1
|
Nie Z, Bonnert R, Tsien J, Deng X, Higgs C, El Mazouni F, Zhang X, Li R, Ho N, Feher V, Paulsen J, Shackleford DM, Katneni K, Chen G, Ng ACF, McInerney M, Wang W, Saunders J, Collins D, Yan D, Li P, Campbell M, Patil R, Ghoshal A, Mondal P, Kundu A, Chittimalla R, Mahadeva M, Kokkonda S, White J, Das R, Mukherjee P, Angulo-Barturen I, Jiménez-Díaz MB, Malmstrom R, Lawrenz M, Rodriguez-Granillo A, Rathod PK, Tomchick DR, Palmer MJ, Laleu B, Qin T, Charman SA, Phillips MA. Structure-Based Discovery and Development of Highly Potent Dihydroorotate Dehydrogenase Inhibitors for Malaria Chemoprevention. J Med Chem 2025; 68:590-637. [PMID: 39710971 PMCID: PMC11726676 DOI: 10.1021/acs.jmedchem.4c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
Malaria remains a serious global health challenge, yet treatment and control programs are threatened by drug resistance. Dihydroorotate dehydrogenase (DHODH) was clinically validated as a target for treatment and prevention of malaria through human studies with DSM265, but currently no drugs against this target are in clinical use. We used structure-based computational tools including free energy perturbation (FEP+) to discover highly ligand efficient, potent, and selective pyrazole-based Plasmodium DHODH inhibitors through a scaffold hop from a pyrrole-based series. Optimized pyrazole-based compounds were identified with low nM-to-pM Plasmodium falciparum cell potency and oral activity in a humanized SCID mouse malaria infection model. The lead compound DSM1465 is more potent and has improved absorption, distribution, metabolism and excretion/pharmacokinetic (ADME/PK) properties compared to DSM265 that support the potential for once-monthly chemoprevention at a low dose. This compound meets the objective of identifying compounds with potential to be used for monthly chemoprevention in Africa to support malaria elimination efforts.
Collapse
Affiliation(s)
- Zhe Nie
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | - Roger Bonnert
- MMV
Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Jet Tsien
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Xiaoyi Deng
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Christopher Higgs
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | - Farah El Mazouni
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Xiaoyu Zhang
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Renzhe Li
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Nhi Ho
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Victoria Feher
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | - Janet Paulsen
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | - David M. Shackleford
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kasiram Katneni
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gong Chen
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alice C. F. Ng
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Mitchell McInerney
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Wen Wang
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jessica Saunders
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Daniel Collins
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Dandan Yan
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Peng Li
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Campbell
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rahul Patil
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Atanu Ghoshal
- TCGLS, Block BN, Plot
7, Salt Lake Electronics
Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Pallab Mondal
- TCGLS, Block BN, Plot
7, Salt Lake Electronics
Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Abhijit Kundu
- TCGLS, Block BN, Plot
7, Salt Lake Electronics
Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Rajesh Chittimalla
- Syngene
Scientific Solutions Limited, KSP 9000 Campus, Plot No. 7, Neovantage, Synergy Square 2, Kolthur
Village, Shameerpet Mandal, Medchal Malkajgiri District, Hyderabad 500 078, Telangana, India
| | - Muralikumar Mahadeva
- Syngene
Scientific Solutions Limited, KSP 9000 Campus, Plot No. 7, Neovantage, Synergy Square 2, Kolthur
Village, Shameerpet Mandal, Medchal Malkajgiri District, Hyderabad 500 078, Telangana, India
| | - Sreekanth Kokkonda
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John White
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rishi Das
- TCGLS, Block BN, Plot
7, Salt Lake Electronics
Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Partha Mukherjee
- TCGLS, Block BN, Plot
7, Salt Lake Electronics
Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Iñigo Angulo-Barturen
- The
Art of Discovery, Biscay Science and Technology
Park, Astondo Bidea,
BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- The
Art of Discovery, Biscay Science and Technology
Park, Astondo Bidea,
BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Robert Malmstrom
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | - Morgan Lawrenz
- Schrödinger
Inc., 1540 Broadway, New York, New York 10036, United States
| | | | - Pradipsinh K. Rathod
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Diana R. Tomchick
- Department
of Biophysics, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Michael J. Palmer
- MMV
Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Benoît Laleu
- MMV
Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Tian Qin
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Susan A. Charman
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Margaret A. Phillips
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
2
|
