1
|
Samantsidis GR, Karim S, Smith RC. Influence of blood-feeding and infection on arthropod hemocytes. CURRENT OPINION IN INSECT SCIENCE 2025:101341. [PMID: 39938680 DOI: 10.1016/j.cois.2025.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Blood-feeding provides essential nutrients for development and reproduction in hematophagous arthropods, yet also initiates significant other physiological alterations in immune function. Immune cells, or hemocytes, are integral components of the arthropod innate immune system with notable roles in defining vector competence. Evidence suggests that both blood-feeding and infection drive substantial changes in hemocyte phenotypes, including proliferation, immune activation, and differentiation, which directly and indirectly influence pathogen infection outcomes. These dynamics have fueled extensive research into hemocyte biology in recent years, which aided by emerging single-cell technologies and methods of phagocyte depletion, have provided novel molecular insights into hemocyte populations and additional support for their important contributions to parasite, virus, and bacterial infections. Despite this progress, many aspects of arthropod immune cell biology remain unclear. Focusing on mosquitoes and ticks as two of the most prominent and well-studied arthropod vectors, this review summarizes the effects of blood-feeding and infection on mosquito and tick hemocytes, highlighting hemocyte classifications, and the known mechanisms by which hemocytes can have positive or negative impacts on vector-borne pathogen infection.
Collapse
Affiliation(s)
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Ryan C Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Aedes aegypti Shows Increased Susceptibility to Zika Virus via Both In Vitro and In Vivo Models of Type II Diabetes. Viruses 2022; 14:v14040665. [PMID: 35458395 PMCID: PMC9024453 DOI: 10.3390/v14040665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic conditions like type II diabetes (T2DM) have long been known to exacerbate many infectious diseases. For many arboviruses, including Zika virus (ZIKV), severe outcomes, morbidity and mortality usually only occur in patients with such pre-existing conditions. However, the effects of T2DM and other pre-existing conditions on human blood (e.g., hypo/hyperinsulinemia, hyperglycemia and hyperlipidemia) that may impact infectivity of arboviruses for vectors is largely unexplored. We investigated whether the susceptibility of Aedes aegypti mosquitoes was affected when the mosquitoes fed on “diabetic” bloodmeals, such as bloodmeals composed of artificially glycosylated erythrocytes or those from viremic, diabetic mice (LEPRDB/DB). Increasing glycosylation of erythrocytes from hemoglobin A1c (HgbA1c) values of 5.5–5.9 to 6.2 increased the infection rate of a Galveston, Texas strain of Ae. aegypti to ZIKV strain PRVABC59 at a bloodmeal titer of 4.14 log10 FFU/mL from 0.0 to 40.9 and 42.9%, respectively. ZIKV was present in the blood of viremic LEPRDB/DB mice at similar levels as isogenic control C57BL/6J mice (3.3 log10 FFU/mL and 3.6 log10 FFU/mL, respectively. When mice sustained a higher ZIKV viremia of 4.6 log10 FFU/mL, LEPRDB/DB mice infected 36.3% of mosquitoes while control C57BL/6J mice with a viremia of 4.2 log10 FFU/mL infected only 4.1%. Additionally, when highly susceptible Ae. aegypti Rockefeller mosquitoes fed on homozygous LEPRDB/DB, heterozygous LEPRWT/DB, and control C57BL/6J mice with viremias of ≈ 4 log10 FFU/mL, 54%, 15%, and 33% were infected, respectively. In total, these data suggest that the prevalence of T2DM in a population may have a significant impact on ZIKV transmission and indicates the need for further investigation of the impacts of pre-existing metabolic conditions on arbovirus transmission.
Collapse
|
3
|
Transcriptional Modulation of the Host Immunity Mediated by Cytokines and Transcriptional Factors in Plasmodium falciparum-Infected Patients of North-East India. Biomolecules 2019; 9:biom9100600. [PMID: 31614626 PMCID: PMC6843480 DOI: 10.3390/biom9100600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 11/17/2022] Open
Abstract
Complications due to malaria are caused mostly by host immunological responses. Plasmodium falciparum subverts host immunity by various strategies, including modulation in the host immune responses by regulating cytokines. The transcriptional alterations of major cytokines and immunoregulators were analyzed in this study through gene expression profiling in clinically defined subgroups of P. falciparum patients. Malaria patients were included from Dhalai district hospital of Tripura with uncomplicated malaria (UC) and severe malaria (SM) and healthy controls from endemic and non-endemic areas of India. qPCR gene expression analysis was performed for all factors and they were grouped into three clusters based on their altered expressions. The first cluster was downregulated with an increased parasitic burden which included T-BET, GATA3, EOMES, TGF-β, STAT4, STAT6 and cytokines IFN-γ, IL-12, IL-4, IL-5, and IL-13. RANTES, IL-8, CCR8, and CXCR3 were decreased in the SM group. The second cluster was upregulated with severity and included TNF-α, IL-10, IL-1β and IL-7. PD-1 and BCL6 were increased in the SM group. The third cluster comprised of NF-κB and was not altered. The level of perforin was suppressed while GrB expression was elevated in SM. P. falciparum malaria burden is characterized by the modulation of host immunity via compromization of T cell-mediated responses and suppression of innate immune-regulators.
