neuroinflammatory disorders and in the affected nerve cells. Enhancing glucose availability and uptake, as well as increasing glycolytic flux through pharmacological or genetic manipulation of glycolytic enzymes, has shown potential protective effects in several animal models of neuroinflammatory diseases. Modulating the glycolytic pathway to improve glucose metabolism and ATP production may help alleviate energy deficiencies associated with these conditions. In this review, we examine six neuroinflammatory diseases-stroke, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and depression-and provide evidence supporting the role of glycolysis in their treatment. We also explore the potential link between inflammation-induced aging and glycolysis. Additionally, we briefly discuss the critical role of glycolysis in three types of neuronal cells-neurons, microglia, and astrocytes-within physiological processes. This review highlights the significance of glycolysis in the pathology of neuroinflammatory diseases and its relevance to the aging process.
Collapse
Affiliation(s)
- Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziyi Hu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qinqin Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
4
|
Wang M, Dufort C, Du Z, Shi R, Xu F, Huang Z, Sigler AR, Leak RK, Hu X. IL-33/ST2 signaling in monocyte-derived macrophages maintains blood-brain barrier integrity and restricts infarctions early after ischemic stroke. J Neuroinflammation 2024; 21:274. [PMID: 39449077 PMCID: PMC11515348 DOI: 10.1186/s12974-024-03264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Brain microglia and infiltrating monocyte-derived macrophages are vital in preserving blood vessel integrity after stroke. Understanding mechanisms that induce immune cells to adopt vascular-protective phenotypes may hasten the development of stroke treatments. IL-33 is a potent chemokine released from damaged cells, such as CNS glia after stroke. The activation of IL-33/ST2 signaling has been shown to promote neuronal viability and white matter integrity after ischemic stroke. The impact of IL-33/ST2 on blood-brain barrier (BBB) integrity, however, remains unknown. The current study fills this gap and reveals a critical role of IL-33/ST2 signaling in macrophage-mediated BBB protection after stroke. METHODS Transient middle cerebral artery occlusion (tMCAO) was performed to induce ischemic stroke in wildtype (WT) versus ST2 knockout (KO) male mice. IL-33 was applied intranasally to tMCAO mice with or without dietary PLX5622 to deplete microglia/macrophages. ST2 KO versus WT bone marrow or macrophage cell transplantations were used to test the involvement of ST2+ macrophages in BBB integrity. Macrophages were cocultured in transwells with brain endothelial cells (ECs) after oxygen-glucose deprivation (OGD) to test potential direct effects of IL33-treated macrophages on the BBB in vitro. RESULTS The ST2 receptor was expressed in brain ECs, microglia, and infiltrating macrophages. Global KO of ST2 led to more IgG extravasation and loss of ZO-1 in cerebral microvessels 3 days post-tMCAO. Intranasal IL-33 administration reduced BBB leakage and infarct severity in microglia/macrophage competent mice, but not in microglia/macrophage depleted mice. Worse BBB injury was observed after tMCAO in chimeric WT mice reconstituted with ST2 KO bone marrow, and in WT mice whose monocytes were replaced by ST2 KO monocytes. Macrophages treated with IL-33 reduced in vitro barrier leakage and maintained tight junction integrity after OGD. In contrast, IL-33 exerted minimal direct effects on the endothelial barrier in the absence of macrophages. IL-33-treated macrophages demonstrated transcriptional upregulation of an array of protective factors, suggesting a shift towards favorable phenotypes. CONCLUSION Our results demonstrate that early-stage IL-33/ST2 signaling in infiltrating macrophages reduces the extent of acute BBB disruption after stroke. Intranasal IL-33 administration may represent a new strategy to reduce BBB leakage and infarct severity.
Collapse
Affiliation(s)
- Miao Wang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Connor Dufort
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Zhihong Du
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Ruyu Shi
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Fei Xu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Zhentai Huang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Ana Rios Sigler
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Matys P, Mirończuk A, Starosz A, Grubczak K, Kochanowicz J, Kułakowska A, Kapica-Topczewska K. Expanding Role of Interleukin-1 Family Cytokines in Acute Ischemic Stroke. Int J Mol Sci 2024; 25:10515. [PMID: 39408843 PMCID: PMC11476913 DOI: 10.3390/ijms251910515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Ischemic stroke (IS) is a critical medical condition that results in significant neurological deficits and tissue damage, affecting millions worldwide. Currently, there is a significant lack of reliable tools for assessing and predicting IS outcomes. The inflammatory response following IS may exacerbate tissue injury or provide neuroprotection. This review sought to summarize current knowledge on the IL-1 family's involvement in IS, which includes pro-inflammatory molecules, such as IL-1α, IL-1β, IL-18, and IL-36, as well as anti-inflammatory molecules, like IL-1Ra, IL-33, IL-36A, IL-37, and IL-38. The balance between these opposing inflammatory processes may serve as a biomarker for determining patient outcomes and recovery paths. Treatments targeting these cytokines or their receptors show promise, but more comprehensive research is essential to clarify their precise roles in IS development and progression.
Collapse
Affiliation(s)
- Paulina Matys
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Anna Mirończuk
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Katarzyna Kapica-Topczewska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| |
Collapse
|
6
|
Mathias K, Machado RS, Tiscoski ADB, Dos Santos D, Lippert FW, Costa MA, Gonçalves CL, Generoso JS, Prophiro JS, Giustina AD, Petronilho F. IL-33 in Ischemic Stroke: Brain vs. Periphery. Inflammation 2024:10.1007/s10753-024-02148-6. [PMID: 39294293 DOI: 10.1007/s10753-024-02148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Cerebrovascular disease is the second-leading cause of death and disability worldwide, with stroke being the most common cause. In ischemic stroke, several processes combine to produce immunosuppression, leaving the post-stroke body susceptible to infection, which in turn affects neuroinflammation. Interleukin-33 (IL-33), a member of the interleukin-1 family (IL-1), functions as a modulator of immune responses and inflammation, playing a crucial role in the establishment of immunologic responses. IL-33 has been shown to have a protective effect on brain injury and represents a potential target by modulating inflammatory cytokines and stimulating immune regulatory cells. With an emphasis on preclinical and clinical studies, this review covers the impact of IL-33 on immune system mechanisms following ischemic stroke.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricio Weinheimer Lippert
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Maiara Aguiar Costa
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Jaqueline Silva Generoso
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Amanda Della Giustina
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, ON, Canada
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
7
|
Gong H, Li Z, Huang G, Mo X. Effects of peripheral blood cells on ischemic stroke: Greater immune response or systemic inflammation? Heliyon 2024; 10:e32171. [PMID: 38868036 PMCID: PMC11168442 DOI: 10.1016/j.heliyon.2024.e32171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Ischemic stroke is still one of the most serious medical conditions endangering human health worldwide. Current research on the mechanism of ischemic stroke focuses on the primary etiology as well as the subsequent inflammatory response and immune modulation. Recent research has revealed that peripheral blood cells and their components are crucial to the ensuing progression of ischemic stroke. However, it remains unclear whether blood cell elements are principally in charge of systemic inflammation or immunological regulation, or if their participation is beneficial or harmful to the development of ischemic stroke. In this review, we aim to describe the changes in peripheral blood cells and their corresponding parameters in ischemic stroke. Specifically, we elaborate on the role of each peripheral component in the inflammatory response or immunological modulation as well as their interactions. It has been suggested that more specific therapies aimed at targeting peripheral blood cell components and their role in inflammation or immunity are more favorable to the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Huanhuan Gong
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Li
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guoqing Huang
- Department of Emergency, Xiangya Hospital, Central South University, PR China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, PR China
| |
Collapse
|
8
|
Shang Y, Zheng L, Du Y, Shang T, Liu X, Zou W. Role of Regulatory T Cells in Intracerebral Hemorrhage. Mol Neurobiol 2024:10.1007/s12035-024-04281-7. [PMID: 38877366 DOI: 10.1007/s12035-024-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease that can lead to severe neurological dysfunction in surviving patients, resulting in a heavy burden on patients and their families. When ICH occurs, the blood‒brain barrier is disrupted, thereby promoting immune cell migration into damaged brain tissue. As important immunosuppressive T cells, regulatory T (Treg) cells are involved in the maintenance of immune homeostasis and the suppression of immune responses after ICH. Treg cells mitigate brain tissue damage after ICH in a variety of ways, such as inhibiting the neuroinflammatory response, protecting against blood‒brain barrier damage, reducing oxidative stress damage and promoting nerve repair. In this review, we discuss the changes in Treg cells in ICH clinical patients and experimental animals, the mechanisms by which Treg cells regulate ICH and treatments targeting Treg cells in ICH, aiming to support new therapeutic strategies for clinical treatment.