Graumans W, van der Starre A, Stoter R, van Gemert GJ, Andolina C, Ramjith J, Kooij T, Bousema T, Proellochs N. AlbuMAX supplemented media induces the formation of transmission-competent P. falciparum gametocytes. Mol Biochem Parasitol 2024; 259:111634. [PMID: 38823647 DOI: 10.1016/j.molbiopara.2024.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Asexual blood stage culture of Plasmodium falciparum is routinely performed but reproducibly inducing commitment to and maturation of viable gametocytes remains difficult. Culture media can be supplemented with human serum substitutes to induce commitment but these generally only allow for long-term culture of asexual parasites and not transmission-competent gametocytes due to their different lipid composition. Recent insights demonstrated the important roles lipids play in sexual commitment; elaborating on this we exposed ring stage parasites (20-24 hours hpi) for one day to AlbuMAX supplemented media to trigger induction to gametocytogenesis. We observed a significant increase in gametocytes after AlbuMAX induction compared to serum. We also tested the transmission potential of AlbuMAX inducted gametocytes and found a significant higher oocyst intensity compared to serum. We conclude that AlbuMAX supplemented media induces commitment, allows a more stable and predictable production of transmittable gametocytes than serum alone.
Collapse
Affiliation(s)
- Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Alex van der Starre
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Taco Kooij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas Proellochs
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Lawong A, Gahalawat S, Ray S, Ho N, Han Y, Ward KE, Deng X, Chen Z, Kumar A, Xing C, Hosangadi V, Fairhurst KJ, Tashiro K, Liszczak G, Shackleford DM, Katneni K, Chen G, Saunders J, Crighton E, Casas A, Robinson JJ, Imlay LS, Zhang X, Lemoff A, Zhao Z, Angulo-Barturen I, Jiménez-Díaz MB, Wittlin S, Campbell SF, Fidock DA, Laleu B, Charman SA, Ready JM, Phillips MA. Identification of potent and reversible piperidine carboxamides that are species-selective orally active proteasome inhibitors to treat malaria. Cell Chem Biol 2024; 31:1503-1517.e19. [PMID: 39084225 PMCID: PMC11531662 DOI: 10.1016/j.chembiol.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Malaria remains a global health concern as drug resistance threatens treatment programs. We identified a piperidine carboxamide (SW042) with anti-malarial activity by phenotypic screening. Selection of SW042-resistant Plasmodium falciparum (Pf) parasites revealed point mutations in the Pf_proteasome β5 active-site (Pfβ5). A potent analog (SW584) showed efficacy in a mouse model of human malaria after oral dosing. SW584 had a low propensity to generate resistance (minimum inoculum for resistance [MIR] >109) and was synergistic with dihydroartemisinin. Pf_proteasome purification was facilitated by His8-tag introduction onto β7. Inhibition of Pfβ5 correlated with parasite killing, without inhibiting human proteasome isoforms or showing cytotoxicity. The Pf_proteasome_SW584 cryoelectron microscopy (cryo-EM) structure showed that SW584 bound non-covalently distal from the catalytic threonine, in an unexplored pocket at the β5/β6/β3 subunit interface that has species differences between Pf and human proteasomes. Identification of a reversible, species selective, orally active series with low resistance propensity provides a path for drugging this essential target.
Collapse
Affiliation(s)
- Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Sneha Ray
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nhi Ho
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Kurt E Ward
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaoyi Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Department of Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Chao Xing
- Department of Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Varun Hosangadi
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kate J Fairhurst
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kyuto Tashiro
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Glen Liszczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Arturo Casas
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Joshua J Robinson
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Leah S Imlay
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Xiaoyu Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iñigo Angulo-Barturen
- The Art of Discovery, Biscay Science and Technology Park, Astrondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- The Art of Discovery, Biscay Science and Technology Park, Astrondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | | | - David A Fidock
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Binns HC, Alipour E, Sherlock CE, Nahid DS, Whitesides JF, Cox AO, Furdui CM, Marrs GS, Kim-Shapiro DB, Cordy RJ. Amino acid supplementation confers protection to red blood cells before Plasmodium falciparum bystander stress. Blood Adv 2024; 8:2552-2564. [PMID: 38537079 PMCID: PMC11131086 DOI: 10.1182/bloodadvances.2023010820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
ABSTRACT Malaria is a highly oxidative parasitic disease in which anemia is the most common clinical symptom. A major contributor to the malarial anemia pathogenesis is the destruction of bystander, uninfected red blood cells (RBCs). Metabolic fluctuations are known to occur in the plasma of individuals with acute malaria, emphasizing the role of metabolic changes in disease progression and severity. Here, we report conditioned medium from Plasmodium falciparum culture induces oxidative stress in uninfected, catalase-depleted RBCs. As cell-permeable precursors to glutathione, we demonstrate the benefit of pre-exposure to exogenous glutamine, cysteine, and glycine amino acids for RBCs. Importantly, this pretreatment intrinsically prepares RBCs to mitigate oxidative stress.