Collapse
|
4
|
Innate immunity in disease: insights from mathematical modeling and analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:227-43. [PMID: 25480644 DOI: 10.1007/978-1-4939-2095-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The acute inflammatory response is a complex defense mechanism that has evolved to respond rapidly to injury, infection, and other disruptions in homeostasis. This robust responsiveness to biological stress likely endows the host with increased fitness, but over-robust or inadequate inflammation predisposes the host to various diseases. Importantly, well-compartmentalized inflammation is generally beneficial, but spillover of inflammation into the blood is a hallmark-and likely also a driver-of self-maintaining inflammation. The blood is also a key entry point and immunological interface for vectors of parasitic diseases, diseases that themselves incite systemic inflammation. The complex role of inflammation in health and disease has made this biological system difficult to understand comprehensively and modulate rationally for therapeutic purposes. Consequently, systems approaches have been applied in order to characterize dynamical properties and identify key control points in inflammation. This process begins with the collection of high-dimensional, experimental, and clinical data, followed by data reduction and data-driven modeling that finally informs mechanistic computational models for analysis, prediction, and rational modulation. These studies have suggested that the overall architecture of the inflammatory response includes a multiscale positive feedback from inflammation → tissue damage → inflammation, which is often inadequately controlled by negative feedback from anti-inflammatory mediators. Given the importance of the blood interface for the inflammatory response, and the accessibility of this compartment both as an immunological sampling reservoir for vectors as well as for diagnosis and therapy, we suggest that any rational efforts at modulating inflammation via the blood compartment must involve computational modeling.
Collapse
|
5
|
Price I, Ermentrout B, Zamora R, Wang B, Azhar N, Mi Q, Constantine G, Faeder JR, Luckhart S, Vodovotz Y. In vivo, in vitro, and in silico studies suggest a conserved immune module that regulates malaria parasite transmission from mammals to mosquitoes. J Theor Biol 2013; 334:173-86. [PMID: 23764028 DOI: 10.1016/j.jtbi.2013.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/24/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
Human malaria can be caused by the parasite Plasmodium falciparum that is transmitted by female Anopheles mosquitoes. "Immunological crosstalk" between the mammalian and anopheline hosts for Plasmodium functions to control parasite numbers. Key to this process is the mammalian cytokine transforming growth factor-β1 (TGF-β1). In mammals, TGF-β1 regulates inducible nitric oxide (NO) synthase (iNOS) both positively and negatively. In some settings, high levels of NO activate latent TGF-β1, which in turn suppresses iNOS expression. In the mosquito, ingested TGF-β1 induces A. stephensi NOS (AsNOS), which limits parasite development and which in turn is suppressed by activation of the mosquito homolog of the mitogen-activated protein kinases MEK and ERK. Computational models linking TGF-β1, AsNOS, and MEK/ERK were developed to provide insights into this complex biology. An initial Boolean model suggested that, as occurs in mammalian cells, MEK/ERK and AsNOS would oscillate upon ingestion of TGF-β1. An ordinary differential equation (ODE) model further supported the hypothesis of TGF-β1-induced multiphasic behavior of MEK/ERK and AsNOS. To achieve this multiphasic behavior, the ODE model was predicated on the presence of constant levels of TGF-β1 in the mosquito midgut. Ingested TGF-β1, however, did not exhibit this behavior. Accordingly, we hypothesized and experimentally verified that ingested TGF-β1 induces the expression of the endogenous mosquito TGF-β superfamily ligand As60A. Computational simulation of these complex, cross-species interactions suggested that TGF-β1 and NO-mediated induction of As60A expression together may act to maintain multiphasic AsNOS expression via MEK/ERK-dependent signaling. We hypothesize that multiphasic behavior as represented in this model allows the mosquito to balance the conflicting demands of parasite killing and metabolic homeostasis in the face of damaging inflammation.
Collapse
Affiliation(s)
- Ian Price
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abeles SR, Chuquiyauri R, Tong C, Vinetz JM. Human host-derived cytokines associated with Plasmodium vivax transmission from acute malaria patients to Anopheles darlingi mosquitoes in the Peruvian Amazon. Am J Trop Med Hyg 2013; 88:1130-7. [PMID: 23478585 DOI: 10.4269/ajtmh.12-0752] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Infection of mosquitoes by humans is not always successful in the setting of patent gametocytemia. This study tested the hypothesis that pro- or anti-inflammatory cytokines are associated with transmission of Plasmodium vivax to Anopheles darlingi mosquitoes in experimental infection. Blood from adults with acute, non-severe P. vivax malaria was fed to laboratory-reared F1 An. darlingi mosquitoes. A panel of cytokines at the time of mosquito infection was assessed in patient sera and levels compared among subjects who did and did not infect mosquitoes. Overall, blood from 43 of 99 (43%) subjects led to mosquito infection as shown by oocyst counts. Levels of IL-10, IL-6, TNF-α, and IFN-γ were significantly elevated in vivax infection and normalized 3 weeks later. The anti-inflammatory cytokine IL-10 was significantly higher in nontransmitters compared with top transmitters but was not in TNF-α and IFN-γ. The IL-10 elevation during acute malaria was associated with P. vivax transmission blocking.