Collapse
Affiliation(s)
- Yaxin Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Lei Zheng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Yunpeng Du
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Tong Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Xueting Liu
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
9
|
Zhou Z, Li Y, Peng R, Shi M, Gao W, Lei P, Zhang J. Progesterone induces neuroprotection associated with immune/inflammatory modulation in experimental traumatic brain injury. Neuroreport 2024; 35:352-360. [PMID: 38526937 PMCID: PMC10965124 DOI: 10.1097/wnr.0000000000002013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 03/27/2024]
Abstract
An imbalance of immune/inflammatory reactions aggravates secondary brain injury after traumatic brain injury (TBI) and can deteriorate clinical prognosis. So far, not enough therapeutic avenues have been found to prevent such an imbalance in the clinical setting. Progesterone has been shown to regulate immune/inflammatory reactions in many diseases and conveys a potential protective role in TBI. This study was designed to investigate the neuroprotective effects of progesterone associated with immune/inflammatory modulation in experimental TBI. A TBI model in adult male C57BL/6J mice was created using a controlled contusion instrument. After injury, the mice received consecutive progesterone therapy (8 mg/kg per day, i.p.) until euthanized. Neurological deficits were assessed via Morris water maze test. Brain edema was measured via the dry-wet weight method. Immunohistochemical staining and flow cytometry were used to examine the numbers of immune/inflammatory cells, including IBA-1 + microglia, myeloperoxidase + neutrophils, and regulatory T cells (Tregs). ELISA was used to detect the concentrations of IL-1β, TNF-α, IL-10, and TGF-β. Our data showed that progesterone therapy significantly improved neurological deficits and brain edema in experimental TBI, remarkably increased regulatory T cell numbers in the spleen, and dramatically reduced the activation and infiltration of inflammatory cells (microglia and neutrophils) in injured brain tissue. In addition, progesterone therapy decreased the expression of the pro-inflammatory cytokines IL-1β and TNF-α but increased the expression of the anti-inflammatory cytokine IL-10 after TBI. These findings suggest that progesterone administration could be used to regulate immune/inflammatory reactions and improve outcomes in TBI.
Collapse
Affiliation(s)
- Ziwei Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital
| | - Yadan Li
- Department of Geriatrics, Tianjin Medical University General Hospital
- Intensive Care Units, Tianjin Huanhu Hospital
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital
| | - Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital
| | - Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital
| |
Collapse
|
10
|
Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, Golabi B, Copic D, Klas K, Direder M, Kühtreiber H, Salek M, zur Nedden S, Baier-Bitterlich G, Kiechl S, Haider C, Endmayr V, Höftberger R, Ankersmit HJ, Mildner M. Single nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573302. [PMID: 38234821 PMCID: PMC10793395 DOI: 10.1101/2023.12.26.573302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Reactive neuroglia critically shape the braińs response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition and microenvironment of the early ischemic lesion. Here we generated a single cell resolution transcriptomics dataset of the injured brain during the acute recovery from permanent middle cerebral artery occlusion. This approach unveiled infarction and subtype specific molecular signatures in oligodendrocyte lineage cells and astrocytes, which ranged among the most transcriptionally perturbed cell types in our dataset. Specifically, we characterized and compared infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and heterogeneous reactive astrocyte populations. Our analyses unveiled unexpected commonalities in the transcriptional response of oligodendrocyte lineage cells and astrocytes to ischemic injury. Moreover, OPCs and reactive astrocytes were involved in a shared immuno-glial cross talk with stroke specific myeloid cells. In situ, osteopontin positive myeloid cells accumulated in close proximity to proliferating OPCs and reactive astrocytes, which expressed the osteopontin receptor CD44, within the perilesional zone specifically. In vitro, osteopontin increased the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition and microenvironment of infarcted brain tissue in the early stages of recovery.
Collapse
Affiliation(s)
- Daniel Bormann
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria
| | - Emilia Poreba
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian J. Riedl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giulia Testa
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Anthony Levilly
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Andreá Cottereau
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Philipp Jauk
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dragan Copic
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Kühtreiber
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Melanie Salek
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Stephanie zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik J. Ankersmit
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Liu Y, Dong J, Zhang Z, Liu Y, Wang Y. Regulatory T cells: A suppressor arm in post-stroke immune homeostasis. Neurobiol Dis 2023; 189:106350. [PMID: 37952680 DOI: 10.1016/j.nbd.2023.106350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
The activation of the immune system and the onset of pro- and anti-inflammatory responses play crucial roles in the pathophysiological processes of ischaemic stroke (IS). CD4+ regulatory T (Treg) cells is the main immunosuppressive cell population that is studied in the context of peripheral tolerance, autoimmunity, and the development of chronic inflammatory diseases. In recent years, more studies have focused on immune modulation after IS, and Treg cells have been demonstrated to be essential in the remission of inflammation, nerve regeneration, and behavioural recovery. However, the exact effects of Treg cells in the context of IS remain controversial, with some studies suggesting a negative correlation with stroke outcomes. In this review, we aim to provide a comprehensive overview of the current understanding of Treg cell involvement in post-stroke homeostasis. We summarized the literature focusing on the temporal changes in Treg cell populations after IS, the mechanisms of Treg cell-mediated immunomodulation in the brain, and the potential of Treg cell-based therapies for treatment. The purposes of the current article are to address the importance of Treg cells and inspire more studies to help physicians, as well as scientists, understand the whole map of immune responses during IS.
Collapse
Affiliation(s)
- Yiqi Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Dong
- Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing 100049, China
| | - Ziqing Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunpeng Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
12
|
Lv W, Wu X, Dou Y, Yan Y, Chen L, Fei Z, Fei F. Homer1 Protects against Retinal Ganglion Cell Pyroptosis by Inhibiting Endoplasmic Reticulum Stress-Associated TXNIP/NLRP3 Inflammasome Activation after Middle Cerebral Artery Occlusion-Induced Retinal Ischemia. Int J Mol Sci 2023; 24:16811. [PMID: 38069134 PMCID: PMC10706256 DOI: 10.3390/ijms242316811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Retinal ischemia, after cerebral ischemia, is an easily overlooked pathophysiological problem in which inflammation is considered to play an important role. Pyroptosis is a kind of cell death pattern accompanied by inflammation. Homer scaffold protein 1 (Homer1) has anti-inflammation properties and protects against ischemic injury. However, little is known about pyroptosis following middle cerebral artery occlusion (MCAO)-induced retinal ischemia and the regulatory mechanisms involved by Homer1 for the development of pyroptosis. In the present study, retinal ischemic injury was induced in mice by permanent MCAO in vivo, and retinal ganglion cells (RGCs) were subjected to Oxygen and Glucose Deprivation (OGD) to establish an in vitro model. It was shown that TXNIP/NLRP3-mediated pyroptosis was located predominantly in RGCs, which gradually increased after retinal ischemia and peaked at 24 h after retinal ischemia. Interestingly, the RGCs pyroptosis occurred not only in the cell body but also in the axon. Notably, the occurrence of pyroptosis coincided with the change of Homer1 expression in the retina after retinal ischemia and Homer1 also co-localized with RGCs. It was demonstrated that overexpression of Homer1 not only alleviated RGCs pyroptosis and inhibited the release of pro-inflammatory factors but also led to the increase in phosphorylation of AMPK, inhibition of ER stress, and preservation of visual function after retinal ischemia. In conclusion, it was suggested that Homer1 may protect against MCAO-induced retinal ischemia and RGCs pyroptosis by inhibiting endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation after MCAO-induced retinal ischemia.
Collapse
Affiliation(s)
- Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China; (W.L.); (X.W.); (Y.D.); (Y.Y.)
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China; (W.L.); (X.W.); (Y.D.); (Y.Y.)
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China; (W.L.); (X.W.); (Y.D.); (Y.Y.)
| | - Yiwen Yan
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China; (W.L.); (X.W.); (Y.D.); (Y.Y.)
| | - Leiying Chen
- Department of Ophthalmology, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China; (W.L.); (X.W.); (Y.D.); (Y.Y.)