Collapse
Affiliation(s)
- Heather Colvin Binns
- Department of Biology, Wake Forest University, Winston-Salem, NC
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC
| | | | - Dinah S. Nahid
- Department of Biology, Wake Forest University, Winston-Salem, NC
| | - John F. Whitesides
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Anderson O’Brien Cox
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Cristina M. Furdui
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Glen S. Marrs
- Department of Biology, Wake Forest University, Winston-Salem, NC
| | | | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, NC
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
5
|
Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12:900. [PMID: 37513747 PMCID: PMC10384318 DOI: 10.3390/pathogens12070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successfully developed in 1976, the continuous in vitro culture of Plasmodium falciparum has many applications in the field of malaria research. It has become an important experimental model that directly uses a human pathogen responsible for a high prevalence of morbidity and mortality in many parts of the world and is a major source of biological material for immunological, biochemical, molecular, and pharmacological studies. Until present, the basic techniques described by Trager and Jensen and Haynes et al. remain unchanged in many malaria research laboratories. Nonetheless, different factors, including culture media, buffers, serum substitutes and supplements, sources of erythrocytes, and conditions of incubation (especially oxygen concentration), have been modified by different investigators to adapt the original technique in their laboratories or enhance the in vitro growth of the parasites. The possible effects and benefits of these modifications for the continuous cultivation of asexual intraerythrocytic stages of P. falciparum, as well as future challenges in developing a serum-free cultivation system and axenic cultures, are discussed.
Collapse
Affiliation(s)
- Leonardo K Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Unité Mixte de Recherche (UMR) Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
6
|
Rupar MJ, Sasserath T, Smith E, Comiter B, Sriram N, Long CJ, McAleer CW, Hickman JJ. Development of a human malaria-on-a-chip disease model for drug efficacy and off-target toxicity evaluation. Sci Rep 2023; 13:10509. [PMID: 37380653 DOI: 10.1038/s41598-023-35694-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
A functional, multi-organ, serum-free system was developed for the culture of P. falciparum in an attempt to establish innovative platforms for therapeutic drug development. It contains 4 human organ constructs including hepatocytes, splenocytes, endothelial cells, as well as recirculating red blood cells which allow for infection with the parasite. Two strains of P. falciparum were used: the 3D7 strain, which is sensitive to chloroquine; and the W2 strain, which is resistant to chloroquine. The maintenance of functional cells was successfully demonstrated both in healthy and diseased conditions for 7 days in the recirculating microfluidic model. To demonstrate an effective platform for therapeutic development, systems infected with the 3D7 strain were treated with chloroquine which significantly decreased parasitemia, with recrudescence observed after 5 days. Conversely, when the W2 systems were dosed with chloroquine, parasitemia levels were moderately decreased when compared to the 3D7 model. The system also allows for the concurrent evaluation of off-target toxicity for the anti-malarial treatment in a dose dependent manner which indicates this model could be utilized for therapeutic index determination. The work described here establishes a new approach to the evaluation of anti-malarial therapeutics in a realistic human model with recirculating blood cells for 7 days.