Collapse
|
7
|
Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. PLoS Pathog 2013; 9:e1003180. [PMID: 23468624 PMCID: PMC3585164 DOI: 10.1371/journal.ppat.1003180] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022] Open
Abstract
The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the midgut is necessary for the maintenance of midgut health as reflected in energy homeostasis and tissue repair and renewal. Malaria is a major public health problem in the world and various strategies are under development for control, including vaccines and transgenic mosquitoes that block parasite transmission. We previously reported that overexpression of the major signaling protein Akt in the midgut of female Anopheles stephensi mosquitoes could impart resistance to infection with the most important human malaria parasite and also reduce the duration of mosquito infectivity to human hosts. However, to use this strategy for malaria transmission control in endemic areas, we must understand the mechanism by which parasites are killed to ensure that transmission of other human pathogens (e.g., viruses, nematodes) is not unexpectedly enhanced and to allow the design of rational, preventive interventions. Here, we report that overexpression of a constitutively active Akt in the mosquito midgut alters important cellular, and in particular, mitochondrial processes – in a manner similar to Akt control of these processes in mammalian cells – to generate high levels of toxic compounds that kill parasites within hours after infection. However, the same alterations in mitochondrial processes that result in parasite killing ultimately reduce mosquito infective lifespan for transmission, indicating that mitochondrial dynamics in the mosquito midgut could be targeted for multi-faceted genetic control of mosquito biology to reduce malaria transmission.
Collapse
|
8
|
Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Bartels J, Sarkar J, Squires RH, Okonkwo DO, Gerlach J, Zamora R, Luckhart S, Ermentrout B, An G. Translational systems approaches to the biology of inflammation and healing. Immunopharmacol Immunotoxicol 2010; 32:181-95. [PMID: 20170421 PMCID: PMC3134151 DOI: 10.3109/08923970903369867] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is a complex, non-linear process central to many of the diseases that affect both developed and emerging nations. A systems-based understanding of inflammation, coupled to translational applications, is therefore necessary for efficient development of drugs and devices, for streamlining analyses at the level of populations, and for the implementation of personalized medicine. We have carried out an iterative and ongoing program of literature analysis, generation of prospective data, data analysis, and computational modeling in various experimental and clinical inflammatory disease settings. These simulations have been used to gain basic insights into the inflammatory response under baseline, gene-knockout, and drug-treated experimental animals for in silico studies associated with the clinical settings of sepsis, trauma, acute liver failure, and wound healing to create patient-specific simulations in polytrauma, traumatic brain injury, and vocal fold inflammation; and to gain insight into host-pathogen interactions in malaria, necrotizing enterocolitis, and sepsis. These simulations have converged with other systems biology approaches (e.g., functional genomics) to aid in the design of new drugs or devices geared towards modulating inflammation. Since they include both circulating and tissue-level inflammatory mediators, these simulations transcend typical cytokine networks by associating inflammatory processes with tissue/organ impacts via tissue damage/dysfunction. This framework has now allowed us to suggest how to modulate acute inflammation in a rational, individually optimized fashion. This plethora of computational and intertwined experimental/engineering approaches is the cornerstone of Translational Systems Biology approaches for inflammatory diseases.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
MAPK ERK signaling regulates the TGF-beta1-dependent mosquito response to Plasmodium falciparum. PLoS Pathog 2009; 5:e1000366. [PMID: 19343212 PMCID: PMC2658807 DOI: 10.1371/journal.ppat.1000366] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 03/05/2009] [Indexed: 11/19/2022] Open
Abstract
Malaria is caused by infection with intraerythrocytic protozoa of the genus Plasmodium that are transmitted by Anopheles mosquitoes. Although a variety of anti-parasite effector genes have been identified in anopheline mosquitoes, little is known about the signaling pathways that regulate these responses during parasite development. Here we demonstrate that the MEK-ERK signaling pathway in Anopheles is controlled by ingested human TGF-beta1 and finely tunes mosquito innate immunity to parasite infection. Specifically, MEK-ERK signaling was dose-dependently induced in response to TGF-beta1 in immortalized cells in vitro and in the A. stephensi midgut epithelium in vivo. At the highest treatment dose of TGF-beta1, inhibition of ERK phosphorylation increased TGF-beta1-induced expression of the anti-parasite effector gene nitric oxide synthase (NOS), suggesting that increasing levels of ERK activation negatively feed back on induced NOS expression. At infection levels similar to those found in nature, inhibition of ERK activation reduced P. falciparum oocyst loads and infection prevalence in A. stephensi and enhanced TGF-beta1-mediated control of P. falciparum development. Taken together, our data demonstrate that malaria parasite development in the mosquito is regulated by a conserved MAPK signaling pathway that mediates the effects of an ingested cytokine.
Collapse
|