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xincheng District, Xi’an 710032, China
| |
Collapse
|
13
|
Lukasik M, Telec M, Kazmierski R, Wojtasz I, Andrzejewska-Gorczyńska N, Kociemba W, Dworacki G, Kozubski WP, Frydrychowicz M. Temporal changes in regulatory T cell subsets defined by the transcription factor Helios in stroke and their potential role in stroke-associated infection: a prospective case-control study. J Neuroinflammation 2023; 20:275. [PMID: 37996909 PMCID: PMC10666369 DOI: 10.1186/s12974-023-02957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are involved in the systemic immune response after ischemic stroke. However, their role remains unclear, and the effect appears to be both neuroprotective and detrimental. Treg suppressor function may result in immunodepression and promote stroke-associated infection (SAI). Thus we assume that the bidirectional effects of Tregs may be in part attributed to the intracellular transcription factor Helios. Tregs with Helios expression (H+ Tregs) constitute 70-90% of all Treg cells and more frequently than Helios-negative Tregs (H- Tregs) express molecules recognized as markers of Tregs with suppressor abilities. METHODS AND RESULTS We prospectively assessed the circulating Treg population with flow cytometry in 52 subjects on days 1, 3, 10 and 90 after ischemic stroke and we compared the results with those obtained in concurrent age-, sex- and vascular risk factor-matched controls. At all studied time points the percentage of H+ Tregs decreased in stroke subjects-D1: 69.1% p < 0.0001; D3: 62.5% (49.6-76.6), p < 0.0001; D10: 60.9% (56.5-72.9), p < 0.0001; D90: 79.2% (50.2-91.7), p = 0.014 vs. controls: 92.7% (81.9-97.0) and the percentage of H- Tregs increased accordingly. In patients with SAI the percentage of pro-suppressor H+ Tregs on post-stroke day 3 was higher than in those without infection (p = 0.03). After adjustment for confounders, the percentage of H+ Tregs on day 3 independently correlated with SAI [OR 1.29; CI 95%: 1.08-1.27); p = 0.02]. Although the percentage of H+ Tregs on day 3 correlated positively with NIHSS score on day 90 (rS = 0.62; p < 0.01) and the infarct volume at day 90 (rS = 0.58; p < 0.05), in regression analysis it was not an independent risk factor. CONCLUSIONS On the first day after stroke the proportion of H+ vs. H- Tregs changes in favor of pro-inflammatory H- Tregs, and this shift continues toward normalization when assessed on day 90. A higher percentage of pro-suppressive H+ Tregs on day 3 independently correlates with SAI and is associated positively with NIHSS score, but it does not independently affect the outcome and stroke area in the convalescent phase of stroke.
Collapse
Affiliation(s)
- Maria Lukasik
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Magdalena Telec
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Radoslaw Kazmierski
- Department of Neurology, Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| | | | | | | | - Grzegorz Dworacki
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech P Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
14
|
Tian J, Zhu J, Fan Q, Luo X, Nie Q, Yu J, Wu X, Tang Y, Liu T, Yin H. Interleukin-33 improves the neurogenesis of neural stem cells in perinatal brain after hypoxia-ischemia. Int Immunopharmacol 2023; 123:110778. [PMID: 37573691 DOI: 10.1016/j.intimp.2023.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Perinatal hypoxia-ischemia (HI) insult is an important cause of neonatal encephalopathy, and the effective therapeutic approaches are currently limited. Interleukin (IL)-33 acts as a member of the IL-1 superfamily and has been shown to be neuroprotective following experimental neonatal HI and adult stroke. Here, we explore the effect of IL-33 and its specific receptor ST2 axis on endogenous neurogenesis in neonatal brain after HI. ST2 was found on the surface of NSCs, and the expression of ST2 was further enhanced after HI challenge. Delivery of IL-33 obviously repopulated the size of NSC pool, whereas ST2 deficiency worsened the neurogenesis of NSCs in neonatal brain post HI insult. Further in vivo and in vitro studies showed IL-33 regulates the survival, proliferation and differentiation of NSCs through ST2 signaling pathways. Intriguingly, IL-33 facilitated translocation of Nrf2 from the cytoplasm to the nucleus, which is involved in neural differentiation of NSCs. These data demonstrate a critical role of IL-33/ST2 axis in regulation of endogenous neurogenesis of NSCs via activation of the Nrf2 signaling, which provide a new insight into the effect of IL-33 in neonatal brain following HI injury.
Collapse
Affiliation(s)
- Jing Tian
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieqiong Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiuxiang Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaotian Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qianying Nie
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwei Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyong Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528453, China
| | - Yanli Tang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Guo S, Qian C, Li W, Zeng Z, Cai J, Luo Y. Modulation of Neuroinflammation: Advances in Roles and Mechanisms of the IL-33/ST2 Axis Involved in Ischemic Stroke. Neuroimmunomodulation 2023; 30:226-236. [PMID: 37729881 PMCID: PMC10614518 DOI: 10.1159/000533984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents, the broad expression of IL-33 in spinal cord tissues and brain indicates its central nervous system-specific functions. Growing evidence supports the protective effects of the IL-33/ST2 pathway in ischemic stroke, along with a better understanding of the underlying mechanisms. IL-33 plays a crucial role in the regulation of the release of inflammatory molecules from glial cells in response to neuropathological lesions. Moreover, IL-33/ST2-mediated neuroprotection following cerebral ischemia may be linked to T-cell function, specifically regulatory T cells. Soluble ST2 (sST2) acts as a decoy receptor in the IL-33/ST2 axis, blocking IL-33 signaling through the membrane ST2 receptor. sST2 has also been identified as a potential inflammatory biomarker of ischemic stroke. Targeting sST2 specifically to eliminate its inhibition of the protective IL-33/ST2 pathway in ischemic brain tissues is a promising approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengli Qian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenfeng Li
- Department of Clinical Medicine, The Second Clinical College, Wuhan University, Wuhan, China
| | - Zhikun Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junlong Cai
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
17
|
Lemaitre P, Tareen SHK, Pasciuto E, Mascali L, Martirosyan A, Callaerts‐Vegh Z, Poovathingal S, Dooley J, Holt MG, Yshii L, Liston A. Molecular and cognitive signatures of ageing partially restored through synthetic delivery of IL2 to the brain. EMBO Mol Med 2023; 15:e16805. [PMID: 36975362 PMCID: PMC10165365 DOI: 10.15252/emmm.202216805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Cognitive decline is a common pathological outcome during aging, with an ill-defined molecular and cellular basis. In recent years, the concept of inflammaging, defined as a low-grade inflammation increasing with age, has emerged. Infiltrating T cells accumulate in the brain with age and may contribute to the amplification of inflammatory cascades and disruptions to the neurogenic niche observed with age. Recently, a small resident population of regulatory T cells has been identified in the brain, and the capacity of IL2-mediated expansion of this population to counter neuroinflammatory disease has been demonstrated. Here, we test a brain-specific IL2 delivery system for the prevention of neurological decline in aging mice. We identify the molecular hallmarks of aging in the brain glial compartments and identify partial restoration of this signature through IL2 treatment. At a behavioral level, brain IL2 delivery prevented the age-induced defect in spatial learning, without improving the general decline in motor skill or arousal. These results identify immune modulation as a potential path to preserving cognitive function for healthy aging.
Collapse
Affiliation(s)
- Pierre Lemaitre
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | | | - Emanuela Pasciuto
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Loriana Mascali
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Araks Martirosyan
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of NeurosciencesKU LeuvenLeuvenBelgium
| | | | | | - James Dooley
- Immunology ProgrammeThe Babraham InstituteBabrahamUK
- Department of PathologyThe University of CambridgeCambridgeUK
| | - Matthew G Holt
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of NeurosciencesKU LeuvenLeuvenBelgium
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S)University of PortoPortoPortugal
| | - Lidia Yshii
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
- Department of NeurosciencesKU LeuvenLeuvenBelgium
| | - Adrian Liston
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
- Immunology ProgrammeThe Babraham InstituteBabrahamUK
- Department of PathologyThe University of CambridgeCambridgeUK
| |
Collapse
|
18
|
Wang M, Thomson AW, Yu F, Hazra R, Junagade A, Hu X. Regulatory T lymphocytes as a therapy for ischemic stroke. Semin Immunopathol 2023; 45:329-346. [PMID: 36469056 PMCID: PMC10239790 DOI: 10.1007/s00281-022-00975-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022]
Abstract
Unrestrained excessive inflammatory responses exacerbate ischemic brain injury and impede post-stroke brain recovery. CD4+CD25+Foxp3+ regulatory T (Treg) cells play important immunosuppressive roles to curtail inflammatory responses and regain immune homeostasis after stroke. Accumulating evidence confirms that Treg cells are neuroprotective at the acute stage after stroke and promote brain repair at the chronic phases. The beneficial effects of Treg cells are mediated by diverse mechanisms involving cell-cell interactions and soluble factor release. Multiple types of cells, including both immune cells and non-immune CNS cells, have been identified to be cellular targets of Treg cells. In this review, we summarize recent findings regarding the function of Treg cells in ischemic stroke and the underlying cellular and molecular mechanisms. The protective and reparative properties of Treg cells endorse them as good candidates for immune therapy. Strategies that boost the numbers and functions of Treg cells have been actively developing in the fields of transplantation and autoimmune diseases. We discuss the approaches for Treg cell expansion that have been tested in stroke models. The application of these approaches to stroke patients may bring new hope for stroke treatments.