Collapse
Affiliation(s)
- Michael J Rupar
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Trevor Sasserath
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Ethan Smith
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Brandon Comiter
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Narasimhan Sriram
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Christopher J Long
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | | | - James J Hickman
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA.
| |
Collapse
|
7
|
Binns HC, Alipour E, Nahid DS, Whitesides JF, Cox AO, Furdui CM, Marrs GS, Kim-Shapiro DB, Cordy RJ. Amino acid supplementation confers protection to red blood cells prior to Plasmodium falciparum bystander stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540951. [PMID: 37292635 PMCID: PMC10245693 DOI: 10.1101/2023.05.16.540951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malaria is a highly oxidative parasitic disease in which anemia is the most common clinical symptom. A major contributor to malarial anemia pathogenesis is the destruction of bystander, uninfected red blood cells. Metabolic fluctuations are known to occur in the plasma of individuals with acute malaria, emphasizing the role of metabolic changes in disease progression and severity. Here, we report that conditioned media from Plasmodium falciparum culture induces oxidative stress in healthy uninfected RBCs. Additionally, we show the benefit of amino acid pre-exposure for RBCs and how this pre-treatment intrinsically prepares RBCs to mitigate oxidative stress. Key points Intracellular ROS is acquired in red blood cells incubated with Plasmodium falciparum conditioned media Glutamine, cysteine, and glycine amino acid supplementation increased glutathione biosynthesis and reduced ROS levels in stressed RBCs.
Collapse
|
8
|
Géry A, Basco LK, Heutte N, Guillamin M, N'Guyen HMT, Richard E, Garon D, Eldin de Pécoulas P. Long-Term In vitro Cultivation of Plasmodium falciparum in a Novel Cell Culture Device. Am J Trop Med Hyg 2019; 100:822-827. [PMID: 30693863 DOI: 10.4269/ajtmh.18-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The standard in vitro cultivation procedure for Plasmodium falciparum requires gas exchange and a microaerophilic atmosphere. A novel system using a commercially available cell culture device (Petaka G3™; Celartia Ltd., Powell, OH) was assessed for long-term cultivation of a P. falciparum reference laboratory clone in normal air. Parasite growth during 30 days was similar, or better, in Petaka G3 than that in the standard cultivation method with gas exchange in a CO2 incubator. The successful cultivation of P. falciparum in the Petaka G3 device suggests that low O2 content available in hemoglobin and dissolved gas in the blood is sufficient for long-term cultivation. This finding may open the way to novel methods to cultivate and adapt P. falciparum field isolates to in vitro conditions with more ease.
Collapse
Affiliation(s)
- Antoine Géry
- Centre François Baclesse, Normandie Université, UNICAEN, UR ABTE EA 4651, Caen, France
| | | | - Natacha Heutte
- Normandie Université, UNIROUEN, CETAPS EA 3832, Mont Saint Aignan Cedex, France
| | - Marilyne Guillamin
- Normandie Université, UNICAEN, Plateau de Cytométrie en Flux, ICORE, Caen, France.,Normandie Université, UNICAEN, INSERM U 1075 COMETE, Caen, France
| | - Ho-Mai-Thy N'Guyen
- Centre François Baclesse, Normandie Université, UNICAEN, UR ABTE EA 4651, Caen, France
| | - Estelle Richard
- Centre François Baclesse, Normandie Université, UNICAEN, UR ABTE EA 4651, Caen, France
| | - David Garon
- Centre François Baclesse, Normandie Université, UNICAEN, UR ABTE EA 4651, Caen, France
| | | |
Collapse
|
9
|
Agarwal P, Anvikar AR, Pillai CR, Srivastava K. In vitro susceptibility of Indian Plasmodium falciparum isolates to different antimalarial drugs & antibiotics. Indian J Med Res 2018; 146:622-628. [PMID: 29512604 PMCID: PMC5861473 DOI: 10.4103/ijmr.ijmr_1688_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background & objectives: The in vitro assays for susceptibility of Plasmodium falciparum to antimalarial drugs are important tools for monitoring drug resistance. During the present study, efforts were made to establish long-term continuous in vitro culture of Indian field isolates of P. falciparum and to determine their sensitivity to standard antimalarial drugs and antibiotics. Methods: Four (MZR-I, -II, -III and -IV) P. falciparum isolates were obtained from four patients who showed artemisinin-based