Collapse
Affiliation(s)
- Miao Wang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Angus W Thomson
- Department of Surgery and Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Rimi Hazra
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Aditi Junagade
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
19
|
Gao Y, Wang T, Cheng Y, Wu Y, Zhu L, Gu Z, Wu Y, Cai L, Wu Y, Zhang Y, Gao C, Li L, Li J, Li Q, Wang Z, Wang Y, Wang F, Luo C, Tao L. Melatonin ameliorates neurological deficits through MT2/IL-33/ferritin H signaling-mediated inhibition of neuroinflammation and ferroptosis after traumatic brain injury. Free Radic Biol Med 2023; 199:97-112. [PMID: 36805045 DOI: 10.1016/j.freeradbiomed.2023.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Although traumatic brain injury (TBI) is a common cause of death and disability worldwide, there is currently a lack of effective therapeutic drugs and targets. To reveal the complex pathophysiologic mechanisms of TBI, we performed transcriptome analysis of the mouse cerebral cortex and immunohistochemical analysis of human cerebral tissues. The genes Mt1, Mt2, Il33, and Fth1 were upregulated post-TBI and enriched in pathways associated with the inflammatory response, oxidative phosphorylation, and ferroptosis. As an agonist of MT1/2, melatonin (MLT) confers anti-oxidant, anti-inflammatory, and anti-ferroptosis effects after TBI. However, whether these upregulated genes and their corresponding pathways are involved in the neuroprotective effect of MLT remains unclear. In this study, interventions to inhibit MT1/2, IL-33, and ferroptosis (i.e., ferritin H (Fth)-KO) were applied post-TBI. The results showed that MLT attenuated TBI-induced cerebral edema and neurological outcomes by inhibiting inflammation and ferroptosis. Mechanistically, MLT mainly suppressed inflammatory responses and ferroptosis via the activation of MT2 and IL-33 pathways. Building on the previous finding that Fth deletion increases susceptibility to ferroptosis post-TBI, we demonstrated that Fth depletion remarkably exacerbated the post-TBI inflammatory response, and abolished the anti-inflammatory effects of MLT both in vivo and in vitro. Furthermore, the post-TBI anti-inflammatory effect of MLT, which occurs by promoting the polarization of CD206+ macrophages, was dependent on Fth. Taken together, these results clarified that MLT alleviates inflammation- and ferroptosis-mediated brain edema and neurological deficits by activating the MT2/IL-33/Fth pathway, which provides a novel target and theoretical basis for MLT to treat TBI patients.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China; Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Cheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yumin Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Luwen Zhu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhiya Gu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Youzhuang Wu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yimin Wu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yidan Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Lili Li
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Zufeng Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China; The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
20
|
Wang YR, Cui WQ, Wu HY, Xu XD, Xu XQ. The role of T cells in acute ischemic stroke. Brain Res Bull 2023; 196:20-33. [PMID: 36906042 DOI: 10.1016/j.brainresbull.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Acute ischemic stroke (AIS) is associated with high rates of disability and mortality, exerting a substantial impact on overall survival and health-related quality of life. Treatment of AIS remains challenging given that the underlying pathologic mechanisms remain unclear. However, recent research has demonstrated that the immune system plays a key role in the development of AIS. Numerous studies have reported infiltration of T cells into ischemic brain tissue. While some types of T cells can promote the development of inflammatory responses and aggravate ischemic damage in patients with AIS, other T cells appear to exert neuroprotective effects via immunosuppression and other mechanisms. In this review, we discuss the recent findings regarding the infiltration of T cells into ischemic brain tissue, and the mechanisms governing how T cells can facilitate tissue injury or neuroprotection in AIS. Factors influencing the function of T cells, such as intestinal microflora and sex differences, are also discussed. We also explore the recent research on the effect of non-coding RNA on T cells after stroke, as well as the potential for specifically targeting T cells in the treatment of stroke patients.
Collapse
Affiliation(s)
- Yi-Ran Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Dong Xu
- Experimental Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
21
|
Immunotherapy as a Treatment for Stroke: Utilizing Regulatory T Cells. BRAIN HEMORRHAGES 2023. [DOI: 10.1016/j.hest.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
22
|
Dai C, Chen H, Jiao M, Zhang N, Tang X, Fan A, Liu S, Qian Z, Wang C, Xu Y, Tan Z, Zeng F, Zheng F. IL-33 Contributes to the Pathological Changes of Hair Follicles in Psoriasis: A Potential Target for Psoriatic Alopecia. Clin Cosmet Investig Dermatol 2023; 16:639-650. [PMID: 36936754 PMCID: PMC10019523 DOI: 10.2147/ccid.s403075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Purpose IL-33 is constitutively expressed in skin tissues. Alopecia, a T cells-driven disorder of the hair follicles (HFs), is a common complication in the development of psoriasis. However, the role of IL-33 in psoriatic alopecia remains uncovered. Here, we investigated the roles of IL-33 in inducing pathological changes of hair follicles in psoriasis. Patients and Methods Clinical samples and imiquimod (IMQ)-induced psoriatic mice samples were used to investigate the pathological changes and T-cell infiltration of HFs. By using immunohistochemistry staining, the distribution and expression alteration of IL-33 in HFs were determined. Next, by using IL-33 and ST2 knockout mice, we investigated the role of IL-33/ST2 axis in the pathological changes of HFs in psoriasis. Meanwhile, recombinant IL-33 protein was subcutaneous injected to confirm its effect. Finally, RNA sequencing was used to clarify the genes and signaling pathways that involved in this process. Differentially expressed genes were further verified by RT-PCR in cultured HFs in vitro. Results We found that the pathological changes of HFs and T cells infiltration in imiquimod-induced psoriatic mice were similar to that in psoriasis patients. The IL-33 positive keratinocytes in the outer root sheath of HFs were increased in both psoriasis patients and psoriatic model mice compared with the controls. By using gene knockout mice, we found that the pathological changes and T cell infiltration were attenuated in IL-33-/- and ST2-/- psoriatic model mice. In addition, subcutaneous injection of recombinant IL-33 exacerbated the pathological changes of HFs and T cell infiltration. RNA sequencing and RT-RCR revealed that IL-33 upregulated the transcription of genes related to keratinocytes proliferation and T lymphocytes chemotaxis. Conclusion Our study identifies that IL-33 promotes the pathological changes of HFs in psoriasis, which contributes to psoriatic alopecia. Inhibition of IL-33 may be a potential therapeutic approach for psoriatic alopecia.
Collapse
Affiliation(s)
- Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guizhou, People’s Republic of China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Anqi Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, People’s Republic of China
| | - Shiwang Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zhigang Qian
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Chenchen Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People’s Republic of China
| | - Fanfan Zeng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Fanfan Zeng, Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, People’s Republic of China, Email
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People’s Republic of China
- Correspondence: Fang Zheng, Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, People’s Republic of China, Email
| |
Collapse
|
23
|
Depletion of regulatory T cells exacerbates inflammatory responses after chronic cerebral hypoperfusion in mice. Mol Cell Neurosci 2022; 123:103788. [PMID: 36302461 DOI: 10.1016/j.mcn.2022.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Vascular cognitive impairment is the second most common cause of dementia which can be induced by chronic cerebral hypoperfusion. Regulatory T cells (Tregs) have been proven to provide beneficial effects in several central nervous system (CNS) diseases, but the roles of Tregs in chronic cerebral hypoperfusion-induced white matter damage have not been explored. In this study, Foxp3-diphtheria toxin receptor (DTR) mice treated with diphtheria toxin (DT) and wild type C57BL/6 mice treated with anti-CD25 antibody were subjected to bilateral carotid artery stenosis (BCAS). Flow cytometry analysis showed Tregs were widely distributed in spleen whereas barely distributed in brain under normal conditions. The distribution of lymphocytes and Tregs did not change significantly in spleen and brain after BCAS. Depletion of Tregs decreased the numbers of mature oligodendrocytes and anti-inflammatory microglia at 14 days and 28 days following BCAS. And pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interferon-γ (IFN-γ) showed higher expression after Tregs depletion. In contrast, Tregs depletion did not change the overall severity of white matter injury as shown by the expression of myelin-associated glycoprotein (MAG), myelin basic protein (MBP), luxol fast blue (LFB) staining and electron microscopy assay. Moreover, Tregs depletion had marginal effect on cognition defects after BCAS revealed by Morris water maze and novel object recognition examination at 28 days after BCAS. In summary, our results suggest an anti-inflammatory role of Tregs with marginal effects on white matter damage in mice after BCAS-induced chronic cerebral hypoperfusion.
Collapse
|
24
|
Xiao F, Liu X, Guo SW. Interleukin-33 Derived from Endometriotic Lesions Promotes Fibrogenesis through Inducing the Production of Profibrotic Cytokines by Regulatory T Cells. Biomedicines 2022; 10:biomedicines10112893. [PMID: 36428461 PMCID: PMC9687776 DOI: 10.3390/biomedicines10112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
In endometriosis, it has been widely believed that the local immunological milieu is Th2-skewed. Regulatory T cells (Tregs) promote fibrogenesis of endometriosis through the transforming growth factor β1 (TGF-β1) and platelet-derived growth factor (PDGF) signaling pathways. We aimed to explore whether Tregs in endometriotic lesions acquire increased production of effector cytokines under the influence of lesion-derived interleukin (IL)-33. We extracted lymphocytes from normal endometrium and ovarian endometrioma to evaluate the expression of IL-4, IL-13, interferon-γ (IFN-γ), TGF-β1, and the IL-33 receptor (ST2) by Tregs from these tissues. Colocalization of IL-33 and FOXP3 in normal endometrium and ovarian endometrioma was evaluated by immunofluorescence. Tregs and endometriotic stromal cells were co-cultured and treated with anti-IL-33 antibody, and the cytokines produced by Tregs were analyzed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Tregs in ovarian endometrioma produced significant amounts of IL-4, IL-13, TGF-β1, and ST2. Colocalization of IL-33 and FOXP3 was detected in ovarian endometrioma. IL-33 from endometriotic stromal cells caused the differentiation of lesional Tregs into type 2 T helper (Th2)-like cells, along with increased production of TGF-β1 by Tregs. Thus, Tregs and endometriotic lesions engage active crosstalk through IL-33 to promote fibrogenesis in endometriosis, and, as such, this finding opens up new avenues to identify novel therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Fengyi Xiao
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xishi Liu
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
| | - Sun-Wei Guo
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
- Correspondence:
| |
Collapse
|
25
|
Mechtouff L, Debs N, Frindel C, Bani-Sadr A, Bochaton T, Paccalet A, Crola Da Silva C, Buisson M, Amaz C, Berthezene Y, Eker OF, Bouin M, de Bourguignon C, Mewton N, Ovize M, Bidaux G, Nighoghossian N, Cho TH. Association of Blood Biomarkers of Inflammation With Penumbra Consumption After Mechanical Thrombectomy in Patients With Acute Ischemic Stroke. Neurology 2022; 99:e2063-e2071. [PMID: 36316128 DOI: 10.1212/wnl.0000000000201038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The objective of this study was to assess the relationship between blood biomarkers of inflammation and lesion growth within the penumbra in acute ischemic stroke (AIS) patients treated with mechanical thrombectomy (MT). METHODS The HIBISCUS-STROKE cohort enrolled patients admitted in the Lyon Stroke Center for an anterior circulation AIS treated with MT after brain MRI assessment. Lesion growth within the penumbra was assessed on day 6 MRI using a voxel-based nonlinear coregistration method and dichotomized into low and high according to the median value. C-reactive protein, interleukin (IL)-6, IL-8, IL-10, monocyte chemoattractant protein-1, soluble tumor necrosis factor receptor I, soluble form suppression of tumorigenicity 2 (sST2), soluble P-selectin, vascular cellular adhesion molecule-1, and matrix metalloproteinase-9 were measured in sera at 4 time points within the first 48 hours. Reperfusion was considered as successful if Thrombolysis in Cerebral Infarction score was 2b/2c/3. A multiple logistic regression model was performed to detect any association between area under the curve (AUC) of these biomarkers within the first 48 hours and a high lesion growth within the penumbra. RESULTS Ninety patients were included. The median lesion growth within the penumbra was 2.3 (0.7-6.2) mL. On multivariable analysis, a high sST2 AUC (OR 3.77, 95% CI 1.36-10.46), a high baseline DWI volume (OR 3.65, 95% CI 1.32-10.12), and a lack of successful reperfusion (OR 0.19, 95% CI 0.04-0.92) were associated with a high lesion growth within the penumbra. When restricting analyses to patients with successful reperfusion (n = 76), a high sST2 AUC (OR 5.03, 95% CI 1.64-15.40), a high baseline DWI volume (OR 3.74, 95% CI 1.22-11.53), and a high penumbra volume (OR 3.25, 95% CI 1.10-9.57) remained associated with a high lesion growth within the penumbra. DISCUSSION High sST2 levels within the first 48 hours are associated with a high lesion growth within the penumbra.
Collapse
Affiliation(s)
- Laura Mechtouff
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France.
| | - Noelie Debs
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Carole Frindel
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Alexandre Bani-Sadr
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Thomas Bochaton
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Alexandre Paccalet
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Claire Crola Da Silva
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Marielle Buisson
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Camille Amaz
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Yves Berthezene
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Omer Faruk Eker
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Morgane Bouin
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Charles de Bourguignon
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Nathan Mewton
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Michel Ovize
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Gabriel Bidaux
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Norbert Nighoghossian
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| | - Tae-Hee Cho
- From the Stroke Department (L.M., N.N., T.-H.C.), Hospices Civils de Lyon; Univ Lyon (L.M., T.B., A.P., C.C.D.S., M.O., G.B., N.N., T.-H.C.), CarMeN Laboratory, INSERM, INRA, University Lyon 1; CREATIS (N.D., C.F., Y.B.), CNRS UMR 5220, INSERM U1044, University Lyon 1; Neuroradiology Department (A.B.-S., Y.B., O.F.E.), Hospices Civils de Lyon; Cardiac Intensive Care Unit (T.B.), Hospices Civils de Lyon; Clinical Investigation Center (M.B., C.A., C.d.B., N.M., M.O.), INSERM 1407, Hospices Civils de Lyon; and Cellule Recherche Imagerie (M.B.), Hospices Civils de Lyon, France
| |
Collapse
|
26
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
27
|
Negative effects of brain regulatory T cells depletion on epilepsy. Prog Neurobiol 2022; 217:102335. [PMID: 35931355 DOI: 10.1016/j.pneurobio.2022.102335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
The infiltration of immune cells is observed in the epileptogenic zone; however, the relationship between epilepsy and regulatory T cells (Tregs) remains only partially understood. We aimed to investigate brain-infiltrating Tregs to reveal their underlying role in epilepsy. We analyzed the infiltration of Tregs in the epileptogenic zones from patients with epilepsy and a pilocarpine-induced temporal lobe epilepsy (TLE) model. Next, we evaluated the effects of brain Treg depletion on neuroinflammation, neuronal loss, oxidative stress, seizure activity and behavioral changes in the pilocarpine model. We also explored the impact of Treg expansion in the brain on seizure activity. There were a large number of Tregs in the epileptogenic zones of human and experimental epilepsy. The number of brain Tregs was negatively correlated with the frequency of seizures in patients with epilepsy. Our further findings demonstrated that brain Treg depletion promoted astrocytosis, microgliosis, inflammatory cytokine production, oxidative stress, and neuronal loss in the hippocampus after status epilepticus (SE). Moreover, brain Treg depletion increased seizure activity and contributed to behavioral impairments in experimental chronic TLE. Interestingly, intracerebroventricular injection of CCL20 amplified Tregs in brain tissue, thereby inhibiting seizure activity. Taken together, our study highlights the therapeutic potential of regulating Tregs in epileptic brain tissue.
Collapse
|
28
|
DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 2022; 44:625-648. [PMID: 35767089 DOI: 10.1007/s00281-022-00943-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Howard DeLong
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Naomi Ohashi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Charles O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Hachmann Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
Xie D, Miao W, Xu F, Yuan C, Li S, Wang C, Junagade A, Hu X. IL-33/ST2 Axis Protects Against Traumatic Brain Injury Through Enhancing the Function of Regulatory T Cells. Front Immunol 2022; 13:860772. [PMID: 35432343 PMCID: PMC9006950 DOI: 10.3389/fimmu.2022.860772] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a devastating condition due to its long-term sequelae on neurological functions. Inflammatory responses after TBI are critical for injury expansion and repair. Recent research in central nervous system (CNS) disorders reveals the importance of IL-33 and its receptor (ST2) as an alarmin system to initiate immune responses. This study explored the role of IL-33/ST2 signaling in TBI. TBI was induced in adult male C57BL/6J mice using a controlled cortical impact (CCI) model. We found that the expression of IL-33 increased in the injured brain and blood, and ST2 was elevated in the circulating and infiltrating regulatory T cells (Tregs) early after TBI. ST2 deficient mice exhibited reduced Treg numbers in the blood and brain 5 days after TBI. The brain lesion size was enlarged in ST2 knockout mice, which was accompanied by deteriorated sensorimotor function 5 days after TBI. In contrast, post-TBI treatment with IL-33 (2 μg/30 g body weight, intranasal) for 3 days significantly reduced brain lesion size and improved neurological functions 5 days after TBI. Meanwhile, IL-33 treatment increased ST2 expression in circulating and brain infiltrating Tregs. To further explore the involvement of Tregs in IL-33/ST2-mediated neuroprotection, Tregs were depleted by CD25 antibody injection. The absence of Tregs significantly reduced the protective effect of IL-33 after TBI. In vitro study confirmed that IL-33 (50 ng/ml) increased the production of IL-10 and TGFβ from activated Tregs and boosted the inhibitory effect of Tregs on T effector cell proliferation. Taken together, this study suggests that the activation of IL-33/ST2 signaling reduces brain lesion size and alleviates functional deficits after TBI at least partially through regulating the Treg response. IL-33 may represent a new immune therapeutic strategy to improve TBI outcomes.