combination therapy (ACT) from Mizoram, a north-eastern State of India, and characterized for their in vitro susceptibility to chloroquine diphosphate (CQ), quinine hydrochloride dehydrate, mefloquine, piperaquine, artemether, arteether, dihydro-artemisinin (DHA), lumefantrine and atovaquone and antibiotics, azithromycin and doxycycline. These patients showed ACT treatment failure. Two-fold serial dilutions of each drug were tested and the effect was evaluated using the malaria SYBR Green I fluorescence assay. K1 (chloroquine-resistant) and 3D7 (chloroquine-sensitive) reference strains were used as controls. Results: Growth profile of all field isolates was identical to that of reference parasites. The IC50 values of all the drugs were also similar against field isolates and reference parasite strains, except K1, exhibited high IC50 value (275±12.5 nM) of CQ for which it was resistant. All field isolates exhibited higher IC50 values of CQ, quinine hydrochloride dihydrate and DHA compared to reference strains. The resistance index of field isolates with respect to 3D7 ranged between 260.55 and 403.78 to CQ, 39.83 and 46.42 to quinine, and 2.98 and 4.16 to DHA, and with respect to K1 strain ranged between 6.51 and 10.08, 39.26 and 45.75, and 2.65 and 3.71. MZR-I isolate exhibited highest resistance index. Interpretation & conclusions: As the increase in IC50 and IC90 values of DHA against field isolates of P. falciparum was not significant, the tolerance to DHA-piperaquine (PPQ) combination might be because of PPQ only. Further study is required on more number of such isolates to generate data for a meaningful conclusion.
Collapse
Affiliation(s)
- Pooja Agarwal
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow; Academy of Scientific & Innovative Research, New Delhi, India
| | - A R Anvikar
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - C R Pillai
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Kumkum Srivastava
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow; Academy of Scientific & Innovative Research, New Delhi, India
| |
Collapse
|
10
|
Khasanah U, WidyaWaruyanti A, Hafid AF, Tanjung M. Antiplasmodial Activity of Isolated Polyphenols from Alectryon serratus Leaves Against 3D7 Plasmodium falciparum. Pharmacognosy Res 2018; 9:S57-S60. [PMID: 29333044 PMCID: PMC5757328 DOI: 10.4103/pr.pr_39_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Alectryon serratus was selected from a screening program devoted to search naturally occurring antimalarial compound from plants in Alas Purwo National Park, Banyuwangi, East Java, Indonesia. The previous studies showed that ethanol extract of A. serratus leaves contains some polyphenol compounds. Objective: This study was designed to isolate and investigate antiplasmodial activity of polyphenol compounds. Material and Methods: The ethanol extract of A. serratus leaves was fractioned using liquid–liquid fractionation and column chromatography. Isolated compounds were identified using High-performance liquid chromatography, ultraviolet-visible, nuclear magnetic resonance, and compared with references. The isolates were tested in vitro for antiplasmodial activity against chloroquine-sensitive 3D7 strain of Plasmodium falciparum. Thin blood smears were used to assess the levels of parasitemia and growth inhibition of the isolates. Result: Half maximal Inhibitory concentration of Gallic acid (1), methyl gallate (2), and kempferol-3-O-rhamnoside (3) were 0.0722 μM, 0.0128 μM, and 3.4595 μM, respectively. Conclusion: The results suggest that gallic acid, methyl gallate, and kempferol-3-O-rhamnoside isolated from A. serratus leaves have antiplasmodial activity and are potential to be developed as antimalarial drugs. SUMMARY The ethanol extract of Alectryon serratus leaves was successively fractionated in CH2Cl2, EtOAc, and n-butanol. EtOAc fraction was fractionated using column chromatography and purified using preparative thin-layer chromatography (TLC). Isolates were studied for their antiplasmodial activity on parasites culture of chloroquine-sensitive 3D7 strain of Plasmodium falciparum. Parasitemia percentages, growth percentages, and inhibition percentages of each group were calculated. The half maximal inhibitory concentration (IC50) values that represent the concentration required to inhibit 50% of Plasmodium growth were calculated from a calibration curve using linear regression. The results suggest that isolates have antiplasmodial activity and are responsible in the antimalarial activity of Alectryon serratus leaves.