Collapse
Affiliation(s)
- Di Xie
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wanying Miao
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fei Xu
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| | - Chunling Yuan
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sicheng Li
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chujun Wang
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aditi Junagade
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaoming Hu
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Yan J, Li A, Chen X, Cao K, Song M, Guo S, Li Z, Huang S, Li Z, Xu D, Wang Y, Dai X, Feng D, Huo Y, He J, Xu Y. Glycolysis inhibition ameliorates brain injury after ischemic stroke by promoting the function of myeloid-derived suppressor cells. Pharmacol Res 2022; 179:106208. [PMID: 35398239 PMCID: PMC10364470 DOI: 10.1016/j.phrs.2022.106208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells which are immunosuppressive and glycolytically inactive in inflammatory diseases. However, it is unknown whether MDSCs contribute to ischemic stroke and how glycolysis regulates MDSC function in such a context. Here, we showed that MDSCs arise in the blood of patients at early phase of stroke. Similar results were observed in temporary middle cerebral artery occlusion-induced cerebral ischemic mice. Pharmaceutical exhaustion of MDSCs aggravated, while adoptive transfer of MDSCs rescued the ischemic brain injury. However, the differentiation of MDSCs into immunopotent myeloid cells which coincides with increased glycolysis was observed in the context of ischemic stroke. Mechanistically, the glycolytic product lactate autonomously induces MDSC differentiation through activation of mTORC1, and paracrinely activates Th1 and Th17 cells. Moreover, gene knockout or inhibition of the glycolytic enzyme PFKFB3 increased endogenous MDSCs by blocking their differentiation, and improved ischemic brain injury. Collectively, these results revealed that glycolytic switch decreases the immunosuppressive and neuroprotective role of MDSCs in ischemic stroke and pharmacological targeting MDSCs via glycolysis inhibition constitutes a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Jingwei Yan
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Anqi Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xianglin Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kaixiang Cao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mingchuan Song
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuai Guo
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zou Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuqi Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ziling Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Danghan Xu
- Department of Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyan Dai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Du Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jun He
- Department of Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yiming Xu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Lab of Respiratory Disease; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, Chen J, Qiu S. Interleukins and Ischemic Stroke. Front Immunol 2022; 13:828447. [PMID: 35173738 PMCID: PMC8841354 DOI: 10.3389/fimmu.2022.828447] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke after cerebral artery occlusion is one of the major causes of chronic disability worldwide. Interleukins (ILs) play a bidirectional role in ischemic stroke through information transmission, activation and regulation of immune cells, mediating the activation, multiplication and differentiation of T and B cells and in the inflammatory reaction. Crosstalk between different ILs in different immune cells also impact the outcome of ischemic stroke. This overview is aimed to roughly discuss the multiple roles of ILs after ischemic stroke. The roles of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-16, IL-17, IL-18, IL-19, IL-21, IL-22, IL-23, IL-32, IL-33, IL-34, IL-37, and IL-38 in ischemic stroke were discussed in this review.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siping Hu
- Department of Anesthesiology, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Sun
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyao Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junjing Chen
- Department of General Surgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- *Correspondence: Junjing Chen, ; Sheng Qiu,
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
- *Correspondence: Junjing Chen, ; Sheng Qiu,
| |
Collapse
|
32
|
Abstract
Recent evidence shows that when ischemic stroke (IS) occurs, the BBB would be destructed, thereby promoting the immune cells to migrate into the brain, suggesting that the immune responses can play a vital role in the pathology of IS. As an essential subpopulation of immunosuppressive T cells, regulatory T (Treg) cells are involved in maintaining immune homeostasis and suppressing immune responses in the pathophysiological conditions of IS. During the past decades, the regulatory role of Treg cells has attracted the interest of numerous researchers. However, whether they are beneficial or detrimental to the outcomes of IS remains controversial. Moreover, Treg cells exert distinctive effects in the different stages of IS. Therefore, it is urgent to elucidate how Treg cells modulate the immune responses induced by IS. In this review, we describe how Treg cells fluctuate and play a role in the regulation of immune responses after IS in both experimental animals and humans, and summarize their biological functions and mechanisms in both CNS and periphery. We also discuss how Treg cells participate in poststroke inflammation and immunodepression and the potential of Treg cells as a novel therapeutic approach.
Collapse
|
33
|
Yao D, Zhang S, Hu Z, Luo H, Mao C, Fan Y, Tang M, Liu F, Shen S, Fan L, Li M, Shi J, Li J, Ma D, Xu Y, Shi C. CHIP ameliorates cerebral ischemia-reperfusion injury by attenuating necroptosis and inflammation. Aging (Albany NY) 2021; 13:25564-25577. [PMID: 34905731 PMCID: PMC8714161 DOI: 10.18632/aging.203774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023]
Abstract
Blood reperfusion of ischemic cerebral tissue may cause cerebral ischemia-reperfusion (CIR) injury. Necroptosis and inflammation have been demonstrated to be involved in the disease-related process of CIR injury. The E3 ubiquitin ligase carboxyl terminus of Hsp70-interacting protein (CHIP) can modulate multiple cellular signaling processes, including necroptosis and inflammation. Numerous studies have demonstrated the neuroprotective effects of CHIP on multiple central nervous system (CNS) diseases. However, the effects of CHIP on CIR injury have not been fully explored. We hypothesize that CHIP can exert neuroprotective effects by attenuating necroptosis and inflammation during CIR injury. In the present study, adult wild-type (WT) C57BL/6 mice and CHIP knock-in (KI) mice with a C57BL/6 background and CHIP overexpression in neural tissue underwent middle cerebral artery occlusion (MCAO) surgery to simulate CIR onset. Our data indicated that CHIP expression in the peri-infarct tissue was markedly increased after MCAO surgery. Compared with WT mice, CHIP KI mice significantly improved neurological deficit scores, decreased cerebral infarct volume, and attenuated brain edema and neuronal damage. Meanwhile, CHIP overexpression attenuated necroptosis and inflammation induced by MCAO surgery. These findings indicated that overexpression of CHIP might exert neuroprotective effects by attenuating necroptosis and inflammation during CIR injury, and increasing CHIP levels may be a potential strategy in cerebrovascular disease therapy.
Collapse
Affiliation(s)
- Dabao Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Si Shen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jingjing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jiadi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
34
|
Serum IL-33 as a biomarker in different diseases: useful parameter or much need for clarification? J Circ Biomark 2021; 10:20-25. [PMID: 34858526 PMCID: PMC8634375 DOI: 10.33393/jcb.2021.2327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, is critically involved in the modulation of the activity of a diverse range of immunocompetent cells. Essential roles have been implicated in cardioprotection, in both innate and adaptive immune responses in mucosal organs, and in the maintenance of adipose tissue cells. Over the past 10 years, several studies evaluated the usability of IL-33 as a biomarker in diseases of inflammatory and noninflammatory origin. Our group is currently evaluating the predictive role of serum IL-33 in acute kidney injury (AKI). The aim of the article is to discuss selected studies on IL-33 in different diseases and its potential role as a biomarker molecule.