Abbreviations Used: S.F: Subfraction, EGCG: Epigallocatechingallate, EGC: Epigallocatechin
Collapse
Affiliation(s)
- Uswatun Khasanah
- Post Graduate Program, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.,Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Aty WidyaWaruyanti
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Achmad Fuad Hafid
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Mulyadi Tanjung
- Departement of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
11
|
Brancucci NMB, Gerdt JP, Wang C, De Niz M, Philip N, Adapa SR, Zhang M, Hitz E, Niederwieser I, Boltryk SD, Laffitte MC, Clark MA, Grüring C, Ravel D, Blancke Soares A, Demas A, Bopp S, Rubio-Ruiz B, Conejo-Garcia A, Wirth DF, Gendaszewska-Darmach E, Duraisingh MT, Adams JH, Voss TS, Waters AP, Jiang RHY, Clardy J, Marti M. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum. Cell 2017; 171:1532-1544.e15. [PMID: 29129376 PMCID: PMC5733390 DOI: 10.1016/j.cell.2017.10.020] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/17/2017] [Accepted: 10/12/2017] [Indexed: 01/11/2023]
Abstract
Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission.
Collapse
Affiliation(s)
- Nicolas M B Brancucci
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Joseph P Gerdt
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, MA 02155, USA
| | - ChengQi Wang
- Center for Global Health & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Nisha Philip
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Swamy R Adapa
- Center for Global Health & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Min Zhang
- Center for Global Health & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Eva Hitz
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Igor Niederwieser
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Sylwia D Boltryk
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Marie-Claude Laffitte
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Martha A Clark
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Christof Grüring
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Deepali Ravel
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Alexandra Blancke Soares
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Allison Demas
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Selina Bopp
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Belén Rubio-Ruiz
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010 Granada, Spain
| | - Ana Conejo-Garcia
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010 Granada, Spain
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland
| | - Manoj T Duraisingh
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA
| | - John H Adams
- Center for Global Health & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Till S Voss
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Andrew P Waters
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rays H Y Jiang
- Center for Global Health & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Jon Clardy
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, MA 02155, USA.
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02155, USA.
| |
Collapse
|
12
|
Duffy S, Avery VM. Plasmodium falciparum in vitro continuous culture conditions: A comparison of parasite susceptibility and tolerance to anti-malarial drugs throughout the asexual intra-erythrocytic life cycle. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:295-302. [PMID: 28738214 PMCID: PMC5522918 DOI: 10.1016/j.ijpddr.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 10/24/2022]
Abstract
The continuous culture of Plasmodium falciparum is often seen as a means to an end, that end being to probe the biology of the parasite in question, and ultimately for many in the malaria drug discovery arena, to identify means of killing the parasite in order to treat malaria. In vitro continuous culture of Plasmodium falciparum is a fundamental requirement when undertaking malaria research where the primary objectives utilise viable parasites of a desired lifecycle stage. This investigation, and resulting data, compared the impact culturing Plasmodium falciparum long term (4 months) in different environmental conditions had on experimental outcomes and thus conclusions. The example presented here focused specifically on the effect culture conditions had on the in vitro tolerance of Plasmodium falciparum to standard anti-malarial drugs, including artemisinin and lumefantrine. Historical data from an independent experiment for 3D7-ALB (5% O2) was also compared with that obtained from this study. We concluded that parasites cultured for several months in media supplemented with a serum substitute such as Albumax II® or within hyperoxic conditions (21% O2), demonstrate highly variable responses to artemisinin and lumefantrine but not all anti-malarial drugs, when compared to those cultured in human serum in combination with Albumax II® under normoxic conditions (5% O2) for the parasite.
Collapse
Affiliation(s)
- Sandra Duffy
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia.
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
13
|
Singh K, Agarwal A, Khan SI, Walker LA, Tekwani BL. Growth, Drug Susceptibility, and Gene Expression Profiling of Plasmodium falciparum Cultured in Medium Supplemented with Human Serum. ACTA ACUST UNITED AC 2016; 12:1109-14. [DOI: 10.1177/1087057107310638] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vitro cultivation of Plasmodium falciparum has been extremely useful in understanding the biology of the human malaria parasite as well as research on the discovery of new antimalarial drugs and vaccines. A chemically defined serum-free medium supplemented with lipid-rich bovine serum albumin (AlbuMAX I) offers the following advantages over human serum-supplemented media for the in vitro culture of P. falciparum: 1) improved growth profile, with more than a 2-fold higher yield of the parasites at any stage of the growth cycle; 2) suitability for in vitro antimalarial screening, as the parasites grown in AlbuMAX and human serum-supplemented media show similar sensitivity to standard and novel antimalarials as well as natural product extracts in the in vitro drug susceptibility assays; and 3) DNA microarray analysis comparing the global gene expression profile of sorbitol-synchronized P. falciparum trophozoites grown in the 2 different media, indicating minimal differences. ( Journal of Biomolecular Screening 2007:1109-1114)
Collapse
Affiliation(s)
- Kshipra Singh
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, Gastroenterology Division, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ameeta Agarwal
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi
| | - Shabana I. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi
| | - Larry A. Walker
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi
| | - Babu L. Tekwani
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi,
| |
Collapse
|
14
|
In vitro adaptability of Plasmodium falciparum to different fresh serum alternatives. J Parasit Dis 2016; 41:371-374. [PMID: 28615843 DOI: 10.1007/s12639-016-0808-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 06/20/2016] [Indexed: 10/21/2022] Open
Abstract
To reduce the dependency on fresh AB+ serum in continuous culture of Plasmodium falciparum, a comparative study was undertaken to assess the in vitro adaptability of P. falciparum to media supplemented with fresh AB+ serum from whole blood, AB+ plasma, serum derived from AB+ plasma, AB+ human serum from Sigma, Albumax II, fetal bovine serum and new born calf serum, independently and in different combinations. Combinations were used to analyze whether two different substitutes demonstrate any synergistic effect on the growth of the parasites. Our findings exhibited that the combination of fresh human serum and Albumax II showed good growth pattern in comparison to that of fresh serum and can thereby be instrumental in reducing the role of fresh human serum in continuous parasite maintenance. Culture maintained with Albumax II with or without hypoxanthine showed average growth.
Collapse
|
15
|
Phagocytic uptake of oxidized heme polymer is highly cytotoxic to macrophages. PLoS One 2014; 9:e103706. [PMID: 25078090 PMCID: PMC4117526 DOI: 10.1371/journal.pone.0103706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/06/2014] [Indexed: 11/26/2022] Open
Abstract
Apoptosis in macrophages is responsible for immune-depression and pathological effects during malaria. Phagocytosis of PRBC causes induction of apoptosis in macrophages through release of cytosolic factors from infected cells. Heme polymer or β-hematin causes dose-dependent death of macrophages with LC50 of 132 µg/ml and 182 µg/ml respectively. The toxicity of hemin or heme polymer was amplified several folds in the presence of non-toxic concentration of methemoglobin. β-hematin uptake in macrophage through phagocytosis is crucial for enhanced toxicological effects in the presence of methemoglobin. Higher accumulation of β-hematin is observed in macrophages treated with β-hematin along with methemoglobin. Light and scanning electron microscopic observations further confirm accumulation of β-hematin with cellular toxicity. Toxicological potentiation of pro-oxidant molecules toward macrophages depends on generation of H2O2 and independent to release of free iron from pro-oxidant molecules. Methemoglobin oxidizes β-hematin to form oxidized β-hematin (βH*) through single electron transfer mechanism. Pre-treatment of reaction mixture with spin-trap Phenyl-N-t-butyl-nitrone dose-dependently reverses the β-hematin toxicity, indicates crucial role of βH* generation with the toxicological potentiation. Acridine orange/ethidium bromide staining and DNA fragmentation analysis indicate that macrophage follows an oxidative stress dependent apoptotic pathway to cause death. In summary, current work highlights mutual co-operation between methemoglobin and different pro-oxidant molecules to enhance toxicity towards macrophages. Hence, methemoglobin peroxidase activity can be probed for subduing cellular toxicity of pro-oxidant molecules and it may in-turn make up for host immune response against the malaria parasite.
Collapse
|
16
|
Insights gained from P. falciparum cultivation in modified media. ScientificWorldJournal 2013; 2013:363505. [PMID: 23956690 PMCID: PMC3727134 DOI: 10.1155/2013/363505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/23/2013] [Indexed: 11/17/2022] Open
Abstract
In vitro cultivation of Plasmodium falciparum, the agent of severe human malaria, has enabled advances in basic research and accelerated the development of new therapies. Since the introduction of in vitro parasite culture nearly 40 years ago, most workers have used a medium consisting of RPMI 1640 medium supplemented with lipids and hypoxanthine. While these standardized conditions yield robust parasite growth and facilitate comparison of results from different studies, they may also lead to implicit assumptions that limit future advances. Here, I review recent studies that used modified culture conditions to challenge these assumptions and explore parasite physiology. The findings are relevant to understanding in vivo parasite phenotypes and the prioritization of antimalarial targets.