Collapse
|
35
|
Xiang Y, Dai J, Xu L, Li X, Jiang J, Xu J. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci 2021; 287:120117. [PMID: 34740577 DOI: 10.1016/j.lfs.2021.120117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Denervated skeletal muscular atrophy is primarily characterized by loss of muscle strength and mass and an unideal functional recovery of the muscle after extended denervation. This review emphasizes the interaction between the immune system and the denervated skeletal muscle. Immune cells such as neutrophils, macrophages and T-cells are activated and migrate to denervated muscle, where they release a high concentration of cytokines and chemokines. The migration of these immune cells, the transformation of different functional immune cell subtypes, and the cytokine network in the immune microenvironment may be involved in the regulatory process of muscle atrophy or repair. However, the exact mechanisms of the interaction between these immune cells and immune molecules in skeletal muscles are unclear. In this paper, the immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury is reviewed.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Xiaokang Li
- Natl Res Inst Child Hlth & Dev, Div Transplantat Immunol, Tokyo, Japan
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
36
|
Mechtouff L, Paccalet A, Crola Da Silva C, Buisson M, Mewton N, Amaz C, Bonnefoy-Cudraz E, Leboube S, Cho TH, Nighoghossian N, Ovize M, Bochaton T. Prognosis value of serum soluble ST2 level in acute ischemic stroke and STEMI patients in the era of mechanical reperfusion therapy. J Neurol 2021; 269:2641-2648. [PMID: 34694426 DOI: 10.1007/s00415-021-10865-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Soluble form suppression of tumorigenicity 2 (sST2) is known to have prognostic value in ST-elevation myocardial infarction (STEMI) and could impact mortality after acute ischemic stroke (AIS). However, before considering sST2 as a therapeutic target, the kinetics of release and its association with adverse clinical events in both STEMI and AIS patients have to be determined. METHODS We prospectively enrolled 251 STEMI patients, treated with primary percutaneous coronary intervention, and 152 AIS patients treated with mechanical thrombectomy. We evaluated the level of sST2 in patient sera at five time point (admission, 4, 24, 48 h and 1 month from admission for STEMI patients and admission, 6, 24, 48 h and 3 months from admission for AIS patients). Major adverse clinical events (MACE) (all-cause death, acute myocardial infarction, stroke or hospitalization for heart failure) in STEMI patients and all-cause death in AIS patients were recorded during a 12-month follow-up. RESULTS Mean age of the study population was 59 ± 12 and 69 ± 15 years in STEMI and AIS patients, respectively. In STEMI patients, sST2 peaked 24 h after admission (25.5 ng/mL interquartile range (IQR) [14.9-29.1]) whereas an earlier and lower peak was observed in AIS patients (16.8 ng/mL IQR [15.2-18.3] at 6 h). Twenty-five (10.0%) STEMI patients experienced a MACE and 12 (7.9%) AIS patients had all-cause death within the first 12 months. A high level of sST2 at 24 h was associated with MACE in STEMI patients (hazard ratio (HR) = 2.5; 95% confidence interval (CI) [1.1-5.6], p = 0.03) and all-cause death in AIS patients (HR = 11.7; 95% CI [3.8-36.2], p < 0.01) within the first 12 months. CONCLUSIONS The study highlights that sST2 levels at 24 h are associated with an increased risk to adverse clinical events in both diseases.
Collapse
Affiliation(s)
- Laura Mechtouff
- Stroke Center, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France.
- CarMeN Laboratory, INSERM U1060, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France.
| | - Alexandre Paccalet
- CarMeN Laboratory, INSERM U1060, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France
| | - Claire Crola Da Silva
- CarMeN Laboratory, INSERM U1060, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France
| | - Marielle Buisson
- Centre d'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, 59 boulevard Pinel, 69500, Bron, France
| | - Nathan Mewton
- CarMeN Laboratory, INSERM U1060, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France
- Centre d'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, 59 boulevard Pinel, 69500, Bron, France
| | - Camille Amaz
- Centre d'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, 59 boulevard Pinel, 69500, Bron, France
| | - Eric Bonnefoy-Cudraz
- CarMeN Laboratory, INSERM U1060, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel, Hospices Civils de Lyon, 59 boulevard Pinel, 69500, Bron, France
| | - Simon Leboube
- CarMeN Laboratory, INSERM U1060, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France
- Service d'explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, 59 boulevard Pinel, 69500, Bron, France
| | - Tae-Hee Cho
- Stroke Center, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France
- CarMeN Laboratory, INSERM U1060, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France
| | - Norbert Nighoghossian
- Stroke Center, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France
- CarMeN Laboratory, INSERM U1060, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France
| | - Michel Ovize
- CarMeN Laboratory, INSERM U1060, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France
- Centre d'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, 59 boulevard Pinel, 69500, Bron, France
- Service d'explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, 59 boulevard Pinel, 69500, Bron, France
| | - Thomas Bochaton
- CarMeN Laboratory, INSERM U1060, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel, Hospices Civils de Lyon, 59 boulevard Pinel, 69500, Bron, France
| |
Collapse
|
37
|
Kuhn J, Vainchtein ID, Braz JM, Hamel K, Bernstein M, Craik V, Dahlgren MW, Ortiz-Carpena J, Molofsky A, Molofsky A, Basbaum A. Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice. eLife 2021; 10:69056. [PMID: 34652270 PMCID: PMC8639143 DOI: 10.7554/elife.69056] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury-induced neuropathic pain is a chronic and debilitating condition characterized by mechanical hypersensitivity. We previously identified microglial activation via release of colony-stimulating factor 1 (CSF1) from injured sensory neurons as a mechanism contributing to nerve injury-induced pain. Here, we show that intrathecal administration of CSF1, even in the absence of injury, is sufficient to induce pain behavior, but only in male mice. Transcriptional profiling and morphologic analyses after intrathecal CSF1 showed robust immune activation in male but not female microglia. CSF1 also induced marked expansion of lymphocytes within the spinal cord meninges, with preferential expansion of regulatory T-cells (Tregs) in female mice. Consistent with the hypothesis that Tregs actively suppress microglial activation in females, Treg deficient (Foxp3DTR) female mice showed increased CSF1-induced microglial activation and pain hypersensitivity equivalent to males. We conclude that sexual dimorphism in the contribution of microglia to pain results from Treg-mediated suppression of microglial activation and pain hypersensitivity in female mice.
Collapse
Affiliation(s)
- Julia Kuhn
- Anatomy, University of California San Francisco, San Francisco, United States
| | - Ilia D Vainchtein
- Psychiatry, University of California San Francisco, San Francisco, United States
| | - Joao M Braz
- Anatomy, University of California, San Francisco, San Francisco, United States
| | - Katherine Hamel
- Anatomy, University of California San Francisco, San Francisco, United States
| | - Mollie Bernstein
- Anatomy, University of California, San Francisco, San Francisco, United States
| | - Veronica Craik
- Anatomy, University of California, San Francisco, San Francisco, United States
| | - Madelene W Dahlgren
- Laboratory Medicine, University California San Francisco, San Francisco, United States
| | - Jorge Ortiz-Carpena
- Laboratory Medicine, University of California San Francisco, San Francisco, United States
| | - Ari Molofsky
- Laboratory Medicine, University of California San Francisco, San Francisco, United States
| | - Anna Molofsky
- Laboratory Medicine, University of California San Francisco, San Francisco, United States
| | - Allan Basbaum
- Anatomy, University of California San Francisco, San Francisco, United States
| |
Collapse
|
38
|
Role of Interleukin-1 Receptor-Like 1 (ST2) in Cerebrovascular Disease. Neurocrit Care 2021; 35:887-893. [PMID: 34231185 DOI: 10.1007/s12028-021-01284-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
Following both ischemic and hemorrhagic stroke, innate immune cells initiate a proinflammatory response that further exacerbate tissue injury in the acute phase, but these cells also play an important reparative role thereafter. Numerous cytokines and signaling pathways have been implicated in driving the deleterious proinflammatory response, but less is known about the mediators that connect the initial vascular injury to the systemic immune response and the relationship between proinflammatory and reparative immune responses. The Interleukin-33 (IL-33) and serum stimulation-2 (ST2) axis is an interleukin signaling pathway that is a prime candidate to fulfill this role. In this review, we describe the biology of the IL-33/ST2 system, present evidence that its soluble decoy receptor, soluble ST2 (sST2), plays a key role in secondary neurologic injury after stroke, and discuss this in the context of the known role of IL-33/ST2 in other disease.