Collapse
|
17
|
Agarwal P, Srivastava RK, Puri SK, Srivastava K. Management of mycoplasma contamination in in vitro culture of Plasmodium falciparum without antibiotic treatment - a preliminary report. Res Microbiol 2013; 164:211-5. [PMID: 23277231 DOI: 10.1016/j.resmic.2012.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/13/2012] [Indexed: 11/30/2022]
Abstract
The presence of foreign contamination, especially of mycoplasmas, is a major hindrance in long term in vitro cultivation of Plasmodium falciparum and may be a source of false-positive results. Efforts have been made to control mycoplasma contamination by trypsinization of P. falciparum culture. Samples of accidentally contaminated cultures were used for this study. The presence of Mycoplasma orale in contaminated culture was ascertained by a species-specific PCR-based mycoplasma detection kit (Takara; Cat. No.6601). Trypsinization was carried out using trypsin-EDTA and the growth profile of P. falciparum was monitored for more than three weeks post-trypsinization. The studies were carried out with four different P. falciparum strains, various serum supplements and human erythrocytes belonging to different blood groups. It was interesting to observe that, irrespective of the different strains of P. falciparum and the variety of serum supplements and erythrocytes, mycoplasma contamination can successfully be removed from P. falciparum culture by trypsinization. No antibiotic except gentamicin, which is routinely used, was added to the medium. Results of this study indicate that the frequent appearance of mycoplasma in continuous long-term cultures of P. falciparum can be managed by trypsinization.
Collapse
Affiliation(s)
- Pooja Agarwal
- Parasitology Division, CSIR-Central Drug Research Institute, M.G. Road, Lucknow 226001, India.
| | | | | | | |
Collapse
|
18
|
In-vitro culture of Plasmodium falciparum: Utility of modified (RPNI) medium for drug-sensitivity studies using SYBR Green I assay. Exp Parasitol 2011; 127:318-21. [DOI: 10.1016/j.exppara.2010.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 06/22/2010] [Accepted: 08/11/2010] [Indexed: 11/18/2022]
|
19
|
Requirements for Maximal Enrichment of Viable Intraerythrocytic Plasmodium falciparum Rings by Saponin Hemolysis. Exp Biol Med (Maywood) 2008; 233:1359-67. [DOI: 10.3181/0804-rm-129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of the present study was to confirm the effectiveness of saponin hemolysis for concentrating ring-infected erythrocytes in Plasmodium falciparum cultures and to determine the actual numbers of the enriched parasites, not just percentage parasitemia. This is important because various molecular biology and vaccine development against malaria require useable quantities of pure culture with minimal number of uninfected erythrocytes at all stages. Synchronized cultures of three P. falciparum strains were exposed to 0.015% isotonic saponin solution for 30 minutes on ice. They were centrifuged and the pellets were treated again with saponin solution for 3–7 minutes. Initially, most of the cultures contained approximately 1010 erythrocytes and 1–7% parasitemia, but at the end of the enrichment up to 108 of erythrocytes containing 90–99.8% parasitemia were recovered (maximal enrichment). From microscopic examination of the cells it was calculated that the hemolysis rate of uninfected and infected erythrocytes was circa 27 to 1, which could account for the enrichment. Studies by other investigators have suggested that P. falciparum merozoite invasion decreases erythrocyte membrane lipids, and it has been reported that reduction of membrane cholesterol could make erythrocytes saponin-resistant. The possibility that merozoite invasion made erythrocytes partially resistant to saponin hemolysis was strengthened by the observation that the proportions of multiple infections increased significantly in the enriched cultures. However, mature asexual parasites could not be concentrated by this method, suggesting possible differences between the membranes of erythrocytes containing ring forms and those of trophozoites and schizonts. Ring-infected erythrocytes freshly from malaria patients could also not be concentrated by the method described here, suggesting that the ability to induce saponin resistance in erythrocytes was acquired by the parasites in vitro.
Collapse
|