Collapse
|
39
|
Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol 2021; 12:678744. [PMID: 34248961 PMCID: PMC8260997 DOI: 10.3389/fimmu.2021.678744] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Blood-Brain Barrier (BBB) disruption is an important pathophysiological process of acute ischemic stroke (AIS), resulting in devastating malignant brain edema and hemorrhagic transformation. The rapid activation of immune cells plays a critical role in BBB disruption after ischemic stroke. Infiltrating blood-borne immune cells (neutrophils, monocytes, and T lymphocytes) increase BBB permeability, as they cause microvascular disorder and secrete inflammation-associated molecules. In contrast, they promote BBB repair and angiogenesis in the latter phase of ischemic stroke. The profound immunological effects of cerebral immune cells (microglia, astrocytes, and pericytes) on BBB disruption have been underestimated in ischemic stroke. Post-stroke microglia and astrocytes can adopt both an M1/A1 or M2/A2 phenotype, which influence BBB integrity differently. However, whether pericytes acquire microglia phenotype and exert immunological effects on the BBB remains controversial. Thus, better understanding the inflammatory mechanism underlying BBB disruption can lead to the identification of more promising biological targets to develop treatments that minimize the onset of life-threatening complications and to improve existing treatments in patients. However, early attempts to inhibit the infiltration of circulating immune cells into the brain by blocking adhesion molecules, that were successful in experimental stroke failed in clinical trials. Therefore, new immunoregulatory therapeutic strategies for acute ischemic stroke are desperately warranted. Herein, we highlight the role of circulating and cerebral immune cells in BBB disruption and the crosstalk between them following acute ischemic stroke. Using a robust theoretical background, we discuss potential and effective immunotherapeutic targets to regulate BBB permeability after acute ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Exp Neurol 2021; 343:113782. [PMID: 34116055 DOI: 10.1016/j.expneurol.2021.113782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022]
Abstract
The inflammatory and immune processes are key pathophysiological processes in the ischemic stroke, including leukocyte infiltration and destruction of the blood-brain-barrier (BBB), which further lead to increased post-ischemic inflammation. Regulatory T cells (Tregs) are a specific subset of T lymphocytes that play a pivotal role in suppressing the activation of immune system, maintaining immune homeostasis, and regulating inflammation induced by pathogens and environmental toxins. We would like to discuss the paradox function of Tregs in ischemic stroke. The accumulating data indicate that Tregs are involved in the immune regulation and self-tolerance after ischemic stroke, contributing the outcome of ischemic stroke. Tregs could resist immune response overactivation, and were supposed to be the endogenous regulatory factors to control the immune response of ischemic brain. Although, there are still some controversies and unresolved issues about the functions and mechanisms of Tregs in ischemic stroke. More and more attention has been paid to Tregs in the pathogenesis of ischemic stroke and it might be a potential therapeutic target in the future. In this review, we will summarize the recent findings on the specific functions and mechanisms of Tregs and discuss its potential therapeutic role in ischemic stroke.
Collapse
|
41
|
Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X, Gu L. Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation 2021; 18:123. [PMID: 34059091 PMCID: PMC8166383 DOI: 10.1186/s12974-021-02137-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is a member of the NLR family of inherent immune cell sensors. The NLRP3 inflammasome can detect tissue damage and pathogen invasion through innate immune cell sensor components commonly known as pattern recognition receptors (PRRs). PRRs promote activation of nuclear factor kappa B (NF-κB) pathways and the mitogen-activated protein kinase (MAPK) pathway, thus increasing the transcription of genes encoding proteins related to the NLRP3 inflammasome. The NLRP3 inflammasome is a complex with multiple components, including an NAIP, CIITA, HET-E, and TP1 (NACHT) domain; apoptosis-associated speck-like protein containing a CARD (ASC); and a leucine-rich repeat (LRR) domain. After ischemic stroke, the NLRP3 inflammasome can produce numerous proinflammatory cytokines, mediating nerve cell dysfunction and brain edema and ultimately leading to nerve cell death once activated. Ischemic stroke is a disease with high rates of mortality and disability worldwide and is being observed in increasingly younger populations. To date, there are no clearly effective therapeutic strategies for the clinical treatment of ischemic stroke. Understanding the NLRP3 inflammasome may provide novel ideas and approaches because targeting of upstream and downstream molecules in the NLRP3 pathway shows promise for ischemic stroke therapy. In this manuscript, we summarize the existing evidence regarding the composition and activation of the NLRP3 inflammasome, the molecules involved in inflammatory pathways, and corresponding drugs or molecules that exert effects after cerebral ischemia. This evidence may provide possible targets or new strategies for ischemic stroke therapy.
Collapse
Affiliation(s)
- Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonggang Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
42
|
Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, Mao L, Wang H, Chen Z, Yang X. Therapeutic Opportunities of Interleukin-33 in the Central Nervous System. Front Immunol 2021; 12:654626. [PMID: 34079543 PMCID: PMC8165230 DOI: 10.3389/fimmu.2021.654626] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is involved in various diseases. IL-33 exerts its effects via its heterodimeric receptor complex, which comprises suppression of tumorigenicity 2 (ST2) and the IL-1 receptor accessory protein (IL-1RAP). Increasing evidence has demonstrated that IL-33/ST2 signaling plays diverse but crucial roles in the homeostasis of the central nervous system (CNS) and the pathogenesis of CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, infection, trauma, and ischemic stroke. In the current review, we focus on the functional roles and cellular signaling mechanisms of IL-33 in the CNS and evaluate the potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Yun Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Wen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wendong You
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shuang Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Zhao H, Li F, Huang Y, Zhang S, Li L, Yang Z, Wang R, Tao Z, Han Z, Fan J, Zheng Y, Ma Q, Luo Y. Prognostic significance of plasma IL-2 and sIL-2Rα in patients with first-ever ischaemic stroke. J Neuroinflammation 2020; 17:237. [PMID: 32795376 PMCID: PMC7427726 DOI: 10.1186/s12974-020-01920-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022] Open
Abstract
Background An imbalance between circulating neuroprotective and neurotoxic T cell subsets leads to poor prognosis in acute ischaemic stroke (AIS). Preclinical studies have indicated that the soluble form of the interleukin-2 receptor α (sIL-2Rα)-IL-2 complex regulates T cell differentiation. However, the association between sIL-2Rα levels and AIS remains unclear. Methods A total of 201 first-ever AIS patients within 24 h after stroke onset and 76 control subjects were recruited. The National Institutes of Health Stroke Scale (NIHSS) score and 3-month functional outcome (modified Rankin Scale [mRS] score) at admission were assessed. Plasma sIL-2Rα and IL-2 levels at admission were measured. Prognostic significance was identified by using univariate and multivariate logistic regression analyses. Results Patients with poor functional outcomes at 3 months had significantly higher levels of sIL-2Rα and lower levels of IL-2 than patients with good outcomes. Moreover, sIL-2Rα levels showed a strong positive correlation with NIHSS and mRS scores (p < 0.0001), whereas IL-2 levels were negatively correlated with mRS scores (p < 0.01). Univariate analyses showed that higher sIL-2Rα and IL-2 levels were associated with an increased and reduced risk of unfavourable outcomes, respectively. After adjusting for confounding variables, the sIL-2Rα level remained independently associated with an increased risk of an unfavourable outcome, and adding sIL-2Rα levels to the conventional risk factor model significantly improved risk reclassification (net reclassification improvement 17.56%, p = 0.003; integrated discrimination improvement 5.78%, p = 0.0003). Conclusions sIL-2Rα levels represent a novel, independent prognostic marker that can improve the currently used risk stratification of AIS patients. Our findings also highlight that elevated plasma sIL-2Rα and IL-2 levels manifested opposite correlations with functional outcome, underlining the importance of IL-2/IL-2R autocrine loops in AIS.
Collapse
Affiliation(s)
- Haiping Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Fangfang Li
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Yuyou Huang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Sijia Zhang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Lingzhi Li
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Zhenhong Yang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Rongliang Wang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Zhen Tao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Ziping Han
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Junfen Fan
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Yangmin Zheng
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Qingfeng Ma
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, China. .,National Clinical Research Center for Geriatric Disorders, Beijing, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
44
|
Amruta N, Rahman AA, Pinteaux E, Bix G. Neuroinflammation and fibrosis in stroke: The good, the bad and the ugly. J Neuroimmunol 2020; 346:577318. [PMID: 32682140 PMCID: PMC7794086 DOI: 10.1016/j.jneuroim.2020.577318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
Stroke is the leading cause of death and the main cause of disability in surviving patients. The detrimental interaction between immune cells, glial cells, and matrix components in stroke pathology results in persistent inflammation that progresses to fibrosis. A substantial effort is being directed toward understanding the exact neuroinflammatory events that take place as a result of stroke. The initiation of a potent cytokine response, along with immune cell activation and infiltration in the ischemic core, has massive acute deleterious effects, generally exacerbated by comorbid inflammatory conditions. There is secondary neuroinflammation that promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. This highlights the need for a better understanding of the neuroinflammatory and fibrotic processes, as well as the need to identify new mechanisms and potential modulators. In this review, we summarize several aspects of stroke-induced inflammation, fibrosis, and include a discussion of cytokine inhibitors/inducers, immune cells, and fibro-inflammation signaling inhibitors in order to identify new pharmacological means of intervention.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Abir A Rahman
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Faculty of Biology, Medicine and Health, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|